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ABSTRACT: This study reports on the solution combustion synthesis of two different ternary niobium oxides, namely, p-
CuNb2O6 and n-ZnNb2O6. Such ternary oxides are attractive candidates in the “Holy Grail” search for efficient and stable
semiconductors for solar energy conversion and environmental remediation. We demonstrate how this time- and energy-efficient
method is capable of synthesizing high surface area and crystalline nanoparticles of the above compounds with enhanced
optoelectronic properties. The synthesized crystalline samples were characterized by powder X-ray diffraction (with Rietveld
refinement for phase purity), diffuse reflectance UV−visible and Raman spectroscopy, electron microscopy, and
photoelectrochemical (PEC) techniques. The band structure of these oxides was probed by linear sweep voltammetry and by
measuring their photoaction spectra (internal photon to electron conversion efficiency vs wavelength). The obtained bandgap
energy values (1.9 and 3.2 eV for the Cu- and Zn-containing compounds, respectively) were in reasonable agreement with those
obtained via electronic structure calculations (2.07 and 3.53 eV). Finally, p-CuNb2O6 showed promising activity for the PEC
reduction of CO2, while n-ZnNb2O6 was active for sulfite and water photooxidation.

■ INTRODUCTION

One of the most critical challenges and paradigms of the 21st
century is the shift in energy use from fossil fuels to renewable
sources. Utilizing sunlight via solar fuels is unambiguously an
effective strategy for attacking supply and environmental
concerns.1 While solar energy is the most abundant energy
resource, the need for storage of the harvested energy is an
unavoidable consequence of its intermittency. The generated
electricity (e.g., by a photovoltaic cell) can be stored directly in
batteries or used to produce solar fuels or other value-added
chemicals. With this latter approach, the harnessed energy is
stored in the form of chemical bonds. Photoelectrochemical
(PEC) techniques can be used for this purpose, although many
challenges have yet to be solved.2−6 Currently, the two most
important examples of solar fuels are H2, obtained via water-
splitting,7 and high-energy chemicals, such as CO, CH4,

HCOOH, CH3OH, etc., produced by the photochemical or
PEC conversion of CO2.

4,8,9

The most extensively studied n-type metal oxide semi-
conductor is TiO2, mostly because of its robustness, out-
standing stability in aqueous media, coupled with nontoxicity
and earth abundance of its constituent elements.10,11 However,
the wide bandgap (3.0−3.2 eV) of this material limits its
application in solar energy utilization processes. A plethora of
other n-type oxide semiconductors (binary or even ternary
oxides) have been applied as photoanodes (e.g., ZnO, WO3,
Nb2O5, SrTiO3).

12 On the other hand, p-type semiconductors
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can be used as photocathodes for driving various reductive
processes such as H2 evolution and CO2 conversion. Copper-
containing oxides are particularly relevant for these applications
because of the rather unique capability of Cu-containing
semiconductors to directly (i.e., without the use of any
cocatalyst or redox mediator) photoelectroreduce CO2. There
are numerous examples in the literature highlighting the
importance of copper oxides in photoelectrochemistry,
including Cu2O,

9,13 Cu2O/CuO,
4,9 CuFeO2,

14−16 CuRhO2,
17

and Cu3Nb2O8.
18

A given photoelectrode material has to simultaneously meet
certain requirements such as overlap of its optical absorption
cross-section with the solar spectrum, optimal (conduction and
valence) band edge positions to drive the required half-cell
processes, good (chemical, electrochemical, or photoelectro-
chemical) corrosion resistance in aqueous media of variant pH,
good charge transport, and interfacial electron transfer
properties, and last but not least, cost-effectiveness and
environmental compatibility of the selected material in terms
of its earth abundance and toxicity, respectively.19 Not
surprisingly, no such “magic bullet” candidate has emerged
yet, which fulfills all these requirements. Therefore, the drive to
discover and develop new semiconductor materials, which
might have all these properties, continues unabated.
In this search for new oxide photoelectrode materials, metal

niobates are attractive candidates. One class of metal niobates
conform to the formula MNb2O6, where M2+ = a + 2 cation
(Zn, Cu, Co, Ni, Mn, etc.) with <1.0 Å ionic radius and an
orthorhombic columbite structure.20,21 To date, solid-state
reactions at high temperatures have predominantly been the
method of choice for synthesizing transition metal niobates as
they are easily made from the corresponding metal oxide
precursors.17,22,23 However, the last two decades have
witnessed a trend toward utilizing lower temperatures and a
variety of solution-based techniques such as sol−gel synthesis,
coprecipitation, or hydrothermal synthesis.23−28 However,
these approaches, along with their solid-state synthesis
counterparts, suffer from a similar drawback: long reaction
times (usually several hours) that prohibit the quick screening
of large numbers of possible material candidates in
combinatorial schemes. Furthermore, solid-state synthesis
suffers from the need for high external energy input to
maintain the elevated temperature during the synthesis. Hence,
time- and energy-efficient synthetic routes for oxide semi-
conductors have particular relevance for solar fuel generation.
Solution combustion synthesis (SCS) is one such method-

