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Solution for an interaction quench in the Lieb-Liniger Bose gas
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We study a quench protocol where the ground state of a free many-particle bosonic theory in one dimension
is let unitarily evolve in time under the integrable Lieb-Liniger Hamiltonian of δ-interacting repulsive bosons.
By using a recently proposed variational method, we here obtain the exact nonthermal steady state of the system
in the thermodynamic limit and discuss some of its main physical properties. Besides being a rare case of a
thermodynamically exact solution to a truly interacting quench situation, this interestingly represents an example
where a standard implementation of the generalized Gibbs ensemble fails.

DOI: 10.1103/PhysRevA.89.033601 PACS number(s): 67.85.−d, 05.30.Jp

I. INTRODUCTION

Much interest has recently been devoted to improving our
understanding of relaxation in isolated many-body quantum
systems, fueled in particular by example realizations using
cold atoms [1]. The combination of strong correlations and
off-equilibrium initial conditions makes theoretical treatments
arduous, in particular in one dimension where quantum fluctu-
ations and nonperturbative effects are inevitable [2]. The main
focus of recent studies was to consider quenches [3] in which a
Hamiltonian parameter is suddenly changed and to investigate
the late-time asymptotics of the system’s properties. Interest-
ingly, although one naively expects that ergodicity generally
leads to thermal Gibbs distributions, it has now become
clear that nonthermal distributions can sometimes occur, more
specifically in circumstances in which nontrivial conservation
laws exist. A generalized Gibbs ensemble (GGE) must then be
used, in which all conserved charges obtain their own effective
temperatures, these being set by initial conditions [4].

Though extremely appealing, the implementation of the
GGE poses serious challenges, among which is the fact that
for many models conservation laws are difficult to handle;
calculating the generalized effective temperatures is usually
impossible (though exceptional cases where such calculations
can be carried through exist [5–7]). The GGE was thus mostly
implemented for theories which are mappable to free systems,
for which the momentum occupation modes can be used as
conserved charges [3,4,8].

In this paper, we deal with a specific quench problem of
recent interest [9–12], namely the interaction quench in the
Lieb-Liniger (LL) Bose gas and more specifically the release
of the noninteracting Bose-Einstein condensate (BEC) ground
state into a system with finite repulsive interactions. Besides
being of experimental interest [13–15], this case, surprisingly,
cannot be treated theoretically using the standard GGE, due to
creeping infinities in the expectation values of the conserved
charges [12].

Recently, an alternative approach has been proposed to
deal with integrable systems with out-of-equilibrium initial
conditions [16]. This scheme, which is based on a generalized
thermodynamic Bethe ansatz (TBA) [6,17], is a thermody-
namically exact variational method using as input the overlaps
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of the initial state with the eigenfunctions of the Hamiltonian
driving the postquench time evolution. We refer to it as the
“quench action” approach; it was up to now only tested on
free systems for which independent results were available.

Using the quench action, we here provide an exact solution
to the BEC-to-LL quench problem. This allows us in particular
to access the physical properties of the nonthermal steady
state at long times after the quench and is an example of a
quench to a truly interacting system for which exact results
are obtained in the thermodynamic limit. Our results would
be applicable to experiments in ringlike geometries [14] or
boxlike potentials [13]. The overall method we use, being
quite generic, forms a blueprint for potentially treating many
other quench situations.

II. THE QUENCH PROTOCOL

We consider a system of N bosons on a one-dimensional
ring of circumference L and impose periodic boundary
conditions. Our initial state is the ground state in the absence of
interactions, i.e., the BEC state |0〉 with 〈x|0〉 = ψ0(x) = 1

LN/2 .
At t = 0, we suddenly turn on interparticle interactions; the
time evolution is thus from that moment onwards driven by
the LL Hamiltonian [18] (setting � = 2m = 1),

HLL = −
N∑

j=1

∂2

∂x2
j

+ 2c
∑
j>k

δ(xj − xk), (1)

in which c parametrizes the interaction strength. We here focus
on the repulsive regime c > 0. The exact eigenstates of (1) are
Bethe ansatz wave functions,

�(x|λ) = Fλ

∑
P∈SN

AP (x|λ)
N∏

j=1

e
iλPj

xj , (2)

with Fλ =
∏N

j>k=1(λj −λk )√
N!
∏N

j>k=1[(λj −λk)2+c2]
and AP (x|λ) =∏N

j>k=1

[1 − ic sgn(xj −xk )
λPj

−λPk

]. Under periodic boundary conditions, rapidi-

ties λ ≡ {λj }Nj=1 get quantized and are required to satisfy the
Bethe equations [18],

λj = 2πIj

L
− 2

L

N∑
k=1

arctan

(
λj − λk

c

)
. (3)

The set of quantum numbers I = {Ij }Nj=1, which are mutually
distinct integers (half-odd integers) for N odd (even), labels
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an eigenstate |I 〉 uniquely. Such a state has momentum
PI = �N

j=1λj and energy ωI = �N
j=1λ

2
j . Higher conserved

charges {Q̂n}n∈N [19] have eigenvalues Q̂n|I 〉 = �N
j=1λ

n
j |I 〉.

