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Abstract

CD44 is a cell surface glycoprotein that functions as hyaluronan receptor. Mouse and human serum contain substantial
amounts of soluble CD44, generated either by shedding or alternative splicing. During inflammation and in cancer patients
serum levels of soluble CD44 are significantly increased. Experimentally, soluble CD44 overexpression blocks cancer cell
adhesion to HA. We have previously found that recombinant CD44 hyaluronan binding domain (CD44HABD) and its non-
HA-binding mutant inhibited tumor xenograft growth, angiogenesis, and endothelial cell proliferation. These data
suggested an additional target other than HA for CD44HABD. By using non-HA-binding CD44HABD Arg41Ala, Arg78Ser, and
Tyr79Ser-triple mutant (CD443MUT) we have identified intermediate filament protein vimentin as a novel interaction
partner of CD44. We found that vimentin is expressed on the cell surface of human umbilical vein endothelial cells (HUVEC).
Endogenous CD44 and vimentin coprecipitate from HUVECs, and when overexpressed in vimentin-negative MCF-7 cells. By
using deletion mutants, we found that CD44HABD and CD443MUT bind vimentin N-terminal head domain. CD443MUT
binds vimentin in solution with a Kd in range of 12–37 nM, and immobilised vimentin with Kd of 74 nM. CD443MUT binds
to HUVEC and recombinant vimentin displaces CD443MUT from its binding sites. CD44HABD and CD443MUT were
internalized by wild-type endothelial cells, but not by lung endothelial cells isolated from vimentin knock-out mice.
Together, these data suggest that vimentin provides a specific binding site for soluble CD44 on endothelial cells.
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Introduction

CD44 transmembrane glycoprotein functions as hyaluronan (HA)

receptor. CD44 has functions in a lymphocyte homing, mediates cell

adhesion to HA and HA metabolism. CD44 is expressed on many

cell types including endothelial cells (EC) and has multiple

alternatively spliced isoforms. CD44 plays a significant role in tumor

malignancy. High levels of CD44 expression on tumor cells is

sufficient to establish metastatic behavior [1,2]. CD44 is involved in

pathological angiogenesis, as its expression is elevated in tumor

vasculature, and CD44 expression can be induced in cultured ECs

by angiogenic growth factors [3] Furthermore, CD44 knockout mice

show reduced vascularisation of tumor xenografts andMatrigel plugs

[4]. In addition to cell surface expression, CD44 is present in soluble

form in lymph and serum [5] or bound to extracellular matrix [6].

Soluble CD44 is generated either by alternative splicing [7] or, more

importantly, by ectodomain shedding by matrix metalloproteases

[8,9].The size of shed CD44 is highly heterogeneous because of

glycosylations and variant exons [5,9–11]. The serum concentration

of sCD44 in mice is known to range between 490 to 2100 ng/ml [5].

Studies of sCD44 in the sera of non-Hodgkin’s lymphoma and breast

cancer patients show that physiological sCD44 level in healthy

persons is in the range of 250 to 500 ng/ml [12–14]. The serum

concentration of sCD44 in healthy individuals is ,3 nM whereas it

was shown to be significantly elevated in patients with advanced

gastric (24 nM) or colon cancer (31 nM) [11]. Elevated serum

sCD44 or sCD44v6 is a predictor of poor therapeutic outcome in

non-Hodgkin’s lymphoma or breast cancer patients, respectively

[12,15].The source of sCD44 are lymphocytes, macrophages, ECs,

and tumor cells [10,11,16]. In non-Hodgkin’s lymphoma, the source

of elevated sCD44 are lymphoma cells, and sCD44 levels decrease

after treatment in patients with complete remission [10,17].

Endothelial and macrophage CD44 expression is increased in

atheromas and CD44 shedding from EC and macrophages is

stimulated by proinflammatory cytokines [16].

Tumors are surrounded by HA-rich ECM. When overex-

pressed in tumor cells, soluble CD44 can function as an antagonist

to cell membrane CD44 and block its binding to ECM HA.

Overexpression of soluble forms of CD44 inhibits HA-adhesion of

mouse mammary carcinoma or melanoma cells and caused

inhibition of tumor cell proliferation, and reduced tumorigenicity

[18–20]. CD44 knockout in mouse breast cancer model caused

increased numbers of lung metastases, which correlated with

reduced invasion of CD44-expressing metastatic breast cancer cell

lines into HA-containing collagen matrixes [21].

CD44 binds HA via the link module in its N-terminal domain.

The link module is approximately 100 amino acids long and

consists of two alpha helices and two triple-stranded antiparallel

beta sheets, stabilized by two disulphide bridges [22]. The

structure of CD44 HABD has an additional lobe consisting of
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four beta strands formed by the residues flanking the core link

module [23,24]. This enlarged structure is stabilized by an

additional disulphide bridge between flanking regions. Together,

the human CD44 HABD structure consists amino acids 21–169.

The HA-binding surface of CD44 is exclusively covered by the link

module and its flanking regions do not contribute to the HA

binding [23]. The critical residues in CD44 HA-binding surface

directly involved in binding are Arg41, Tyr42, Arg78, and Tyr79,

according to studies of human CD44 [23,25]. Glycosylation of

Asn25 and Asn125 within CD44 HABD is involved in regulation

of HA binding [26]. Altogether, CD44 has five N-glycosylation

sites (Asn25, Asn57, Asn100, Asn110, Asn120) within its HABD.

Bacterially expressed recombinant human CD44 HABD contain-

ing amino acids 20–178 binds HA comparably to glycosylated

CD44-Rg fusion protein [24]. HA binding function is also retained

by a recombinant human CD44HABD containing amino acids

21–132, whereas HA binding was abolished by the mutations in

Arg41, Arg78, and Tyr79 [27].