ology. The most important features of this procedure2,29−32 are
(i) short reaction time, (ii) cost effectiveness, (iii) the lack of
need for any special equipment, and most importantly, (iv) the
ability to dope the host oxide by simple changes of the
precursor fuel. Using carefully designed experimental con-
ditions, the expulsion of various gases during the highly
exothermic reaction also results in the formation of small-sized
and high surface-area nanoparticles and nanostructures.32 We
and others have employed the SCS methodology for preparing
simple oxides such as TiO2,

33,34 ZnO,35 WO3,
36 as well as more

complex oxides such as metal tungstates (ZnWO4, CuWO4,
Ag2WO4, and Ag2BiW2O8).

37,38

This study demonstrates the use of SCS for preparing
nanoparticles of two transition metal niobates: p-CuNb2O6 and
n-ZnNb2O6. Particular focus was on the structural and
morphological attributes, i.e., on generating high surface area
and crystallinity of oxide products under time- and energy-

efficient synthesis conditions. Additionally, PEC investigations
of the above two semiconductors were carried out to evaluate
their potential for solar fuel generation and for CO2 reduction
in particular. While p-CuNb2O6 showed activity for CO2

photoreduction, n-ZnNb2O6 was active for sulfite and water
photooxidation.

■ EXPERIMENTAL SECTION AND COMPUTATIONAL
DETAILS

Materials. Copper nitrate hydrate, Cu(NO3)2·2.5 H2O
(Alfa Aesar), zinc nitrate hexahydrate Zn(NO3)2·6H2O (Alfa
Aesar), and ammonium niobium oxalate monohydrate,
C4H4NNbO9·H2O (Sigma-Aldrich), were used as the cation
sources and oxidizers for the combustion reaction, and urea
(Sigma-Aldrich) was used as the fuel. Commercially available
samples of copper niobate and zinc niobate (Sigma-Aldrich)
were used for benchmarking purposes. Na2SO4 (Alfa Aesar),
Na2SO3 (Sigma-Aldrich), and NaHCO3 (Reanal) were used in
all the PEC experiments along with N2 (Messer) and CO2

(Messer) gases. All chemicals were of the highest purity
commercially available and were used without further
purification. Deionized water (MilliPore, 18 MΩ) was used
to prepare all solutions.

Solution Combustion Synthesis. The respective metal
and niobium precursor (see above) and urea (all in
stoichiometric amounts, where the Cu2+ and Zn2+ concen-
tration was 1.0 M) were dissolved in deionized water. Each
solution was placed in individual crucibles and placed in a
preheated furnace at 350 °C. The reaction occurred within 3−5
min. After combustion, the resultant products were removed,
finely ground in a mortar/pestle, and subsequently annealed at
600 °C for 30 min. Once completed, the samples were washed,
filtered, and dried in an air oven at 100 °C. [The effect of
annealing at higher temperature (at 800 °C) was also
investigated, but these samples showed a markedly inferior
PEC behavior, presumably because of sintering.]

Electrode Preparation. The synthesized and annealed
powder samples were spray-coated on Sn-doped indium oxide
(ITO) glass electrode surface from a 10 mg mL−1 dispersion in
isopropanol, which was sonicated for 30 min before use. The
layers were sprayed consecutively on the ITO substrate (total
surface area: 1 cm2) by an Alder AD320 Airbrush spray gun
(∼2.5 mg cm−2 in the case of the copper niobate sample and
∼5.0 mg cm−2 in the case of zinc niobate). The prepared thin
films were heat-treated in an air oven at 350 °C for 2 h before
use.

