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Solovay{type characterizationsfor forcing{algebrasJ�org Brendle1Department of MathematicsDartmouth College, Hanover, NH 03755, USABrendle@MAC.dartmouth.eduBenedikt L�oweDepartment of MathematicsUniversity of California, Berkeley, CA 94720, USAloewe@math.berkeley.eduApril 12, 2001AbstractWe give characterizations for the (in ZFC unprovable) sentences \Ev-ery �12{set is measurable" and \Every �12{set is measurable" for variousnotions of measurability derived from well{known forcing partial order-ings.1 IntroductionIn recent years, forcing notions which were originally devised to carry outsome consistency proof have emerged more and more as independent mathe-matical objects which should be studied in their own right, from various an-gles. One such endeavor has been to investigate notions of measurability (thatis, �{algebras) associated with forcing orderings adding a generic real. Thishas a long tradition since the notions related to Cohen and random forcingare the Baire property and Lebesgue measurability which have always beenin the focus of set{theoretic research (cf. the results of [Solovay 1970] and[Shelah 1984]). Other algebras which have been around for quite a while in-clude the Marczewski{measurable sets [Marczewski 1935] which correspondto Sacks forcing and the completely Ramsey sets which are connected withMathias forcing. In all of these cases, measurability of the analytic sets hasbeen proved long ago, and it has been known that one can get non{measurablesets on the �12{level in the constructible universe L. Furthermore, Solovay(see 5.1) proved in the sixties that the statement \all �12{sets are Lebesgue{measurable" is equivalent to \over each L[a], there is a measure{one set of1Part of this research was done while the �rst author was supported by DFG{grant Nr. Br1420/1{1 and the second author by DAAD{grant Ref.316{D/96/20969 in the program HSPII/AUFE and a grant of the Studienstiftung des Deutschen Volkes.AMS Subject Classi�cation : 03E15 54A05 28A05 03E351



random reals" which is in turn equivalent to \for all a, the union of all nullsets coded in L[a] is null", thereby reducing a statement about measurability ofprojective sets to what might be termed a transcendence principle over L. Thevalue of such characterizations, apart from their intrinsic beauty, is obvious:they make it much easier to check whether �12{measurability holds in a givenmodel of set theory. So it is a natural question whether statements like \all�12{sets are P{measurable" and \all �12{sets are P{measurable" can be char-acterized in Solovay's fashion as transcendence principles over L, for otherforcing notions P adding a generic real.In this work, we show this can be done in several cases. The most interestingresults concern Hechler forcing D , the standard c.c.c. forcing notion adjoininga dominating real, and the related dominating topology D on !! (see the de�-nition in 2, (ii)). The notion of measurability associated with D is, of course,the property of Baire with respect to D. We show that all �12{sets have theBaire property in D i� all �12{sets have the Baire property in the standardtopology on !! (Theorem 5.8). Using a combinatorial result on the dominatingtopology due to [ Labe�dzki{Repick�y 1995] which builds, in turn, on the com-binatorics of Hechler forcing developed in [Brendle{Judah{Shelah 1992],we then get, as a rather easy consequence of the characterization on the �12{level, that all �12{sets have the Baire property in D i� @L[a]1 < @1 for all realsa (Theorem 5.11). This con�rms a conjecture put forward by Judah (privatecommunication). It's the only case we know of where the consistency strengthof �12 � P{measurability is already an inaccessible. This should be comparedto the result of [Shelah 1984] showing that the consistency strength of �13{Lebesgue{measurability is an inaccessible.We also investigate various other notions of measurability, e.g. M {measura-bility which is derived from Miller's rational perfect set forcing M . We showthat all �12{sets are M {measurable i� all �12{sets are i� !! \L[a] is not domi-nating in !! for all reals a (Theorem 6.1). In all the cases we consider here, theproof of the projective statement assuming the transcendence principle followseither from known game{theoretic arguments or by rewriting the correspondingproof for the standard Baire property. Our main technical results (4.1, 6.1,but also 5.7 which follows from 4.1 and 3.4), then, deal with the other direc-tion | taken care of by a Fubini{argument in case of the Baire property andLebesgue measurability which does not apply in our case | and have all asimilar avour: each time, we construct a �12(a){partition of the reals along acarefully chosen scale of L[a]. For example, to prove Theorem 6.1 mentionedabove, we produce, under the assumption that !!\L[a] is dominating, a �12(a){super{Bernstein set, where A � !! is called super{Bernstein i� both A and!! nA meet every superperfect set.This paper is organized as follows. In section 2, we introduce the notions offorcing we are interested in, de�ne what we mean by the corresponding notionof measurability and �x our notation. Section 3 contains general results on2