Vimentin intermediate filaments comprises supporting frame-

work within cells. Vimentin functions in intracellular vesicular

transport, including b1-integrin trafficking [28], transport of

lysosomal membrane proteins by binding AP-3 complex [29], and

as a cytosolic reservoir for tSNARE SNAP23 [30]. Importantly,

vimentin knockout cells apparently retain intact receptor-mediated

endocytosis, as transferrin receptor level and distribution is normal

[29,30]. Vimentin-deficient mice reproduce and develop normally

[31], however, they show reduced elasticity of arteries, decreased

nitric oxide production and elevated endothelin [32,33]. Vimentin

is expressed on cell surface in several cell types, including TNF-a

induced macrophages [34], cutaneous T-cell lymphoma [35],

platelets [36], and brain microvascular endothelial cells [37].

Vimentin extracellular ligands include vitronectin/PAI-1 complex

[36], and E. coli IbeA protein [37]. Vimentin is a antiangiogenesis

target overexpressed on tumor endothelium in vivo. Anti-vimentin

antibody treatment inhibited subcutaneous tumor xenograft growth

and tumor blood vessel density in mice, suggesting that vimentin is

localized to the cell surface in tumor endothelial cells [38].

CD44 and vimentin are both detectable frommembrane lipid raft

fractions [39–41] and from clathrin-independent pathway endocytic

vesicles in fibroblasts [42]. CD44 and vimentin are upregulated

during epithelial-mesenchymal transition (EMT) of cancer cells.

Mammary epithelial cells undergoing EMT downregulate epithelial

genes and upregulate mesenchymal genes, such as E-cadherin, N-

cadherin and vimentin, respectively. Suppression of standard CD44

isoform in Snail- or TGF-b-induced human mammary epithelial

cells inhibits EMT, accompanied by vimentin downregulation [43].

We have previously found that recombinant CD44 HABD 21–

132, as a model for soluble CD44, inhibited human subcutaneous

tumor xenograft growth in mice, angiogenesis in chick chorio-

allantoic membrane, and EC proliferation [27]. Surprisingly, these

CD44HABD functions were independent of its HA-binding

propery, as non-HA-binding mutant was similarly effective.

Therefore, we proposed that CD44HABD could bind additionally

to a different ligand than HA. In this study, we used CD44HABD

non-HA-binding mutant as a bait in GST pull-down assay and

identified vimentin as a novel CD44 interacting protein.

Results

Identification of vimentin as CD44 HABD-binding protein
To identify EC target of CD44 HABD 21–132 (CD44HABD)

and its non-HA-binding mutant CD44HABDR41AR78SY79S

(CD443MUT), we used GST pull-down from HUVEC lysate.

Silver staining of pull-down reactions separated by SDS-PAGE

revealed that GST-tagged CD443MUT precipitated a 60 kD

protein (Figure 1A). This protein was identified by MALDI-TOF-

MS protein fingerprinting as vimentin. To confirm that

CD44HABD-proteins pull down vimentin, we used anti-vimentin

(V9) immunoblotting. Immunoblotting confirmed that GST-

tagged CD44HABD and CD443MUT pulled down endogenous

vimentin from HUVEC lysates (Figure 1B, upper panel). To

determine whether CD44HABD and CD443MUT bind vimentin

directly, we used recombinant vimentin in the GST pull-down

assay. We found that both CD44HABD and CD443MUT were

able to pull down recombinant vimentin, suggesting that CD44

interacts with vimentin directly (Figure 1B, lower panel). We next

used immunoprecipitation (IP) to determine whether endogenous

CD44 and vimentin associate in EC. HUVEC lysate was

immunoprecipitated using anti-CD44 (MEM-263) antibody and

immunoprecipitates were subsequently analyzed by immunoblot-

ting. We found that a minor population of vimentin coimmuno-

precipitated with CD44 from HUVEC lysate (Figure 1C). We also

tested whether anti-vimentin antibodies coimmunoprecipitate

CD44. However, we were not able to detect CD44 from anti-

vimentin IPs (A.P., unpublished data). To further confirm full-

length CD44 and vimentin association we overexpressed C-

terminally Flag-tagged CD44 standard isoform and Myc-tagged

vimentin in vimentin nonexpressing MCF-7 cells. Overexpressed

vimentin was exposed to the cell surface as detected by cell surface

biotinylation (Figure S1). Immunoprecipitation results showed that

anti-Flag immunoprecipitated a vimentin-Myc from CD44-Flag

transfected cells (Figure 1D).

Vimentin and CD443MUT in vitro binding affinity
CD443MUT interaction with recombinant full length human

vimentin was further characterized by isothermal titration

calorimetry (ITC) and by surface plasmon resonance (SPR). We

used two different preparations of CD443MUT. ITC experiments

showed that CD443MUT binds to recombinant vimentin with Kd

in 12–37 nM range with stoichiometry (vimentin/CD443MUT) of

<7 mol/mol (Table 1). SPR experiments were carried out with

vimentin immobilized into measuring cell. Kinetic analysis by SPR

revealed that binding of CD443MUT to immobilized vimentin is

described by a two-site ligand binding model. CD443MUT bound

to a high-affinity site of immobilized vimentin with Kd 74 nM and

Kd for low affinity site was 15 mM (Table 2). Analysis of kinetic

data using equilibrium response values resulted in 1562 mM Kd.

The stoichiometry of vimentin/CD443MUT complex in SPR

experiment was measured<6 mol/mol .

Mapping of vimentin CD44-binding region
To map CD44-binding region in vimentin, we generated

truncated vimentin constructs (Figure 2A). Vimentin deletion

mutant VIM1-96 contains only head domain, VIM1-245 contains

head domain and alpha-helices 1A-B, and VIM97-466 mutant

lacks the head domain (aa numbering according to human

vimentin). VIM246-466 mutant contains C-terminal half of the

protein starting from alpha-helices 2A-B. VIM407-466 contains

the tail domain. Lysates of MCF-7 cells, expressing either full-

length vimentin or its deletion mutants, were used in GST pull-

down with CD44HABD or CD443MUT. Pull-downs were

analyzed by immunoblotting using tag-specific antibodies. This

analysis showed that CD44HABD and CD443MUT bound only

vimentin deletion mutants containing the head domain (VIM1-96

and VIM1-245; Figure 2B). Deletion of the head domain was

sufficient to abolish binding of vimentin to CD44HABD and

CD443MUT(VIM97-477, VIM246-466 or VIM407-466).

