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Abstract - The solubility of solutes in mixed solvents depends 
primarily on the solvation of the solutes or their constituent 
ions by the components of the solvent mixtures. Complications 
may arise if different crystal solvates are formed or if 
solute-solute interactions are appreciable. In their absence 
the standard molar Gibbs energies of solution measure the 
corresponding quantities of solvation, ASOIVG' , or transfer , 
AtrG'. The preferential solvation of solutes is described by 
the composition dependence of AtrG' and is analyzed in terms 
of the quasi-lattice quasi-chemical (QLQC) or the inverse 
Kirkwood- Buff integral (IKBI) methods. These relate AtrG' to 
the solvation in the two neat solvents, and in turn to certain 
properties (polarity, hydrogen-bonding ability, size) of the 
solvents. These considerations are illustrated by several 
cases, involving salts and non-electrolytes. 

INTRODUCTION 

The solubility of solutes of all kinds in mixed solvents is of great 
practical importance, since many industrial process as well as laboratory 
procedures call for the use of solvent mixtures, or such mixtures are used 
by default. The reasons for the preference for the use of solvent mixtures 
are manifold, including the amelioration of certain physical properties, 
such as the density, viscosity, volatility, etc., or of their chemical 
properties, such as stability, inflammability, and not least, their ability 
to dissolve certain substances. Default, rather than intentional use of 
solvent mixtures occurs, for instance, in solvent extraction, where the 
solutes distribute between mutually saturated solvent phases. The organic 
phases employed often contain appreciable amounts of water, with mole 
fractions near 0.5 in certain cases (e.g., tri-n-butyl phosphate or 
3-methyl-l-butanol) . 

When the solubility of a solute in a solvent or a solvent mixture is 
appreciable, then solute-solute interactions are significant and must be 
taken into account in any interpretation of the solubility data. 
Unfortunately, theoretical considerations pertaining to solute-solute 
interactions can be employed essentially only for rather dilute solutions. 
This is true for both ionic and non-electrolyte solutes. For the former, 
the extended Debye-Huckel expression can be employed for solvents with 
relative permittivitie? E r  > 20, approximately, and ionic strengths of the 
order of 0.2 mol dm- . For the latter some variation of the regular 
solution or solubility parameter theory can be employed, although these may 
include also solute-solvent interactions that should be dealt with 
separately. The solute-solute interactions in concentrated solutions, i.e., 
when the solubility is verly large, cannot be handled by such expressions 
and systems where such solubilities are encountered are outside the scope 
of the following considerations. 

Another complication that is met with in the case of solid solutes is the 
formation of crystal solvates. When non-solvated crystals or crystals with 
one given solvating solvent are in equilibrium with a solution in a mixed 
solvent then the solvent-composition dependence of the standard molar Gibbs 
energy of solution, AsoinG', is directly related to that of the standard 
molar Gibbs energy of solvation, AsoivG'. If , however , different crystal 
sol.vates can be formed and are in equilibrium with different compositions 
of the solution, then additional Gibbs energy terms must be added, 
pertaining to the conversion of one crystal solvate to another. Such cases, 
again, are outside the scope of the following considerations. Similar 
complications occur when the solute is a liquid, unless the solubility of 
the (components of the mixed) solvent in this liquid is entirely 
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negligible, since only then can its activity in the equilibrium system be 
equated with that of the pure liquid solute. 

The solubility data that are dealt with here yield directly values of the 
AsolnG'. For non-electrolyte solutes : 

where sx is the solubility on the mole fraction scale and f is the rational 
activity coefficient, and the approximation on the rhs is valid when the 
solubilities are very low so that f = 1. For (1:l) ionic solutes: 

where S m  is the solubility on the molal scale and r+ is the mean molal 
activity coefficient, and the approximation on the rhs is valid for poorly 
soluble salts, so that 7 ,  = 1. For other types of electrolytes the 2nd 
power and the coefficient 2 on the rhs must be modified to take into 
account the relevant stoichiometries. 

