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Solution for a bipartite Euclidean traveling-salesman problem in one dimension
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The traveling-salesman problem is one of the most studied combinatorial optimization problems, because of the
simplicity in its statement and the difficulty in its solution. We characterize the optimal cycle for every convex and
increasing cost function when the points are thrown independently and with an identical probability distribution
in a compact interval. We compute the average optimal cost for every number of points when the distance function
is the square of the Euclidean distance. We also show that the average optimal cost is not a self-averaging quantity
by explicitly computing the variance of its distribution in the thermodynamic limit. Moreover, we prove that the
cost of the optimal cycle is not smaller than twice the cost of the optimal assignment of the same set of points.
Interestingly, this bound is saturated in the thermodynamic limit.
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I. INTRODUCTION

Given N cities and N (N − 1)/2 values that represent the
cost paid for traveling between all pairs of them, the traveling-
salesman problem (TSP) consists of finding the tour that visits
all the cities and finally comes back to the starting point
with the least total cost to be paid for the journey. The TSP
is the archetypal problem in combinatorial optimization [1].
Its first formalization probably can be traced back to the
Austrian mathematician Karl Menger, in the 1930s [2], and
it still raises interest today. As it belongs to the class of
NP-complete problems (see Karp and Steele in [1]), the study
of the TSP could shed light on the famous P vs NP problem [3].
Many problems in various fields of science (computer science,
operational research, genetics, engineering, electronics, and so
on) and in everyday life (lacing shoes, Google maps queries,
food deliveries, and so on) can be mapped on a TSP or a
variation of it; see, for example, chapter 3 in Ref. [4] for a
nonexhaustive list. Interestingly, the complexity of the TSP
seems to remain high even if we try to modify the problem.
For example, the Euclidean TSP, where the costs to travel from
cities are the Euclidean distances between them, remains NP-
complete [5]. The bipartite TSP, where the cities are divided
in two subsets and the tour has to alternate between them,
is NP-complete, too, as its Euclidean counterpart. It is well
known that the statistical properties of the optimal solution
of problems in combinatorial optimization can be related to
the zero temperature behavior of corresponding disordered
statistical mechanics models [6–9] when a class of problems
and a probability distribution for the different instances are
defined.

Previous investigations of some of us suggested that the
Euclidean matching problem is simpler to deal with in its
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bipartite version. This idea encouraged us to consider the
bipartite TSP, starting from the one-dimensional case that is
fully analyzed here.

The manuscript is organized as follows: In Sec. II we define
the TSP and its variants we are interested in. We shall introduce
a representation of the model, which is novel as far as we
know, in terms of a couple of permutations. In this way we also
establish a very general connection between the bipartite TSP
and a much simpler model, which is in the P complexity class,
the assignment problem. Always using our representation, in
Sec. III we can provide the explicit solution of the problem for
every instance of the disorder (that is, for every position of the
points) in the one-dimensional case when the cost is a convex
and increasing function of the Euclidean distance between the
cities. In Sec. IV we exploit our explicit solution to compute the
average optimal cost for an arbitrary number of points, when
they are chosen with uniform distribution in the unit interval,
and we present a comparison with the results of numerical
simulations. In Sec. V we discuss the behavior of the cost in
the thermodynamic limit of an infinite number of points. Here
the results can be extended to more general distribution laws
for the points. In Sec. VI we give our conclusions.

II. THE MODEL

Given a generic (undirected) graph G = (V,E), a cycle of
length k is a sequence of edges e1,e2, . . . ,ek ∈ E in which two
subsequent edges ei and ei+1 share a vertex for i = 1, . . . ,k

where, for i = k the edge ek+1 must be identified with the edge
e1. On a bipartite graph each cycle must have an even length.
The cycle is Hamiltonian when the visited vertices are all
different and the cardinality of the set of vertices |V| is exactly
k for k > 2. In other terms, a Hamiltonian cycle is a closed
path visiting all the vertices in V only once. The determination
of the existence of a Hamiltonian cycle is an NP-complete
problem (see Johnson and Papadimitriou in [1]). A graph that
contains a Hamiltonian cycle is called a Hamiltonian graph.
The complete graph with N vertices KN is Hamiltonian for
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N > 2. The bipartite complete graph with N + M vertices
KN,M is Hamiltonian for M = N > 1.

Let us denote by H the set of Hamiltonian cycles of the
graph G. Let us suppose now that a weight we > 0 is assigned
to each edge e ∈ E of the graph G. We can associate with each
Hamiltonian cycle h ∈ H a total cost,

E(h) :=
∑
e∈h

we. (1)

In the (weighted) Hamiltonian cycle problem we search for
the Hamiltonian cycle h ∈ H such that the total cost in (1) is
minimized, i.e., the optimal Hamiltonian cycle h∗ ∈ H is such
that

E(h∗) = min
h∈H

E(h). (2)

When the N vertices ofKN are seen as cities and the weight for
each edge is the cost paid to cover the route distance between
the cities, the search for h∗ is called the traveling-salesman
problem (TSP). For example, consider when the graph KN is
embedded in Rd , that is, for each i ∈ [N ] = {1,2, . . . ,N} we
associate a point xi ∈ Rd , and for e = (i,j ) with i,j ∈ [N ] we
introduce a cost which is a function of their Euclidean distance
we = |xi − xj |p with p ∈ R. When p = 1, we obtain the usual
Euclidean TSP. Analogously for the bipartite graph KN,N we
will have two sets of points in Rd , that is the red {ri}i∈[N] and
the blue {bi}i∈[N] points and the edges connect red with blue
points with a cost,

we = |ri − bj |p. (3)

When p = 1, we obtain the usual bipartite Euclidean TSP. The
simplest way to introduce randomness in the problem is to con-
sider the weights we independent and identically distributed
random variables. In this case the problem is called random
TSP and has been extensively studied by disordered system
techniques such as replica and cavity methods [7,10–15]
and by a rigorous approach [16]. In the random Euclidean TSP
[17–21], instead, the positions of the points are generated at
random and as a consequence the weights will be correlated.
The typical properties of the optimal solution are of interest,
and in particular the average optimal cost,

E := E(h∗), (4)

where we have denoted by a bar the average over all possible
realization of the disorder.