CD44 Binds Vimentin
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Cell surface vimentin and CD443MUT-vimentin
interaction is induced by VEGF
To detect cell surface vimentin, we performed biotinylation of

cell surface proteins of adherent living HUVEC, followed by IP of

vimentin from cell lysates. Biotinylated proteins were detected by

immunoblotting using HRP-conjugated strepavidin. We found

that anti-vimentin (V9) antibody immunoprecipitated from

HUVEC lysate a 60 kD biotinylated protein. We used anti-

CD44 (H4C4) antibody as positive control and found that it IPd a

100 kD biotinylated protein. These proteins correspond to

expected sizes of vimentin and endothelial CD44, respectively

(Figure 3A upper panel). The identity of biotinylated proteins was

confirmed by immunoblotting with vimentin- or CD44-specific

antibodies (Figure 3A lower panel).

Next, we decided to test whether CD443MUT cellular binding

can be induced with angiogenic growth factors. To determine the

effect of angiogenic stimulus on CD443MUT cellular binding we

induced 6 h serum starved HUVEC 30 min with VEGF165 at

37uC. Then we incubated cells with Alexa Fluor 488-labeled

CD443MUT at 4uC. CD443MUT-A488 cellular binding was

quantitated using flow cytometry. We found a significant binding

of CD443MUT-A488 to HUVEC compared to GST-A488

control (P = 0.015, n = 3, unpaired t-test). Under these conditions

,20% cells bound CD443MUT. VEGF treatment induced a

further increase in CD443MUT cellular binding compared to

non-induced cells, although this result was statistically marginally

significant (P = 0.067, n = 3; Figure 3B). To confirm that VEGF

induces cell surface vimentin binding sites for CD443MUT, we

used cell surface biotinylation of HUVEC followed by GST pull-

down with CD443MUT. For this, overnight serum starved

HUVEC were induced 1 hour with VEGF or left non-induced,

followed by cell surface biotinylation of live adherent cells. GST-

CD443MUT or GST alone were used in pull-downs from cell-

surface biotinylated HUVEC lysates. Subsecuently, precipitated

proteins were detected by western blotting either by strepavidin-

HRP or anti-vimentin (V9) antibody. We found that CD443MUT

pulled down a 60 kD biotinylated protein from VEGF-stimulated

but not from serum starved cells. This protein turned out to be

vimentin since it could be detected with a vimentin-specific

antibody (Figure 3C).

Vimentin displaces CD443MUT from HUVEC
To further characterize CD443MUT and vimentin interaction

on HUVECs we measured the ability of vimentin to compete with
125I-labeled CD443MUT for cellular binding. The results of

displacement binding experiments showed that CD443MUT

displaced itself from HUVEC with logEC50 25.860.05 M

(EC50= 1.57 mM, n= 9; Figure 3D). Vimentin displaced

CD443MUT from HUVEC with logEC50 25.3760.21 M

(EC50= 4.26 mM , n= 2) which is not significantly different from

displacement by CD443MUT itself (extra sum of squares F-test,

P=0.0711; F= 3.298 (1,171)). BSA did not displace CD443MUT

effectively, with logEC 23.9360.06 M (EC50= 117 mM, n= 4).

CD44HABD endocytosis by HUVEC
Given that vimentin provides specific binding site for

CD443MUT on EC, we decided to test whether CD443MUT is

endocytosed upon binding to cell surface vimentin. We incubated

HUVEC with unlabeled CD443MUT for 30 min at 37uC to allow

internalization. CD443MUT was detected by immunofluores-

cence confocal microscopy using CD443MUT specific mouse

monoclonal antibody 1A2 (Figure S2). Recombinant GST uptake

Table 1. Summary of Kd values for CD443MUT and vimentin interaction measured by ITC.

CD443MUT preparation CD443MUT (mM) Vimentin (mM) Kd (M) na (mol/mol)

A 4.2 1.8 1.2?102861029 9.960.5

1.5 0.5 3.7?102861029

B 4.2 1.8 1.8?102861029 7.260.3

0.9 0.5 2.3?102861029

a, stoichiometry (vimentin/CD443MUT).
doi:10.1371/journal.pone.0029305.t001

Figure 1. Identification of vimentin as CD44HABD-binding
protein. (A) HUVEC lysate was used in GST pull-down to identify
CD443MUT interacting proteins. Lysate was incubated with GST-
CD443MUT (GST-3MUT) coated beads. Bound proteins were eluted
using reduced glutathione and analyzed by SDS-PAGE and silver
staining. GST-3MUT precipitated protein band (shown by arrow) was
cut off from gel, trypsinolyzed and analyzed by MALDI-TOF MS. This
protein was identified as vimentin. (B, upper panel) Vimentin pull-down
by CD44HABD (GST-HABD) and GST-3MUT was confirmed by immuno-
blotting using anti-vimentin V9 antibody. (B, lower panel) GST-HABD
and GST-3MUT pull-down recombinant vimentin. (C) Coimmunopreci-
pitation of vimentin with CD44 from HUVEC lysate. Anti-HDAC-1
antibody was used as a negative control (see Materials and methods).
(D) Coimmunoprecipitation of over-expressed vimentin-Myc with CD44-
Flag from MCF-7 lysates using tag-specific antibodies.
doi:10.1371/journal.pone.0029305.g001

CD44 Binds Vimentin
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was used as a control. The results showed that CD443MUT was

readily endocytosed by HUVEC and displayed a vesicular

localization pattern (Figure 4A). Next, we used CD443MUT

directly conjugated to Alexa Fluor 568 for internalization assay.

CD443MUT-A568 was endocytosed and distributed in HUVEC

cytoplasm similarly to unlabeled CD443MUT (Figure 4B).

