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Abstract

Dispersion of solutes in a variable aperture fracture results from a combination of “
molecular diffusion and velocity variations in both the plane of the fracture
(macrodispersion) and across the fracture aperture (Taylor dispersion). We use a
combination of physical experiments and computational simulations to test a theoretical
model in which the effective longitudinal dispersion coefilcient, D~, is expressed as a sum

; of the contributions of these three dispersive mechanisms. The combined influence of
Taylor dispersion and macrodispersion results in a nonlinear dependence of D= on the
Peclet number (Pe=V<bMDm, where V is the mean solute velocity, <b> is the mean
aperture and Dmis the molecular diffusion coefficient). Three distinct dispersion regimes

become eviden~ for small Pe (Pe<<l), molecular diffusion dominates resulting in D~=PeO;

for intermediate Pe, macrodispersion dominates (DL=Pe); and for large Pe, Taylor

dispersion dominates (D~=Pe2).The Pe-range corresponding to these different regimes is
controlled by the statistics of the aperture field. In particular, the upper limit of Pe
corresponding to the macrodispersion regime increases as the macrodispersivity increases.
Physical experiments in an analog, rough-walled fracture, confirm the nonlinear Pe-
dependence of D~predicted by the theoretical model. However, the theoretical model
underestimates the magnitude of DU Computational simulations, using a particle tracking
algorithm that incorporates all three dispersive mechanisms, agree very closely with the
theoretical model predictions. The close agreement between the theoretical model and
computational simulations is largely because, in both cases, the Reynolds equation
desctibes the flow field in the fracture. The discrepancy between theoretical model
predictions and D~estimated from the physical experiments appears to be largely due to
deviations from the local cubic law assumed by the Reynolds equation.
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1. Introduction

Solute transport in a rough-walled fracture is controlled by diffusive and advective
processes. The Peclet number, Pe = Vb/D~, where V is the mean solute velocity, b is a
characteristic length scale (e.g., fracture aperture); and D~ is the molecular diffusion
coefficient, defines the relative importance of each transport process. Molecular diffusion
dominates for Pe<<l. Within the advection-dominated regime (larger Pe values), two
different mechanisms lead to dispersion due to variable velocity within the rough walled
geometry: Taylor dispersion and macrodispersion. Taylor dispersion results from mixing
induced by velocity variations across the fracture aperture. Macrodispersion is caused by
velocity variations in the plane of the fracture that result from aperture variability. Because
of their different origins, Taylor dispersion and macrodispersion exhibit different
fundamental dependence on Pe, with Taylor dispersion proportional to Pez and
macrodispersion proportional to Pe.

Computational simulations of transport in fractures have incorporated the influence
of either Taylor dispersion [i.e., parallel plate fractures, e.g., Hull et al., 1987; Ippolito et
al., 1994] or macrodispersion [i.e. constant velocity across the fracture aperture, e.g.,
Moreno et al., 1988; Thompson, 1991; Thompson and Brown, 1991], but not both.

~ Recent experimental evidence ~ppolito et al., 1994] and scaling analyses ~oux et al.,
1998] suggest that dispersion in variable-aperture fractures can be described as a sum of
molecular diffusion, Taylor dispersion, and macrodispersion. Roux et al. [1998] also
presented scaling arguments suggesting that the Pe-range within which each dispersion
process dominates, is controlled by the mean, variance, and correlation scale of the aperture
field,

To date, there are no experimental or computational studies that fully delineate the
various regimes of solute dispersion in variable aperture fractures. Ippolito et al. [1994] ~
experimentally demonstrated the influence of two distinct dispersion regimes (i.e., Taylor
dispersion and macrodispersion). However, they did not quantify the statistics of the
aperture field in their experimental fracture, making it difficult to generalize their results.
Keller et al. [1995] and Keller et al. [1999] measured the longitudinal dispersion
coefficient, D~, over a range of Pe in two different natural fractures in granite. They
compared these results to D=predicted using stochastic theory and the measured statistics of
their aperture fields. However, large-scale aperture variability (clearly evident in images of
the aperture fields in both of their fractures) likely dominated the dispersion process,
partially invalidating comparisons of experimental results to stochastic theory. Droni3eld

and Silliman [1993] demonstrated a nonlinear relationship between D~ and Pe (D~=Pe-1.4),
based on transport experiments in a sand-roughened analog fracture. This result suggests
that their experiments (run over a narrow range of Pe) were in the transition zone between
Taylor dispersion and macrodispersion.

In this paper, we use a combination of physical experiments and computational
simulations to explore the Pe-ranges of the different dispersion regimes, as controlled by
the mean, variance, and correlation scale of the aperture field. We also present a theoretical
expression for D~that combines Taylor dispersion and macrodispersion. Our experiments
use a light transmission technique that yields high resolution, accurate measurements of
both aperture fields and solute concentration fields in transparent analog fractures. This
approach offers the advantages that the aperture field is measured at the time of the
experiment and dispersion of a dye pulse within the fracture is followed directly, avoiding
assumptions about mixing in the inflow and outflow manifolds that are required when
estimating D~from breakthrough curves measured at the outflow. Our computational model
tracks particles through a variable aperture fracture. The velocity field within the fracture is
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specified using a parabolic velocity profile across the aperture, where the local, aperture-
averaged velocity is obtained from a numerical solution of the Reynolds equation. In
addition to advection within this three-dimensional velocity field, particles undergo three-
dimensional molecular diffusion. Thus, the mechanisms that cause both Taylor dispersion
and macrodispersion are incorporated into the model.

We first performed experiments in a Hele-Shaw cell (flat, parallel-plate fracture)
and used the results to verify our computational model in the absence of aperture variation .
and to measure D~ for our solute. We then experimentally investigated the range of Pe
where the transition between macrodispersion and Taylor dispersion occurs in a rough-
walled fracture. To transcend experimental limitations and explore Taylor dispersion and
macrodispersion regimes over a wide range of Pe for aperture fields with different
statistics, we designed a sequence of computational simulations. First we compared our
modeling approach to the experiments to evaluate model error and then simulated a much
wider Pe-range within a synthetic aperture field with similar statistics to our experimental “
fracture. Finally, we simulated transport through two additional synthetic aperture fields to
consider the influence of aperture variance and correlation length on the Pe range over
which the different dispersion mechanisms dominate.

Our simulations support the Roux et al. [1998] scaling estimates of the Pe range
‘ corresponding to the relative doniinance of Taylor dispersion and macrodispersion. The

theoretical expression for D~, which is a sum of the macrodispersion coefficient [Gelhar,
1987, 1993] and Taylor dispersion coefficient, and shares the fundamental assumptions of
the Reynolds equation, agrees closely with our computational results. However, for our
rough-walled experimental fracture, theoretical estimates of D~ are significantly less than
the experimentally measured values (e.g., by 51% at Pe = 300). We believe that this
discrepancy between experiment and theory is primarily due to the inability of the Reynolds
equation, upon which the stochastic theory is based, to fully describe the velocity field
within a rough-walled fracture [e.g., Yeo et al., 1998; Nicholl et al., 1999]



. # I

2. Theoretical description of dispersion in variable aperture

fractures

In a parallel-plate fracture, the primary mechanism causing dispersion is the well-
known phenomenon of Taylor dispersion [Taylor, 1953; Aris, 1956]. The Taylor
dispersion coefficient foraparallel-plate fracture is[e.g., Fischer etal.,1979]:

D
V2b2

L, Taylor =
210 D.

(la)

where V is the average velocity in the fracture, b is the fracture aperture, and D~ is the
molecular diffusion coefficient.