Solvation is the process of bringing a particle of the solute from a fixed 
position in the ideal gaseous state to a fixed position in the solution at 
a given temperature and pressure (ref. 1). The standard molar Aso~vG~ 
pertains to the introduction of the solute to make an infinitely dilute 
solution. In this case, only solute-solvent interactions need to be taken 
into account, although these reflect the changes in the solvent-solvent 
interactions that take glace on the introduction of the solute. In order to 
relate ASO~VG' to AsolnG it is necessary to consider also the standard 
molar Gibbs energy of sublimation or vaporization of the solute (if it is a 
solid or a liquid). If this quantity is symbolized by AvwGO, then 

Work must be invested in order to vaporize the solute, hence AvapG' is 
positive, whereas ASO~VG' is generally negative, and the balance between 
these quatities determines whether AsolnGO is positive or negative, i.e. , 
whether the dissolution process is thermodynamically favorable or not. 

Rather than to deal with Aso~vG~, it is often convenient to subtract from 
this quantity the ASO~VG' to some reference solvent, W, and then to deal 
with the standard molar Gibbs energies of transfer of the solute from W 
into the solvent or solvent mixture of interest, AtrGO. If the reference 
solvent is W = water, then AsoivGO(W) = AhydrGO, for which an extensive 
amount of data is available (see ref. 2 for AhydrGO of ions). The 
convenience of using AtrG' is brought home in the many cases where AvapG' 
is not known, since then: 

where S symbolizes the solvent or solvent mixture of interest. Again, an 
extensive amount of data on AsolnGo(W) is available for solubilities in 
water (see, e.g. , ref. 3 )  , from which the AtrG' can be evaluated from the 
solubilities by means of eq. (1) or ( 2 )  and ( 4 ) .  

AsolnGO = - RT In (SX  f )  = - RT In sx (1) 

AsolnG' = - RT In (Sm Y + ) ~  - = - 2 RT In S m  (2) 

- 

ASO~VGO = AsolnGO - AvapG' ( 3 )  

AtrGo(W -f S )  = AsoinGo(S) - AsolnGo(W) ( 4 )  

PREFERENTIAL SOLVATION 

The values of AtrG' and its dependence on the composition of the solvent 
mixture can be interpreted in terms of the solvation of the solute by the 
neat solvents and its preferential solvation by the individual components 
of the mixture. The solvation by the neat solvents can be described in 
terms of the linear solvation energy relationships (LSER) of Taft and 
Kamlet and their coworkers (refs. 3-5) and in the case of non-electrolyte 
solutes and of Marcus, Kamlet and Taft (ref. 6) in the case of ionic 
solutes. These relationships are of the form: 

where the summation extends over all the i properties P of the solute X and 
the j properties P of the solvent S relative to those of the reference 
solvent W. The solvent properties include generally its polarity/ 
pplarizability, as measured in a combined form by its Taft-Kamlet parameter 
rc (ref. 4 )  or individually by its dipole moment 1-1 and its polarizability 
UP (or molar refractivity, RD), its cohesive energy density, given by the 
square of its Hildebrand solubility parameter, Sfi, its hydrogen bond 
donation u and acceptance ,9 abilities (ref. 4 )  , and its softness ws (ref. 

The properties of ionic solutes include their charge z, their size 
;knic radius) ri,  their softness u (or polarizability QP or molar 

AtrG' = 1 Aij PIX (Pjs - Pjw) ( 5 )  
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refractivity RD), or combinations thereof, such as the field strength Z l n .  

Once the Aso~vG' in the neat solvents 
are known, at least relative to the 
value in $he reference solvent W 
(i.e. , AtrG ) , then it is necessary 
to have expressions that describe the 
preferential solvation in the solvent 
mixtures. A first step is to obtain 
values for AtrG' from W to the 
mixture of Si and S z .  These can be 
obtained experimentally from the 
solubilities in the mixture v i a  eq. 
(l), (2) and ( 4 ) .  Fig. 1 illustrates 
this with some data [In Ksp = 2 In 
(sm T , ) ]  for potassium halides in 
mixed aprotic solvents (ref. 8 ) .  