Physical Characterization. Thermogravimetric analysis/
differential scanning calorimetry (TGA/DSC) on the precursor
mixtures was carried out on a TA Instruments model Q600
instrument. The precursor mixtures were placed in an alumina
crucible in air atmosphere with a flow rate of 100 mL min−1 at a
heating rate of 10 °C min−1 up to 1000 °C. Powder X-ray
diffraction (XRD) measurements were performed within the
range of 2θ = 20−80° using a Rigaku Ultima IV instrument
with Cu Kα source (λ = 1.5406 Å). Rietveld refinement was
carried out using MDI Jade 8 software with initial model
structures culled from the literature. Refinements were
performed on each of the samples with reduced scale/
background and full width at half-maximum (fwhm) parameters
to account for all the peaks in the XRD patterns. The patterns
were fit using a Gaussian profile function with displacement,
allowing for any deviations from the model structure. The
Scherrer equation was employed to determine the average
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crystallite size, using the two most intense diffractions in each
case: [(131) and (102) for CuNb2O6, and (111) and (311) for
ZnNb2O6].
Raman spectroscopy was performed on a DXR Raman

microscope using a λ = 532 nm green laser. UV−visible diffuse
reflectance spectra were collected on a PerkinElmer Lambda 35
spectrophotometer equipped with an integrating sphere. High-
resolution transmission electron microscopy (HR−TEM) was
performed on a Hitachi H9500 instrument at various
magnifications. The synthesized and heat-treated powder
samples were dispersed on carbon tape, while the thin films
were used as-is. For scanning electron microscopy (SEM), a
Hitachi S4700 FE-SEM instrument was used. For Brunauer−
Emmett−Teller (BET) surface area measurements, a TriStar II
3020 instrument was used at a relative pressure range of P/P0 =
0.05−0.3.
Photoelectrochemical (PEC) Characterization. All PEC

measurements were performed on an Autolab PGSTAT10
instrument in a sealed two-compartment, quartz cell using a
classical three-electrode setup. Platinum foil and Ag/AgCl
(satd. NaCl) were used as counter- and reference electrodes,
respectively. The electrolytes used were 0.1 M Na2SO4 (for
both materials) or 0.1 M Na2SO3 (in the case of the zinc
niobate samples) and 0.1 M NaHCO3 (in the case of the
copper niobate samples). For studies on the copper niobate
samples, the solutions were saturated with N2 and CO2. The
light sources were either a 100 W tungsten−halogen (Osram
Xenophot HLX 64625 in an Oriel 60000 housing) or a 150 W
tungsten−halogen (Fiberlite A 3000) lamp. The light source
was placed 3 cm away from the working electrode surface in
either case. The photovoltammograms were recorded under
chopped illumination (0.1 or 0.05 Hz) and slow potential scan
(1 or 2 mV s−1 sweep rate).
Incident photon-to-charge conversion efficiency (IPCE)

measurements were performed on a Newport Quantum
Efficiency Measurement System (QEPVSI-B) in a single-
compartment, three-electrode quartz electrochemical cell. The
wavelength range was 200−800 nm (with resolution, Δλ = 10
or 20 nm and 3.16 mm slit width). The used solutions were: 0.1
M NaHCO3 saturated with CO2 in the case of the copper
niobate samples and 0.1 M Na2SO3 in the case of the zinc
niobate films.
Computational Details. The band structure calculations

were performed within the framework of the standard frozen-
core projector augmented-wave (PAW)39,40 method using
density functional theory (DFT) as implemented in the Vienna

ab initio simulation package (VASP)41,42 code. Exchange and
correlation potentials were treated in the generalized gradient
approximation as parametrized by Perdew−Burke−Ernzerhof
(PBE).43,44 Underestimation of electron localization is
recognized as a major failure of both local and semilocal
DFT calculations, in particular, for systems with localized d and
f electrons.45−47

This failure manifests via the general trend of DFT to
underestimate energy band gap values and to produce incorrect
solutions for some 3d-based metal oxides. Thus, this short-
coming of DFT-GGA must be corrected in a computationally
cost-effective manner. Therefore, DFT+U was used as a post-
DFT correction method. In the present work, we used Ueff = 6
eV (Ueff = U − J = 7 − 1 = 6 eV, J = Stoner exchange
parameter) to externally provide Coulomb correlation to both
Cu 3d and Zn 3d orbitals in copper niobate and zinc niobate,
respectively. The above value of Ueff was chosen from our
previous work on Cu- and Zn-based compounds.3,37,45,46,48,49

The basis sets were expanded with plane waves with a kinetic
energy cutoff of 400 eV. The ion positions and volumes were
always relaxed without any symmetry constraint to allow the
internal geometry and shape of the lattice to be changed freely
until the force on each of the ions was 0.01 eV/Å or less.50 The
Brillouin zone integrations were performed using the second-
order Methfessel−Paxton method.51 For visualization of the
crystal structures, VESTA (Visualization for Electronic and
Structural Analysis)52,53 was used.
All computations were performed using the High Perform-

ance Computing Facility at the University of Texas at Arlington
and at the Texas Advanced Computing Center located in
Austin, TX.