For transport in a variable-aperture fracture, Gelhar [1987, 1993] developed a “
stochastic analysis of flow and solute transport. Gelhar’s analysis assumes that the

logarithm of the aperture (~=ln b) is a statistically stationary, gaussian, random field, and

that the flow within a variable-aperture can be described by the Reynolds equation. The
Reynolds equation is based on the assumptions that aperture variations are relatively

~ smooth and the velocity profile across the aperture is parabolic, corresponding to local,
plane Poisseuille flow [e.g., Zimmerman and Bodvarsson, 1996]. The stochastic analysis
of flow reveals that the effective hydraulic aperture is equal to the geometric mean aperture.
The stochastic transport analysis neglects the influence of local dispersion and results in the
following expression for the macrodispersion coefficient:

DL,macro = @[3+ I(Crp2)/CTp2]V= o;ABV (2a)

In (2a), &Band A are the variance and integral scale of ~, respectively,

and

(3)

(4)

where RPP(u)is the covariance function of ~, u is the nondimensional spatial separation

variable, which equals the spatial separation divided by L Note that for an exponential

covariance, Ais equivalent to the correlation length, or the length-scale over which

correlation in ~ persists. Also note that V in (2a) is the mean solute velocity, equal to the

mean flux through the fracture divided by the mean aperture (<b>) [Gelhar, 1993]. The
expression (2a) incorporates the influence of variations in the mean flow velocity within the
fracture plane, but not the influence of Taylor dispersion. Equations (la) and (2a)
demonstrate that D~mC,ois proportional to V and D~T,Y1o,is proportional to V2,which
suggests that at high flow rates, Taylor dispersion may dominate over macrodispersion,
even in a variable aperture fracture.



The expressions (la) and (2a) may be rewritten in a nondimensional form, in
of Pe = V<b>/Dm,where <b> is the mean aperture and V is the mean solute velocity:

terms

DL, Taylor =Pe2=a

Dm
— T.ybrpe2
210

DL,macro
o;AB
—Pe = CrmacroPe

Dm = (b)

(lb)

(2b)

In (lb) and (2b), ~,YIO,and UmmOare nondimensional coefficients for the contributions of
Taylor dispersion and macrodispersion, respectively. Note that (lb) represents an
“effective” Taylor dispersion coefficient in a rough-walled fracture based on the mean
aperture and mean solute velocity. A stochastic analysis of Taylor dispersion in a variable’
aperture fracture is required to establish the validity of such a representation of the effective
Taylor dispersion coefficient.

Roux et al. [1998] used scaling arguments to suggest three primary dispersion
regimes in variable-aperture fractures: molecular diffusion, “geometric” dispersion and

: Taylor dispersion. The “geome&c” dispersion regime corresponds to the range of Pe
where velocity variations in the plane of the fracture dominate the mixing process and

D~ccPe.We note that this is equivalent to macrodispersion as described by (2a,b) and we

use the latter term to refer to this regime in the remainder of the paper. Roux et al. [1998]
used scaling relationships for D~in the Taylor dispersion and macrodispersion regimes to
define the approximate Pe range within which macrodispersion is the dominant dispersion
mechanism. However, they did not use the precise relationships (lb) and (2b) to quantify
the macrodispersion and Taylor dispersion coefficients. Roux et al. [1998] also suggested
that D~ can be expressed as a sum of the three different components. This results in a first
order approximation of the total nondimensional longitudinal dispersion coefficient of the
form:

DL
= 7 + amacrOPe+ aTOy,0rPe2

~
(5)

where ~ is the tortuosity for diffusion within the fracture, typically <1.0, reflecting the
reduced rate of molecular diffusion in a geometrically complex void space. For typical Pe

ranges, z is an insignificant contribution to D~/D~and may be dropped from (5). Equation

(5) suggests that cxmUOwill be influenced by the statistics of the aperture field and will

increase with crbzand Meb>. Additionally, the Pe-range over which macrodispersion can
be expected to dominate is:

l/amocrO <Peca
macrc7/aTay[.r (6)

where ~ is assumed to be approximately 1.

Figure 1 shows D@~, from (5), plotted against Pe for two hypothetical values of

cx~,C,O(0.2 and 20) with ~ and ~,Y,O,equal to 1 and 1/210, respectively. The curve for am,~
= 0.2 transitions directly from a molecular diffusion regime (slope= O)to the Taylor
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dispersion regime .(slope = 2) whereas the curve for cx~,WO= 20 exhibits a large region,
0(10”’)&eeO(104), where macrodispersion dominates (slope= 1). To highlight these
different dispersion regimes, it is useful to plot D, in the nondimensional form D,/(V<b>)

against Pe (Figure 2). Figures 1 and 2 demonstrate the importance of quantifying ct~uC,O

to determine the Pe-range associated with the different dispersion regimes in a given
fracture.

To fully study the Pe-range corresponding to different dispersion regimes, requires

a fracture that is long compared to L. Theoretical results for a two-dimensional, isotropic,
random field with exponential covariance suggest that D~should reach 99% of its

asymptotic value after the solute has traveled a distance of -20~ [e.g., Dagan, 1984].
Similarly, for transport between parallel plates, Taylor dispersion should become fully
developed at a distance of -0.4<b>Pe [e.g., Fischer et al., 1979]. Thus to make a
meaningful comparison of physical and computational experiments to theory, we require a

stationary field with small ~ compared to the dimensions of the field. This ensures that D~
will become relatively constant within the scale of the experiment. We also require a source

whose transverse dimensions extend over -20L to eliminate non-ergodic effects. However,

to avoid an increase in Taylor dispersion due to the velocity variations at the lateral
boundaries of the fracture [e.g. Doshi et al., 1977], the source should also be narrow
compared to the width of the fracture. These issues were considered in the design of our
experimental fracture, discussed in detail in Section 3.

In the remainder of the paper, we use experimental and computational results to

measure values of ~,YIO,and cx~,C,Oas given by (lb) and (2b) and to investigate the
corresponding transitions between the different dispersion regimes: Section 3 discusses
experimental results over the full Pe-range obtainable with our experimental system;
Section 4 describes our computational experiments both in the experimentally measured

field and in synthetic fields generated with different OPZand A; and Section 5 compares
estimates of D~obtained from physical and computational experiments to theoretical
estimates based on (5).
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3. Experimental investigations

We carried out experiments in two analog fractures: a Hele-Shaw cell fabricated
from two pieces of flat glass and a rough-walled fracture fabricated by mating two pieces of
textured glass (fabrication details for both fractures are described by Nicholl et al. [1999]).
Table 1 presents the dimensions of each of the fractures. Experiments in the Hele-Shaw
cell provided a test for our computational model as well as a measurement of D~. The
rough-walled fracture was designed to have a stationary, isotropic aperture field with a

correlation scale much smaller than the dimensions of the iiacture and values of ~pzand

<b> in the range of values reported for natural fractures. These transparent analog fractures
offered the additional advantage of allowing direc~ full-field aperture and solute
concentration measurements, with no disturbance of the fracture between the aperture
measurements and transport experiments. Thus our experiments can be directly compared
to computational simulations and theoretical results.

A test cell frame supported the fractures and allowed light from a feedback
controlled source to be transmitted through the entire fracture (Figure 3a). An
electronically cooled, 12-bit, shuttered, charge-coupled-device (CCD) camera (2045x 2033
pixels, 4096 gray levels) supported above the test cell measured the intensities of

~ transmitted light. We measured aperture fields and solute concentration fields using a light
transmission technique first proposed by Glass et al. [1991]. The details of the
experimental system, the aperture measurement technique, and a method for quantifying
aperture errors are presented by Detwiler et al. [1999].

3.1. Measurement techniques

A light absorbing dye (Warner Jenkins FD&C Blue #1 dye) was used both as a
tracer during transport experiments and as a light absorbing solute for aperture
measurement. The Beer-Lambert law describes the absorbance of monochromatic light by a
dyed solution as a function of the distance through the solution (b) and the dye
concentration (C). According to the Beer-Lambert law, the absorbance at each pixel
(identified using a double subscript ‘ij’, where i and j refer to the row and column index of
the pixel) within a two-dimensional field is given by:

(7)

where Aijis the absorbance, ICIYand I~Y,4are the intensities transmitted through a clear and

a dyed solution, respectively, p is the absorptivity of the solute, Cijis the dye ‘
concentration, and bijis the thickness of the absorbing layer or the local aperture. Images of
a fracture filled entn-elywith clear and dyed solutions yield arrays of intensity
measurements, It,,, and l~)~tifor use in (7). Normalizing (7) by its mean then gives an “

expression for the aperture:

bti = Au(b)/(A)
(8)

where <b> is the independently measured mean aperture and+ is the mean (overall ij)
of Aij.We determined <b> by injecting a known volume of fluid into the fracture and
measuring the area occupied by the fluid. Once bijis calculated for the entire fracture, we
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can measure concentrations (Cij)using images taken during transport experiments by
directly applying (7).