The values of AtrG' from some 
reference solvent can also be 
estimated v i a  the QLQC theory (ref. 
9) and the following eq. (6). In this 
theory the solution is regarded as a 
quasi-lattice, that is characterized 
by a lattice parameter Z. Only 
near-neighbor interactions are taken 
into account, and it is assumed that 
the interaction energies of a 
neighboring pair of particles is 
independent of the natures of the 
other neighbors they may have. The 
quasi-chemical expression is applied 
to the numbers of neighbors of each 
kind that exist at equilibrium, 
leading finally to (ref. 9): 

MeCN -DMSO -DMF --.I MeCN 
inc r easing mole% 

Fig. 1. The solubility products 
of KBr, KC1 and KF in MeCN + DMSO, 
DMSO + DMF and DMF + MeCN. 

AtrG'(W + Si + S Z )  = xiAtrGo(W + S i )  + xzAtrGo(W + S Z )  - A & z ( x )  

- Z R T x 2  In [ x 2  + xi y A ]  + XI In [xi + xz y-' A-']} { (6) 

where A G f z ( x )  is the Gibbs energy of mixing of Si and S 2 ,  x is the mole 
fraction, and y and A are given by: 

y ( X )  = X2 XI-' [ ( X i  - N s )  / (XZ - N S ) ] " ~  

A = exp { [AtrGo(W + SI) - AtrG'(W + S z )  I /  Z R T} ( 8 )  

Ns = (1 - [l - 4 XI XZ / 2 P (9) 

P = 1 - 1 / (2 exp [-2 A G f 2 ( x  = 0.5)/ Z R T 3 -1 }' (10) 

(7) 

In principle, at least, the solubility curve of the solute in the solvent 
mixture can be calculated without the performance of a single solubility 
measurement, provided the required independent data are available. These 
are AtrG'(W + Si) and AtrGo(W + S z )  , estimated from eq. (5) and 
in ependently known properties of the solute and the solvents Si and S z ,  

the aqueous solubility datum AsoinG'(W) , and the lattice parameter Z ,  
chosen arbitrarily as a fitting parameter. Use is then made of eq. ( 4 )  and 
(1) or (2) to calculate the actual solubilities. In practice, of course, 
the accumulation of errors due to the approximations inherent in the models 
and the correlations prevents the calculation of solubilities at any 
practical accuracy from completely independent data. However, given the 
solubilities of the solute in SI and S 2 ,  it is possible to use the 
following eq. (11) (derived from eq. (6)), together with eq. (7) - (10) and 
an assumed value of Z ,  to calculate actual solubilities in the mixtures of 
Si and S 2 .  [In eq. ( 8 )  the difference is replaced by AtrG'(S1 + S 2 )  1 .  

A 8 1 2 ( x  = 0 . 5 )  provided from independent mixing data of the two solvents, 

AtrG'(S1 + SI + S 2 )  = xz AtrGo(S i  + S 2 )  - A & z ( x )  

- Z R T x 2  In [ x 2  + xi y A ]  + xi In [xi + x 2  y-' A-']} { (11) 

An example of the application of these equations in the case of the 
solubility of KC1 in mixtures of N,N-dimethylformamide and acetonitrile 
(ref. 8 )  is shown in Fig. 2. The curves are drawn with Z values (from top 
to bottom) of 1.2, 1.0 and 0 . 8 .  
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Fig. 2. AtrGo(W + DMF + 
MeCN) / AtrGo(W + DMF) 
of KC1. experimental 
(ref. 8 ) ,  - calcu- 
lated from eq. (11) 
with varying Z values. 

The QLQC considerations leading to expressions (6) or (11) can now be used 
for the evaluation of the solvent composition near the solute, i.e., of the 
preferential solvation that the solute undergoes (ref. 10). A schematic 
representation of it is shown in Fig. 3 .  

Fig. 3 .  A two-dimensional representation gf the 
preferential solvation around a cation by a binary 
mixture of small and large solvents at Xlarge = 
213. In the first solvation shell Xkarge = 113, 
hence Bxlarge = -1/3 and the smaller solvent is 
preferred near the cation. (From ref. 10, by 
permission of the Royal Society of Chemistry.) 

The local mole fraction of SI near the solute X is given by: 

The preferential solvation can be defined as the excesf or deficiency of 
the local relative to the bulk mole fraction: 6x1 = xi - xi. In the case 
illustrated in Fig. 2, the resulting 6x1 values for SI = DMF are very large 
(0.11 at x2 = 0.2, 0.22 at x2 = 0.4, 0.30 at x2 = 0.6, 0.31 at x2 = 0.8) up 
to quite high concentrations of S2 = MeCN in the mixtures. It is, however, 
impossible to specify whether the cation or the anion of the KC1 (or both) 
is preferentially solvated by the DMF without the application of some 
extrathermodynamic assumption. 