HUVECs express vimentin at high level, and endocytosed

CD443MUT-containing vesicles were surrounded by a dense

network of vimentin intermediate filaments, however, there was no

direct colocalization of CD443MUT with vimentin filaments

(Figure 4A and B).

Next, we used a generic endocytosis marker cholera toxin B

conjugated to Alexa Fluor 555 (CTxB-A555) to trace CD443MUT

following endocytosis. We found that after 30 min uptake Alexa

Fluor 488-labeled CD44HABD as well as -3MUT colocalized with

CTxB-A555 positive structures (Figure 5A). We quantitated

colocalization of CTxB with CD44HABD and CD443MUT from

single slices of confocal image stacks as described in Materials and

Methods. Altogether,,2.6?104CTxB-positive vesicles were analyzed

from CD44HABD- (n=39) or CD443MUT-incubated cells (n=38).

As shown in Figure 5B, approximately 4–5% of CTxB-vesicles

colocalized and showed positive correlation with CD44HABD

(average Pearson’s r =0.469, 95% CI 0.438 to 0.498, df =679,

P,0.0001) or CD443MUT (r=0.532, 95% CI 0.503 to 0.531,

df = 608, P,0.0001). We next analyzed CD443MUT-A488 coloca-

lization with early endosome marker EEA1 in HUVEC after 10 min

uptake followed by 20 min chase. We found that CD443MUT-A488

showed extensive colocalization with EEA1-positive vesicles after

10 min incubation (Figure 5C). Quantitation of CD443MUT and

EEA1 colocalization in ,6.5?103 EEA1-endosomes showed that

32% of EEA1-endosomes colocalized with CD443MUT after

10 min incubation (r=0.311, 95% CI 0.266 to 0.355, df =407,

P,0.0001), whereas a fraction of EEA1-endosomes showing

colocalization falled to 7% after 20 min chase (r= 0.321, 95% CI

0.251 to 0.388, df =172, P,0.0001) following the incubation

(Figure 5D). The number of CD443MUT-vesicles in cells reduced

during 20 min chase by ,7.5 times (Figure 5D, rightmost panel)

suggesting trafficking of CD44 to late endosomal-lysosomal degra-

dation pathway. Therefore, we next analyzed whether CD443MUT

is targeted to the CD63-positive late endosomal compartment after

20 min chase following a 10 min pulse with CD443MUT-A488.

However, we found that CD443MUT-A488 showed no significant

accumulation within anti-CD63 staining vesicles after 20 min

(Figure 5E) or 50 min chase (data not shown). Together, these results

indicate that recombinant CD44HABD and CD443MUT are

endocytosed and reach early endosomal compartment.

CD443MUT endocytosis is inhibited in ECs derived from
vimentin-null mice
To test directly whether vimentin mediates CD443MUT

internalization, we isolated lung endothelial cells from wild-type

Table 2. Kinetic parameters for binding of CD443MUT to vimentin measured by SPR.

Kass1 (M21 s21)6103 Kass2 (M21 s21) Kdiss1 (s21)61024 Kdiss2 (s21)61023 Kd (mM) Kdiss1/Kass1 Kd (mM) equation 1 n (mol/mol)

7.660.1 18367 5.660.1 1.960.1 0.074 1562 6.2

doi:10.1371/journal.pone.0029305.t002

Figure 2. CD443MUT binds vimentin N-terminal head domain. (A) A diagram of vimentin sub-domains and deletion mutants used in pull-
down reactions. Ellipses represent alpha-helices in coiled-coil domains and L1-L2 mark linker regions. GFP, green fluorescent protein. (B) GST pull-
down reactions were performed from cell lysates transfected with full length vimentin or its deletion mutants (see Materials and methods). Eluates
from pull-downs were analyzed by immunoblotting.
doi:10.1371/journal.pone.0029305.g002
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(WT) or vimentin-null mice (Figure 6A). We characterized isolated

mouse lung endothelial cells (MLEC) for endothelial-specific cell

surface markers by flow cytometry (Figure 6B). FACS staining

showed that PECAM-1 and CD44 were expressed on vimentin-null

MLEC at levels comparable to WT cells. However, ICAM-2

expression was reduced on vimentin-null MLEC compared to WT

cells. We next tested the internalization of CD443MUT-A568 by

MLEC. We found that WT MLEC endocytosed CD443MUT

comparably to HUVEC after 30 min uptake, whereas CD443MUT

uptake by MLECs isolated from vimentin-null mice was inhibited

(Figure 6C).

Discussion

We have identified vimentin as a novel CD44 binding protein.

Our results – the fact that recombinant CD44HABD and

CD443MUT pulled down both endogenous as well as recombinant

vimentin, and the finding that vimentin displaces CD443MUT

bound to HUVEC cells, suggest that CD44-vimentin interaction is a

direct protein-protein interaction. To our knowledge, CD44-

vimentin interaction is the first protein-protein interaction described

for CD44 HABD. CD44 HABD mediates low affinity interactions

with its ECM ligand HA with an in vitroKd of 50 mM [23]. CD44 is

a membrane glycoprotein and interacts via its glycosylated variant

exons with various extracellular ligands, including fibronectin,

collagen XIV, E-selectin and osteopontin [44–47]. CD44 HABD

contains five N-linked glycosylation sites [48]. Our experiments,

where glycosylated EC-endogenous or tumor cell over-expressed

full-length CD44 immunoprecipitated vimentin correlate with our

initial findings obtained with soluble recombinant CD44HABD or

CD443MUT and strongly suggest that post-translationally modified

CD44 can also form a complex with vimentin. However, we were

not able to detect full-length CD44 in anti-vimentin antibody

immunoprecipitates from HUVEC lysates, which can be explained

by the fact that while HUVEC express high levels of vimentin, only

a small fraction forms a complex with membrane bound CD44.