A. Representation in terms of permutations

We shall now restrict to the complete bipartite graph KN,N .
Let SN be the group of permutation of N elements. For each
σ,π ∈ SN , the sequence for i ∈ [N ],

e2i−1 = (rσ (i),bπ(i)),

e2i = (bπ(i),rσ (i+1)), (5)

where σ (N + 1) must be identified with σ (1), defines a Hamil-
tonian cycle. More properly, it defines a Hamiltonian cycle with
starting vertex r1 = rσ (1) with a particular orientation, that is,

h[(σ,π )] := (r1bπ(1)rσ (2)bπ(2) · · · rσ (N)bπ(N)) = (r1C), (6)

where C is an open walk that visits once all the blue points and
all the red points with the exception of r1. Let C−1 be the open
walk in the opposite direction. This defines a new, dual, couple
of permutations that generate the same Hamiltonian cycle,

h[(σ,π )�] := (C−1r1) = (r1C
−1) = h[(σ,π )], (7)

since the cycle (r1C
−1) is the same as (r1C) (traveled in the

opposite direction). By definition,

h[(σ,π )�] = (r1bπ(N)rσ (N)bπ(N−1)rσ (N−1) · · · bπ(2)rσ (2)bπ(1)).

(8)

Let us introduce the cyclic permutation τ ∈ SN , which per-
forms a left rotation, and the inversion I ∈ SN , that is, τ (i) =
i + 1 for i ∈ [N − 1] with τ (N ) = 1 and I (i) = N + 1 − i.
In the following we shall denote a permutation by using the
second raw in the usual two-raw notation, that is, for example,
τ = (2,3, . . . ,N,1) and I = (N,N − 1, . . . ,1). Then,

h[(σ,π )�] = h[(σ ◦ τ ◦ I,π ◦ I )]. (9)

There are N ! (N − 1)!/2 Hamiltonian cycles forKN,N . Indeed
the couples of permutations are (N !)2 but we have to divide
them by 2N because of the N different starting points and the
two directions in which the cycle can be traveled.

B. Comparison with the assignment problem

From (5) and weights of the form (3), we get an expression
for the total cost,

E[h[(σ,π )]] =
∑
i∈[N]

[|rσ (i) − bπ(i)|p + |rσ◦τ (i) − bπ(i)|p]. (10)

Now we can reshuffle the sums and we get

E[h[(σ,π )]]

=
∑
i∈[N]

|ri − bπ◦σ−1(i)|p +
∑
i∈[N]

|ri − bπ◦τ−1◦σ−1(i)|p

= E[m(π ◦ σ−1)] + E[m(π ◦ τ−1 ◦ σ−1)], (11)

where E[m(λ)] is the total cost of the assignment m in KN,N

associated with the permutation λ ∈ SN ,

E[m(λ)] =
∑
i∈[N]

|ri − bλ(i)|p. (12)

The duality transformation (9), that is,

σ → σ ◦ τ ◦ I, (13)

π → π ◦ I, (14)

interchanges the two matchings because

μ1 := π ◦ σ−1 → π ◦ I ◦ I ◦ τ−1 ◦ σ−1

= π ◦ τ−1 ◦ σ−1, (15a)

μ2 := π ◦ τ−1 ◦ σ−1 → π ◦ I ◦ τ−1 ◦ I ◦ τ−1 ◦ σ−1

= π ◦ σ−1, (15b)

where we used

I ◦ τ−1 ◦ I = τ. (16)
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The two matchings corresponding to the two permutations μ1

and μ2 have no edges in common and therefore each vertex
will appear twice in the union of their edges. Remark also that

μ2 = μ1 ◦ σ ◦ τ−1 ◦ σ−1, (17)

which means that μ1 and μ2 are related by a permutation which
has to be, as it is τ−1, a unique cycle of length N . It follows that,
if h∗ is the optimal Hamiltonian cycle and m∗ is the optimal
assignment,

E[h∗] � 2 E[m∗]. (18)

In the case of the Euclidean assignment the scaling of the
average optimal cost is known in every dimension and for every
p > 1 [22]:

E[μ∗] ∼

⎧⎪⎨
⎪⎩

N1− p

2 d = 1;

N1− p

2 (log N )
p

2 d = 2;

N1− p

d d > 2.

(19)

The scaling is anomalous in 1 and 2 dimensions, differently
from the matching problem on the complete graphKN where in
any dimension the scaling with the number of points is always
N1− p

d . Indeed, also for the monopartite Euclidean TSP (that
is on KN ) in [17] it has been shown that for p = 1, in a finite
region, with probability 1, the total cost scales according to
N1− p

d in any dimension.