If the light source is polychromatic, as is the case with our measurement system,
the linear relationship between absorbance and concentration (7) is only approximate.
Despite efforts to remove the influence of nonlinear absorbance on our measurements by
reducing the measured wavelengths with a band pass filter (Andover Corporation, 630 nm

i-5 nm) on the camera lens, some nonlinearity remained. Slight nonlinearity in dye

absorbance results in aperture measurement errors that increase with dye concentration, but
reducing dye concentration results in an increase in random errors due to si=~al noise

caused by the smaller signal range (i.e. difference between lC1..and ~~yeti ). We reduced
v

the influence of random errors by averaging 80 images of each field and used the procedure

described by Detwiler et al. [1999] to determine the dye concentration for measuring Idyeir

(0.05 g/1)that resulted in the minimum total error. We estimated root-mean-square (RMS)
aperture measurement errors of 0.8 and 1.2 percent of the mean aperture for the Hele-Shaw
cell and the rough-walled fracture, respectively.

For transport experiments, we could not average multiple images, so we used a
higher dye concentration that utilized the full dynamic range of the CCD camera. The use of
a higher dye concentration reduces the influence of noise on measurements of Cij,thus
increasing the sensitivity of our measurements, especially in regions of low concentration
(i.e., solute plume tails). However, a higher dye concentration also results in nonlinear
absorbance in regions of high concentration. We accounted for the influence of nonlinear
absorbance on concentration measurements by fitting the following function to a series of
measurements made at different dye concentrations (0.025, 0.05, 0.10, 0.15, 0.20, and
0.25 g/1):

(9)

In (9), eijand ~jare fitting parameters determined at each pixel in the array. Note that for
low concentrations (i.e. Cij<<fi.),(9) reduces to a linear relationship similar to (7). To

Aobtain the concentration at eac location, we use the fitted parameters eijand fijand solve
(9) for Cij:

=0=(f7%)/(w%–w ) (lo)

The maximum RMS concentration error at any location is -0.023C0 (CO= 0.25 g/1),based
on an analysis discussed in detail in the Appendix.

3.2 Measured aperture fields

Table 1 provides a summary of the dimensions and statistics of the two aperture
fields. The aperture field for the Hele-Shaw cell exhibits a narrow distribution (variance,

a~z= 2.78 x 107 cmz) about its mean (<b>=O.0193 cm). The i and j-semivariograms (long

and short principal axes) for the Hele-Shaw cell (Figure 4) show a relatively strong trend
along the short axis and a milder trend along the long axis. Although the glass plates were
flat, clamping pressure resulted in smaller apertures along the edges of the cell (-0.018
cm), larger apertures along the centerline of the cell (0.020 cm), and uneven compression
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of the plastic shims along the length of the fracture (Figure 3b). These features led to
apparent large-scale trends in the aperture field as evident in the variograms shown in
Figure 4.

The aperture field of the rough-walled fracture has a wider, negatively skewed

distribution (see Figure 8) with 0~2= 3.62 x 10-5cm2 and <b>= 0.0221 cm. Nicholl et

al. [1999] present an image of a portion of the rough-walled aperture field. The
semivariograms for the rough-walled fracture (Figure 4) indicate that the field is isotropic
and reaches the level of the sill at a separation of-0.08 cm. The semivariograms also
indicate a slight negative correlation at separations between-0.08 cm and-0.18 cm caused
by the repetitive nature of the individual fracture surfaces. Numerically integrating the

correlation functions of j3ijyields estimates of k of -0.044 cm along both the long and short

axes.

3.3. Transport Experiments

We conducted a series of transport experiments in each fracture, over a range of
flow rates. To facilitate reproducibility, a computer controlled flow through the fracture by
activating/deactivating solenoid valves, measured flow rates by recording outflow mass at
equal intervals, and triggered the CCD camera to acquire images at specified times. Inflow
and outflow manifolds provided uniform pressure across the width of the two ends of each
fracture and no flow boundaries were applied to the sides of each fracture (Figure 3). A
constant head reservoir at the inflow and a stabilized drip point at the outflow created
steady, reproducible flow rates through the fracture. Table 2 summarizes the flow rates
for each experiment. The CCD camera required -11 seconds to write each image to disk, so
we chose the maximum flow rate for each fracture so that we could acquire at least 10
images (i.e., concentration fields) during an individual transport experiment. The minimum
flow rate represents the reproducible limit achievable using the constant head reservoirs of
our system.

The initial condition for each experiment is shown in the first frame of Figures 5a
and 5b. This initial condition provides two advantages: a known initial concentration
distribution and negligible edge effects caused by the no flow boundaries of the fracture.
We pumped a 0.375 g/1slug of solute through the injection port in the center of the inflow
manifold (Figure 3a) into the center of the inflow end of the fracture. We then flushed the
inflow manifold by pumping clear water into the two ends (i.e., inflow and waste line in
Figure 3a) and out through the injection port. After flushing the inflow manifold with
clear water, we stopped the pump, closed the valve at the waste side of the inflow manifold
and opened the outflow manifold, initiating flow through the fracture under constant
gradient. In designing the transport experiments we considered the possible influence of
gravitational effects on dispersion in the fractures. Relatively small density gradients can
lead to enhanced dispersion at early times (i.e. before density gradients are reduced by
dispersion) [e.g., Reejhsinghani et al., 1966]. Our results (discussed in Section 3.5)
comfirm that density effects were negligible.

Figures 5a and 5b show sequences of three solute concentration fields from “
experiments in the Hele-Shaw cell and the rough-walled fracture. The concentration fields
demonstrate the initial condition in the first frame and the effect of dispersion on the plumes
in the two successive frames. The role of aperture variability in enhancing dispersion is
clearly evident in Figure 5b. The progressive reduction in the peak concentration is also
evident in Figures 5a and 5b.
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3.4. Analysis of Concentration Fields ‘

The product of a measured solute concentration field and the measured aperture
field yields the solute mass at each pixel in the field, and summation over the entire field
yields the total mass within the system. The total mass measured in each of the fields

obtained during any of the experiments varied by no more than i3% from the total mass

averaged over all fields from a single experiment. Good mass conservation further
confirms the accuracy of our measurement techniques. The rates of change of the first and
second spatial moments (MIXand ~X, respectively) of solute mass in the flow direction
with time are equivalent to the mean solute velocity (V) and twice the longitudinal
dispersion coefficient (2D~),respectively [e.g., Aris, 1956]. We calculated MIXfor each
solute mass field using:

m ny

I
m ny

~,x=zxc,%p,Ezc’ijb, (11)
i=l j=l i=l j=l

where Cij,bij, and Xijare the concentration, aperture, and x-coordinate at pixel ij and nx and
~ ny are the number of measurements in the x and y-directions. We then calculated ~ for

each field using:

(12)

We then estimated D~ and V by plotting MIXand ~ against time. Note that this method of
measuring D~requires no assumptions about the initial condition for the experiment. The
initial concentration distribution is directly measured. This approach overcomes the
difficulties involved in using breakthrough curves and an analytical solution to the one-
dlmensional advection-diffusion equation for estimating transport parameters. The latter
approach assumes initial conditions that are typically difficult to verify and mixing in the
inflow and outflow systems leads to inaccuracies in estimates of transport parameters.

3.5. Experimental Results

Experiments in both the Hele-Shaw cell and the rough-walled fracture resulted in
linear plots of ~X versus time from the initial concentration field until solute began to exit
the fracture. This indicates that the conditions for full development of both macrodispersion
and Taylor dispersion described in Section 2 were met at very early times in our
experiments. Based on the theory presented in Section 2, the distances required for

development of Taylor dispersion (-O.4<b>Pe) and macrodispersion (20X) are -0.9 cm
and -0.9 -7.0 cm, respectively. Linear plots of ~X versus time over the full range of
experimental flow rates also confirms that the influence of natural convection due to density
gradients was negligible, i.e., no enhanced dispersion was observed at early time (i.e.,
faster %X growth), as would be expected with significant natural convection [e.g.
Stockman, 1997].