the connection between the various measurability notions we study. The nextthree sections contain the main results: in section 5 we study Hechler forcing;sections 4 and 6 deal with Laver and Miller forcing, respectively. We concludewith a brief remark about Sacks forcing in section 7, and an overview on ourresults as well as an open problem in section 8. All sections depend on sections2 and 3; the higher{numbered sections can be read independently of each other;however, 5.7 uses 4.1.2 Main de�nitions and notation(i). C := h!<!;�i is called Cohen forcing. For each condition s we de�ne[s] := ff 2 !! : s � fg. The sets ([s])s2!<! are a topology base of theso called Baire space whose topology we denote by B. Sometimes it maybe necessary to regard Cohen forcing on the Cantor space 2!. In thiscase we will denote the topology by C.(ii). We call D := !�!! Hechler forcing, when we have the following partialordering on it:hN; fi � hM; gi () N �M; f jM = gjM; f � gWe put [N; f ] := fx 2 !! : f jN � x and x(n) � f(n) for all ng. Again,the sets ([N; f ])hN;fi2D are a topology base of the dominating topologyD. Obviously the dominating topology is �ner than the Baire topology,because if we de�ne the following real numberxs(n) := � s(n) if n < jsj0 elsethen [jsj; xs] = [s]. As we know from [ Labe�dzki{Repick�y 1995], D is ac.c.c. Baire space.In contrast to these two forcings whose conditions form a topology base on !!(and which we call therefore topological forcings) we consider the following threenon{topological forcings:(iii). A tree L � !<! is called Laver tree, if all nodes above the stem are !{splitting nodes2. We call the set of all Laver trees ordered by inclusionLaver forcing L .(iv). A tree M � !<! is called superperfect, if every splitting node is an !{splitting node and every node has a (not necessarily immediate) successorwhich is a splitting node (and therefore an !{splitting node). Millerforcing M is the set of all superperfect trees ordered by inclusion.2A node is called splitting if it has more than one immediate successor, and it is called!{splitting if it has in�nitely many immediate successors3



(v). In analogy to the de�nition of M we call a tree P � 2<! perfect, if belowevery node there is a splitting node and de�ne Sacks forcing S to be theset of all perfect trees ordered by inclusion.Given a tree T � !<!, let [T ] := ff 2 !! : f jn 2 T for all n 2 !g denote theset of its branches. For s 2 T , let Succ(s) be the set of immediate successors ofs in T . Split(T ) stands for the set of splitting nodes of T .We can associate each of these forcing in a natural way with a notion ofmeasurability. In the de�nition of the topological forcings C and D , we remarkedthat the forcings form topology bases for B and D respectively. The forcingsare therefore quite naturally connected to the �{algebra of sets with the Baireproperty in these topologies. The B{ and D{meager sets are also called C { andD {null sets.In the case of non{topological forcings P 2 fS;M ;Lg we de�ne a set ofreal numbers A (A � !! or A � 2! according to the de�nition of P) to beP{measurable if8p 2 P 9p0 � p ([p0] \A = ; or [p0] \ !! nA = ;)and to be P{null if 8p 2 P 9p0 � p ([p0] \ A = ;)The ideal of P{null sets we denote by (p0) and the set of complements of P{nullsets we denote by (p1).For pointclasses �, we abbreviate the sentence \every set in � is P{measurable"by �(P). In addition to that we de�ne a set A to be weakly P{measurable if ei-ther A or its complement contains the branches through some element of P. Asabove, we abbreviate the sentence \every set in � is weakly P{measurable" byw�(P). We will call a pointclass � topologically reasonable if it is closed undercontinuous preimages and has the following property:For A 2 � and Q closed, we have A \Q 2 �2.1 LemmaLet P be any of the forcings considered in this work, and let � be a topologicallyreasonable pointclass. Then the following are equivalent:(i). w�(P)(ii). �(P)Proof :As the backward direction is obvious, we prove the forward direction: Suppose�(P) is false. Then there is an A 2 � which is not P{measurable, i.e. there is aP 2 P such that for all Q � P : [Q] \ A 6= ;4



and [Q] \ !! nA 6= ;Let � be an homeomorphism between [P ] and !! (or 2! in the case that P isde�ned on the Cantor space). Then because of the properties postulated for�, A \ [P ] and A0 := �(A \ [P ]) are in �. Because of w�(P) we have Q0 2 Pwith either [Q0] � A0 or [Q0] � !! nA0. Applying ��1 yields:��1[Q0] � A \ [P ] or ��1[Q0] � [P ] \ (!! nA)But this is a contradiction. q.e.d.For this lemma we do not need closure under continuous preimages, closureunder homeomorphism would su�ce.Let M be a model of ZFC and BC be a �xed coding of the Borel sets. Fora code c we denote the decoded set with Ac. If P is any of the de�ned forcingnotions then BCP(M) denotes the set of all real numbers in M which code aBorel P{null set (we have enough absoluteness properties for this to make sense).For abbreviation we de�ne:NP(M) :=[fAc : c 2 BCP(M)gFor the c.c.c. forcings considered here, one can prove that the P{generic re-als over M are exactly those not in NP(M). This result allows the followingde�nition:2.2 De�nition(i). Coh(M) := !! n NC (M)(ii). Hech(M) := !! n ND (M)2.3 De�nitionLet A � !!. A real x 2 !! is called� unbounded over A, if: 8a 2 A 91n : a(n) � x(n)� dominating over A, if: 8a 2 A 81n : a(n) � x(n)Shortly we write x �� y :() 81n : x(n) � y(n) for \y dominates x".Let B � !!. B is called 5