III. SOLUTION IN d = 1 FOR ALL INSTANCES

Here we shall concentrate on the one-dimensional case,
where both red and blue points are chosen uniformly in the
unit interval [0,1]. In our analysis we shall make use of the
results for the Euclidean assignment problem in one dimension
of [23] which have been obtained when in (3) is set p > 1. In
this work it is shown that sorting both red and blue points
in increasing order, the optimal assignment is defined by the
identity permutation 1 = (1,2, . . . ,N). From now on, we will
assume p > 1 and that both red and blue points are ordered,
i.e., r1 � · · · � rN and b1 � · · · � bN . Let

σ̃ (i) =
{

2i − 1 i � (N + 1)/2
2N − 2i + 2 i > (N + 1)/2,

(20)

and

π̃ (i) = σ̃ ◦ I (i) = σ̃ (N + 1 − i)

=
{

2i i < (N + 1)/2
2N − 2i + 1 i � (N + 1)/2,

(21)

where the couple (σ̃ ,π̃ ) will define a Hamiltonian cycle h̃ ∈ H.
More precisely, according to the correspondence given in (5),
it contains the edges for even N ,

ẽ2i−1 =
{

(r2i−1,b2i) i � N/2
(r2N−2i+2,b2N−2i+1) i > N/2,

(22a)

ẽ2i =

⎧⎪⎪⎨
⎪⎪⎩

(b2i ,r2i+1) i < N/2
(bN,rN ) i = N/2

(b2N−2i+1,r2N−2i) N/2 < i < N

(b1,r1) i = N,

(22b)

r1 r2 r3 r4

b1 b2 b3 b4

FIG. 1. The optimal Hamiltonian cycle h̃ for N = 4 blue and red
points chosen in the unit interval and sorted in increasing order.

while for N odd,

ẽ2i−1 =
⎧⎨
⎩

(r2i−1,b2i) i < (N − 1)/2
(rN ,bN ) i = (N − 1)/2
(r2N−2i+2,b2N−2i+1) i > (N − 1)/2,

(23a)

ẽ2i =
⎧⎨
⎩

(b2i ,r2i+1) i < (N − 1)/2
(b2N−2i+1,r2N−2i) (N − 1)/2 < i < N

(b1,r1) i = N.

(23b)

The main ingredient of our analysis is the following.
Proposition III.1. For a convex and increasing cost function

the optimal Hamiltonian cycle is provided by h̃.
This cycle is the analogous of the criss-cross solution

introduced by Halton [24] (see Fig. 1). In his work, Halton
studied the optimal way to lace a shoe. This problem can
be seen as a peculiar instance of a two-dimensional bipartite
Euclidean TSP with the parameter which tunes the cost p = 1.
One year later, Misiurewicz [25] generalized Halton’s result
giving the least restrictive requests on the two-dimensional
TSP instance to have the criss-cross cycle as the solution. Other
generalizations of these works have been investigated in more
recent papers [26,27]. We will show that the same criss-cross
cycle has the lowest cost for the Euclidean bipartite TSP in one
dimension, provided that p > 1. To do this, we will prove in a
novel way the optimality of the criss-cross solution, suggesting
two moves that lower the energy of a tour and showing that the
only Hamiltonian cycle that cannot be modified by these moves
is h̃.

We shall make use of the following moves in the ensemble
of Hamiltonian cycles. Given i,j ∈ [N ] with j > i we can
partition each cycle as

h[(σ,π )] = (C1rσ (i)bπ(i)C2bπ(j )rσ (j+1)C3), (24)

where the Ci are open paths in the cycle, and we can define
the operator Rij that exchanges two blue points bπ(i) and bπ(j )

and reverses the path between them as

h[Rij (σ,π )] := (C1rσ (i)[bπ(i)C2bπ(j )]
−1rσ (j+1)C3)

= (
C1rσ (i)bπ(j )C

−1
2 bπ(i)rσ (j+1)C3

)
. (25)

Analogously by writing

h[(σ,π )] = (C1bπ(i−1)rσ (i)C2rσ (j )bπ(j )C3), (26)

we can define the corresponding operator Sij that exchanges
two red points rσ (i) and rσ (j ) and reverses the path between
them:

h[Sij (σ,π )] := (C1bπ(i−1)[rσ (i)C2rσ (j )]
−1bπ(j )C3)

= (
C1bπ(i−1)rσ (j )C

−1
2 rσ (i)bπ(j )C3

)
. (27)
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Two couples of points (rσ (k),rσ (l)) and (bπ(j ),bπ(i)) have the
same orientation if (rσ (k) − rσ (l))(bπ(j ) − bπ(i)) > 0. Note that
as we have ordered both sets of points this means also that

(σ (k),σ (l)) and (π (j ),π (i)) have the same orientation.
Then
Lemma 1. Let E[(σ,π )] be the cost defined in (10). Then

E[Rij (σ,π )] − E[(σ,π )] > 0 if the couples (rσ (j+1),rσ (i)) and
(bπ(j ),bπ(i)) have the same orientation and E[Sij (σ,π )] −
E[(σ,π )] > 0 if the couples (rσ (j ),rσ (i)) and (bπ(j ),bπ(i−1))
have the same orientation.

Proof.

E[Rij (σ,π )] − E[(σ,π )]

= w(rσ (i),bπ(j )) + w(bπ(i),rσ (j+1)) − w(rσ (i),bπ(i)) − w(bπ(j ),rσ (j+1)),

(28)

and this is the difference between two matchings which is
positive if the couples (rσ (j+1),rσ (i)) and (bπ(j ),bπ(i)) have the
same orientation (as shown in [23,28] for a weight which is
an increasing convex function of the Euclidean distance). The
remaining part of the proof is analogous. �

Lemma 2. The only couples of permutations (σ,π ) with
σ (1) = 1 such that both (σ (j + 1),σ (i)) have the same ori-
entation as (π (j ),π (i)) and (π (j ),π (i − 1)) and (σ (j ),σ (i)),
for each i,j ∈ [N ] are (σ̃ ,π̃ ) and its dual (σ̃ ,π̃ )�.