■ RESULTS AND DISCUSSION

Simulating the SCS Procedure by Thermal Analysis. A
fundamental understanding of the SCS process can be gained
by performing thermal analysis during simulated synthesis.
Accordingly, thermogravimetric analysis (TGA) and differential
scanning calorimetry (DSC) were employed to simulate the
SCS process; TGA and DSC profiles simulating copper niobate
and zinc niobate synthesis appear in Figures 1A and B,
respectively. As seen in the TGA profile, two major mass losses
occurred during the SCS process. The first one between 100
and ∼ 170 °C is attributable to the elimination of water. The
second mass loss, observed in a broad range between 170 and
∼220 °C (for CuNb2O6) or 170 and ∼400 °C (for ZnNb2O6),
can be attributed to the combustion reaction and the

Figure 1. TGA (A) and DSC (B) profiles simulating SCS for copper niobate and zinc niobate.
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subsequent combined decomposition of the metal salt
precursor and fuel.
Both endothermic and exothermic peaks were observed on

the DSC profiles (Figure 1B). A broad endothermic peak was
witnessed at the initial stage of the process for both
compounds. This feature is related to water loss from the
precursor mixture and correlates with the first mass loss regime
on the TGA curves (Figure 1A). An exothermic peak (at
approximately 250 °C) for CuNb2O6 (Figure 1B) coincided
with initiation of the combustion reaction accompanied by
oxidation of the fuel and, ultimately, formation of the final
oxide product. Note that the mass remains the same at
temperatures higher than ∼250 °C (for CuNb2O6) and ∼400
°C (for ZnNb2O6) (Figure 1A). The corresponding exothermic
feature for ZnNb2O6 is much weaker and appears at ∼300 °C
(Figure 1B). The baseline slope change in the DSC at higher
temperatures (past ∼400 °C), which is not accompanied by any
corresponding TGA features, may be attributed to gradual
changes in the heat capacity of both materials.
Structural and Morphological Characterization. Cop-

per niobate (CuNb2O6) exhibits two polymorphs: monoclinic
(P2/c) and an orthorhombic form.20,54 A literature survey
reveals the formation of these two CuNb2O6 polymorphs at
different reaction temperatures; i.e., the monoclinic polymorph
can be obtained at temperatures <740 °C, while the
orthorhombic form is formed at temperatures >740 °C.54−56

Zinc niobate (ZnNb2O6) commonly crystallizes in an
orthorhombic structure with space group Pbcn/Pnab.20

In the CuNb2O6 and ZnNb2O6 structure, the Cu:Nb and
Zn:Nb atom centers are each surrounded by six oxygen atoms
which form zigzag chains of CuO6:NbO6 and ZnO6:NbO6

Jahn−Teller distorted octahedra connected by edge-sharing.
These zigzag chains in turn are connected by corner sharing,
creating an ordered repeating M−MO6−MO6−M−MO6−

MO6−M octahedral layer, where M = CuO6 or ZnO6 in
CuNb2O6 and ZnNb2O6, respectively.

20,21 See Figures 2A and
B for model structure representations of the two metal
niobates.

For both these compounds, studies oriented toward the
tuning of bandgap energies (or “band engineering”) have
served to open up further avenues for heterogeneous
photocatalysis and PEC applications.17,55−60

The as-synthesized, annealed, and respective commercial
samples were characterized by powder X-ray diffraction (XRD)

with subsequent Rietveld refinement. Each of the combustion-
synthesized samples was annealed at 600 °C to enhance the
degree of crystallinity, as well as to eliminate any possible
impurity or carbon residue from SCS. [However, it was worth
noting that even without heat treatment fairly crystalline
products were observed for both SCS samples; see Table 1
below.] Figures 3A and B illustrate XRD patterns for copper
niobate and zinc niobate, respectively.