� �{bounded in A, if there is an a 2 A dominating over B� unbounded in A, if it is not �{bounded in A� dominating in A, if no a 2 A is unbounded over BApart from this, we use standard notions and notation of Descriptive Set Theoryand Forcing Theory (see e.g. [Jech 1978] or [Bartoszy�nski{Judah 1995]).3 General ResultsWe provide a few results on the connection between some notions of measura-bility which hold for arbitrary topologically reasonable pointclasses �.3.1 TheoremFor any topologically reasonable pointclass �, �(D ) implies �(C )Proof :We de�ne a mapping ' : !! ! 2! via'(f)(n) := f(n) mod 2for f 2 !! and n 2 !. Note that ' is onto, continuous and open, regardlessof whether we topologize !! with D or B. (Of course, 2! always carries thetopology C).Now let A � 2! be a C{nonmeager set in �. It su�ces to show that there iss 2 2<! such that [s] \ A is comeager in [s]. Since ' is continuous when goingfrom B to C and � is topologically reasonable,B = '�1(A) is in � as well. As ' isonto, continuous and open as a map from h!!;Di to h2!; Ci, B is D{nonmeager.By assumption we �nd [N; f ] such that [N; f ] \B is comeager in [N; f ]. Hencethere is a G�{set C � [N; f ] \ B dense in [N; f ]. Assume C = Ti Ci wherethe Ci form a decreasing sequence of open sets, and Ci = Sj�j=i[N� ; f�] (whereNhi = N and fhi = f) are such that(i). Sj [N� ĥji; f� ĥji] � [N�; f�] is dense for all �, and(ii). N� � i for all i and � with j�j = i.It is clear that all the Ci can be written in this form.Let �' : !<! ! 2<! be de�ned by�'(s)(n) := s(n) mod 2for s 2 !<! and n < jsj, and put s� = �'(f�jN�) and s = shi. Next �nd H� � !such that(iii). the [s� ĥji] for j 2 H� are pairwise disjoint, and6



(iv). Sj2H� [s�^hji] is dense in [s� ].Again this is easily done by (i) above. Now de�ne recursively E0 = fhig, Ei+1 =S�2Eif� ĥji : j 2 H�g, put Di = S�2Ei [s� ], and let D = TiDi. By (iv), D isdense in [s]. We claim that D � A, thus completing the proof.Given x 2 D, there is a unique y 2 !! such that x 2 [syjn] for all n 2 !, byclause (iii). Furthermore, (ii) entails that Tn[syjn] = fxg. Now, Tn[Nyjn; fyjn]also contains a unique element g 2 !!, by (i) and (ii). Clearly, '(g) = x. Sinceg 2 C � B = '�1(A), we get x 2 A, as required. q.e.d.Note that this result is nothing but a topological version of the well{known factthat if f 2 !! is Hechler over a model M of set theory, then '(f) is CohenoverM. For the next result (Theorem 3.4 below), we need the following notionfrom [Brendle{Hjorth{Spinas 1995] (p. 294):3.2 De�nitionLet �W = hw� ; s� : � 2 !<!i be such that� dom(shi) and w� are �nite subsets of !� s� : w�jj�j�1 ! ! for � 6= hi, shi : dom(shi)! ! are functions� ! = dom(shi)[Sn2! wf jn for all f 2 !!, the union being pairwise disjoint� s�(i) > �(j�j � 1) for all i 2 w�jj�j�1 and all �Then we can de�ne the set C = C( �W ) � !! such that g 2 C i� g = Sn sf jn forsome f 2 !!. C is called a nice set; it is necessarily closed and dominating.3.3 Theorem ([Brendle{Hjorth{Spinas 1995], Theorem 1.1)Every dominating analytic set contains a nice set.3.4 TheoremFor any topologically reasonable pointclass �, �(D ) implies �(L).Proof :Let A 2 � and let T be a Laver tree. By 2.1, we can assume T = !<!. Wehave to �nd a Laver tree S � T such that either [S] � A or [S] \ A = ;. Wede�ne a function ' : !! ! !! recursively by'(x)(0) = x(0)'(x)(n + 1) = x('(x)(n))Clearly ' is continuous. Put B := '�1(A). By assumption B 2 �. Hence Bhas the property of Baire in the topology D. Thus we can �nd an open set[N; f ] in D such that either B or !! nB is D{comeager in [N; f ]. Without loss7