We found that CD44 HABD binds to vimentin within its head

domain. Vimentin head-domain interactions include ankyrin

binding at the plasma membrane [49], vimentin head-domain is

also important in filament formation [50]. Our finding that CD44

binds to vimentin head domain is consistent with the proposed

Figure 3. VEGF induces cell surface vimentin and CD443MUT cellular binding. (A) For detection of cell surface vimentin, asynchronously
growing live adherent HUVEC were cell surface biotinylated and lysate was used for immunoprecipitation using anti-vimentin or anti-CD44
antibodies. Immunoprecipitated proteins were detected by immunoblotting using strepavidin-HRP (upper panel) or specific antibodies (lower
panels). (B) 6 hour serum-starved HUVEC were induced for 30 min with VEGF165, followed by incubation on ice with Alexa Fluor 488-labeled
CD443MUT (3MUT). GST Alexa Fluor 488 conjugate was used as negative control. Cellular binding of A488-conjugated proteins was analyzed by
FACS. Bars represent average geomean of fluorescence from three experiments (mean 6 SE). (C) Overnight serum-starved HUVEC were induced for
1 hour with VEGF165, followed by cell surface biotinylation. Lysate from biotinylated cells was used in pull-down using GST-3MUT. Precipitated
proteins were detected by immunoblotting using strepavidin-HRP (upper panel) or anti-vimentin antibody (lower panel). (D) For displacement assay,
cells were resuspended in incubation buffer in 96-well plate. CD443MUT, vimentin or BSA at different concentrations was added to the wells along
with 125I-labeled CD443MUT. Reactions were incubated overnight at 4uC. After incubation, reactions were stopped by filtration through glass fiber
filters blocked with BSA. Filters were washed with PBS and bound radioactivity was measured using gamma counter. The curves represent global
fitting of normalized radioligand binding data from two to nine experiments.
doi:10.1371/journal.pone.0029305.g003
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vimentin structure. Parallelly aligned dimers of vimentin assemble

laterally into tetramers in a fashion whereby first halves of

antiparallel coiled-coil domains overlap. Physiologically, vimentin

forms a non-polar 32-meric unit-length filaments (ULF) consisting

of 16 dimers or 8 tetramers [51]. The observed stoichiometries of

6–10 moles of vimentin per one mole CD443MUT probably

reflects the number of head domains available on the ULF surface.

The Kd values calculated from SPR data (12–37 nM) for the high

affinity binding site are about 2–5 times higher than Kd-s resulting

from ITC experiments (74 nM). Such experimental discrepancy

can be explained either by limited dynamics of the immobilized

vimentin or by sterical hindrances in the environment of the SPR

chip. Currently the exact model of vimentin binding of CD44 or

whether its binding site coincides with the HA binding surface, is

not known. However, our data show that pharmacophores for

HA-binding are not necessary for vimentin binding. Our data

suggest a protein-protein interaction model which is constrained

by the fact that CD44 is a type I membrane receptor and vimentin

is a cytoplasmic intermediate filament protein. Nevertheless,

several independent findings make this interaction spaciotempo-

rally feasible. In addition to generation of CD44 intracellular

domain resulting from shedding, full-length CD44 is also

endocytosed and transported to the nucleus via NLS located in

its intracellular domain [52,53]. In this process CD44 acts as

scaffold for STAT3 and p300 [53]. Importantly, leptomycin B

induces CD44 nuclear accumulation, suggesting a nuclear-

cytoplasmic shuttling [52]. On the other hand, cell surface

vimentin is a well-known phenomenon without any known

function. We show that cell surface vimentin is readily detectable

in primary human endothelial cells, in addition to its previously

reported presence in malignant lymphocytes, activated macro-

phages and platelets [34–36]. Vimentin provides bacterial binding

sites on the surface of human brain endothelial cells [37]. Our

results suggest that vimentin might provide a binding site for

soluble CD44 on EC. This is supported by our result that

exogenously added vimentin can efficiently displace CD443MUT

from ECs. In addition, we found that CD443MUT EC binding

was enhanced by VEGF. These results were confirmed by

experiments of cell surface biotinylation of starved or VEGF-

induced ECs showing that CD443MUT was able to pull-down

biotinylated vimentin from VEGF-treated but not from serum

starved ECs. The discrepancy between the binding of

CD443MUT to starved EC in cellular binding experiment and

lack of any detectable biotinylated vimentin in pull-downs from

starved EC could be explained by the different length of serum

starvation in these experiments (6 h v. over-night, respectively).

We suggest that the physiological relevance of these results is

supported by findings that vimentin and CD44 are up-regulated

on tumor endothelial cells, whereas vimentin has been proposed as

a potential anti-angiogenesis target [3,38].

Here we show that after binding CD44HABD and its non-HA-

binding triple mutant are endocytosed by ECs. A fraction of

CD44HABD-proteins colocalized with generic endocytosis tracer

CTxB-positive vesicles and were targeted to early endosomal

structures. Importantly, we found that CD443MUT uptake was

lost in vimentin knock-out endothelial cells, suggesting further that

such internalization is mediated by vimentin. The number of

CD443MUT-positive vesicles and early-endosomal localization

decreased rapidly, most probably suggesting its targeting to

lysosomal degradation. However, we were not able to detect

significant accumulation of fluorescently labeled CD443MUT

within late endosomal compartment.