The norm of the wave function (2) is given by the determinant
of the Gaudin matrix [20].

Given such a basis of energy eigenstates, the exact time
evolution of a generic normalized initial state |ψ0〉 can be
formally written as

|ψ0(t)〉 =
∑

I

e−SI −iωI t |I 〉, (4)

where we introduced the logarithm SI = − ln 〈I |ψ0〉 of the
overlap coefficient between a normalized Bethe state and the
initial state. The expectation value of a generic operator O on
the initial state at any time t is then

〈ψ0|O(t)|ψ0〉 =
∑
I,I ′

e−S∗
I −SI ′ ei(ωI −ωI ′ )t 〈I |O|I ′〉. (5)

III. THE OVERLAPS

The first challenge is to compute overlaps between the
initial BEC state and the Bethe eigenstates (2). The only
states with nonzero overlap with the BEC state are parity-
invariant Bethe states such that for each positive rapidity its
negative counterpart is also present. Considering N even,
we denote such states by |λ,−λ〉 ≡ |{λj }N/2

j=1 ∪ {−λj }N/2
j=1〉,

where all λj are taken to be positive. The parity invariance
is a straightforward consequence of the conservation of
momentum and all other odd charges during the quench. This
can be easily checked by computing matrix elements of the
conserved charges Q̂2m+1 with respect to the BEC state and
the Bethe state,

0 = 〈0|Q̂2m+1|I 〉 = 〈0|I 〉
N∑

j=1

λ2m+1
j . (6)

The overlap of the initial BEC state with a parity-invariant
Bethe state is

〈λ,−λ|0〉 =
√

(cL)−NN !

detNj,k=1 Gjk

detN/2
j,k=1 G

Q
jk∏N/2

j=1
λj

c

√
λ2

j

c2 + 1
4

. (7)

The matrix G
Q
jk is of the same form as the Gaudin matrix Gjk ,

but with a different kernel,

G
Q
jk = δjk

[
L +

N/2∑
l=1

KQ(λj ,λl)

]
− KQ(λj ,λk), (8)

where KQ(λ,μ) = K(λ − μ) + K(λ + μ), with K(λ) = 2c/

(λ2 + c2). Expression (7) was analytically verified up to N = 8
and then proven for arbitrary N in Ref. [21]. Note that it is also
valid in the attractive regime where complex string solutions
to the Bethe equations exist.

IV. QUENCH ACTION APPROACH

The next step is to evaluate Eq. (5). The difficulty
represented by the double Hilbert-space sum is substantial,
and we follow the approach proposed in Ref. [16] to handle

it (see also Ref. [22] for more details). In the thermodynamic
limit L → ∞ with fixed density n = N/L (which we denote
as limth) a single sum over the Hilbert space is replaced with a
functional integral over positive smooth functions ρ(λ), each
function describing the density of Bethe roots for an ensemble
of states with Yang-Yang entropy [23],

SYY [ρ] = L

∫ ∞

−∞
dλ[(ρ + ρh) ln(ρ + ρh) − ρ ln ρ − ρh ln ρh].

(9)

The hole density ρh is related to the particle density ρ by the
thermodynamic form of the Bethe equations,

ρ(λ) + ρh(λ) = 1

2π
+
∫ ∞

−∞

dμ

2π
K(λ − μ)ρ(μ). (10)

Explicitly, when dealing with a quantity OI which scales
to a smooth functional O[ρ] in the thermodynamic limit, we
can write

lim
th

∑
I

OI =
∫

D[ρ] eSYY[ρ]O[ρ], (11)

up to an overall normalization constant. Focusing on generic
operators with negligible matrix elements between states that
scale to different distributions ρ, expression (5) transforms to

〈ψ0|O(t)|ψ0〉 = 1

2

∫
D[ρ] e−2S[ρ]+SYY[ρ]

×
∑

e

(e−δse−iδωet 〈ρ,∅|O|ρ,e〉

+ e−δs∗
e +iδωet 〈ρ,e|O|ρ,∅〉), (12)

involving a sum over the set of discrete particle-hole exci-
tations on ρ denoted by e = {pi,hi}mi=1, m = 0,1, . . . , with
energy δωe. The extensive real part of the overlap coefficient
is denoted by

S[ρ] = lim
th

ReSI , (13)

and we used δse to denote the relative overlaps of states that
are equal up to a set e of particle-hole excitations,

δse = − lim
th

ln(〈I ∪ e|ψ0〉/〈I |ψ0〉). (14)

The extensive quench action SQ[ρ] ≡ 2S[ρ] − SYY[ρ] is real
and bounded from below, which guarantees the convergence of
the functional integral. In the thermodynamic limit this can be
exactly evaluated using the saddle point of the quench action,
which is fixed by the condition

δSQ[ρ]

δρ

∣∣∣∣
ρsp

= δ(2S[ρ] − SYY[ρ])

δρ

∣∣∣∣
ρsp

= 0. (15)

An explicit solution can then be obtained using the generalized
TBA [6,17].