In some favorable cases it is possible to apply another theoretical method 
to the evaluation of preferential solvation from solubility data. The IKBI 
method is based (ref. 11) on the Kirkwood-Buff integrals: 

xk = Nix / (Nix + N2x) = 1 / [l + (~21x1) y (A/2)] (12) 

m 

Gix = [gix(r) - 11 4 TI r2 dr ( 1 3 )  
0 

where gix(r) is the pair correlation function for solvent Si at distance r, 
given a particle of solute X at the origin. In the case of ionic solutes 
there is a complication due to the requirement of electroneutrality. The 
upper limit of the integral has then to be taken not as m but as R, the 
distance of a few molecular diameters of the solvents, beyond which the 
pair correlation practically ceases, i.e. , gix(r>R) - 1 = 0. The integrals 
are obtained from thermodynamic data for the solvent mixture and for the 
solution of the solute. The former are KT, the isothermal compressibility 
of the solvent mixture, which is of secondary importance, and the second 
derivative of the Gibbs energy of mixing or of the excess Gibbs energy of 
mixing with respect to the solvent composition, (a2 d2 /a  XI^)^,^. This 
quantity is one major reason for the difficulty to apply the method, since 
it is hard to obtain it with good accuracy. The data required for t_he 
solute are its standard partial molar volume in the solvent mixtures, v!, 
and the derivative of its Gibbs energy of transfer with respect to the 
composition, (a AtrG(W + Si + S2) / a xi)T. This quantity, obtained from 
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0.12 

the solubility data, is again of low accuracy and may limit the 
applicability of the method. If the required thermodynamic data are 
available, then the preferential solvation is obtainable from: 

This quantity is seen to be directly proportional to the difference in the 
Kirkwood-Buff integrals and to depend inversely on the correlation distance 
R. The larger this quantity is, i.e. , the more concentric solvent shells 
around a solute particle are taken, the smaller is the effect of the solute 
on this enlarged environment and the smaller is Gxix. For the first shell R 
may be taken as tht sum of the solute and mean solvent radii. This is seen 
ip Fig. 3, where Xlarge increases from 0.33 in the first solvation shell: to 
Xlargc = 0.43 when the first two shells are taken together, so that the 
preference for the smaller solvent decreases from 0.33 to 0.24. A s  farther 
solvation shells are taken into account, this preference diminishes still 
further. The two-dimensional representation already shows what becomes even 
more pronounced in three dimensions that the packing of the solvents in the 
solvation shells permits some penetration of outer molecules into inner 
shells, so that R is no longer simply related to the radii of the solvents. 

6X1x = XI XZ (Glx - GZX) / [XI Glx t X Z  Gzx + (4n/3)R3] (14) 

.. '. 
- 

Application of the IKBI method to the solubility of AgI in aqueous DMSO is 
shown in Fig. 4. In fact, rather than use the solubility data directly, 
independent AtrG' data for Ag+ and I-, based on an extrathermodynamic 
assumption, were employed (ref. 11-13). However, their combination to give 
the value for the complete electrolyte makes the choice of the assumption 
immaterial. The continuous curve in Fig. 4 pertains to the mean excess or 
deficiency of water in the first solvation shell of the ions of AgI. 
However, if the individual ions are considered, it 'is seen that I- prefers 
solvation by water, having positive Gxwater,~ values, and Ag+ avoids water 
in favor of DMSO, having negative 8Xwater,Ag values . Up to a mole fraction 
of DMSO of 0.28, the complete electrolyte also prefers water, the effect of 
the iodide ion predominating, but at higher DMSO contents it is the 
solvation of the silver ions that predominates, and DMSO is preferred. 