We used the procedures described in Section 3.4 to calculate the mean solute
velocity and dispersion coefficient for each experiment (Table 2) (the Appendix provides
a detailed discussion of errors in our estimates of D~. For both fractures we demonstrated
the reproducibility of our experiments by repeating a number of experiments at one flow
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rate (see experiments 5a, b, and c in Figure 6 and Table 2). Figure 6 is a plot of
D~/D~versus Pe for each set of experiments. The range of Pe values covered by our
experiments extends from -100-800. We determined D~ to be 5.67 x 10-Gcm2/s by fitting
(la), the theoretical expression for Taylor dispersion between parallel plates, to the
experimental results from the Hele-Shaw cell. Although, as discussed in Section 3.3, the
aperture field in the Hele-Shaw cell is not perfectly uniform (due to bowing of the glass
plates), the plates are essentially parallel along the central portion of the cell traversed by the
solute plume. Note that this method is analogous to an accepted method for measuring D~
that involves measuring the dispersion of a solute in laminar flow through a tube and using
the theoretical expression for Taylor dispersion in a tube to calculate D~ [e.g., Cussler,
1984].

In the rough-walled fracture, the relationship between DL/D~and Pe is also non-
linear (Figure 6), indicating that Taylor dispersion contributes to dispersion over the Pe-

range of our experiments. Dropping z and fitting (5) to our experimental data results in

estimates of cx~,C,O= 1.87*O.15 and CX~~YIO,= (5.22+0.26) x 10-3.These results, with (6),
allow us to estimate the range over which macrodispersion will be the dominant dispersion
mechanism as 0.5sPe<350. Because the range over which we can perform experiments in
our current system is limited (100~Pes800), we cannot investigate the full range of Pe-

‘ dependence. Additionally we are limited to a single 0B2,L, and <b>, unless we design and
fabricate additional aperture fields for experimental investigation.
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4. Computational investigations

The theory presented in Section 2 suggests that the nature of the Pe-dependence of

D~ will depend on aperture statistics (<b>, CP2,and L). To investigate the influence of Pe

and aperture variability on D~ over a wider range of parameters (Pe, <b>, aPz,and ~) than

ispossible in a single experimental fracture, we simulate flow and transport through
computer-generated aperture fields. Measured aperture and concentration fields from our
physical transport experiments allow us to f~st test the computational model through direct
comparison before proceeding to additional computational studies.

4.1. Flow and transport solvers

To simulate the velocity field within the fracture, we used the flow solver developed
by Nicholl et al. [1999], which uses a finite difference discretization of the Reynolds
equation. We used the harmonic average (found by Nicholl et al. [1999] to agree more
closely with experimental results than several other variations) to define the transmissivities
between adjacent grid blocks. For comparison to our experimental results, we used a grid
that corresponded to the measured aperture field (e.g., 958x 1958 with dimensions of each

: grid block equal to 0.0154 x 0.0154 cm); this is approximately the same discretization used
by Nicholl et al. [1999] for this fracture.

Nicholl et al. [1999] compared flow computations made with this flow solver to
saturated flow experiments in the two fractures used in this study, as well as a third fracture
fabricated by mating a single piece of rough glass with a single piece of smooth glass.
Their comparison indicated that the Reynolds equation (and other two-dimensional variants
that account for convergence/divergence of flow and tortuosity of the centerline)
overestimates flow through the rough-walled fracture used in the current study by -26%.
High-resolution simulations on a subset of the entire field indicated that increasing the
resolution of aperture measurements, and subsequently the finite difference ~gid,had a
negligible influence (-2%) on the results. Thus, they concluded that it may be necessary to
solve the three-dimensional Stokes equations in situations where improved accuracy is
required. Because the Reynolds equation overestimates flow under a specified gradient in
rough-walled fractures, we specified the mean flux to generate the flow fields for transport
simulations resulting in simulated mean solute velocities that closely matched our
experimentally measured means.

We simulated solute transport using a three-dimensional random-walk particle
tracking algorithm. We used the same discretization of the domain used for solving the
Reynolds equation and assumed that the aperture within each grid block was constant. This
is consistent with experimental aperture measurements that represent an average of the
aperture within each pixel. In addition, our measurement system only provides
measurements of the local aperture, and not deviations of the local aperture midpoint from
the center-plane of the fracture. For the transport simulations, we assume that the fracture is,
symmetric about the center-plane to approximate the actual fracture geometry. However, it
should be noted that when the assumptions underlying the Reynolds equation are satisfied,
the flow field depends only on the aperture field and not explicitly on the geometry of the
fracture surfaces. Particle displacements in each time step consisted of a two-dimensional
advective displacement (in the x,y plane) and a three-dimensional random diffusive
displacement (x,y,z, where z is across the aperture) reflecting the role of molecular
diffusion. We calculated the advective displacements using the local gradients specified by
the solution to the Reynolds equation and imposing a parabolic velocity profile across the
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local aperture. In the absence of diffusion, particles maintained their relative z-position,
creating a pseudo-advection in the z-direction when a particle moved between adjacent grid
blocks with different apertures. Particles colliding with the fracture wall due to diffusion
across the aperture were reflected back into ‘thefracture. Adaptive time stepping ensured
that the three-dimensional velocity field was well sampled by each particle. The minimum
of the following three criteria defined the length of each time step: the time required for a
mean diffusive displacement of 5% of the local aperture and the times required for a particle
traveling at the maximum local velocity (i.e. along the aperture centerline) to traverse 50%
of the local grid block in both the x and y-directions.

4.2 Comparison of results from physical experiments and computational
simulations

Accurate, full-field measurements of both aperture and concentration allow us to .
directly compare the results of the computational simulations to the experimental data. We
specified initial particle locations based on the initial conditions in our experiments. The
initial conditions were generated by taking the initial solute mass field from an experiment
and assi ning a specific mass to each particle (5.0x 10-10gm for the Hele-Shaw cell and

fi2.5 x 10-0 gm for the rough-walled fracture) resulting in a total of -3.0 x 104particles for
: the Hele-Shaw cell and -3.5x 1(34particles for the rough-walled fracture. The particles

were then randomly distributed within the grid block specified by their initial location.
Figure 5Cshows images of simulated plumes that correspond to the experimentally
measured plumes in the rough-walled fracture in Figure 5b. For the simulations in
Figure 5c, we used -3.5x 106particles (and adjusted the mass accordingly) to more
closely approximate continuous concentration fields. Although the particle simulation fields
are noisier, these images demonstrate excellent qualitative agreement of solute spreading
between the simulations and experiments. The simulated solute plumes also exhibit slightly
higher concentrations than the experimental plumes at the same locations. This is probably
due to the underestimation of D~by the simulations that is discussed in detail below. Note
that increasing the number of particles by two orders of magnitude to generate Figure 5C
resulted in less than a l% change in estimated DU This indicates that we used a sufficient
number of particles in our simulations to minirmze amiability in our estimates of DU

To quantitatively compare the results of the simulations to the experiments in both
fractures, wc plot D~/D~ against Pe (Figure 7). As with simulations of flow in the Hele-
Shaw cell [Nicholl et al., 1999], we expect that simulations of transport will agree closely
with experimental results. Fitting (lb) to D@~ measured from the simulations in the Hele-

