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ABSTRACT 

It has been hypothesised that tau protein, when hyper-phosphorylated as in AD, does not bind 

effectively to microtubules and is no longer able to stabilize them, thus microtubules break down 

and axonal transport can no longer proceed efficiently in affected brain regions in AD and related 

tauopathies (tau-microtubule hypothesis). We have used Drosophila models of tauopathy to test all 

components of this hypothesis in vivo. We have previously shown that upon expression of human 

0N3R tau in Drosophila motor neurons it becomes highly phosphorylated, resulting in disruptions 

to both axonal transport and synaptic function which culminate in behavioural phenotypes. We now 

show that the mechanism by which the human tau mediates these effects is two-fold: firstly, as 

predicted by the tau-microtubule hypothesis, the highly phosphorylated tau exhibits significantly 

reduced binding to microtubules, and secondly, it participates in a pathogenic interaction with the 

endogenous normal Drosophila tau and sequesters it away from microtubules. This causes 

disruption of the microtubular cytoskeleton as evidenced by a reduction in the numbers of intact 

correctly aligned microtubules, and the appearance of microtubules that are not correctly oriented 

within the axon. These deleterious effects of human tau are phosphorylation dependent, because 

treatment with LiCl to suppress tau phosphorylation increases microtubule binding of both human 

and Drosophila tau and restores cytoskeletal integrity. Notably, all these phospho-tau mediated 

phenotypes occur in the absence of tau filament/ neurofibrillary tangle formation or neuronal death, 

and may thus constitute the mechanism by which hyper-phosphorylated tau disrupts neuronal 

function and contributes to cognitive impairment prior to neuronal death in the early stages of 

tauopathies. 

 

KEYWORDS: Alzheimer’s disease, tauopathy, axonal transport, lithium, neurofibrillary tangles. 
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It has been speculated that the axonal microtubular cytoskeleton may be compromised in 

Alzheimer’s disease (AD) and other tauopathies because the microtubule associated protein tau, 

which usually stabilises this cytoskeleton, is abnormal in these conditions. In all tauopathies tau is 

atypically hyper-phosphorylated, misfolded and aggregated into filaments and tangles (reviewed in 

[20]. The idea that some of these aberrations of tau may result in defects in cytoskeletal integrity 

first came forth when it was demonstrated that microtubule assembly, in an in vitro assay, was 

defective in extracts from AD brains when compared to those obtained from age matched control 

brains [19]. It was shown that this was not due to dysfunctional tubulin proteins in the AD brains, 

but due to the hyper-phosphorylated state of the tau protein which, the authors speculated, affected 

its microtubule binding properties [14]. Subsequently, various studies analysed the effect of tau 

phosphorylation on its microtubule binding function, and showed that hyper-phosphorylation of tau 

reduces its binding to tubulin in vitro [4, 12, 27, 41] leading to a collapse of cytoskeletal integrity of 

cells in culture [10, 25, 26].  These studies have collectively led to the formulation of the “tau-

microtubule” hypothesis which proposes that when tau is hyper-phosphorylated as it is in AD, it 

dissociates from microtubules which then collapse, and all neuronal functions dependent on the 

intact microtubular cytoskeleton, such as axonal transport and ultimately synaptic function, become 

disrupted [1, 13]. For the last few years this hypothesis has played an important role in putting 

forward a mechanism by which tau abnormalities, and in particular tau hyper-phosphorylation, may 

cause neuronal dysfunction and contribute to cognitive impairments prior to neuronal death in 

tauopathies. It is conceivable that it may depict the state of affairs within the AD brain because 

reduced microtubule numbers [5] and impairments in microtubule-based axonal transport have been 

reported in AD post mortem tissue [35, 39]. 

However, despite this body of circumstantial evidence that backs this hypothesis, it is 

hampered by the fact that it is almost exclusively based on in vitro findings with a dearth of in vivo 

supporting data. For instance, numerous studies have shown that expression of hyper-
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phosphorylated tau in cells in culture disrupts their cytoskeleton and affects axonal transport [11, 

28, 42], but it is not clear whether this holds true in vivo. The results from one rodent model of 

tauopathy that did attempt to study the effects of tau hyper-phosphorylation on cytoskeletal integrity 

and axonal transport in vivo was confounded by the fact these experiments were conducted on a 

background of neurodegeneration and neuronal death (which directly affects cytoskeletal integrity) 

making it difficult to delineate the causal role played by tau phosphorylation on these processes 

[21]. 