The XRD pattern of copper niobate, before and after heat
treatment, clearly yielded a material more crystalline in nature
than the zinc counterpart. This trend was in accordance with
the high exothermicity of the reaction as noted in the DSC data
(Figure 1B). Rietveld analysis of the annealed sample yielded a
single-phase monoclinic CuNb2O6 structure (see Figure S1) in
agreement with the 83-0369 JCPDS file and with other data
from the literature.22,54,62 Formation of the monoclinic
polymorph is also consistent with the expectation from earlier
studies52,53 that shows the proclivity of this form to be
dominant at “low” synthesis temperatures (see above).
We carefully examined the XRD patterns for other possible

copper niobates (e.g., CuNbO3, Cu3Nb2O8, etc.); their
presence in the SCS samples can be excluded. This trend is
further corroborated by an earlier report on coprecipitation of
CuNb2O6, which demonstrated that the monoclinic structure
was preferred if the oxalate precursor was used in the
preparation.55 Finally, we note that although good crystallinity
was displayed by the commercial CuNb2O6 sample a
multiphase structure was indicated by Rietveld refinement in
this case, with the secondary phase (amounting to ∼35% by
mass) being Nb2O5.
Rietveld refinement of the annealed zinc niobate sample

yielded a multiphase structure comprised of an orthorhombic
ZnNb2O6 (dominant) and ZnO (secondary) phase (Figure
S1B), each matching with JCPDS files 76-1827 and 89-0511,
respectively, and with other data from the literature.63 The ZnO
phase (accounting for ∼25% of the sample) perhaps was
generated from incomplete reaction of the decomposed zinc
nitrate and the other precursors and then being calcined by the
exothermic reaction’s internal temperature and subsequent
anneal. The commercial benchmark sample, however, was
single phase exhibiting high crystallinity as illustrated in Figure
3B.
The most intense peaks were used to calculate the average

crystallite sizes for both materials. As displayed in Table 1, there
was a clear (and expected) trend that particle size increased
with thermal anneal. In accordance, BET analysis in turn
showed a decrease in the surface area for each of the samples.
This tendency can be attributed to fusing of individual
nanoparticles (i.e., sintering) upon calcination. The strikingly

Figure 2. Polyhedral models of the crystal structures for (A) CuNb2O6

and (B) ZnNb2O6.

Table 1. Calculated Average Crystallite Size and Surface
Area of the SCS-Derived Niobate Samples

semiconductor material
crystallite size

(nm)
surface area
(m2 g−1)

CuNb2O6 as-synthesized 8.3 ± 1 16.0

annealed at 600 °C 20.3 ± 2 8.8

commercial 19.0 ± 3 <5

ZnNb2O6 as-synthesized 4.1 ± 2 64.9

annealed at 600 °C 15.8 ± 3 18.4

commercial 31.7 ± 3 <5
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small surface area of the commercial ZnNb2O6 sample (and
CuNb2O6, for that matter) is worthy of note.
There are no Raman data in the literature for CuNb2O6 (at

least to our knowledge); however, comparison of the SCS
sample with its commercial counterpart (Figure 4A) furnished
important insights. Most importantly, beyond the bands
common to both samples, there were important differences:
the two broad bands, centered at 660 and 261 cm−1, and the
two well-defined, narrow peaks at 992 and 116 cm−1 of the
commercial sample corresponded to the Nb2O5 impurity,64,65

in agreement with the trend in the XRD data presented earlier.
Figure 4B shows a comparison of the Raman spectra of the

commercial and the heat-treated ZnNb2O6 samples. The two
sets of spectra exhibited many identical vibrations. According to
literature data, four major peaks can be assigned as Ag modes
(894 and 292 cm−1) and as B2g modes (329 and 210 cm−1).63

Differences in the two sets of spectra in Figure 4B (e.g.,
pronounced shoulder in the 894 cm−1 band for the SCS
sample) are attributable to the ZnO minority phase in the SCS
sample.
The morphological attributes of the oxide samples were

gleaned from electron microscopy (both SEM and TEM).

Figure 5 shows SEM images of spray-coated and heat-treated
copper niobate (A, B) and zinc niobate (C, D) thin films. There
was no significant difference between the as-is and annealed
samples; the thin films possessed similar morphology. Further,
the electrode surfaces were coated evenly in both cases (unlike
for the samples annealed at 800 °C, where no coherent layer
was obtained).
The TEM images in Figures 6A and B for the CuNb2O6 and

ZnNb2O6 nanoparticles, respectively, revealed a slightly bigger
particle size (typically 20−60 nm) compared to the XRD data.
The particles were also aggregated. Closer inspection of the
particles via HR-TEM revealed visible lattice fringes for both
materials. Interplanar spacings for the CuNb2O6 sample (Figure
6C), 0.276, 0.292, and 0.714 nm, corresponding to the (202),
(310), and (200) lattice planes, may be discerned; these are in
good agreement with data in prior studies for samples derived
from other synthesis methods.23,54 For the ZnNb2O6 sample
(Figure 6D) these values were 0.272, 0.291, and 0.361 nm,
corresponding to the (002), (020), and (400) lattice planes,
respectively. These HR-TEM data are also consistent with
values in earlier reports,63,66 as well as with the XRD data
presented earlier.