Shaw cell yields o+,Y10,=(4.721~0.002) x 10-3,which differs by less than 1% from the

theoretical value of 4.762x 103. Dropping z and fitting (5) to the simulation results in the

rough-walled fracture yields estimates of ct~~C,O=l.0130 .10 and ~,Y10,=(4.81A0.16) x 10-3,

which are 46% and 870 lessthan the experimentally measured values, respectively. Based
on results presented by Detwiler et al. [1999] that investigated the influence of aperture

measurement errors on estimates of ctmaOfrom simulations, it is unlikely that these
discrepancies are due to aperture measurement error. Underestimation of the ma=titude of
D~is consistent with the inability of the Reynolds equation to fully describe the three-
dlmensional velocity field. Our simulations assume a local parabolic velocity profile across
the aperture, but simulations of Stokes flow in two-dimensional variable aperture channels
[e.g. Koplik et al., 1993; Brown et al., 1995; Gutfraind et al., 1995] have shown that
velocity profiles are not uniformly parabolic throughout the channel.
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Presumably, solving the three-dimensional Stokes equations will result in improved
estimates of dk.persion in the fracture. However, despite underestimating the magnitude of
D~,our simulations closely reproduce the functional dependence of D~ on Pe evident in the
rough-walled fracture. We believe this is because over the Pe-range for which Stokes flow
is valid, errors in the velocity field obtained by solving the Reynolds equation are
proportional to the mean velocity (and hence Pe). Thus, in this range, estimates of D~from
simulations of transport should reliably reflect the actual Pe-dependence of D~ though they
may underestimate the magnitude of DU

4.3. Computational simulations investigating the influence of 0P2 and A over
a wide range of Pe

Though the experiments and simulations in the rough-walled fracture both
demonstrate the influence of Taylor dispersion on D~,neither reach the Pe-range ‘where “

macrodispersion becomes negligible (i.e. D~=Pe2) as predicted by the theory presented in

Section 2. Additionally, our experimental aperture field embodies a single 0P2and X.In this

section, we use numerical simulations to investigate the role of aperture variability (i.e. ODZ

i and X) over a wider Pe-range thah was possible experimentally.

As discussed in Section 2, simulations at kirge values of Pe require fractures that
are somewhat longer than 0.4<b>Pe (the distance required for Taylor dispersion to become
fully developed). To investigate the influence of aperture variability (quantified by <b>,

~P2,and ~) on dispersion over a wide range of Pe, we generated three correlated random
aperture fields that were significantly longer (7.9 cm x 169.9 cm, 512x 11000 grid) than

the experimental field: Field 1 with statistics (i.e.,cb>, CTP2,and A.)similar to those of the

experimental field and Fields 2 and 3, with different values of k and 0P2,respectively

(Table 4). These longer fields satisfy the conditions for the full development of dispersion
and thus allow meaningful comparison of theoretical results to computational simulations ~
over a wide Pe-range.

We generated lognormally distributed aperture fields with a “hole-type” covariance
function that captured the negative correlation caused by the slight periodicity of the
experimental field. The spectral density function corresponding to this covariance function
is:

)
16@02A4

[1
–4a2c02

$4%7@y = ~3 exp
n

(13)

where OXand (.oYare the wave numbers in the x and y-directions, co= ~OX2+ 0Y2 , and X

is the integral scale of the corresponding correlation function.

We used a fast Fourier transform algorithm to obtain ~(x,y), a normally distributed,
correlated random field. Using this field, we generated the three synthetic, lognormally-
distributed, aperture fields (b(x,y)) with statistics presented in Table 4. Figure 8
compares the aperture distributions of the three synthetic fields and the experimental field.

Synthetic Field 1 has the same o~and cb> as the experimental field, but exhibits a slightly
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higher peak and less spread than the experimental field, due to the.positive skew and long

tail of the Iognormal distribution. Note that although a~ is equal for the two fields, UP(and

thus (xmC,O) is slightly different due to the different shapes of the two distributions. Figure
4 shows the normalized semivariograms of Field 1 and the experimentally measured rough-
walled fracture, demonstrating that Field 1 is stationary and isotropic and has
approximately the same correlation scale as the experimental field. Field 2 is identical to

Field 1, except that the length of the side of each grid block, and thus L, was increased by a

factor of 50. We generated Field 3 by scaling the same ~(x,y) field used to generate Field 1

to increase 0P2by a factor of 7.7 (or 100~2).All three fields include a negative correlation at

separations of-2X to -4.5A, as in the experimental field.

We simulated transport in each of the three random fields in the range 1 s Pes

5X104.Note that Pe=5.O x 104corresponds to a Reynolds number ( Re = V(b)/v) of 31.8:
Experimental data presented by Nicholl et al. [1999] suggest that inertial forces in a fracture
similar to Field 1 will begin to influence flow in the range ld?e<10. Thus, these
simulations surpass the range in which Stokes flow is expected to be valid. As a result, the
simulation results for Pe>2x104 should be interpreted with caution. For all the simulations

~ in the three synthetic fields, we used line source initial conditions spanning only the middle

2.5 cm (-70X) of the fracture. This guaranteed that no particles reached the lateral

boundaries before D~became fully developed. As expected, for simulations at higher
velocities (larger Pe), the plume required greater travel distances for Taylor dispersion to
become fully developed. At the largest values of Pe reported here (-5.0 x 104),~~dt
reached a constant value at a distance of approximately 70 cm (40% of the length of the
field or -0.06 <b>Pe).

Figure 9 shows DL/(V<b>) plotted against Pe for simulations in each of the three
synthetic aperture fields, together with theoretical results that will be discussed in detail in
Section 5. At large Pe, all three sets of simulations illustrate the progressive dominance of

Taylor dispersion, where D~=Pe2.However, simulations in each field exhibit markedly
different behavior at intermediate values of Pe (i.e. - 10°4?e<103). The simulations in Field

2 (large X)indicate DL=Pe over almost this entire intermediate range of Pe values, whereas

the simulations in Field 1 indicate almost no range where D~=Pe. Simulations in Field 3

(large crP2)indicate D~=Pe in a Pe range that is between the corresponding Pe range in

Fields 1 and 2. It is clear that as 0P2and/or ~ increase, there is a corresponding increase in

the magnitude of ctm,~and hence a larger range of Pe in which DL~Pe.



5. Comparison of theory to physical experiments and

computational simulations

The results of the transport simulations over the range 0(10°)d?eeO(105) (.Figure
9) exhibit the three distinct dispersion regimes suggested by Roux et al. [1998]: molecular
diffusion, Taylor dispersion, and macrodispersion. In this section, we compare the

theoretical estimates of cxmmOand %’ayIor
obtained from (lb) and (2b) to estimates fi-omthe

experimental and computational results.

To calculate the theoretical estimates of et-. for the experimental rough-walled

fracture and the three synthetic fields, we applied (2b) to estimates of I(6P2)calculated for

each field by numerically integrating the corresponding covariance function. Figure 10.
shows D~/D~plotted against Pe for the experimental field (experimental, computational and
theoretical results) and Field 1 (computational and theoretical results). For Field 1,
theoretical and computational results are almost identical, with a discrepancy of < 1% at
Pe=300. This indicates that (2b) and (5) are accurate in a variable aperture fi-acture,when
the underlying assumptions (local cubic law flow, a stationary, lognormally-distributed,

~ aperture field, and small crP)are satisfied, as is the case for the simulations in Field 1. The
theoretical estimates of D~/D~for the experimental fracture are smaller (by -9% at Pe=300)
than the estimates from the computational results (Figure 10). This discrepancy, which is
larger than that observed for Field 1, is likely because the aperture field is not lognormally
distributed, as this is the primary discrepancy between the assumptions of the theory and
the computational simulations in this field. Another possible reason maybe that the
simulations were carried out in one realization, whereas the theory predicts ensemble

average behavior. However, the relatively large source width (-28?L.)for our single
realizations leads us to expect closer agreement with the ensemble average theory. The
experimental results for D@~ in the experimental field are substantially larger than the
theoretical estimates (by - 51% at Pe=300). Of this 51% discrepancy, about 9% can be
explained by the deviation between the computational and theoretical results just noted.
Thus, by process of elimination, the remaining portion of the discrepancy between
theoretical and experimental values (-42%) reflects the influence of deviations from the
Reynolds equation in the flow field.