We propose that vimentin forms a complex with full-length

CD44. In this model, soluble CD44 antagonizes binding of

membrane CD44 to vimentin. However, the role for soluble

CD44 in tumorigenesis still remains elusive, as highly elevated

soluble CD44 associates with aggressive growth and bad prognosis

in cancer patients, and yet our previous results suggest that

recombinant CD44 administration can inhibit tumor xenograft

growth and angiogenesis [27]. We can speculate, that in cancer

patients with high sCD44, tumor cells have acquired resistance to

its inhibitory effects, while shedding of cell-surface bound CD44

confers significant selective advantage in tumor microenviron-

ment. In summary, given the facts that the expression of CD44

Figure 4. CD443MUT endocytosis by HUVEC. HUVEC were grown overnight on glass slides and incubated for 30 min at 37uC with 1 mM
unlabeled or Alexa Fluor 568-labeled CD443MUT or GST. Cells were analyzed by confocal microscopy. (A) Uptake of unlabeled CD443MUT by HUVEC
was detected with anti-CD443MUT mouse mAb 1A2 (green). Vimentin intermediate filaments were detected with rabbit polyclonal antibody (red).
Nuclei were stained with Hoechst (blue). Images are maximum intensity projections, generated along the z-axis of image stack. Scale bars, 10 mm. (B)
Internalization of directly Alexa Fluor 568-labeled CD443MUT by HUVEC (red). Vimentin (green) was detected with V9 mAb. Scale bars, upper and
middle panels 10 mm; insets 5 mm.
doi:10.1371/journal.pone.0029305.g004
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and vimentin correlate with EMT in cancer cells, and with tumor

angiogenesis, our findings provide rationale for further functional

studies on the role of these proteins in EMT and angiogenesis.

Materials and Methods

Cell lines and antibodies
HUVEC and MLEC cells were grown in M199 medium

supplemented with 20% FBS, 4 mM L-glutamine, 50 mg/ml

heparin and 30 mg/ml EC growth supplement (ECGS, Upstate

Biotechnology, Lake Placid, NY, USA). MCF-7 cells (ATCC,

Manassas, VA, USA) were grown in RPMI, supplemented with

10% FBS and 2 mML-glutamine. Anti-vimentin (V9), anti-Myc (A-

14) and anti-HDAC1 (H-11) antibodies were from Santa Cruz

Biotechnology (Santa Cruz, CA, USA). Anti-vimentin rabbit

polyclonal (18-272-196311) was from Genway (San Diego, CA,

USA). Anti human-CD44 (2C5) was from R&D Systems (Minne-

apolis, MN, USA). Mouse anti-human CD44 (H4C4) was from

DSHB (University of Iowa, IA, USA). Anti CD443MUT mouse

mAb 1A2 (Figure S2) was generated by LabAS Ltd (Tartu, Estonia).

Anti-CD44 (MEM-263) was from EXBIO Praha (Czech Republic).

Anti-mouse PECAM-1 (MEC13.3), anti-mouse ICAM-2 (3C4) and

anti-EEA1 mAb were from BD Pharmingen (Palo Alto, CA, USA).

Rat anti-CD63/lamp-3 (R5G2) was from MBL International

(Woburn, MA, USA). Anti-Flag-M2 antibody was from Sigma.

Purification of recombinant proteins and fluorescence
labeling
CD44HABD and CD443MUT GST fusion-proteins were

purified as described [27]. CD44HABD and CD443MUT include

aa 21–132 of human CD44 protein. CD44HABD and -3MUT

were expressed using pET11c vector (Novagen). Urea dissolved

inclusion bodies were purified by gel filtration in Superdex-200HR

16/60 column (GE Healthcare, Uppsala, Sweden). Refolding was

performed by gradient dialysis into 50 mM Tris pH 8.0, 150 mM

NaCl and final dialysis into PBS. Endotoxin level was measured

using the Endosafe-PTS (Charles River, L’Arbresle, France).

Endotoxin values of CD443MUT batches were 22–93 EU/mg.

Human vimentin was expressed using pET15b vector (Novagen).

His-tagged vimentin was purified using Ni-affinity resin (Sigma)

Figure 5. Analysis of endocytosed CD443MUT localization. (A) HUVEC were incubated with A488-labeled CD44HABD or CD443MUT (green) in
the presence of CTxB-A555 (red) for 30 min. Nuclei were stained with Hoechst. Images show single confocal plane. Scale bars, 10 mm. (B)
Colocalization analysis of CD44HABD (HABD) and CD443MUT (3MUT) with CTxB. Left, the fraction of CTxB-vesicles colocalizing with HABD (n= 39
cells) or 3MUT (n = 38 cells). Middle, the number of CTxB-vesicles per cell; right, the number of HABD- or 3MUT-containing vesicles per cell. (C–E)
HUVEC were incubated with CD443MUT-A488 for 10 min after which CD443MUT-containing media was changed to 10% FBS HUVEC growth media
and cells were further incubated for 20 min. Then cells were fixed and stained with anti-EEA1 or anti-CD63 antibodies. (C) Localization of 3MUT- and
early endosomal marker EEA1-positive veicles after 10 min incubation in HUVEC. (D) Quantitation of EEA1-vesicles colocalizing with CD443MUT after
10 min incubation (n = 26 cells) and after 20 min chase (n = 40 cells; left). The number of EEA1- and 3MUT vesicles per cell (middle and left,
respectively). (E) Localization of internalized 3MUT and late endosomal protein CD63-positive vesicles. Scale bars, 2 mm (C) and 5 mm (E).
doi:10.1371/journal.pone.0029305.g005
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under denaturing conditions. Refolding was performed by

gradient dialysis into 10 mM Tris pH 8.0 with final dialysis into

10 mM phosphate buffer pH 7.4. Proteins were fluorescence-

labeled using sulfo-NHS-Alexa Fluor 488 or2568 protein labeling

kit (Molecular Probes, Eugene, OR, USA).

GST pull-down, immunoprecipitation and cell surface
biotinylation
Adherent cells were rinsed with ice-cold PBS and lysed on ice in

50 mM Tris pH 8.0, supplemented with protease inhibitor

cocktail (PIC; Roche, Mannheim, Germany). Lysate was centri-

fuged at 14000 rpm for 30 min at 4uC. Pellet was solubilized in

2% CHAPS, 50 mM Tris pH 8.0, 50 mM NaCl, PIC buffer and

centrifuged at 14000 rpm for 10 min at 4uC. Supernatant was

precleared by incubation with GST-bound glutathione-sepharose

4FF beads (Amersham Biosciences, Uppsala, Sweden). Precleared

lysate was incubated overnight at 4uC with 10 mg GST, GST-

tagged CD44HABD or CD443MUT immobilized onto glutathi-

one beads. After washes with 50 mM Tris pH 8.0, 150 mM NaCl,

PIC buffer, beads were eluted with 20 mM reduced glutathione in

50 mM Tris pH 8.0. Eluates were precipitated with 20% TCA,

precipitate was washed with cold acetone and aspirated dry. For

MALDI-TOF MS analysis of tryptic peptides, protein samples

were alkylated and visualized by silver staining on SDS-PAGE.