the former holds. Hence there is a G�{set C � [N; f ] \B dense in [N; f ]. Notethat C must be dominating in !!, for otherwise we could �nd g 2 !! abovef with [N; g] \ C = ;, contradicting C's density. By Theorem 3.3, C containsa nice set D = C( �W ) where �W = hw� ; s� : � 2 !<!i. Since D � B, we get'[D] � A. We are left with showing that '[D] contains the set of branchesthrough a Laver tree S.To this end, de�ne recursively a function �' with range !<! and domain allfunctions from a �nite subset of ! to !, as follows. If 0 =2 dom(s), let �'(s) = hi.Otherwise put �'(s)(0) := s(0)Assume �'(s)(i) has been de�ned. If �'(s)(i) =2 dom(s), we're done and havej �'(s)j = i+ 1. Otherwise, put�'(s)(i+ 1) := s( �'(s)(i))Now construct recursively a Laver tree S such that for any t 2 S there is� 2 !<! such that �'(Sj�j�j s�jj) = t (?). Clearly (?) implies [S] � '[D].First put t := �'(shi) into S. Then assume t 2 S has property (?) withwitness �. We have to de�ne the successors of t in S. Put s := Sj�j�j s�jj .Then by de�nition of �', t(jtj � 1) =2 dom(s). Hence there is � � � minimalsuch that t(jtj � 1) 2 w� . Now, if n is large enough, we will have �'(sn)(jtj) =sn(t(jtj � 1)) =2 dom(sn) where sn = Sj�j� j+1 s� ĥnijj . Therefore tn = �'(sn) forsuch n has length jtj+1 and also has property (?) with witness � ĥni. Thus wecan put such tn into S. This completes the recursive construction of the Lavertree S, and the proof of the Theorem. q.e.d.Results like 3.1 and 3.4 can be subsumed in the following diagram.3.5 CorollaryLet � be a topologically reasonable pointclass. Then one has the followingimplications: �(D ) =) �(C )+ +�(L) =) �(M ) =) �(S)Proof :�(D ) =) �(C ) and �(D ) =) �(L) were proved in Theorems 3.1 and 3.4, re-spectively.The directions �(L) =) �(M ) =) �(S) are easy consequences of 2.1. Tosee e.g. the second implication, let A � 2! be a set in �, and let S � 2<! be aSacks tree. By 2.1, we can assume S = 2<!. Let ' : !! ! 2! be the canonicalmap which identi�es the Baire space with the irrationals in 2! (i.e., the x 2 2!such that fi : x(i) = 1g is in�nite). Since ' is continuous, '�1(A) belongs8



to �. Hence we can �nd M 2 M with [M ] � '�1(A) or [M ] � !! n '�1(A).Assume without loss the former. Since '[M ] is an uncountable G�{set, we can�nd T 2 Swith [T ] � '[M ] � A, as required.To see that �(C ) implies �(M ), simply note that every non{meager set withthe property of Baire contains the set of branches through a superperfect tree.q.e.d.We sketch another connection between two regularity properties which we shallneed in section 4 when dealing with Laver forcing. To this end, we introduce thefollowing three notions the �rst of which is De�nition 2.1 in [Goldstern et al. 1995]while the last is on p. 296 in [Brendle{Hjorth{Spinas 1995]:3.6 De�nition(i). A set A � !! is called strongly dominating i�8f 2 !! 9x 2 A 81k : f(x(k � 1)) < x(k)(ii). A set A � !! is called `{regular if either A contains the set of branchesthrough a Laver tree or A is not strongly dominating.(iii). A set A � !! is called strongly u{regular if either A contains a nice set orA is not dominating.Note that the second and third notions are very similar, and analogous facts canbe proved about both. It was shown in Lemma 2.3 of [Goldstern et al. 1995]that everyBorel set is `{regular. Standard modi�cations of the game{theoreticargument used in the proof (Solovay's unfolding trick) show the same conclu-sion is true for analytic sets | this is, of course, analogous to Theorem 3.3above, but it's also a consequence of 3.3 and the following proposition:3.7 PropositionFor a topologically reasonable pointclass �, strong u{regularity for � implies`{regularity for �.Proof :Let A 2 � be strongly dominating. Let ' : !! ! !! be the function constructedin the proof of Theorem 3.4. By the proof of 3.4, it su�ces to show thatB := '�1(A) is dominating | for then we can use strong u{regularity to get anice set C � B and the argument of 3.4 shows that '[C] � A contains a Lavertree.To see that B is dominating, let g 2 !! be an arbitrary increasing functionsuch that '(g)(j � 1) � j for all j. Find x 2 A such that x(n+1) > '(g)(x(n))for all n 2 !. De�ne y 2 !! such thaty(0) = x(0)y(i) = x(1) for 1 � i � x(0)y(i) = x(n+ 1) for n � 1 and x(n� 1) < i � x(n)9