Putting everything together leads to a much simpler
expression for the full time evolution (5) in terms of matrix
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elements of states around the saddle-point distribution:

lim
th

〈ψ0|O(t)|ψ0〉 = 1

2

∑
e

e−δse−iδωet 〈ρsp,∅|O|ρsp,e〉

+ 1

2

∑
e

e−δs∗
e +iδωet 〈ρsp,e|O|ρsp,∅〉.

(16)

Expression (16) is exact and valid for any time t after the
quench. In particular, it recovers the expectation value in the
infinite time limit where no time average is involved,

lim
t→∞ lim

th
〈ψ0|O(t)|ψ0〉 = 〈ρsp|O|ρsp〉. (17)

As discussed in Ref. [16], this can be viewed as a generalization
of the eigenstate thermalization hypothesis [24] similar to that
proposed in Ref. [25]. It also relates to the time-averaged
approach of Ref. [26].

V. EXPLICIT SOLUTION TO THE
SADDLE-POINT EQUATION

With the previously computed overlaps, we are now in
position to apply the quench action approach. We need only
their extensive part S[ρ], which can be extracted from (7) by
taking the thermodynamic limit (see Appendix A),

S[ρ] = − lim
th

(ln〈λ,−λ|0〉) = Ln

2
(ln γ + 1)

+ L

2

∫ ∞

0
dλ ρ(λ) ln

[
λ2

c2

(
λ2

c2
+ 1

4

)]
+ O(L0),

(18)

where γ = c/n. We only need the ρ-dependent part of the
overlap S[ρ], which acts as a “driving term” in the generalized
TBA equation (15). The quench action then reads

SQ[ρ]/L =
∫ ∞

0
dλ

{
ρ(λ) ln

[
λ2

c2

(
1

4
+ λ2

c2

)]

− ρt (λ) ln ρt (λ) + ρ(λ) ln ρ(λ)

+ ρh(λ) ln ρh(λ)

}
. (19)

Note that the Yang-Yang entropy has nonzero measure only
on the half space λ > 0 since the filling of quantum numbers
associated with the negative rapidities is unambiguously
determined by the positive ones. To impose the normalization
condition on ρ we add a Lagrange multiplier h as in Ref. [20],
which can be viewed, in the spirit of the free energy, as a
generalized chemical potential. This corresponds to modifying
our functional measure as∫

D[ρ] e−SQ[ρ]

→
∫ +i∞

−i∞
dh

∫
D[ρ] e−SQ[ρ]e− Lh

2 [n−∫∞
−∞ dλρ(λ)]. (20)

Taking the functional derivative with respect to ρ and using
dimensionless quantities x = λ/c and K(x) = 2

x2+1 , we obtain
as a saddle-point equation a nonlinear integral equation for the

function a(x) ≡ ρ(λ)/ρh(λ),

ln a(x) = ln (τ 2) − ln [x2(x2 + 1/4)]

+
∫ ∞

−∞
K(x − y) ln [1 + a(y)]

dy

2π
, (21)

where τ is related to the Lagrange multiplier h via τ = eh/2.
The functions a and ρ are directly connected. Taking the
derivative τ

2 ∂τ of Eq. (21) and due to the thermodynamic form
of the Bethe equations (10) the function 2πρ(x) is given by
τ
2 ∂τ a(x)/[1 + a(x)].

The nonlinear integral equation (21) has an analytical solu-
tion, which can be derived as follows. In the limit τ → 0 the
driving term becomes large and negative for all fixed x > τ and
the convolution integral gives only subleading contributions.
Thus, the first nontrivial order of the function a(x) reads

a(0)(x) = τ 2

x2(x2 + 1/4)
. (22)

In order to calculate the next leading term, we plug this result
into the convolution integral on the right-hand side of the
saddle-point equation (21). Using the relation∫ ∞

−∞

1/π

(x − y)2 + 1
ln [y2 + α2]dy = ln [x2 + (|α| + 1)2],

(23)

we obtain up to order τ 2

ln a(x) = ln (τ 2) − ln [x2(x2 + 1/4)(x2 + 1)(x2 + 9/4)]

+
∫ ∞

−∞
K(x − y) ln [y2(y2 + 1/4) + τ 2]

dy

2π
.