 

We have tested this hypothesis in a Drosophila melanogaster model of tauopathy in which 

we have expressed the highly phosphorylated shortest isoform (0N3R) of human tau (htau).  This 

Drosophila model has enabled us, in this and previous studies, to test all the predictions made by 

the tau-microtubule hypothesis in one in vivo system, and to address the causative role played by 

tau hyper-phosphorylation on neuronal processes like cytoskeletal integrity and axonal/synaptic 

function in the absence of confounding neuronal degeneration. In our previous studies we have 

shown that, as proposed by the tau-microtubule hypothesis, expression of highly phosphorylated tau 

leads to profound impairments in axonal transport [30] and synaptic function [7]. The present study 

provides ultra-structural evidence showing, in vivo, that in the presence of highly phosphorylated 

human tau the integrity of the axonal microtubules breaks down. We further demonstrate that this 

effect is mediated by two pathogenic effects of the highly phosphorylated human tau: reduced 

ability to bind to microtubules itself, and physical interaction with and sequestration of the normal 

endogenous Drosophila tau thus compromising its microtubule-binding function. 
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fixed in primary fixative 

comprising 3% glutaraldehyde, 4% formaldehyde in 0.1 M PIPES buffer, pH 7.2 for a minimum of 

1 hour. Specimens were rinsed in 0.1M PIPES buffer, post-fixed in 1% buffered osmium tetroxide 

(1 hour), rinsed in buffer, block stained in 2% aqueous uranyl acetate (20 min), dehydrated in an 

ethanol series and embedded in Spurr resin (Agar Scientific, Stansted, UK). The base of the ventral 

cord was marked on the block using a dissecting microscope and gold/silver sections were cut 

through the nerves at this level on a Leica OMU 3 ultramicrotome. The sections were stained with 

Reynolds lead stain and viewed on a Hitachi H7000 transmission electron microscope equipped 

with a SIS Megaview III digital camera. 

omparable 

regions (spanning the same segmental areas) of peripheral nerves emerging from the same proximal 

points of exit from the ventral cord in all animals were studied. Within this,
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Larval Dissections for immunohistochemistry Late 3
rd

 instar larvae were dissected in ice-cold 

hemolymph-like 6 (HL6) saline. Each larva was cut along the length of the dorsal midline, the 

digestive tract and trachea were removed and the CNS exposed.  

Immunocytochemistry Dissected larvae were fixed in 4 % paraformaldehyde buffered in HL6 for 90 

minutes at room temperature. Tissues were then washed in phosphate buffered saline (PBS) plus 

0.1% Triton X-100 (PBSTX) for 10 minutes and blocked in a solution containing 5% normal rabbit 

serum, 3% horse serum, 2% bovine serum albumin and 0.2% PBSTX for 120 minutes, before co-

incubation with rabbit anti-dtau (St Johnston, 1:1000) and mouse anti-htau (Abcam UK 1 in 1000) 

overnight at 4

C, on a rotator. Skins were then washed with  PBSTX for 15 minutes and then co-
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incubated in FITC-conjugated anti-rabbit and Texas Red-conjugated anti-mouse secondary 

antibodies. Skins were washed with PBSTX for 15 minutes, cleared using glycerol and mounted in 

Vectashield (Vector Laboratories). 

Imaging All specimens were visualized on a Zeiss 510 meta confocal microscope using an oil 

immersion lens plan-apochromat (63X 1,4 oil DIC) to collect a Z-stack series image through the 

tissue.  

We have previously shown that the human tau (htau) we express in Drosophila is highly 

phosphorylated at a number of sites including AT8, PHF-1, 12E8 [30], and AT100 (Sealey, Cowan 

and Mudher unpublished observations). The tau-microtubule hypothesis predicts that hyper-

phosphorylated tau has reduced ability to bind to microtubules and as a result the microtubule 

cytoskeleton breaks down. To test whether this mechanism is responsible for the axonal transport 

disruption we reported in htau-expressing Drosophila [30]
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 To test this, we examined the microtubule-binding properties of 

the endogenous dtau in our model. Using antibodies that specifically react with dtau, we found that 
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tau 

expression and this is why there appears to be reduced microtubule binding by the endogenous tau 

in the presence of the htau. This is unlikely since there was no difference in the expression levels of 

dtau in htau-expressing animals compared to wild-type control animals (Fig. 3a, b).  
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dtau by mediating 

an increase in its phosphorylation state. Antibodies specific for phosphorylated dtau are not 