Then '(y) = x and hence y 2 B. Furthermore,y(i) = x(n+ 1) > '(g)(x(n)) = g('(g)(x(n) � 1)) � g(x(n)) � g(i)for x(n� 1) < i � x(n), because '(g)(x(n) � 1) � x(n). Thus we have y �� g,as required. q.e.d.4 Laver MeasurabilityIn contrast to the topological forcings (see section 5), for the three non{topologicalforcings the notions of �12{ and �12{measurability are equivalent. For Laverforcing we will prove:4.1 TheoremThe following are equivalent:(i). 8a 2 !! : !! \ L[a] is �{bounded in !!(ii). �12(L)(iii). �12(L)For our proof, we need the following characterization part of which is a conse-quence of 3.7.4.2 PropositionThe following are equivalent:(i). Every �12{set is strongly u{regular(ii). Every �12{set is `{regular(iii). 8a 2 !! : !! \ L[a] is �{bounded in !!Proof :(i))(ii): By Proposition 3.7.(ii))(iii): This will follow from (ii))(i) in 4.1, because �12�`{regularity clearlyimplies w�12(L), and hence �12(L) by Lemma 2.1.(iii))(i): This was remarked on p. 296 in [Brendle{Hjorth{Spinas 1995].The proof is identical to the proof of Theorem 4.2 of [Spinas 1994]. q.e.d.
10



Proof of 4.1 :(i))(iii): This is immediate from the direction (iii))(ii) in 4.2.(ii))(i): Suppose we had an a so that L[a] \ !! is not �{bounded, then:8x 2 !! 9y 2 L[a] \ !! 91n 2 ! : y(n) > x(n)Let hg� : � < !1i be the �12(a){good well{ordering of L[a]. From this we cande�ne a �12(a){scale hf� : � < !1i in L[a]3 which is unbounded in !! andadditionally has the property8� < !1 8n < ! : f�+1(n) � f�(n+ 1);by standard tricks. With this scale of reals we de�ne the following sets:4.3 De�nitionx 2 A� :() (8� < � : x� � f�) ^ 91n(x(n) < f�(n))A := [� is evenA�B := [� is oddA�As usual, limit ordinals are counted as even.As is easily checked, the family hA� : � < !1i is pairwise disjoint and coversall of !!. Therefore A and B are complementary. Because the scale was �12(a),both A and B are �12(a){sets.Next take a Laver tree L. Without loss of generality we may assume thatfor all nodes s 2 L we have the following property:8t 2 Succ(s) : t(jsj) > s(jsj � 1)Now we de�ne recursively for any s 2 L:gs(n) := s(n) for n < jsjgs(n) := minft(n) : t 2 Succ(gsjn)g for n � jsjThen gs 2 [L] and gsjm 2 L for all m < !. Because of our assumption on L thegs are strictly increasing after the stem of L.Now �nd � so that f� lies in�nitely often above each gs for s 2 L. Thisis possible by the unboundedness of the sequence hf� : � < !1i. To prove thetheorem we have to show that for the arbitrarily chosen Laver tree L there is abranch through L in A as well as in B. To this end we will prove the followingstronger claim:3I.e. a dominating subset of !! \ L[a] well{ordered by ��.11



Let  � �. Then there is x 2 [L] \A+1.For this, we make the following recursive construction. De�ne s0 to be thestem of L. If si is already de�ned, choose t 2 Succ(si) so that t(jsij) � f(jsij).We know that f+1 has in�nitely many points where it is above gt. Take n � jsijminimal with this property. Then for all m with jsij < m � n:f(m) � f+1(m� 1) � gt(m� 1) < gt(m)Since we also have f(jsij) � t(jsij) = gt(jsij)we know that f lies below gt between jsij and n and f+1(n) > gt(n). Hencede�ne si+1 := gtjn+ 1.Now we put x := Si2! si. According to the construction, x dominates fand x(jsij � 1) < f+1(jsij � 1) for all i < !. Thus x 2 A+1. Because all siwere in L, we have x 2 [L].Since  � � was arbitrary we have elements of [L] both in A and B, whenceA and B cannot be L{measurable. q.e.d.5 Hechler-ForcingThis section is devoted to proving the characterizations of �12(D ) and �12(D )mentioned in the Introduction. For this we will need the well{known character-izations for �12(C ) and �12(C ):5.1 Theorem (Solovay)The following are equivalent:(i). �12(C )(ii). 8a 2 !! : NC (L[a]) is meager(iii). 8a 2 !! : Coh(L[a]) is comeager5.2 Theorem ([Judah{Shelah 1989], Theorem 3.1)The following are equivalent:(i). �12(C )(ii). 8a 2 !! : Coh(L[a]) 6= ;For proofs cf. [Bartoszy�nski{Judah 1995], p. 457 and p. 452sqq. To getfrom these equivalences results about �12(D ) and �12(D ) we need a connectionbetween C and D . This connection is provided by the theorems of Miller andTruss: 12