Proof. We have to start our Hamiltonian cycle from rσ (1) =
r1. Next we look at π (N ), if we assume now that π (N ) > 1,
there will be a j such that our cycle would have the form
(r1C1rσ (j )b1C2bπ(N)), if we assume j > 1 then (1,σ (j )) and
(π (N ),1) have the opposite orientation, so that necessarily
π (N ) = 1. In the case j = 1 our Hamiltonian cycle is of
the form (r1b1C), that is, (b1Cr1), and this is exactly of the
other form if we exchange red and blue points. We assume
that it is of the form (r1Cb1); the other form would give,
at the end of the proof, (σ̃ ,π̃ )�. Now we shall proceed by
induction. Assume that our Hamiltonian cycle is of the form
(r1b2r3 · · · xkCyk · · · b3r2b1) with k < N , where xk and yk are,
respectively, a red point and a blue point when k is odd and vice
versa when k is even. Then yk+1 and xk+1 must be in the walk C.
If yk+1 it is not the point on the right of xk the cycle has the form
(r1b2r3 · · · xkysC1yk+1xl · · · yk · · · b3r2b1) but then (xl,xk) and
(yk+1,ys) have opposite orientation, which is impossible, so
that s = k + 1, that is, the point on the right of xk . Where is
xk+1? If it is not the point on the left of yk the cycle has the
form (r1b2r3 · · · xkyk+1 · · · ylxk+1C1xs · · · yk · · · b3r2b1), but
then (xs,xk+1) and (yk,yl) have the opposite orientation, which
is impossible, so that s = k + 1, that is, the point on the
left of yk . We have now shown that the cycle has the form
(r1b2r3 · · · yk+1Cxk+1 · · · b3r2b1) and can proceed until C is
empty. �

The case with N = 3 points is explicitly investigated in
Appendix.

Now that we have understood what is the optimal Hamil-
tonian cycle, we can look in more detail at what are the two
matchings which enter in the decomposition we used in (11).
As π̃ = σ̃ ◦ I we have that

I = σ̃−1 ◦ π̃ = π̃−1 ◦ σ̃ . (29)

r1 r2 r3 r4 r5

b1 b2 b3 b4 b5

r1 r2 r3 r4 r5

b1 b2 b3 b4 b5

FIG. 2. Decomposition of the optimal Hamiltonian cycle h̃ for
N = 5 in two disjoint matchings μ̃2 and μ̃1.

As a consequence both permutations associated with the
matchings appearing in (11) for the optimal Hamiltonian cycle
are involutions:

μ̃1 ≡ π̃ ◦ σ̃−1 = σ̃ ◦ I ◦ σ̃−1 = σ̃ ◦ π̃−1

= [π̃ ◦ σ̃−1]−1, (30a)

μ̃2 ≡ π̃ ◦ τ−1 ◦ σ̃−1 = σ̃ ◦ I ◦ τ−1 ◦ I ◦ π̃−1

= [π̃ ◦ τ−1 ◦ σ̃−1]−1, (30b)

where we used (16). This implies that those two permutations
have at most cycles of period two, a fact which reflects a
symmetry by exchange of red and blue points.

When N is odd it happens that

I ◦ σ̃ ◦ I = σ̃ ◦ τ− N−1
2 , (31)

so that

I ◦ π̃ ◦ I = I ◦ σ̃ ◦ I ◦ I = σ̃ ◦ τ− N−1
2 ◦ I

= π̃ ◦ I ◦ τ− N−1
2 ◦ I = π̃ ◦ τ

N−1
2 . (32)

It follows that the two permutations in (30a) and (30b) are
conjugate by I ,

I ◦ π̃ ◦ τ−1 ◦ σ̃−1 ◦ I = π̃ ◦ τ
N−1

2 ◦ τ ◦ τ
N−1

2 ◦ σ̃−1

= π̃ ◦ σ̃−1, (33)

so that, in this case, they have exactly the same numbers of
cycles of order 2. Indeed we have

μ̃1 = (2,1,4,3,6, . . . ,N − 1,N − 2,N ), (34a)

μ̃2 = (1,3,2,5,4, . . . N,N − 1), (34b)

and they have N−1
2 cycles of order 2 and one fixed point. See

Fig. 2 for the case N = 5.
In the case of even N the two permutations have not the

same number of cycles of order 2; indeed one has no fixed
point and the other has two of them. More explicitly,

μ̃1 = (2,1,4,3,6, . . . ,N,N − 1), (35a)

μ̃2 = (1,3,2,5,4, . . . N − 1,N − 2,N ). (35b)

See Fig. 3 for the case N = 4.
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r1 r2 r3 r4

b1 b2 b3 b4

r1 r2 r3 r4

b1 b2 b3 b4

FIG. 3. Decomposition of the optimal Hamiltonian cycle h̃ for
N = 4 in the two disjoint matchings μ̃2 and μ̃1.

IV. EVALUATION OF THE COST

Here we will evaluate the cost of the optimal Hamiltonian
cycle h̃ for KN,N ,

EN (h̃) = |r1 − b1|p + |rN − bN |p

+
N−1∑
i=1

[|bi+1 − ri |p + |ri+1 − bi |p]. (36)

Assume that both red and blue points are chosen according to
the law ρ and let

�ρ(x) :=
∫ x

0
ds ρ(s) (37)

be its cumulative. The probability that among N randomly
located points the kth point is in the interval (x,x + dx), is
given by

Pr ρ[xk ∈ dx] = k

(
N

k

)
�k−1

ρ (x)[1 − �ρ(x)]N−kρ(x) dx.