Figure 3. XRD patterns for (A) CuNb2O6 and (B) ZnNb2O6 samples; (*) represents the presence of ZnO and Nb2O5 in ZnNb2O6 and CuNb2O6,
respectively.

Figure 4. Comparison of Raman spectra for commercial and annealed samples: (A) CuNb2O6 and (B) ZnNb2O6.
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Optical Properties. UV−vis diffuse reflectance spectrosco-
py was employed to estimate the bandgap energy values of the
synthesized oxides. This was achieved by generating Tauc plots,
namely, a plot of the Kubelka−Munk function versus photon
energy (αhvn vs hv).67,68,69 Figure 7 contains representative
plots for CuNb2O6 (Figure 7A) and ZnNb2O6 (Figure 7B),

respectively. Table 2 displays the experimental, calculated, and
literature energy bandgap values. The CuNb2O6 samples
showed an indirect bandgap of 1.77 eV, again falling within
the range reported in the literature. For ZnNb2O6, an indirect
bandgap of 3.55 eV was obtained. This value was within the
range of previously reported studies of ZnNb2O6 as shown in
Table 2. The optical data in Figure 7B also clearly show the
presence of the ZnO minority phase in the SCS sample.
Thermal anneal, as expected, did not significantly perturb the
values of the bandgap energy for either CuNb2O6 or ZnNb2O6

(Table 2).
Electronic Band Structure Calculations. Electronic band

structures were calculated for the two oxides along the special
symmetry points in the Brillouin zone. The DFT + U electronic
band structures of CuNb2O6 and ZnNb2O6 are shown in
Figures 8A and B, respectively. CuNb2O6 had a net magnetic
moment of 4.00 μB, thereby having different spin-up and spin-
down contributions. The major difference in CuNb2O6 band
structures in the two spin directions was the presence of
partially occupied intermediate bands in the spin-down channel
near the Fermi level as shown in Figure 8A. The presence of
intermediate bands split the bandgap of CuNb2O6 into two
sub-bandgaps: one was direct at Γ with a value of 0.92 eV, and
the other one was indirect with a value of 2.07 eV along the Γ
→ C region. These partially occupied bands near the Fermi
level can presumably contribute to the p-type conductivity of
CuNb2O6. However, the bands (especially VB) are relatively
flat. As a result, despite their intrinsic presence, holes may not
be very mobile, and hence the conductivity due to holes may
not be significant.
Figure 8B exhibits an indirect bandgap of 3.53 eV for

ZnNb2O6 (very close to the experimental optical absorption
value) occurring along Γ → X. The CB and the VB are mostly
dispersive, indicating lower effective masses of holes and higher
effective masses of electrons, respectively. Unlike the copper
counterpart, ZnNb2O6 had a net magnetic moment of 0 μB.

Photoelectrochemical (PEC) Characterization. Figure
9A shows the comparison of linear sweep photovoltammetry
data for CuNb2O6 in various aqueous solutions, while the
sample was illuminated by visible light. First, the photo-
voltammograms were recorded in 0.1 M Na2SO4 saturated with
N2 (black curve) to map the general PEC behavior of the
sample. Note that PEC activity manifests as cathodic
photocurrent flow diagnosing that the minority carriers are
electrons. Accordingly, based on these measurements, the
CuNb2O6 sample has p-type semiconductor characteristics in
good agreement with theoretical predictions (see above).
Literature reports6,18,59−61 suggest that the band edge

positions of copper niobates are in a regime that would make
these materials photoelectroactive toward the reduction of
CO2. Accordingly, the PEC performance of the p-CuNb2O6

sample was tested in CO2- and N2-saturated 0.1 M NaHCO3

solution (red and blue curves, Figure 9A). Two major
observations can be made: (a) The photocurrents are two
times higher (at E = −0.4 V) if the solution is saturated with
CO2. (b) In the presence of HCO3

−, PEC CO2 reduction still
occurs even if the solution is saturated with N2.
To exclude the effect of pH and the possibility that the

higher photocurrent is simply a result of enhanced proton
reduction occurring because of the more acidic pH (induced by
CO2), the photovoltammograms, which were rerecorded in
CO2-saturated NaHCO3 solution, can be compared with the
one measured in 0.1 M Na2SO4. This comparison clearly

Figure 5. SEM images of (A) CuNb2O6 as-is and (B) CuNb2O6

annealed at 600 °C and (C) ZnNb2O6 as-is and (D) ZnNb2O6

annealed at 600 °C. The samples in all cases were spray-coated and
heat-treated thin films on ITO substrate.