5.3 Theorem ([Truss 1977], Lemma 6.2)IfM is a ZFC{model, d a dominating real over !! \M and c 2 !! Cohen overM[d], then c+ d is a Hechler real overM.5.4 Theorem ([Truss 1977], Theorem 6.5)Let c be a Cohen real overM and d dominating overM[c]. Then the set of allCohen reals overM is comeager.5.5 Theorem ([Miller 1981], Theorem 1.2)Consider the partial orderings h!!;��i and h(c0);�i. For f 2 !! de�ne~f(i) := maxff(j) + 1 : j � igThen the function T : !! ! (c0) : f 7! fx 2 !! : x �� ~fg satis�es:For every set X bounded in (c0), T�1(X) is bounded in !!.For a proof cf. [Bartoszy�nski{Judah 1995], p. 39sq. As an easy corollary weget:5.6 CorollarySuppose that for every a 2 !! there is a Cohen real over L[a]. Then thefollowing are equivalent:(i). �12(C )(ii). 8a 2 !! : L[a] \ !! is �{boundedProof :(i))(ii): According to 5.1 NC (L[a]) is meager, therefore M := hAc : c 2BCC (L[a])i is a bounded family in (c0). Hence according to 5.5 T�1(M) abounded family in !!. Because we constructed T in L[a], the set T (x) is ameager set coded in L[a] for any x 2 !!\L[a]. So we have !!\L[a] � T�1(M),and therefore the real numbers of L[a] are bounded.(ii))(i): Following the assumption we have over each L[a] a Cohen real ca anda dominating real over L[a][ca], hence we have with 5.4: The set of all Cohenreals over L[a] is comeager. Because a was arbitrary, the claim follows from 5.1.q.e.d.The following result which is a consequence of earlier theorems is the cornerstoneof the proof of Theorem 5.8 below.5.7 Corollary�12(D )) 8a 2 !! : !! \ L[a] is �{boundedProof :Follows from Theorems 3.4 and 4.1. 13



q.e.d.Of course, this result can also be proved directly, without any reference to Laverforcing.5.8 TheoremThe following are equivalent:(i). �12(D )(ii). 8a 2 !! : Hech(L[a]) 6= ;(iii). �12(C )Proof :(i))(iii): Because of 3.1 we have �12(C ), especially there is a Cohen real overeach L[a] according to 5.2. Because of 5.7 we get a dominating real over L[a],and from the Cohen and the dominating real we conclude �12(C ) via 5.6.(iii))(ii): According to 5.6, �12(C ) implies the existence of a dominating realover each L[a]. Together with the Cohen real we get from 5.1, we get with 5.3a Hechler real over each L[a].(ii))(i): This is exactly the same proof as in the corresponding direction of 5.2(cf. [Judah{Shelah 1989], Theorem 3.1, or [Bartoszy�nski{Judah 1995], p.452sqq.). q.e.d.Notice that this result can be looked at as a \projective" version of the combina-torial result that the covering number of the ideal (d0) is equal to the additivityof (c0) (cf. [ Labe�dzki{Repick�y 1995], Theorem 3.6). We are now headingtowards a characterization of �12(D ). Apart from what has been proved so far,the following combinatorial tool is essential. Let A be an almost disjoint systemof subsets of !. We de�ne for A 2 A:XA := fx 2 !! : ran(x) \ A = ;gAs one can easily see XA is a closed nowhere dense set in D.5.9 Theorem ([ Labe�dzki{Repick�y 1995], Theorem 6.2)If X is a D {null set, then there are at most countably many A 2 A, so thatXA � X .5.10 LemmaSuppose that the set Hech(L[a]) has the Baire property, then it is either meageror comeager in D. 14



Proof :Suppose Hech(L[a]) has the Baire property in D. If Hech(L[a]) is not meagerthen there is an open set [N; f ] in which Hech(L[a]) is comeager. It su�cesto show that below each open set [M; g] there is another open set in whichHech(L[a]) is comeager. Take an open set [M; g] and de�ne ~f(i) := g(i) fori < M and ~f(i+M) := f(i+N). Then | since changing �nite initial segmentsdoes not change the property of being Hechler | Hech(L[a]) is still comeagerin [M; ~f ] and therefore in every subset. Obviously one can �nd in [M; ~f ] a realh lying completely above g. Then [M;h] is a subset of both [M; g] and [M; ~f ].Hence Hech(L[a]) is comeager in [M;h], as required. q.e.d.5.11 TheoremThe following are equivalent:(i). �12(D )(ii). 8a 2 !! : @L[a]1 < @1We divide the proof into two parts, one using 5.8 and the other using 5.9.5.12 Proposition�12(D ) () 8a 2 !! : Hech(L[a]) 2 (d1)Proof :\(": Let A be a �12(a){set. By a well{known result of [Solovay 1970] (cf.also [Jech 1978], p. 545), there is a Borel set B such that A \ Hech(L[a]) =B\Hech(L[a]). Since Hech(L[a]) is D{comeager, it follows that A has the Baireproperty in D.\)": The set ND (L[a]) is a �12(a){set, becausex 2 ND (L[a]) () 9c 2 BCD (L[a]) : x 2 AcHence it is D {measurable. According to 5.10 it is either comeager or mea-ger. We have to exclude the case that it is comeager. Suppose Hech(L[a]) =!!nND (L[a]) is a meager set. Then it is included in some meager set coded insome L[b], hence there are no Hechler reals over L[a; b] anymore. But �12(D )implies by 5.8 the existence of a Hechler real over L[a; b], a contradiction.q.e.d.5.13 Proposition8a 2 !! : Hech(L[a]) 2 (d1) () 8a 2 !! : @L[a]1 < @115