(38)

In particular for k = 1,

Pr ρ[x1 ∈ dx] = N [1 − �ρ(x)]N−1ρ(x) dx, (39)

and k = N ,

Pr ρ[xN ∈ dx] = N �N−1
ρ (x)ρ(x) dx. (40)

Given two sequences of N points, the probability for the
difference φk in the position between the (k + 1)th and the
kth points is

Pr ρ[φk ∈ dφ]

= k(k + 1)

(
N

k

)(
N

k + 1

)
dφk

×
∫

dx dy ρ(x) ρ(y)δ(φk − y + x) �ρ(y) [1 − �ρ(x)],

× [�ρ(x)�ρ(y)]k−1[(1 − �ρ(x))(1 − �ρ(y))]N−k−1.

(41)

Let us now focus on the simple case in which the law ρ is flat,
then �ρ(x) = x.

|r1 − b1|p = N2
∫ 1

0
dx dy [(1 − x)(1 − y)]N−1|x − y|p

= N2
∫ 1

0
dx dy (xy)N−1|x − y|p

= |rN − bN |p. (42)

For p = 2,

|r1 − b1|2 = 2N

(N + 1)2(N + 2)
, (43)

and

|bk+1 − rk|2

= |rk+1 − bk|2 = k(k + 1)

(
N

k

)(
N

k + 1

)

×
∫ 1

0
dx dy (x−y)2y(1−x)(xy)k−1[(1−x)(1−y)]N−k−1

= 2(k + 1)(N − k + 1)

(N + 1)2(N + 2)
, (44)

and
N−1∑
k=1

2(k + 1)(N − k + 1)

(N + 1)2(N + 2)
= 1

3

(N + 6)(N − 1)

(N + 1)(N + 2)
. (45)

In conclusion, the average cost for the flat distribution and
p = 2 is exactly

E
(2)
N = 2

3

N2 + 4N − 3

(N + 1)2
. (46)

If we recall that for the assignment the average optimal total
cost is exactly 1

3
N

N+1 , the difference between the average
optimal total cost of the bipartite TSP and twice the assignment
is

2

3

[
N2 + 4N − 3

(N + 1)2
− N

N + 1

]
= 1

3

N − 1

(N + 1)2
� 0, (47)

and vanishes for infinitely large N . Note that the limiting value
is reached from above for the TSP and from below for the
assignment. We plot in Fig. 4 the numerical results of the
average optimal cost for different number of points.

It is also interesting to look at the contribution from the two
different matchings in which we have subdivided the optimal
Hamiltonian cycle. In the case of N odd we have for one of
them the average cost,

2N

(N + 1)2(N + 2)
+ 2

N−1
2∑

k=1

4k(N − 2k + 2)

(N + 1)2(N + 2)

= 1

3

N2 + 4N − 3

(N + 1)2
, (48)

and also for the other,

2N

(N + 1)2(N + 2)
+ 2

N−1
2∑

k=1

2(2k + 1)(N − 2k + 1)

(N + 1)2(N + 2)

= 1

3

N2 + 4N − 3

(N + 1)2
. (49)
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FIG. 4. Numerical results for E
(2)
N for several values of N . The

continuous line represents the exact prediction given in (46) and the
dashed line gives the value for infinitely large N . For every N we have
used 104 instances. In the inset we show the numerical results for the
variance of the cost E

(2)
N obtained using the exact solution provided

by (20) and (21). The dashed line represents the theoretical large N

asymptotic value. Error bars are also plotted but they are smaller than
the mark size.

In the case of N even we have for the matching with two fixed
points the average cost,

4N

(N + 1)2(N + 2)
+ 2

N−2
2∑

k=1

2(2k + 1)(N − 2k + 1)

(N + 1)2(N + 2)

= 1

3

N2 + 4N − 6

(N + 1)2
, (50)

while for the other with no fixed points,

2

N−2
2∑

k=1

4k(N − 2k + 2)

(N + 1)2(N + 2)
= 1

3

N2 + 4N

(N + 1)2
, (51)

which then has a cost higher at the order N−2.

V. ASYMPTOTIC ANALYSIS FOR THE OPTIMAL
AVERAGE COST

Motivated by the preceding discussion, one can try to
perform a more refined analysis in the thermodynamic limit. In
the asymptotic regime of large N , in fact, only the term with a
sum on i in (36) will contribute, and each of the two terms will
provide an equal optimal matching contribution. Proceeding
as in the case of the assignment [23,29], one can show that
the random variables φk defined above Eq. (41) converge (in a
weak sense specified by Donsker’s theorem) to φ(s), which is
a difference of two Brownian bridge processes [30].

One can write the rescaled average optimal cost as

Ep ≡ lim
N→∞

N
p

2 −1 E
(p)
N , (52)

where we have denoted with a bar · the average over all
the instances. By starting at finite N with the representation
(41), the large N limit can be obtained setting k = Ns + 1

2

and introducing the variables ξ , η, and ϕ such that

x = s + ξ√
N

, y = s + η√
N

, φk = ϕ(s)√
N

, (53)

in such a way that s is kept fixed when N → +∞. Using the
fact that

�−1
ρ (x) ≈ �−1

ρ

(
s + ξ√

N

)
= �−1

ρ (s) + ξ√
N

(
ρ ◦ �−1

ρ

)
(s)

,

(54)

we obtain, at the leading order,

Pr[ϕ(s) ∈ dϕ]

= dϕ

∫∫
δ

(
ϕ − η − ξ

ρ
(
�−1

ρ (s)
)
)

exp
(− ξ 2+η2

2s(1−s)

)
2πs(1 − s)

dξ dη

=
(
ρ ◦ �−1

ρ

)
(s)√

4πs(1 − s)
exp

{
−

[(
ρ ◦ �−1

ρ

)
(s)

]2

4s(1 − s)
ϕ2

}
dϕ, (55)

that implies that

Ep = 2
∫ 1

0
|ϕ(s)|p ds

= 2
∫ 1

0
ds

s
p

2 (1 − s)
p

2[(
ρ ◦ �−1

ρ

)
(s)