The theoretical value of ~~ylor(2a) for each field is 4.76x 10-3.This value is 9%
smaller than that obtained by fitting (5) to the experimental results and 1% less than that
obtained from the simulations (Table 3). The small discrepancy between the theoretical

CLIWand the VZIIUeEXtiIIM@dfrom simulations indicates that calculating an effective D~~a*Or
based on the mean aperture and flow velocity provides a good estimate of the influence o{
Taylor dispersion in the rough-walled fracture. The small discrepancy between the

experimentally measured ~,yIo,and the theoretical value indicate that deviations from the

Reynolds equation do not influence ~,Yloras much as they influence ~mao.

Figure 9 shows DL/(V<b>) plotted against Pe for both theoretical and
computational results for Fields 1, 2 and 3. There is excellent agreement between the
theoretical results and simulations because both employ the Reynolds equation to describe
flow through a rough-walled fracture. Also, the aperture fields are lognormally distributed,
as assumed in the derivation of the theoretical results. Even though the simulations were
carried out in a single realization, the good agreement with the ensemble average theory is
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probably due to the large source sizes (-70X) transverse to the mean flow. It may also be

noted that the agreement between simulations and theory is poorer in Field 3 than in Fields

1 and 2. This is likely because OP2is larger for Field 3 and there is an assumption of small

OP2implicit in the theoretical results.

In summary, comparing theoretical results to experimental and computational
results demonstrated the following:
i) excellent agreement between theory and simulations in synthetic, lob~ormal, random
fields, due to the consistency of the assumptions (i.e., both are based on the Reynolds
equation);
ii)small discrepancies between simulations and theory for the rough-walled experimental
fracture, likely due to the assumption of a lognormal aperture distribution implicit in the
theory;
iii) poorer agreement between theoretical and experimental results, highlighting the “
additional influence of deviations of the actual velocity field from that described by the
Reynolds equation; on estimates of D=;

iv) good agreement between theoretical and experimental/computational estimates of ~~YIW

indicating that the “effective” Taylor dispersion coelllcient defined by V2<b>2/(210D~)is a
! good estimate of the influence of:Taylor dispersion in a variable aperture fractur~

v) good agreement between theory and numerical simulations for fields with different crP2

and k, indicating that when the assumptions of the Reynolds equation are met, equation (6)
effectively characterizes the Pe regimes where different dispersion mechanisms dominate.
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6. Concluding remarks

We have described a series of physical and computational transport experiments
designed to clarify the Peclet number (Pe) dependence of the longitudinal dispersion
coefficient (DJ in a saturated, variable-aperture -fracture.During physical experiments in
two analog glass fractures (a parallel plate fracture (Hele Shaw cell) and a rough-walled
fracture), aperture and concentration fields were measured using an accurate light
transmission technique. Computational simulations in the measured aperture fields were
compared to experimental results and the role of aperture variability on the Pe-dependence
of D~ was investigated through additional simulations in three synthetically generated
random aperture fields. The flow fields for the transport simulations were generated by
solving the Reynolds equation in each aperture field. The three-dimensional velocity fields
within the fractures incorporated parabolic velocity profiles across the aperture, with
magnitudes based on the local aperture-averaged velocity obtained from the Reynolds
equation solution, A three-dimensional particle-tracking algorithm was then used to “
simulate solute transport. This approach enabled us to represent the influence of both
macrodispersion and Taylor dispersion, in contrast to previous approaches, which have
isolated one or the other of these mechanisms.

Excellent agreement between simulations and experiments in the Hele-Shaw cell
verified our computational model under simple conditions. In the rough-walled fracture,
both physical and computational experiments demonstrated a nonlinear relationship
between D~ and Pe. In particular, our results confined two of the distinct dispersion
regimes suggested by Roux et al. [1998]. At intermediate values of Pe, macrodispersion

dominated (DL= Pe) and at large Pe values, Taylor dispersion dominated (DLccPez). We

predicted D~throughout this range using a simple theoretical model that represents the total
longitudinal dispersion coefficient as the sum of a macrodispersion coefficient based on the
stochastic analysis of Gelhar [1987,1993] and a Taylor dispersion coefficient based on the
mean solute velocity and the mean aperture. This theoretical model, which also incorporates
the assumptions inherent in the Reynolds equation, agreed closely with simulations in
synthetic, Iognormally-distributed, aperture fields. However, though the theoretical model
and numerical simulations captured the Pe-dependence of D~in the experimental fracture
quite well, they underestimated the magnitude of DU We demonstrated, by process of
elimination, that this discrepancy is primarily due to inadequacies of the Reynolds
equation. Thus, the ability of the theoretical model to describe dispersion will be closely
tied to the validity of the Reynolds equation in a given fracture.

The theoretical model shows that the statistics of the aperture field determine the
specific nature of the Pe-dependence of Du In particular, the Pe-ranges in which different

dispersion mechanisms dominate vary with aperture statistics (<b>, o~z,and ~). The

theoretical model assumes that the aperture field can be described as a stationary lognormal
random field. Brown [1995] suggested that when two rough surfaces are brought together
to forma fracture, there is a length scale (mismatch length scale) above which aperture
variability is essentially stationary due to correlation between the two surfaces. Thus,
although studies of fracture surfaces have demonstrated variability in topography over
multiple length scales [e.g., Brown and Scholz, 1985; Peon et al., 1992; Schrnittbuhl et
al., 1993; Plouraboue et al., 1995; Power and Tunis, 1995], the largest being of the order
of the sample size (up to O(1) m), the aperture field formed by two of these surfaces may
not exhibit the same multi-scale characteristics. This hypothesis is supported by a number
of measurements made of natural fractures (see Table 5) but is clearly an area that merits
more study. Our analog, rough-walled fracture was statistically homogeneous, with mean
and variance within the range measured in these actual fractures. Additionally, the
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correlation scale L,, (defined here as the separation distance at which the semivariogram

reaches a value= (l-l/e) times the sill value, which is identical to the integral scale in the
case of an exponential covariance function) was much smaller than the dimensions of the
fracture. This avoided the influence of channeling at scales of the order of the sample size,
thus allowing meaningful comparison to theoretical results.

For the previously published aperture statistics for fractures in rock samples

detailed in Table 5, we calculated the Pe value @e = 210 ctma) at which the Taylor

dispersion and macrodispersion coefficients are equal (column 7 in Table 5). The values of

B used for calculating ctw,O(2b) assumed an exponential covariance fimction; note that the
exact shape of the covariance function has only a mild influence on B, through the integral
in (4). The corresponding Reynolds number (Re) (column 8 in Table 5) clarifies whether
the high velocities associated with macrodispersion/I’aylor dispersion equivalence are
within the “Dmcian” region (i.e. linear relation between the mean hydraulic gradient and the
mean flux). Values of Re >-1-10 imply that rather than the Taylor dispersion regime, a
new dispersion regime is likely, where dispersion will be influenced by non-Darcian flow
effects resulting from the inertial terms in the Navier-Stokes equations. We see that in the
limestone, granite and welded tuff fractures characterized by Kumar et al. [1995], Yeo et

~ al. [1998], and Wan et al. [in prqss], respectively, the influence of Taylor dispersion will

be evident (for solute transport in water) at Re S 1.0. Thus, there is a range of flow rates
for these fractures in which Taylor dispersion will be the dominant dispersion mechanism,
just as we have found in our analog, rough-walled fracture. For the granite fractures
measured by Hakarni and Larsson [1996] and Keller et al. [1999], the value of Pe at which
Taylor dispersion will begin to dominate, corresponds to 1< Re <10. In these fractures,
though Taylor dispersion may not become the dominant dispersion mechanism before the
flow becomes non-Darcian, the influence of Taylor dispersion will result in a nonlinear
relationship between Pe and D~ at high flow rates.