A prerequisite for the application o the IKBI method, in addition to the 
availability of very accurate Amid# data, is the availability of very 
accurate AtrG' data for the solute of interest. The standard condition 
places the additional constraint of having adequate theoretical expressions 
to correct from the actual concentration in the saturated solution to 
infinite dilution. This is possible for very sparingly soluble solutes, if 
the solubility of the solute is the quantity that is being measured. Then, 
of course, the effects of impurities becomes more pronounced, if they 
preferentially solvate the solute or its ions, if it is an electrolyte. To 
explore the effect of such impurities, some experiments were made with very 
carefully dried potassium chloride in equimolar mixtures of aprotic 
solvents at 298.15 K once in the strict absence of water and once in the 
presence of 0.6 mole % of water. The results (ref. 8 and unpublished 
results) are shown in Table 1. 
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I .. t I #  '\ 

Table 1. Solubilities of KC1, in g/100 g solvent in equimolar mixed aprotic 
solvents at 298.15 K. 

Solvents MeCN + DMSO DMSO + DMF DMF + MeCN 
No water 0.053 
0.6% water 0.078 

0.066 
0.070 

0.0098 
0.0124 

Table 1 shows that in the systems involving acetonitrile, where the 
preferential solvation of the cations by DMSO or DMF prevails, the effect 
of the presence of 1:170 of the protic solvent water increases the 
solubility appreciably, due to the preferred solvation of the chloride 
anion by the water. In the DMSO + DMF system, where no pronounced preferred 
solvation takes place (see the straight lines in the middle panel of Fig. 
l), the effect of added water is smaller but still measurable. 

The behavior of non-electrolyte solutes, as regards their solubility and 
solvation in mixed solvents, is also of interest. As an example, consider 
the solubility of carbon dioxide in mixtures of Si = water and Sz = ethanol 
(ref. 14). The results are similar to those for argon in this mixed solvent 
(ref. 15) , so that no specific interaction of the solute with the solvents 
needs to be taken into account in the present case. The solubility data 
(Ostwald coefficients) , converted into AtrG'(S1 + SI + Sz) , are shown in 
Fig. 5 for two 
temperatures, 288.15 and 
308.15 K. A large 
temperature effect is 
noted, and both AtrH' and 
T AtrS' are an order of 3 

magnitude (in absolute 2 
values) larger than d I 
AtrG'. 0 '  

- 
E 

7 0  
x 2 - 1  Fig. 5. The values of 

AtrG'/kJ mol-' for the 9 - 2  
transfer of COz from %I 

water to water + ethanol q - 3  

-4 
at 288.15 K ( 1 
and at 308.15 K (- - - -1 

.. 
- # \  

I \ 
I \ I \ 

(ref. 14). 0.00 0.20 0.40 0.60 0.00 1.00 

XE tOH 

The very asymmetric manner of AtrG' in this case indicates the breakdown of 
the assumptions that underlie the QLQC method, so that this approach cannot 
be used for the interpretation of the results. Neither can (ref. 14) the 
theory of Pierotti (ref. 16) , involving terms in cavity formation in the 
solvent and dipole-induced dipole interactions but not hydrogen bonding. It 

is noteworthy that at low 

0.02 COz is lower than in water 

maximum) but increases 
beyond that value at 
higher xEtoH. Application 
of the IKBI method to the 
data shows that COz is 
preferentially solvated 

mixtures (i.e, 6x(HzO,COz) 

the entire composition 
' *' I 1 range, and the more so, 

the higher the temperature 
as is seen Fig. 6. 

XEtOH the solubility Of 
,-,, (AtrG' goes to a positive 

-0.04 

-0.06 1 
-0.08 

- 

\ I by ethanol in these 
! I 
1 I 
1 I is negative) over almost 

I 
I 

'\ ' 
-0.10 -A 

t 
0.00 0.20 0.40 0.60 0.00 1.00 

Fig. 6 
vation of COz in water + ethanol at 
288.15 K ( ) and at 308.15 K (- - - -) . 

The values of 6x(HzO,COz) for sol- 
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The solubility of a solid organic, non-electrolytic solute in a mixture of 
two solvents is illustrated by the solubility of 4-[(4-nitropenyl-azo)] 
-lI3-benzenediol (1, the colorimetric reagent for magnesium, Magneson I) in 
mixtures of water and N-methylformamide (ref. 17). 

OH 

--- 
0.00 0.10 0.40 O J O  0.80 1.00 

water mole fraction 

Fig. 7. The solubility of Magneson (1) 
in mixtures of water and N-metlylform- 
amide at 298.15 K (s in mol dm- ) . 