Proof :\(": If (2@0)L[a] = (@1)L[a] is countable, then there are at most countablymany codes for D {null sets in L[a], hence ND (L[a]) is a D {null set.\)": Suppose (@1)L[a] = @1 for some a. Then there is in L[a] an almost disjointfamily A with jAj = (2!)L[a] = (@1)L[a] = @1. We know that the sets XA areHechler-null sets in L[a]. Because of that ND (L[a]) contains all of the XAand hence more than countably many of these sets. 5.9 shows that ND (L[a]) isnot Hechler{null. q.e.d.6 Miller MeasurabilityThe main goal of this section is the proof of the following characterization:6.1 TheoremThe following are equivalent:(i). 8a 2 !! : !! \ L[a] is not dominating in !!(ii). �12(M )(iii). �12(M )From [Brendle{Hjorth{Spinas 1995] we introduce the following notion:6.2 De�nitionA set B � !! is called w{regular if either B contains the set of branches througha superperfect tree or B is not dominating.An old result from [Kechris 1977] (cf. Theorem 4) yields (cf. Proposition 2.3in [Brendle{Hjorth{Spinas 1995]):6.3 Theorem (Kechris/Spinas)The following are equivalent:(i). Every �12 set is w{regular(ii). 8a 2 !! : !! \ L[a] is not dominating in !!Proof of 6.1 :(i))(iii): With Theorem 6.3 we immediately get w�12(M ) and with that via 2.1�12(M ).(ii))(i): Let h�n : n < !i be an enumeration of !<!. Let code : !<! ! ! bede�ned by code(�) = n () � = �n16



With a given superperfect tree T � !<! we associate a function fT 2 !(!<!)and a sequence h�T� : � 2 !<!i of elements of T using the following recursion:fT (hi) := code(stem(T ))�Thi := stem(T )fT (�) := minfn : stem(T )̂ �Th�(0)i^: : : �̂T�j(j�j�1)^�n 2 Split(T )and �n(0) > �(j�j � 1)g�T� := �fT (�)Call f 2 !(!<!) fast i� for all � 2 !<! there is � 2 !<! with �(0) > �(j�j � 1)and code(�) < f(�). Given f 2 !(!<!) fast, g 2 !! and a natural numberm 2 !, we de�ne recursively the tree T = T (f; g;m):T0 := f�ij` : i < m; ` � j�ijg~g(0) := mT1 := fp̂ (�ij`) : p 2 T0; i < f(h~g(0)i); ` � j�ij; �i(0) > ~g(0)gNote that T1 n T0 6= ;. In the nth step we put:~g(n) := maxfg(j) : j � height(Tn)gTn+1 := fp̂ (�ij`) : p 2 Tn n Tn�1; i < f(h~g(0); : : : ; ~g(n)i); ` � j�ij; �i(0) > ~g(n)gLet T = Sn2! Tn. Notice that T is a �nitely branching tree, that is [T ] iscompact. Obviously, no branch of T (f; g;m) is eventually dominated by g.6.4 LemmaIf S is a superperfect tree, f is fast and fS <� f , then there is an m 2 ! suchthat [S] \ [T (f; g;m)] 6= ;.Proof :Choose m 2 ! such that fS(hi) < m and fS(hmî �) < f(hmî �) for all �. Weconstruct a branch belonging to both trees as follows:�0 := stem(S)�1 := �Shmi�n := �Shm;~g(1);:::;~g(n�1)i;where ~g is constructed from g as above. Then �0 2 T0 (by fS(hi) < m), �0 �̂1 2T1 (by f(hmi) > fS(hmi) and �1(0) = �Shmi(0) > m), and so on.Thus x := �0 �̂1^ : : : �̂n^: : : 2 [S] \ [T (f; g;m)].17