Figure 6. TEM images of (A) CuNb2O6 and (B) ZnNb2O6 annealed
at 600 °C and (C), (D) corresponding high-resolution images
displaying the presence of lattice fringes.

Table 2. Optical Properties of the Solution Combustion-
Synthesized Metal Niobate Samples
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confirms the notion that pH has a negligible effect on the
magnitude of the photocurrents. The dramatic increase in the
presence of CO2 (i.e., 6 times higher photocurrents at E = −0.4
V) is clearly attributable to the ability of CuNb2O6 to
photoelectrochemically reduce CO2. At this point we note
that, as far as we know, there is only one prior report18 in the
literature on the PEC reduction of CO2 on a copper niobate
(Cu3Nb2O8) photocathode, and our SCS material shows
comparable photoactivity. It is worth noting that the copper
niobate photocathode in this prior study was prepared by a
different method, viz., spin-coating of a sample derived from
metal organic decoposition.18

The onset potential of photocurrent flow at semiconductor/
electrolyte interfaces is approximately related to the flat-band
potential if appreciable shifts induced by carrier trapping at the
interface can be neglected.70 Thus, from the data in Figure 9A,

the position of the valence band (VB) edge in p-CuNb2O6 can
be estimated to be 0.170 V vs Ag/AgCl.
Figure 9B contains representative photocurrent/potential

data for a ZnNb2O6 thin film electrode recorded in 0.1 M
Na2SO4 (black curve) and in 0.1 M Na2SO3 (red curve) under
chopped UV-light irradiation. These PEC experiments revealed
that ZnNb2O6 behaved as a typical n-type semiconductor.
However, only moderate photocurrents were measured in the
Na2SO4 solution. To further evaluate the PEC behavior, a hole
scavenger (0.1 M Na2SO3) was employed, and linear sweep
photovoltammograms were re-recorded. The maximum photo-
current was approximately one magnitude higher (0.2 mA cm−2

at 0.25 V) compared to the one recorded in Na2SO4. Two
separate processes were observed on this curve: (a) SO3

2−

oxidation up to E = −0.2 V and (b) SO3
2− and water oxidation

above −0.2 V. As in the p-CuNb2O6 case but now for an n-type
semiconductor, the onset potential of this voltammogram can
again be related to the Fermi level of the n-ZnNb2O6 sample.
Thus, the position of the conduction band (CB) edge can be
estimated (−0.78 V vs Ag/AgCl). We note here that the
presence of the ZnO minority phase may also contribute to the
measured photocurrents either directly (ZnO is also an n-type
semiconductor) or indirectly, via the so-called mixed crystal
effect, by ensuring better charge separation.71

Finally, it is worth noting that linear sweep photovoltammo-
grams were also recorded for the respective commercial
samples (Figure S2). The most important conclusions to be
drawn from these comparative studies are that (i) the character
of the curves is similar to those recorded for the SCS samples
and (ii) the SCS samples massively outperform their
commercial counterparts in the case of both oxides, in terms

Figure 7. Tauc plots of (A) CuNb2O6 and (B) ZnNb2O6 (with a minority ZnO phase) annealed at 600 °C.

Figure 8. Electronic band structures of (A) CuNb2O6 and (B)
ZnNb2O6.

Figure 9. (A) Comparison of PEC activity of the CuNb2O6 sample in various solutions: in 0.1 M Na2SO4 saturated with N2, pH = 7.00 (black
curve); in 0.1 M NaHCO3 saturated with N2, pH ∼ 9.00 (red curve); and in 0.1 M NaHCO3 saturated with CO2, pH ∼ 7.00 (blue curve); applying a
sweep rate of 1 mV s−1, using a 150 W tungsten−halogen visible lamp. (B) Photovoltammogram of the ZnNb2O6 sample recorded in 0.1 M Na2SO4

and in 0.1 M Na2SO3 applying a sweep rate of 2 mV s−1, using a 100 W tungsten−halogen UV lamp.
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of the measured photocurrents. In other words, there is an
order of magnitude difference in the photocurrents.
Figure 10 contains photoaction spectra for p-CuNb2O6