The occurrence of both macrodispersion and Taylor dispersion regimes in fractures
can have significant implications on interpreting tracer tests at the single-fracture scale. For
instance, in radial flow tracer tests, the mean flow velocity increases as solute approaches
the well. As a result, macrodkpersion can be the dominant dispersion mechanism far from
the well, whereas Taylor dispersion effects become increasingly important close to the
well. Commonly used interpretation techniques [e.g., Raven et al., 1988; Maloziewski and
Zuber, 1990; Cady et al., 1993; Novakowski et al., 1995] incorporate only a dispersion
coefficient that is a linear function of velocity, implicitly assuming that Taylor dispersion
effects are insignificant. The analysis of Hodgkinson and Lever [1983], on the other hand,
incorporates only Taylor dispersion. Subtle nonlinear Pe-dependence of D~may also be
important, when using multiple tracers with widely differing molecular diffhsion
coefficients. The Pe values corresponding to the different tracers under the same hydraulic
conditions can vary over 1-2 orders of magnitude, placing the different tracers in different
dispersion regimes. The Pe-dependence of D~,however, is typically ignored in interpreting
these tracer tests [e.g., Maloziewski and Zuber, 1990].

Another important feature that merits additional study is the fundamental difference
between the Pe-dependence of D~in variable aperture fractures and porous media. Several
studies in porous media indicate a linear relationship between D= and Peat high Pe (Pe >
103)[e.g., Fried and Combarnous, 1971]. This linear relationship breaks down only when
the Pe value becomes so large that the flow becomes non-Darcian. We believe that this
feature relates to the difference in the topology of the void space in fractures and porous
media. In most fractures used in previously reported experiments and in our study, the
fraction of contact area between the fracture surfaces is relatively small. The resulting long,
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simply-connected flow paths petit Taylor dispersion to “develop”. However, due to the
complex tortuous topology of the pore space in porous media there may not be an
opportunity for Taylor dispersion to develop, especially at high Pe, where the travel time
through a single pore throat will be very small [e.g. Bear, 1972]. Additional computational
and experimental studies in fractures with larger fractions of contact area and in porous
media, would help to clarify the fundamental reasons for the difference of the Pe-
dependence of D~between fractures and porous media.



,

Appendix: Influence of

estimates of DL

concentration measurement errors on

As with light transmission measurements of aperture fields, concentration field
measurements are-subject to random errors due to CC-Dimage noise and accuracy or
systematic errors (e.g., nonlinear dye absorbance, reflections and refraction). Unlike
aperture measurements, concentration measurements can be easily calibrated by
sequentially filling the fracture with standards of known concentration and fitting (9) to the
measurements at each pixel. Calibration effectively minimizes accuracy errors leaving
image noise as the primary error source. The influence of noise can be quantified by
measuring the difference between the actual concentration in the fracture during calibration
and the concentration calculated using the calibration curves developed at each pixel.
Averaging the difference between the measured concentration at each pixel and the actual
concentration over the entire field, yielded a maximum mean error 0.003C0 (CO= 0.25 g/1).
This indicates that (9) fits the data well and that errors are predominantly due to random
signal noise. The root-mean-square (RMS) errors at individual pixels ranged from O.OOICO.
for the O@lfields in both fractures to 0.023C0 and 0.019C0 for the 0.25 @l field in the
Hele-Shaw cell and the rough-walled fracture, respectively. These random errors do not
influence our estimates of D.~because in calculating D~,we combine measurements from
thousands of pixels which significantly reduces the influence of noise.

Despite calibrating our measurement system, the reflective coating on the surface of
the band-pass-filter on the camera lens caused additional errors in our concentration
measurements when the fracture was not filled entirely with one concentration (i.e., during
solute transport experiments). These errors included an artificial, reflected plume that was
-1% of the concentration of the real plume and led the real plume through the fracture by
-7.1 cm. We also observed a trend in background concentrations in some fields that
resulted in additional mean errors ranging from 0.003C0 at the inflow end of the fracture to
- -0.003C0 at the outflow end of the fracture. This trend in background concentrations may
be due to a small shift in the intensity of the light source that was not uniform over the
entire field. Because the background trend remained relatively constant over the several
days that we performed the experiments, this shift appears to be a one time occumence after
we obtained the calibration images and before we ran the experiments. Because these two
additional sources of concentration measurement error were consistent from image to
image, we were able to develop an image processing algorithm to minimize the influence of
these errors on estimates of dispersion coefficients.

To remove our observational bias and to streamline the processing of over 700
experimental images, we developed a processing routine that consisted of four primary
steps (described in detail below): 1) subtract the reflected plume from each image, 2) apply
a median filter to the entire concentration field, 3).define a region of interest @OI) that
completely surrounds the plume but excludes small errors far from the plume and 4) apply
a thresholding routine inside the ROI to isolate the plume from any trend in background
concentrations within the ROI. We varied the parameters used in this routine to bound the
possible values of D~ measured for each experiment. These bounds are displayed as error
bars in Figure 6. Note that the error bars represent the possible range of values of D~ not
a standard deviation or confidence interval.

We removed the reflected plume from each image by scaling and shifting the real
plume appropriately and subtracting it from the concentration field. Using a median filter,
which sets the value at each pixel to the median value of a 5 x 5 pixel box surrounding the
pixel, we reduced noise and any anomalous measurements from the field. This filtering
step smoothed the concentration field slightly, but since the resolution of our measurements
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(pixel size = 0.0154x 0.154 cm) was significantly smaller than the scale of real
concentration variations within the field, the effect of this smoothing on our estimates of D~
was negligible. We then defined a small ROI centered at the first moment of the real plume
and, using (12), measured the second spatial moment of the ROI. Incrementally increasing
the size of this ROI resulted in a plot of second moment versus ROI size which at first grew
quickly and then leveled off. The degree to which the slopes of plots of Mz versus ROI size
leveled off depended on the magnitude and relative location of the trend in the background
concentrations. However, for each experimental image, the value of ~ at which the slope
first began to level off ( M2Z,,) was directly related to the size of the plume. We defined an

..

ROI around the plume that had a width and height of 8J~ as we found a region of this

size captured the entire plume and a buffer around the piume(this corresponds to the size of
the third frame shown in Figure 5b). We then obtained the worst case overestimation of
D~by measuring ~ of this entire ROI. We defined a threshold concentration equal to 0.3%
of the maximum mass measured in the solute plume from the initial image of each series. .
By setting all values within the ROI that were less than this threshold to zero, we obtained
the worst case underestimation of Dv We obtained the best estimation of D~ by dilating the
region defined by the thresholding routine to include pixels with low mass in the vicinity
(-8 pixels) of the plume that were below the threshold concentration.
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Table 1: Fracture dimensions and measured aperture statistics

+

Hele-Shaw rough-walled

Dimensions (cm x cm) 15.3 x 30.5 14.8 x 30.2

Dimensions (pixels x pixels) 972 X 1940 958 x1958

Dimensions (1s x As)
-. 336 X686

Pixel size (cm) 1.57 x 10-2 1.54 x 10-2

Minimum aperture (cm) 1.72 X 10-2 1.30 x 10-3

Maximum aperture (cm) 2.09 X 10”2 3.85 X 10-2

<b> (cm) 1.93 x 10-2 2.21 x 10-2

crP(cm) 5.27 X 104 6.02 X 10-3

ap/<b> 2.73 X 10-2 2.72 X 10-*

L - long axis (cm) * -- 4.4 x 10-2

A- short axis (cm) * -- 4.4 x 10-2

RMS Error (% of mean) 0.8 1.2
r=max

* - In this study Arepresents the integral scale calculated by numerically integrating JP(r)ir,where
r=l)

p(r) = 1– y(r)/cr~z is the correlation function and y(r) is the semivariogram. Previous studies using similar

fractures [e.g., Glass et al., 1998; Nicholl et al., in review] measured X as the separation length at which the
semivariogram reached the level of the sill (-0.08 cm).
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Table 2: Summary of experiments and results

?racture Measured Mean Reynolds Peclet D~

Experiment Flow Rate Velocity Number Number

(cm’/s) (cm/s) (cm’/s)

-Iele- 1 0.0121 0.043 0.08 147.39 6.26 X 10-”<

Shaw 2 0.0220 0.077 0.15 264.23 2.01 x ‘10-U3

;ell 3 0.0288 0.100 0.19 343.02 3.27 X 10-u~

4 0.0348 0.121 0.24 414.77 4.78 X 10-u~

5a 0.0421 0.146 0.28 500.41 6.96 X 10-”5

5b 0.0419 0.146 0.28 500.60 7.05 x 10-”3

5C 0,0417 0.145 0.28 499.41 7.10 x 10-U3

6 0.0494 0.171 0.33 588.73 9.56 X 10-”’