q.e.d.We are now ready to complete the proof of 6.1.Suppose the reals of L[a] were dominating. Let hg� : � < !1i and hg0� : � <!1i be the �12(a){enumerations of !! \L[a] and !(!<!) \L[a], respectively. Weconstruct recursively hf� : � < !1i � !! \ L[a] and auxiliary hh� : � < !1i �!(!<!) \ L[a], such that for � < �:(i). h� eventually dominates g0� and h�(ii). f� is fast(iii). f�+1 eventually dominates all branches of all trees T (h�; f�;m) for m < !(possible by compactness)(iv). f� eventually dominates f� and g�(v). f� and h� are <L[a]{minimal with these propertiesWe form A := fy 2 !! : minf� : y <� f�g is evengB := fy 2 !! : minf� : y <� f�g is oddgThen both A and B have �12(a){de�nitions, A\B = ; and A[B = !!, becausewe worked through the hg� : � < !1i.Since the reals in L[a] are dominating, A[B = !! still holds in the real worldV. Thus A and B are both �12(a) in V. We now show that A and B are super{Bernstein{sets, i.e. for each superperfect tree T we have A\[T ] 6= ; 6= B\[T ].For this purpose let T 2 V be superperfect. There is an � < !1 such thatfT <� h� for all � � �, because !!\L[a] is dominating and we worked throughthe hg0� : � 2 !1i.Thus there are (by 6.4) m and m0 2 ! with[T ] \ [T (h�; f�;m)] 6= ;and [T ] \ [T (h�+1; f�+1;m0)] 6= ;Without loss of generality � is even. Let y be an element of the �rst set and y0an element of the second set. By (iii) y <� f�+1 and, by the remark after theconstruction of T (f; g;m), y 6<� f�. Thus y 2 B. Similarly y0 2 A. Hence the�12(a){set A is not M {measurable, a contradiction. This completes the proof.q.e.d.
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7 Sacks MeasurabilityIn this last section we will prove no new theorem, but apply well{known resultsto get an analogous characterization for Sacks measurability.7.1 TheoremThe following are equivalent:(i). 8a 2 !! : !! \ L[a] 6= !!(ii). �12(S)(iii). �12(S)Proof :For the direction (ii))(i) we use the well-known construction of a �12(a){Bernstein set in L[a]. This leaves only the direction (i))(iii) to be proved.For this we need the theorem of Mansfield and Solovay (cf. [Solovay 1969]or [Jech 1978], p. 533sq.):7.2 Theorem (Mansfield{Solovay)If A is a �12(a){set of reals, then either it is in L[a] or it contains the branchesthrough a perfect tree.Now we take a �12(a){set A and show that it is S{measurable. As we have a realwhich is not constructible from a we can even �nd a perfect set of reals P in!! nL[a]. Mansfield{Solovay tells us that either A contains a perfect set orA is in L[a] in which case P lies completely in the complement of A. Thereforewe have w�12(S) and with 2.1 even �12(S). q.e.d.8 Summary and QuestionsWe summarize our results and the older results of Solovay and [Judah{Shelah 1989]in the following table, where B denotes Random Forcing, Ran(M) the set of allrandom reals overM and � the Lebesgue measure:
19



Forcing �12(P) �12(P)B 8a 2 !! : Ran(L[a]) 6= ; 8a 2 !! : �(Ran(L[a])) = 1C 8a 2 !! : Coh(L[a]) 6= ; 8a 2 !! : Coh(L[a]) 2 (c1)D 8a 2 !! : Hech(L[a]) 6= ; 8a 2 !! : Hech(L[a]) 2 (d1)() �12(C ) () 8a 2 !! : @L[a]1 < @1L 8a 2 !! : !! \ L[a] is �{boundedM 8a 2 !! : !! \ L[a] is not dominatingS 8a 2 !! : !! \ L[a] 6= !!By the characterizations in the table and by well{known forcing arguments,none of the arrows in Corollary 3.5 reverses (in ZFC) for � being either �12or �12. However, for � = �12, the diagram gets simpler because we then have�(C ) =) �(L).A few comments about full projective measurability in each of our cases arein order. First, standard arguments show that �1n(P) holds, for all n and allP considered in this work, in Solovay's model which is gotten by collapsingan inaccessible (cf. [Solovay 1970] or [Jech 1978], p. 537sqq.). Hence theconsistency strength of full projective measurability is at most an inaccessible.In the Hechler case, it is exactly an inaccessible by 5.11.Furthermore, �1n(S) holds for all n in the model gotten by adding @1 Cohenreals. To see this, simply note that Cohen forcing adds a perfect set of Cohenreals, and then use homogeneity of Cohen forcing. Finally, �1n(M ) holds forall n in Shelah's model for the projective Baire property (cf. [Shelah 1984]or [Bartoszy�nski{Judah 1995], p. 495sqq.). This is true by Corollary 3.5.Hence in both cases the consistency strength of full projective measurability isZFC alone. However, we do not know the answer to the following8.1 QuestionCan one prove the consistency of \all projective sets are L{measurable" on thebasis of the consistency of ZFC alone?Since Laver forcing is closely related to Mathias forcing, this question has aavour similar to the famous open problem about the consistency strength of\all projective sets are completely Ramsey".20
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