(Figure 10A) and n-ZnNb2O6 (Figure 10B), respectively. The
p-CuNb2O6 sample was photoactive in a broad wavelength
range. Although the IPCE curve (Figure 10A) suggests that the
p-CuNb2O6 sample can utilize UV-light, our experiments
showed an increased rate of photocorrosion when the sample
was illuminated by UV-light (data not presented). The curve
had a maximum at 460 nm (5.2%), and the decrease of the
efficiency was not as sharp as in the case of the n-ZnNb2O6

sample (Figure 10B); at wavelengths higher than 800 nm, the
photoactivity diminished. The bandgap energy (EBG(IPCE) = 1.9
eV) was estimated by fitting the cutoff region with a straight
line segment and extrapolating to the wavelength axis. This
value roughly matches with our optical data and the results of
the DFT calculations presented earlier.
Figure 10B shows the photoaction spectrum (IPCE data)

registered at E = 0.1 V in 0.1 M Na2SO3. It can be concluded
that n-ZnNb2O6 is photoelectroactive only when illuminated by
UV-light, a conclusion well supported by the optical and PEC
data presented earlier. The IPCE curve reached its maximum at
350 nm (9.4%) (Figure 10B) followed by a sharp cutoff. By
fitting a linear segment on this part of the curve, the bandgap
energy can be estimated (EBG(IPCE) = 3.1 eV), again in
reasonable agreement with the data from the UV−vis
measurements and DFT calculations.
Stability tests were performed using repetitive cycles of linear

sweep voltammetry; the corresponding data are contained in
Figure S3. ZnNb2O6 showed impressive PEC stability, as
deduced from the perfect overlap of the series of subsequently
recorded photovoltammograms (Figure S3B). As for CuNb2O6,
it exhibited the instability often reported for copper-containing
p-type semiconductors. There was a notable decrease in the
photocurrent during subsequent cycles, especially when the
electrode was polarized at negative potentials (Figure S3A).
This effect also manifested in the continuous decay in the
photocurrent during long-term measurements, similar to what
was observed for another copper niobate (Cu3Nb2O8) earlier
(see ref 18).
Finally, the bandgap energy values derived earlier along with

the data on band edge positions as inferred from the PEC
measurements and afforded mapping of the energy band
diagrams for both compounds on a common scale; this is
shown in Figure 11. Also compared are the corresponding data
for the three parent oxides, Cu2O, ZnO, and Nb2O5,
respectively. Relative to the parent (binary) oxides, the ternary
oxides have higher CB positions, translating in turn to higher

reducing power for the photogenerated electrons in these
compounds. This is a useful attribute in the use of these
compounds for driving photoreduction processes such as CO2

splitting.

■ CONCLUSIONS

In this study, the feasibility of solution combustion synthesis
(SCS) of p-CuNb2O6 and n-ZnNb2O6 nanoparticles was
demonstrated. As a result of the highly exothermic conditions
prevailing in SCS, both oxides were at least partly crystalline
even without additional thermal anneal. The surface areas of
these nanoparticles also far exceeded those of commercial
benchmark samples. This is a significant finding underlining the
utility of SCS for generating nanoparticles for any catalytically
relevant application where this parameter plays a key role.
Photoelectrochemical measurements established that CuNb2O6

is a p-type semiconductor with a bandgap energy of ∼1.9 eV.
On the other hand, ZnNb2O6 exhibited n-type behavior with a
bandgap of ∼3.1 eV.
Other than differences in the type of semiconductor

electronic conductivity and bandgap energy values for the
two metal niobates, band structure calculations also revealed
important differences with an intermediate band being
identified for the Cu compound. Finally p-CuNb2O6 showed
promising activity toward the photoelectrochemical reduction
of CO2 even without any cocatalyst. This attribute appears to
be a common denominator for p-type copper oxide semi-
conductors as also gleaned from our companion studies on
copper oxides.4,9,73,74 On the other hand, n-ZnNb2O6 exhibited

Figure 10. Photoaction spectra for the CuNb2O6 sample in 0.1 M NaHCO3 saturated with CO2 at E = −0.35 V and Δλ = 20 nm (A) and ZnNb2O6

sample registered in 0.1 M Na2SO3 at E = 0.1 V and Δλ = 10 nm (B).

Figure 11. Energy band diagrams (determined from PEC measure-
ments) for ZnNb2O6 and CuNb2O6, compared to the respective
monometallic (binary) oxides. The latter were constructed from data
in ref 72.
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photoactivity for the oxidation of sulfite (an environmental
pollutant) and water (a source of solar fuel).
Taken as a whole, the data presented above build upon the

corpus of earlier studies from our laboratories2,33−35 and by
other research groups,29−35,72 demonstrating the versatility of
SCS for preparing a variety of oxide semiconductor nano-
particles for solar fuel generation and environmental
remediation.
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