For biotinylation, adherent cells were incubated with 1 mM EZ-

Link Sulfo-NHS-LC-biotin (Pierce, Rockford, IL, USA) in PBS-

0.05% NaN3 for 30 min on ice, washed with 100 mM glycine-PBS

and lysed as described above. For IP of endogenous proteins,

adherent cells were rinsed with cold PBS and lysed in 50 mM Tris

pH 8.0, 50 mM NaCl, 1% CHAPS, PIC buffer. Lysate was

centrifuged at 14000 rpm for 30 min at 4uC. Supernatant was pre-

cleared with anti-HDAC1 immobilized onto protein A/G

sepharose beads (Amersham Biosciences) at 4uC. Precleared lysate

was incubated with anti-HDAC1 or anti-CD44 (MEM-263)

antibodies immobilized onto protein A/G beads overnight at

4uC. Beads were washed with lysis buffer and bound proteins were

eluted with 0.5 M glycine (pH 2.5). Finally, pH of eluates was

adjusted with 1 M Tris pH 8.0 and they were analyzed by

immunoblotting using anti-CD44 (2C5) or rabbit anti-vimentin

antibody. For IP of over-expressed proteins, adherent cells were

rinsed in cold PBS, lysed in lysis buffer containing 40 mM Hepes

pH 7.4, 120 mM NaCl, 1 mM EDTA, 0.6% CHAPS and PIC.

Lysates were centrifuged at 14000 rpm for 30 min at 4uC.

Supernatants were incubated with anti-Flag-M2 affinity gel

(Sigma) overnight at 4uC, beads were washed with lysis buffer

and bound proteins were eluted with 26Laemmli sample buffer.

Eluted protein complexes were analyzed by immunoblotting with

anti-Flag-M2 or anti-Myc.

Isothermal titration calorimetry and surface plasmon
resonance
ITC measurements were performed on a Nano-2G instrument

(TA Instruments, New Castle, DE, USA). Experiments were

performed in 50 mM Tris, 150 mM NaCl, pH 8.0 at 25uC. The

Figure 6. Vimentin dependent endocytosis of CD443MUT. MLEC were isolated either from wild-type (WT) or vimentin-null mice. (A)
Immunoblot of WT of Vim2/2 MLEC lysates with anti-vimentin rabbit polyclonal antibody. (B) FACS analysis of MLEC for cell surface markers with
either anti-PECAM-1, anti-ICAM-2 or anti-CD44 antibodies (black lines). Gray lines, no primary antibody controls. (C) MLEC-s were incubated with
CD443MUT-A568 (red) for 30 min and processed for immunofluorescence. Scale bars, upper panels 10 mm; insets 5 mm.
doi:10.1371/journal.pone.0029305.g006
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main experimental parameters were: sample cell volume – 1 ml,

syringe size – 250 ml, stirring rate – 250 rpm, injection volume –

10 ml, time interval between injections – 300 s. Titration data were

analyzed by non-linear fitting (SigmaPlot 10). SPR measurements

were performed on Biacore3000 (GE Healthcare). Vimentin was

covalently coupled to CM5 chip using amine coupling kit (GE

Healthcare). In association phase, CD443MUT concentrations

0.46–123 mM were injected over the chip surface. In the

dissociation phase, the sensor chip surface was eluted with buffer

50 mM Tris, 150 mM NaCl, pH 8.0. The association rate

constants and the dissociation rate constants were estimated using

BIAevaluation software (GE Healthcare) using a parallel binding

model, A+B1 «AB1, A+B2 « AB2. Kd values were also

determined from analysis of the equilibrium data using equation 1:

DR= (DRmax?x)/(Kd+x)+(c ? x), where x – concentration of the

injected protein, DR – the increase of the response value at

equilibrium, DRmax – capacity of the immobilised vimentin to bind

a protein (the number of binding sites), and c describes weak or

non-specific interaction.

Displacement assays
Adherent cells were harvested from culture plates with 5 mM

EDTA in PBS. Proteins were iodinated with 125I by using Iodo-

beads (Pierce). Cells were resuspended in incubation buffer

20 mM Tris-HCl pH 7.5, 5 mM MgCl2, 30 mM NaCl, 3 mM

CaCl2 or DMEM, 25 mM HEPES, 0.1% BSA. Cell suspension

was transferred into 96-well microtitre plate in 100 ml volume.

Unlabeled protein at different concentrations and 125I labeled

protein in 20 ml volume of incubation buffer was added into wells.

Reactions were incubated overnight at 4uC and stopped by

filtration through GF/B filters blocked with 0.1% BSA-PBS,

followed by washes with cold PBS. Filters were transfered into

5 ml vials and bound radioactivity was measured using gamma

counter (PerkinElmer).

FACS analyses
For CD443MUT cellular binding, HUVEC were serum starved

6 h and then induced for 30 min at 37uC with 10 ng/ml VEGF-

165 in media containing 0.5% FBS. Alexa Fluor 488-conjugated

CD443MUT or GST was added into media at 25 mg/ml and cells

were incubated for 1 h on ice. Cells were harvested from culture

plates by scraping. After washes with 0.1% BSA-PBS, cells were

fixed in 4% formaldehyde-PBS and analyzed using FACSCalibur

flow cytometer (BD Biosciences).