]p

∫ +∞

−∞
dϕ |ϕ|p exp

[ − ϕ2

4

]
√

4π

= 21+p

√
π

�

(
p + 1

2

) ∫ 1

0
ds

s
p

2 (1 − s)
p

2[(
ρ ◦ �−1

ρ

)
(s)

]p

= 21+p

√
π

�

(
p + 1

2

) ∫ 1

0
dx

�
p

2
ρ (x)(1 − �ρ(x))

p

2

ρp−1(x)
. (56)

In the particular case of a flat distribution the average cost
converges to

Ep = 21+p

√
π

�

(
p + 1

2

) ∫ 1

0
ds [s(1 − s)]

p

2 = 2
�

(
p

2 + 1
)

p + 1
,

(57)

which is two times the value of the optimal matching. For
p = 2 this gives E2 = 2/3, according to the exact result (46).
Formula (55) becomes

ps(x) = δ(ϕ(s) − x) = e
− x2

4s(1−s)

√
4πs(1 − s)

, (58)

and similarly (see, for example, Appendix A in [29]) it can be
derived that the joint probability distribution pt,s(x,y) for ϕ(s)
is (for t < s) a bivariate Gaussian distribution,

pt,s(x,y) = δ(ϕ(t) − x) δ(ϕ(s) − y)

= e
− x2

4t
− (x−y)2

4(s−t) − y2

4(1−s)

4π
√

t(s − t)(1 − s)
. (59)

This allows one to compute, for a generic p > 1, the average
of the square of the rescaled optimal cost,

E2
p = 4

∫ 1

0
dt

∫ 1

0
ds |ϕ(s)|p|ϕ(t)|p, (60)
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which is 4 times the corresponding one of a bipartite matching
problem.

In the case p = 2, the average in Eq. (60) can be evaluated
by using the Wick theorem for expectation values in a Gaussian
distribution,

E2
2 = 4

∫ 1

0
ds

∫ s

0
dt

∫ ∞

−∞
dx dy pt,s(x,y) x2y2 = 4

5
, (61)

and, therefore,

E2
2 − E2

2 = 16

45
= 0.35̄. (62)

This result is in agreement with the numerical simulations (see
inset of Fig. 4) and proves that the rescaled optimal cost is not
a self-averaging quantity.

VI. CONCLUSION AND PERSPECTIVES

In this work we studied the random Euclidean bipartite
TSP in one dimension using a weight function which is a
power p of the Euclidean distance between red and blue
points. The complete bipartite graph is a special case of a more
general problem. The motivation of this choice is twofold: On
one hand in the one-dimensional case we have been able to
address clearly the connection between this problem and the
assignment and on the other hand we expect the bipartite TSP
to be more easily tractable than its monopartite counterpart
in more than one dimension. Traveling-salesman problems on
bipartite graphs may also turn out in practical situations (for
instance, a vehicle needing to visit a set of destinations and
a set of charging stations). We provide an explicit solution in
the convex case p > 1, giving the best cycle for each disorder
instance of the problem. This allowed us to compute explicitly
the average optimal cost when p = 2 and for every number
of points N . Interestingly, the value of the average optimal
cost turned out to be twice the average optimal cost of the
assignment problem. In the continuum limit we were also
able to find the average optimal cost for generic exponent p,
using the relation of the one-dimensional assignment with the
Brownian bridge process [23]. In the same thermodynamic
limit we computed the variance of the distribution of the
optimal costs; since we get a nonvanishing result, we deduce
that the average optimal cost is not a self-averaging quantity.
This feature is present also in the case of the assignment
problem, where the average optimal cost has been shown to
be self-averaging only in d > 2 [31].

In the field of combinatorial optimization problems, espe-
cially in mean field cases (i.e., where the random variables
are not correlated), the theory of spin glasses and disordered
systems can be used to calculate statistical properties of the
optimal solution analytically [8]. In such cases this approach
also sheds light on the design of new algorithms to find
solutions [9]. However, it is not clear in general how to apply
these techniques (beyond expanding around the mean field case
[32,33]), when correlations play an important role, as happens
when the graph is embedded in Euclidean spaces. For other
problems besides the TSP, analysis of the one-dimensional
case has enabled progress in the study of higher-dimensional
cases [34]. As a consequence, a relevant question is whether
the relations we obtained in one dimension continue to exist

FIG. 5. The whole diagram describing the N = 3 case. In the
squared boxes the various cycle configurations are represented. Lower
boxes correspond to lower costs. All the possible moves suggested in
Lemma 1 are represented by orange arrows.

also in d > 1, where the bipartite TSP is an NP-complete
problem. Recently, we computed exactly the cost and a two-
point correlation function in d = 2 for the assignment problem
[22,34,35]. The investigation of the connections between these
two combinatorial optimization problems is material for future
work.
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APPENDIX: THE CASE N = 3

In the case N = 2 there is only one Hamiltonian cycle,
that is, h̃. The first nontrivial case is N = 3. There are six
Hamiltonian cycles. If we fix the starting point to be r1 there are
only two possibilities for the permutation σ of the red points,
that is, (1,2,3) and (1,3,2). One is the dual of the other. We
can restrict to the (1,3,2) by removing the degeneracy in the
orientation of the cycles. Indeed σ̃ is exactly (1,3,2) according
to (20). With this choice the six cycles are in correspondence
with the permutations π ∈ S3 of the blue points. We sort in
increasing order both the blue and red points. We have

E(π ) = |r1 − bπ(1)|p + |r1 − bπ(3)|p + |r3 − bπ(2)|p
+ |r3 − bπ(1)|p + |r2 − bπ(3)|p + |r2 − bπ(2)|p.

