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Recent processing studies
1

•
2 

have shown that aluminum contamination 

car1 drastically alter the sintering behavior, piezoelectric, and ferro-

electric properties of lead zirconate titanate (PZT). The alteration of 

ferroelectric properties indicates that aluminum enters the crystal 

lattice while the change in sintering behavior is attr.ibuted to tne for-

mat ion of a second phase. This secondary phase has been identified wi t:n 

the electron microprobe as a lead aluminate
1 

which would be liquia at 

sintering temperatures. This note describes an experimental measure-

ment of the solid solubility ofaluminum in PZT and reports the effect 

of aluminum on the ferroelectric and piezoelectric properties of that 

material. 

Lead zirconate titanate has the perovskite crystal strueture with 

r)+ 0 4+ 0 

Pbc (ionic radius 1.20A) in 12-fold coordination sites and Ti · (0.68A) 

4+ 0 

and Zr (0.79A) octahedrally coordinated. 
0 

Trivalent aluminum (0.5lA) 

is m1doubtedly too large to enter interstitially and too small to re-

place lead so substitution in octahedral sites is most probable. How-

ever, the size ar1d valence differences should tend to limit this sub-

sti tution. Three possible modes of balancing the valence discrepar1cy 

are: (l) the formation of anion vacancies, (2) the solution of 
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+ 
interstitial cations, e.g., H , and (3) the simultaneous substitution 

. . 5+ "'. 4+ B . 3+ r, 2+ 
of cat1ons w1th excess valence, e.g., Nb for 11 or 1 for r>u 

Thus the extent of aluminum solubility will depend upon the activity 

of the other components in the crystal and upon the concentration and 

identity of impurities. 

The material studied had a Zr:Ti ratio of 53:47 and was prepared 

by mixing, calcining and grinding high purity oxides. The mixing and 

grinding operations were performed with acrylic plastic or low-ash 

rubber equipment so that processing contaminents could be removed by 

oxidation. Semi-quantitative spectrographic analysis indicated the 

final powder contained approximately 0.05 wt% Ah0 3 , 0.02 wt% SiOz, 

0.02 wt% CaO and 0.002 wt% MgO. The desired quantities of aluminum 

were introduced as an aqueous solution of aluminum nitrate. This com-

pound decomposes to Al20 3 at a low temperature. Reaction and densifica-

tion were achieved by heating pressed pellets for 30 hours at l200°C 

in one atmosphere of oxygen. The pellets were buried under PZT powder 

of the same composition inside a double wall, tightly covered platinum 

crucible. This arrangement provided the equilibrium PbO vapor pressure 

above the specimens and thereby prevented evaporation of that component. 

Several specimens doped with niobium and with scandium were also pre-

pared. 

The solubility limit was determined by monitoring several properties 

of specimens with increasing aluminum contents. Measurements were made 

of the X-ray diffraction patterns, microstructure, room temperature 

resistivity and hystersis loops (both polarization vs. electric field 

and. dilation parallel to the field vs. electric field). All measurements 

I . 

• 



-3- UCRL-19038 

indicated saturation between 0.15 and 0.3 wt% Alz03; for example, the 

nystersis loops (Fig. 1) did not change with aluminum content after 

0.3 wt% was present. 

Aluminum effects PZT in a manner similar to scandiuriJ., confirming 

the expected octahedral substitution. The ferroelectric hystersi.s :Loop 

of aluminum doped materials (Fig. lc) resembled that of a specimen with 

1 at.% scandium. The room temperature resistivity drops with alumimun 

substitutions as Gearson and Jaffe3 have observed with scandium. They 

3+ . 
concluded that Sc enters octahedral Sl tes. 

The substitutional aluminum ahd/or the associated vacancies alter 

the ferroelectric domain characteristics of PZT. When a polycrystalline 

specimen is cooled through the Curie temperature domains form to lower 

the strain and the electrostatic energy. The boundary between domains 

with their polarization vectors oriented anti-parallel are called 180° 

boundaries and they are, for tetragonal material, parallel to 100 

directions. The 90° boundaries are formed by twinning on 110 planes. 

This second type of domain wall changes the shape of the grain and can 

thereby accommodate the anisotropic thermal expansion. Rhombohedral 

PZT spontaniously polarizes along the body diagonal of the unit cell 

so its 180° domain boundaries lie para1lel to the 111 directions . 

. doundaries that separate domains oriented at 71° or 109° are planes and 

correspond to the 90° walls of tetra13onal PZT. Domain bounciariez may 

move under the influence of an electric field; this motion increases 

the polarization parallel to the field. Movement of 90° boundaries 

<.;ill, in addition, change the dimensions of the specimen. When the 

field is removed the domain boimdaries may simply return to their 
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original (low energy) configuration or they may partially return, re-

taining some polarization in a metastable state. The latter behavior 

is observed with the higher purity PZT. When the material is saturated 

witr. aluminum domain wall motion is relatively difficult but the boundaries 

return to their original configuration when the field is removed.. 

The difference in domain poundaries is seen in the scanning electron 

micrographs of chemically etched specimens. The herringbone pa~terns 

seen in Figs. 2 and 3 are characteristic of 90° domain bounda:cies
4 

while 

che curved boundaries observed in Fig. 3 and extensively in Fig. 4 are 

~he 180° type. Aluminum additions clearly decrease the density of 180° 

domain walls and increase the density of 90° twins. When Nb5+ compen-

sates for the trivalent aluminum virtually no 90° domains are present 

(Fig. 4). Apparently the material saturated with aluminurn can accorr~odate 

~he anisotropic thermal expansion only by extensive twinning. The con-

figuration of these 90° domains appear quite rigid. The "pure" and 

niobium doped specimens are believed to have an additional mechanism 

of accommodating the mechanical constraints of neighboring grains. These 

materials minimize electrostatic energy with 180° domains. ':!;'hose 

boundaries are relatively mobile and they retain their new configuration 

when the external field is removed. 

The mechanism by which point defects determine domain boundary 

characteristics is under investigation. 

• ! 
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FIGURE CAPTIONS 

Figure 1. Hystersis loops showing polarization and dilation as a 

function of electric field. The polarization loops were 

recorded at 60hz and the dilation was m~asured at approximately 

0.01 hz. 

Figure 2. Scanning electron micrograph of PZT saturated with aluminum. 

The surface has been chemically etched to reveal t he domain 

boundaries. 

Figure 3. . Scanning electron micrograph of "pure" PZT (etched). 

Figure 4. Scanning electron micrograph of niobium doped PZT (etched). 

'\ 
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FIGURE CAPTIONS 

Figure 1. Hystersis loops showing polarization and dilation as a 

Figure 2. 

Figure 3. 

Figure 4. 

function of electric field. The polarization loops were 

recorded at 60hz and the dilation was measured at approximately 

0.01 hz. 

Scanning electron micrograph of PZT saturated with aluminum. 

The surface has been chemically etched to reveal the domain 

boundaries. 

Scanning electron micrograph of "pure" PZT (etched). 

Scanning electron micrograph of niobium doped PZT (etched). 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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