DNA constructs and transfection
Full-length vimentin was PCR amplified from human vimentin

cDNA and inserted into EcoRI/SacII site of pcDNA3.1/

MycHisB vector (Invitrogen). Vimentin deletion mutants con-

taining amino acids 1-96 (VIM1-96), 1-245 (VIM1-245), 246-466

(VIM246-466) and 97-466 (VIM97-466) were PCR amplified

from human vimentin cDNA using oligonucleotide pairs

containing EcoRI/NotI sites. PCR fragments were inserted into

EcoRI/NotI site of pcDNA3.1/MycHisB vector. Vimentin-GFP

(GFP, green fluorescent protein) constructs were created by

inserting EcoRI/SacII fragment from respective vimentin-

pcDNA3.1/MycHisB constructs into pEGFP-N1 vector. Vimen-

tin deletion mutant containing aa 407-466 (VIM407-466) was

PCR amplified from human vimentin cDNA and inserted into

EcoRI/SalI site of pEGFP-C2 vector. For creating Flag-tagged

CD44 DNA construct, full-length CD44 was PCR amplified from

human standard CD44 isoform cDNA and inserted into EcoRI/

NotI site of pCMV-Tag4a vector (Stratagene). MCF-7 cells were

transfected using 1:2 DNA:PEI ratio. Transfected cells were

grown at 37uC for 24 h. GST pull-down was performed as

described above.

Mouse lung endothelial cells
Wild-type MLEC were isolated from C3H mouse strain (The

Jackson Laboratory) and vimentin2/2 from Vim1/Vim1 mice

[31] obtained from EMMA (CNRS/CDTA, Orleans, France).

Lungs from three 6–8 week old mice were dissected and finely

minced with scissors on a dry culture dish. Lung pieces were put

into 20 ml pre-warmed 0.2% collagenase-I (Sigma) in PBS and

incubated with gentle agitation for 45 min at 37uC. Collagenase

digested lung suspension was triturated through 100 mm cell

strainer (BD Biosciences). Cell suspension was centrifuged 8 min

400 g at 4uC. Cell pellet was resuspended in 2 ml 0.1% BSA-PBS.

Cells were sorted by incubation for 15 min at RT with sheep anti-

rat IgG Dynabeads (Dynal, Norway) coated with rat anti-mouse

CD31 (MEC13.3) and rat anti-mouse ICAM-2 (3C4) antibodies.

Bead-bound cells were separated using a magnetic rack and

washed five times with M199 medium containing 10% FBS. After

separation, cells were plated onto dish and grown in M199

containing 10 mM HEPES, 20% FBS, 4 mM L-glutamine and

supplemented with 50 mg/ml Heparin, 30 mg/ml ECGS and

penicillin-streptomycin.

Internalization assay, immunofluorescence microscopy
and image processing
For internalization assays, cells on 8-well slide (BD Falcon)

were incubated at 37uC with CTxB-Alexa 555 (Invitrogen) and/

or CD44HABD-proteins at 13 mg/ml (<1 mM) in 0.5% FBS

containing media for 10 or 30 min. After 10 min uptake, cells

were washed with PBS two to three times and media was changed

to 10% FBS containing M199 HUVEC growth media and slides

were incubated for 20 or 50 min at 37uC. After incubations cells

were washed and fixed with 4% formaldehyde-PBS on for 10 min

on ice and for 10 min at RT. Cells were permeabilized using

0.1% Triton X-100 in 0.1% BSA-PBS. Antibodies were diluted in

0.1% BSA-PBS. Secondary antibody dilutions were supplement-

ed with 10 mg/ml Hoechst 33258 (Sigma). Slides were mounted

in Mowiol 4–88 (Sigma-Aldrich, St Louis, MO, USA). Confocal

fluorescent imaging was performed using Zeiss LSM510 micro-

scope with 663/1.4 oil immersion objective in multi-channel

mode (Carl Zeiss MicroImaging, Germany). Images were

prepared using Imaris 6.4 software (Bitplane, Zurich, Switzer-

land). For quantitation of endocytosis and vesicular colocaliza-

tion, single slices from the middle plane of the cell were semi-

automatically selected from confocal image stacks using Fiji

package (http://pacific.mpi-cbg.de/wiki/index.php/Fiji). Cell-

profiler 2.0 (r10415) software was used ror image segmentation

and automated analysis [54]. Endosomal outlines were identified

using Otsu global treshold, then endosomal marker/tracer object

outlines were used to create a mask to identify colocalizing

CD44HABD- or CD443MUT objects. Within these objects

correlation was measured between endocytosis marker and

CD44, and objects showing positive correlation were finally

counted as colocalizing. For calculation of average correlation

coefficient and 95% confidence interval, individual object

coefficients were transformed to z scores.

Statistical analysis of data
Data represent mean 6 SE. Statistical analysis and non-linear

fitting of data was performed using GraphPad Prism 5 software

(San Diego, CA, USA).
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Supporting Information

Figure S1 Cell-surface expression of overexpressed
vimentin in MCF-7 cells. Vimentin- or empty vector

transfected MCF-7 cells were subjected to cell surface biotinylation

(see Materials and Methods). Lysates were immunoprecipitated

with anti-vimentin antibody. Lysates and immunoprecipitates

were analyzed by WB using strepavidin-HRP (upper panel) or

anti-vimentin antibody (lower panel). Arrows indicate the location

of full length vimentin.

(TIF)

Figure S2 Characterization of anti-CD443MUT mouse
mAb 1A2. (A) ELISA analysis of serially diluted 1A2 mAb

(3.1 mg/ml) of rat serum2, rat serum+CD443MUT- or

CD443MUT-coated wells. PBS, no primary antibody control.

(B) Microplate wells were coated with different concentrations of

CD443MUT mixed with rat serum and analyzed by ELISA using

1A2 mAb at 1:400 dilution. (C) Wells were coated with CD44

peptides and analyzed by ELISA using 1A2 mAb at 1:50000

dilution. (D) Amino acid alignment of CD44HABD, CD443MUT

and peptides used for epitope mapping. Amino acid numbering is

according to human CD44; mutated positions are indicated in

green (wild-type amino acids) or red (mutant amino acids). Bars,

mean 6 SD.

(TIF)
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