7 0.0571 0.199 0.39 682.35 1.28 X 10-”4

8 0.0617 0.214 0.42 736.83 1.48 X 10-W1

<ough- 1 0.0114 0.037 0.08 142.63 2.08 X 10”<

valled 2 0.0147 0.048 0.11 185.50 2.87 X 10-U3

kacture 3 0.0190 0.060 0.13 235.55 4.06 X 10-”3

4 0.0287 0.090: 0.20 352.03 7.80 X 10-u~

5a 0.0340 0.108 0.24 421.49 9.59 x 10-”3

5b 0.0340 0.108 0.24 419.04 9.52 X 10-”3

5C 0.0338 0.107 0.24 418.60 9.59 x 10-”3

6 0.0403 0.128 0.28 497.77 1.26 X 10U2

7 0.0467 0.147 0.32 572.09 1.60 X 10UL

8 0.0534 0.168 0.37 656.27 1.98 X 10-”2

9 0.0612 0.193 0.43 751.21 2.46 X 10”’

Table 3: Fitted values of a~,C,Oand UT=YIO,for experiments and simulations and theoretical
values based on (2a) and (2b)

Experiments na 0.00476 +/- 0.00004
Simulations na 0.00472 +/- 0.00002
Theory na 0.00476

Rough-wall
Experiments 1.87 +/- 0.15 0.00522 +/- 0.00026

Simulations 1.01 +/- 0.10 0.00481 +/- 0.00016

Theory 0.77 0.00476

Field-1

Simulations 0.41 +/- 0.20 0.00472 +/- 0.00033
Theory 0.47 0.00476

na - Not applicable
Note, tolerances are 95% confidence intervals for the fitted parameters.

,..



.

Table 4: Comparison of statistics and macrodispersivity for synthetic and experimental
aperture fields

Aperture Field (b) (cm) ~, (~@ up’ A (cm) *I(cP2)Ic82 %locro

Field-1 0.022 0.0060 0.073 0.035 1.04 0.47

Field-2 0.022 0.0060 0.073 1.8 1.04 23

Field-3 0.022 0.019 0.56 0.035 1.32 3.9

Experimental 0.022 0.0060 0.096 0.044 1.05 0.78

* - For the aperture fields used in this study, RPfl(s)= CTP‘Hexp[-awas”s
values.

Table ‘5: Comparison of aperture fidd statistics

I
Brown [1995] ****

Kumar et al. [1995]
Keller et al. [1995]
Hakami and Larson [1996]

Keller et al. [1999]
Yeo et al. [1998]

Wan et al. [in press] *****

Rough-walled fracture

(current study)

Fracture

Type

Variety

Limestone
Granite
Granite
Granite
Granite
Tuff

Analog

+
-.

0.027
0.038
0.036

0.083
0.0607
0.0281
0.0221

0.0017-0.018

0.0051
--

0.015
0.068

0.0160
0.0088
0.006

--

0.036 *
0.18 **
0.16 *

0.24 **
0.067 *
0.114
0.073

Ae***

(cm)

0.065-1.5

0.3
4

0.3
0.6

<0.5
0.2

0.05

Pe=210cz~,C~O

--

340
16000
1100
1500
460

690
140

0.51
24
1.7
2.2
0.7
1.0

0.2

Based on reported values of cr~assuming a lognormal apeiture distribution.

Estimated based on the reported value of a,..’.

Estimated integral scale o~the log aperture ~el~ based on the approximate separation at which the

semivariogram reaches a level of ci’(1-l/e).
Based on numerically combining measurements of individual surfaces.
Reported values for Odisplacement between fracture surfaces.
Based on light transmission measurements made in the Flow Visualization and Processes
Laboratory, Sandia National Laboratories.

210cxmacrois the value of Pe at which Taylor dispersion equals macrodispersion.

Reynolds number corresponding to Pe= 2100tma0assuming 1)~=1.5 x 10”5cm2/s (typical for

commonly used ionic tracers) and v=l.O x 10-2cm2/s.
Not available.



Figure Captions

Figure 1. Theoretical D~/D~ versus Pe for cx~~C,0=0.2and 20, z=l, and ~,YI0,=l/210. For

a =0.2, D~/D~transitions directly from the molecular diffusion regime (slope=O)to the
macro

Taylor dispersion regime (slope=2), whereas for larger cxmmthe macrodispersion regime

(slope=l) becomes a distinct third regime.

Figure 2. Theoretical D~/(Veb>) versus Pe for UmaO=0.2and 20. This method of

nondimensionalizing D~highlights the three different dispersive regimes: molecular
diffusion (slope=-l), macrodispersion (slope=O), and Taylor dispersion (slope= l).

Figure 3. (a) Schematic plan view of fracture cell and plumbing layout, (b) Cross-
section view of Hele-Shaw cell and (c) Cross-section view of rough-walled fracture. -

Figure 4. Sernivariograms (y) of the two experimental fractures and synthetic Field-1.

The semivariogram for the rough-walled fracture demonstrates the stationary, isotropic
nature of the aperture field. The semivariogram for the Hele-Shaw cell indicates a relatively

~ strong trend across the width of tQecell and a milder trend along the length of the cell. The
semivariogram for Field-1 is very similar to the rough-walled fracture demonstrating the
simihuity between the correlation structure of the synthetic and experimental field.

Figure 5. A portion of three concentration fields measured during (a) an experiment in the
Hele-Shaw cell, (b) an experiment in the rough-walled fracture, and (c)a simulation in the
rough-walled fracture. Each field represents a 3 cm x 9 cm region of the fracture centered
on the first spatial moment of solute mass in the x-direction and the center of the fracture in
the y-direction. In the Hele-Shaw cell, MIX=1.1,6.6, and 12.0 cm in the three frames-and
in the rough-walled fracture, MIX=1.6,5.4, and 9.4 cm in the three frames. In the Hele-
Shaw cell, the effect of Taylor dispersion is evident as growth of the plume in the flow
direction with little spreading perpendicular to the flow direction. In the rough-walled
fracture, the enhanced dispersion caused by aperture variability is evident.

Figure 6. Nondimensional dispersion coefficient (DL/DJ plotted against the Peclet
number (Pe) for experiments in both fractures. The curves through the data points are the
result of fitting (5) to the data. Table 3 lists the fitted parameters for the rough-walled
fracture. The error bars represent the possible range of DLestimates resulting from
concentration measurement errors (see the Appendix for a discussion of errors).

Figure 7. Comparison of DL/D~versus Pe for experiments and simulations in the Hele-
Shaw cell and the rough-walled fracture. The curves through the Hele-Shaw cell data
represent (lb), the theoretical expression for Taylor dispersion. The curves through the

data represent (5) fitted to each data set (neglecting ~). The fitted parameters are presented
in Table 3.

Figure 8. Comparison of aperture distributions for experimental fracture and the three
synthetic fields (Fields 1, 2, and 3). Synthetic Fields 1 and 2 have the same variance as the
experimental field. The synthetic fields exhibit a positive skew due to the Iognormal

‘ distribution and the experimental field exhibits a negative skew. Field-3 has a larger
variance and the same mean as the other fields resulting in a higher percentage of small
aperture values.

26



.

Figure 9. Results of simulations (data points) and theoretical expressions (lines) in Fields
1,2, and 3. The theory predicts identical small and large Pe behavior for all three fields,

but at intermediate values of Pe where macrodispersion dominates, the influence of OP2and

~ on the magnitude of macrodispersion are evident. The simulations agree closely with

theory for Fields 1 and 2; deviations for Field 3 are likely due to the increase in OP2(the

theory assumes small GB2).

Figure 10. Comparison of theoretical results for the rough-walled fracture and synthetic
Field 1 to experimental and computational results. The close agreement between theory and
simulations in both fields indicates that when the assumptions of the Reynolds equation are
valid for a given fracture, the theoretical expression described by (5) provides a good
estimate of the total dispersion coefficient.
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