(A1)

The optimal solution is π̃ = (2,3,1). The permutations
(1,3,2) and (3,2,1) have always a greater cost than π̃ , indeed the
corresponding cycles are (r1b1r3b3r2b2) and (r1b3r3b2r2b1),
where we have colored in orange the path that, according to
Lemma 1, can be reversed to lower the total cost. Doing this
we obtain the optimal cycle in both cases. Notice that, since
we can label each cycle using only the π permutation, we
can restrict ourselves to moves that only involve blue points.
Since there are three blue points, these moves will always
reverse paths of the form birj bk , so they correspond simply
to a swap in the permutation π . Therefore our moves cannot
be used to reach the optimal cycle from every starting cycle. A
diagram showing all the possible moves is shown in Fig. 5. In
conclusion, the cost function makesS3 a poset with an absolute
minimum and an absolute maximum. The permutation (2,3,1)
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is preceded by both (1,3,2) and (3,2,1), which cannot be
compared between them, but both precede (1,2,3) and (3,1,2),
which cannot be compared between them. (2,1,3) is the greatest
element.

We compute the average costs for all the permutations.
Using the same techniques used in Sec. IV, we get, for the

p = 2 case,

E[(2,3,1)] = 3
4 < E[(1,3,2)] = E[(3,2,1)] = 7

8

< E[(1,2,3)] = E[(3,1,2)] = 9
8

< E[(2,1,3)] = 5
4 . (A2)

[1] E. Lawler, D. Shmoys, A. Kan, and J. Lenstra, The Traveling
Salesman Problem (John Wiley & Sons, New York, 1985).

[2] K. Menger, Ergebnisse eines mathematischen kolloquiums 2, 11
(1932).

[3] http://www.claymath.org/millennium-problems/p-vs-np-
problem.

[4] G. Reinelt, The Traveling Salesman: Computational Solutions
for TSP Applications (Springer-Verlag, Berlin, 1994).

[5] C. H. Papadimitriou, Theor. Comput. Sci. 4, 237 (1977).
[6] S. Kirkpatrick, C. Gelatt, and M. Vecchi, Science 220, 671

(1983).
[7] N. Sourlas, Europhys. Lett. 2, 919 (1986).
[8] M. Mézard, G. Parisi, and M. Virasoro, Spin Glass Theory

and Beyond: An Introduction to the Replica Method and Its
Applications (World Scientific Publishing, Singapore, 1987),
Vol. 9.

[9] M. Mezard and A. Montanari, Information, Physics, and Com-
putation (Oxford University Press, Oxford, 2009).

[10] J. Vannimenus and M. Mézard, J. Phys. Lett. 45, L1145 (1984).
[11] H. Orland, J. Physique Lett. 46, 763 (1985).
[12] M. Mézard and G. Parisi, J. Phys. 47, 1285 (1986).
[13] M. Mézard and G. Parisi, Europhys. Lett. 2, 913 (1986).
[14] W. Krauth and M. Mézard, Europhys. Lett. 8, 213 (1989).
[15] S. Ravanbakhsh, R. Rabbany, and R. Greiner, Advances in

Neural Information Processing Systems 1, 289 (2014).
[16] J. Wastlund, Acta Mathematica 204, 91 (2010).
[17] J. Beardwood, J. H. Halton, and J. M. Hammersley, Proc.

Cambridge Philos. Soc. 55, 299 (1959).

[18] M. Steele, Ann. Probability 9, 365 (1981).
[19] R. M. Karp and M. Steele, The Traveling Salesman Problem

(John Wiley and Sons, New York, 1985).
[20] A. G. Percus and O. C. Martin, Phys. Rev. Lett. 76, 1188

(1996).
[21] N. J. Cerf, J. H. B. de Monvel, O. Bohigas, O. C. Martin, and A.

G. Percus, J. Phys. I 7, 117 (1997).
[22] S. Caracciolo, C. Lucibello, G. Parisi, and G. Sicuro, Phys. Rev.

E 90, 012118 (2014).
[23] E. Boniolo, S. Caracciolo, and A. Sportiello, J. Stat. Mech.

(2014) P11023.
[24] J. H. Halton, Math. Intell. 17, 36 (1995).
[25] M. Misiurewicz, Math. Intell. 18, 32 (1996).
[26] B. Polster, Nature (London) 420, 476 (2002).
[27] A. García and J. Tejel, Eur. J. Oper. Res. 257, 429 (2017).
[28] R. McCann, Proc. R. Soc. A 455, 1341 (1999).
[29] S. Caracciolo and G. Sicuro, Phys. Rev. E 90, 042112 (2014).
[30] S. Caracciolo, M. P. D’Achille, and G. Sicuro, Phys. Rev. E 96,

042102 (2017).
[31] J. Houdayer, J. B. de Monvel, and O. Martin, Eur. Phys. J. B 6,

383 (1998).
[32] M. Mézard and G. Parisi, J. Phys. 49, 2019 (1988).
[33] C. Lucibello, G. Parisi, and G. Sicuro, Phys. Rev. E 95, 012302

(2017).
[34] S. Caracciolo and G. Sicuro, Phys. Rev. Lett. 115, 230601

(2015).
[35] S. Caracciolo and G. Sicuro, Phys. Rev. E 91, 062125

(2015).