currently available. We therefore indirectly examined the phosphorylation state of dtau in wt control 

flies, in htau flies and in htau/Li flies by incubating brain extracts with alkaline phosphatase (AP) 

and analysing gel motility using anti-tau antibodies. This makes the assumption that highly 

phosphorylated proteins would exhibit a retarded gel motility and undergo a significant shift and 

become faster after incubation with AP. In line with its highly phosphorylated nature, htau exhibited 

a retarded gel motility which became faster following treatment with AP (Fig. 3c). Dtau also 

exhibited a degree of phosphorylation in all animals because it too underwent a motility shift upon 

treatment with AP (Fig. 3c). However, the extent of the band shift that dtau underwent after 

treatment with AP did not differ between wt flies and those expressing htau (Fig. 4c upper panel), 

indicating that htau expression had no effect on the phosphorylation status of dtau. Furthermore, the 

motility of dtau was the same in brain extracts from wt animals compared to those from htau-

expressing animals (Fig. 3c upper panel) confirming that htau did not induce hyper-phosphorylation 

of dtau. These findings collectively imply that dtau did not become more phosphorylated in the 

presence of highly phosphorylated htau.  
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Tau protein has long been known to function as a microtubule-associated protein (MAP), and as 

such is able to bind directly to microtubules and stabilize them in vitro [8, 15, 37]. The tau protein 

in AD brains is hyper-phosphorylated at a number of sites [14, 48], and it is well documented that 

this phospho-tau has reduced ability to bind to and stabilise microtubules in vitro [2, 4, 12, 17, 27, 

31, 32, 36, 41, 44, 45]  and in cells [10, 23]. It has also been shown that as well as exhibiting 

impaired microtubule binding ability, soluble hyper-phosphorylated tau can interact with and 

compromise other normal microtubule associated proteins (including normal tau) in cell-free and 

cell culture based in vitro systems [1, 3, 23]. That this should lead to defects in the integrity of the 

microtubular cytoskeleton is conceivable since impairments in fast axonal transport (which relies on 

an intact microtubular cytoskeleton) have been shown in vitro [28] and in vivo [30] following  tau 

over-expression. In another in vivo study in which human tau was expressed, several components of 

the tau-microtubule hypothesis have been described, namely: tau hyper-phosphorylation, reduced 

microtubule numbers, impaired axonal transport, and behavioural phenotype [21]. Although this 

study provides compelling evidence for some components of the tau-microtubule hypothesis, it is 

confounded by the fact that these observations were made at a time when significant axonal and 

neuronal degeneration was also occurring, making it difficult to identify the primary cause of the 

microtubule depolymerisation.  Furthermore, while these studies demonstrate a correlation between 
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tau hyper-phosphorylation and reduced microtubule numbers and impaired axonal transport, a 

causative role of tau phosphorylation in mediating these effects has not been fully explored. The
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 tau and restores microtubular integrity, results in reduced interaction 

between the two tau proteins. These results suggest that a significant pathogenic effect of soluble 

highly phosphorylated human tau is that it can interact with normal tau, sequester it away from 

microtubules, and thus compromise its ability to bind to and stabilise microtubules.  
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Supplementary Fig. 1 

 

Supplementary Fig. 2 

Percentage of axons exhibiting intact transverse microtubule profiles 

The numbers of axons displaying intact transverse microtubule profiles as assessed by EM were 

counted in larvae expressing elav driver alone (wt), or human tau (htau) or human tau and reared on 

20mM LiCl (htau/Li). The majority of wt axons contain large numbers (over 5) of transverse 

microtubule profiles and very few axons contain no such profiles. In contrast the majority of htau 

expressing axons contain either none or very few (less than 5) such profiles. Treatment of the htau 

larvae with Li increases the numbers of axons containing large numbers of intact transverse 

microtubule profiles and reduces the numbers of htau axons with no such profiles.  

 

 

Supplementary Fig. 3  

Human tau does not alter the cellular distribution of Drosophila tau  

Confocal image analysis was used to study the neuronal distribution of human tau (htau) and 

Drosophila (dtau) in htau expressing animals that had been reared on normal food and food 

containing 20mM LiCl (htau/Li). Dtau was homogeneously distributed along the axons in wt (data 

not shown). Neither htau expression (a, b) nor treatment with LiCl (d, e) altered the distribution of 

dtau. There was significant co-localisation between htau and dtau (c, f). Scale bar = 15m. 
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