The standard molar Gibbs energy of solution is approximated sufficiently 
well by 

(see eq. (1) ) , where V is the mean molar volume of the solvent: V = xi 
(Milpi) + x2 ( M z l p z )  , M and p being the molar mass and the density of the 
indicated solvent, subscript 1 for water, 2 for N-methylformamide, the 
excess volume on mixing being ignored. 

Application of the QLQC method to this case requires in addition to the 
standard molar Gibbs energies of transfer also the molar excess Gibbs 
energies of mixing of N-methylformamide and water (ref. 18). Eq. (6) to 
(12) then yield the results shown in Fig. 8 and 9. The former presents the 
AtrGo = AsoI~G' (xHz0) - AsoinGO(HC(0) NHCH3) data from the experiments and 
from the QLQC calculations with three assumed values of the lattice 
parameter Z: 3, 4, and 5. The value Z = 4 is seen to fit the data best, but 
the uncertainty is fl. 

AsoinG' = - R T [In (s/mol dm-3) + In (V/dm3 mol-l) 3 (15) 

2-3 2-4 -- 2-6 exptl. - 

0.00 0.20 0.40 0.60 0.80 1.00 

water mole fraotlon 

Fig. 8. At=Go/kJ mol-' for transfer 
of Magneson from N-methylformamide 
to its mixture with water at 298 K. 

water N w  - 

0.00 0.20 0.40 0.60 0.80 1.00 

N-methylformam1ddNMF) fraotlon 

Fig. 9. The number of N-methylform- 
amide and water molecules around a 
Magneson one (assuming Z = 4). 

Fig. 9 shows the number of solvent molecules of the two kinds in the first 
solvation sphere around the solute. It is seen that N-methylformamide is 
preferred over water near the Magneson solute.The reasons for the 
preference may be sought in the higher dipole moment of the former, fi  = 
3.86 D, compared with the latter, p = 1.82 D (1 D = 3.33564~10-~' C.m) and 
the expected large dipole-dipole and dipole-induced dipole interactions 
between the solvents and the particular solvent studied. Such interactions 
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may, in this case, be more important than hydrogen bonding interactions 
between the hydroxyl groups of the solute and the basic oxygen atom in each 
solvent. That such interactions with the components of solvent do take 
place is indicated by the color changes from red to yellow that occur when 
the composition of the solvent is changed, Magneson thus acting as a 
solvatochromic indicator. 

CONCLUSIONS 

The foregoing illustrates the assertion that solubility measurements of any 
kind of solute in a mixture of solvents discloses significant information 
concerning the preferential interactions of the solute with the components 
of this mixture. This generalization is illustrated by several concrete 
cases: the solubilities of salts and of non-electrolytes in binary solvent 
mixtures. Salt solubilities include those of KF, KC1, and KBr in binary 
mixtures of aprotic solvents: MeCN, DMF, and DMSO and of AgI in aqueous 
DMSO. Non-electyrolyte solubilities include those of COz in aqueous ethanol 
and of Magneson I in aqueous NMF. Once the precautions have been taken to 
obtain standard Gibbs energies of solution, AsoinG0, readily converted to 
standard Gibbs energies of transfer , At=GoI these can be evaluated in 
terms of theL QLQC or the IKBI methods, to yield the local solvent 
composition, XI. The difference 6x1 = xk - XI is the preferential solvation 
parameter. The QLQC method also providesLan estimate of the number of 
solvent molecules near the solute, ni = Z.xi, where the lattice parameter Z 
is obtained from fitting the AtrGo = f(x1) curve. The IKBI method also 
provides estimates of the rate of decline of the preferential composition 
of the solvent with the distance from the solute. 

Since the solubilities in neat solvents can be described by certain 
properties of the solutes and the solvents (eq. 5 ) ,  the QLQC method could, 
in principle, permit the approximate prediction of the solubility in a 
binary solvent mixture. However, before this goal is achieved, it is, 
perhaps, more appropriate to try to describe this solubility in terms of 
the properties of the solvent mixture itself. The relevant properties 
(cohesive energy density, polarity/polarizability, hydrogen bond acceptance 
and donation abilities) of binary solvents are now in the process of being 
measured in the author's laboratory (ref. 1 7 ) .  
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