052109-8

http://www.claymath.org/millennium-problems/p-vs-np-problem
https://doi.org/10.1016/0304-3975(77)90012-3
https://doi.org/10.1016/0304-3975(77)90012-3
https://doi.org/10.1016/0304-3975(77)90012-3
https://doi.org/10.1016/0304-3975(77)90012-3
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1209/0295-5075/2/12/006
https://doi.org/10.1209/0295-5075/2/12/006
https://doi.org/10.1209/0295-5075/2/12/006
https://doi.org/10.1209/0295-5075/2/12/006
https://doi.org/10.1051/jphyslet:0198400450240114500
https://doi.org/10.1051/jphyslet:0198400450240114500
https://doi.org/10.1051/jphyslet:0198400450240114500
https://doi.org/10.1051/jphyslet:0198400450240114500
https://doi.org/10.1051/jphyslet:019850046017076300
https://doi.org/10.1051/jphyslet:019850046017076300
https://doi.org/10.1051/jphyslet:019850046017076300
https://doi.org/10.1051/jphyslet:019850046017076300
https://doi.org/10.1051/jphys:019860047080128500
https://doi.org/10.1051/jphys:019860047080128500
https://doi.org/10.1051/jphys:019860047080128500
https://doi.org/10.1051/jphys:019860047080128500
https://doi.org/10.1209/0295-5075/2/12/005
https://doi.org/10.1209/0295-5075/2/12/005
https://doi.org/10.1209/0295-5075/2/12/005
https://doi.org/10.1209/0295-5075/2/12/005
https://doi.org/10.1209/0295-5075/8/3/002
https://doi.org/10.1209/0295-5075/8/3/002
https://doi.org/10.1209/0295-5075/8/3/002
https://doi.org/10.1209/0295-5075/8/3/002
http://papers.nips.cc/paper/5601-augmentative-message-passing-for-traveling-salesman-problem-and-graph-partitioning.pdf
https://doi.org/10.1007/s11511-010-0046-7
https://doi.org/10.1007/s11511-010-0046-7
https://doi.org/10.1007/s11511-010-0046-7
https://doi.org/10.1007/s11511-010-0046-7
https://doi.org/10.1017/S0305004100034095
https://doi.org/10.1017/S0305004100034095
https://doi.org/10.1017/S0305004100034095
https://doi.org/10.1017/S0305004100034095
https://doi.org/10.1214/aop/1176994411
https://doi.org/10.1214/aop/1176994411
https://doi.org/10.1214/aop/1176994411
https://doi.org/10.1214/aop/1176994411
https://doi.org/10.1103/PhysRevLett.76.1188
https://doi.org/10.1103/PhysRevLett.76.1188
https://doi.org/10.1103/PhysRevLett.76.1188
https://doi.org/10.1103/PhysRevLett.76.1188
https://doi.org/10.1051/jp1:1997129
https://doi.org/10.1051/jp1:1997129
https://doi.org/10.1051/jp1:1997129
https://doi.org/10.1051/jp1:1997129
https://doi.org/10.1103/PhysRevE.90.012118
https://doi.org/10.1103/PhysRevE.90.012118
https://doi.org/10.1103/PhysRevE.90.012118
https://doi.org/10.1103/PhysRevE.90.012118
https://doi.org/10.1088/1742-5468/2014/11/P11023
https://doi.org/10.1088/1742-5468/2014/11/P11023
https://doi.org/10.1088/1742-5468/2014/11/P11023
https://doi.org/10.1007/BF03024786
https://doi.org/10.1007/BF03024786
https://doi.org/10.1007/BF03024786
https://doi.org/10.1007/BF03024786
https://doi.org/10.1007/BF03024308
https://doi.org/10.1007/BF03024308
https://doi.org/10.1007/BF03024308
https://doi.org/10.1007/BF03024308
https://doi.org/10.1038/420476a
https://doi.org/10.1038/420476a
https://doi.org/10.1038/420476a
https://doi.org/10.1038/420476a
https://doi.org/10.1016/j.ejor.2016.07.060
https://doi.org/10.1016/j.ejor.2016.07.060
https://doi.org/10.1016/j.ejor.2016.07.060
https://doi.org/10.1016/j.ejor.2016.07.060
https://doi.org/10.1098/rspa.1999.0364
https://doi.org/10.1098/rspa.1999.0364
https://doi.org/10.1098/rspa.1999.0364
https://doi.org/10.1098/rspa.1999.0364
https://doi.org/10.1103/PhysRevE.90.042112
https://doi.org/10.1103/PhysRevE.90.042112
https://doi.org/10.1103/PhysRevE.90.042112
https://doi.org/10.1103/PhysRevE.90.042112
https://doi.org/10.1103/PhysRevE.96.042102
https://doi.org/10.1103/PhysRevE.96.042102
https://doi.org/10.1103/PhysRevE.96.042102
https://doi.org/10.1103/PhysRevE.96.042102
https://doi.org/10.1007/s100510050565
https://doi.org/10.1007/s100510050565
https://doi.org/10.1007/s100510050565
https://doi.org/10.1007/s100510050565
https://doi.org/10.1051/jphys:0198800490120201900
https://doi.org/10.1051/jphys:0198800490120201900
https://doi.org/10.1051/jphys:0198800490120201900
https://doi.org/10.1051/jphys:0198800490120201900
https://doi.org/10.1103/PhysRevE.95.012302
https://doi.org/10.1103/PhysRevE.95.012302
https://doi.org/10.1103/PhysRevE.95.012302
https://doi.org/10.1103/PhysRevE.95.012302
https://doi.org/10.1103/PhysRevLett.115.230601
https://doi.org/10.1103/PhysRevLett.115.230601
https://doi.org/10.1103/PhysRevLett.115.230601
https://doi.org/10.1103/PhysRevLett.115.230601
https://doi.org/10.1103/PhysRevE.91.062125
https://doi.org/10.1103/PhysRevE.91.062125
https://doi.org/10.1103/PhysRevE.91.062125
https://doi.org/10.1103/PhysRevE.91.062125