(24)

By rewriting y2(y2+1/4)+τ 2 = (y2 + y2
−)(y2 + y2

+), where

y± = 1√
8

√
1 ± √

1 − 64τ 2, using Eq. (23) again and expand-
ing y± to lowest order in τ : y+ = 1/2 and y− = 2τ , we get

a(x) = τ 2[x2 + (1 + y−)2][x2 + (1 + y+)2]

x2(x2 + 1/4)(x2 + 1)(x2 + 9/4)

= τ 2

x2(x2 + 1/4)

[
1 + 4τ (1 + τ )

x2 + 1

]
. (25)

Hence, the function a(x)/a(0)(x) up to first order in τ reads

a(1)(x)

a(0)(x)
= 1 + 4τ

x2 + 1
. (26)

Repeating this procedure, we can calculate higher orders in τ

systematically, leading to an expression up to generic order τN :

a(N)(x)

a(0)(x)
=

N+1∑
n=1

(
2n

n − 1

) n∏
j=2

τ

x2 + (j/2)2
. (27)

The limit N → ∞ leads to the solution of the saddle-point
equation (21),

a(x) = lim
N→∞

a(N)(x) =
∞∑

n=1

(
2n

n − 1

) n∏
j=0

τ

x2 + (j/2)2

= 2πτ

x sinh (2πx)
I1−2ix(4

√
τ )I1+2ix(4

√
τ ). (28)
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FIG. 1. (Color online) Density function ρsp(λ) in (29) for differ-
ent γ ’s for the saddle-point state (solid lines) and for the thermal
state (dashed lines). In the main plot [inset], ρsp(0) and ρ th(0) [ρs(0)
and ρ th

s (0)] are decreasing [increasing] functions of γ . (Inset) Scaled
functions ρs(x) = 2

√
γ ρ(2n

√
γ x) and ρ th

s (x) which approach the
semicircle 2

π

√
1 − x2 in the limit γ → 0.

Here In(z) is the modified Bessel function of the first kind of
order n. We eventually get

2πρ(x) =
τ
2 ∂τ a(x)

1 + a(x)
= a(x)

1 + a(x)

τ∂τ

2
ln a(x). (29)

Note that the saddle-point distribution ρsp is then given by
ρsp(λ) = ρ(λ/c).

The computation of the dimensionless particle density
N/(Lc) = n/c = 1/γ and energy density E/(Lc3) = e/c3 by
numerical integration of function (29) yields

n

c
=
∫ ∞

−∞
ρ(x)dx = τ,

e

c3
=
∫ ∞

−∞
x2ρ(x)dx = τ 2, (30)

i.e., τ = 1/γ and e = cn2 = γ n3, in agreement with the initial
energy density,

lim
th

L−1〈0|HLL|0〉 = γ n3. (31)

In Fig. 1 the saddle-point state is shown for different values
of γ and compared to the thermal state with the same particle
density n and energy density e.

VI. PHYSICAL PROPERTIES OF THE STEADY STATE

The saddle-point distribution gives us access, in principle,
to any correlation function of operators allowed within the
quench action approach. We focus on density correlations.
Following the method of [27,28] we compute in Fig. 2 the
static density moments g2 and g3 defined by

gK = 〈ρsp| : (ρ̂(0)/n)K: |ρsp〉. (32)

The density operator is defined as ρ̂(x) = �†(x)�(x), where
the operators �(x) satisfy the canonical commutation relations
[�(x),�†(x ′)] = δ(x − x ′). Results for the saddle-point state
are compared with the ones obtained using a thermal state at
fixed particle density n and energy density e = n3γ . These

0.0
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0.4

0.6

0.8

1.0

0 1 2 3 4 5 6 7 8

γ

g K
(γ

)

1 −
√

γ

2

1 − 3
√

γ

2

0.8

0.9

1.0

0.0 0.03
γ 10−6

10−4

10−2

100

100 101 102 103

γ

g2

g3

gth
2

gth
3

FIG. 2. (Color online) Expectation values g2 (red, upper curves)
and g3 (green, lower curves) as functions of γ on the exact
saddle-point state (solid lines) and on the thermal one (dashed
lines). Asymptotic behaviors (black dashed lines) g2 ∼ 8/(3γ ),
g3 ∼ 32/(15γ 2) for γ → ∞ as in [12] and g2 ∼ 1 − √

γ /2, g3 ∼
1 − 3

√
γ /2 for γ → 0. (Insets) Same plot (in logarithmic scale) for

different ranges of γ .

results clearly display the lack of thermalization long after the
quench.

In Fig. 3 we further address static correlations by studying
the static structure factor S(x) = 〈Isp|ρ̂(x)ρ̂(0)|Isp〉 and its

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2

k/kF

S
(k

)

0

0.2

0.4

0.6

0.8

1

0 0.5 1

S
(x

)

x

γ = 0.8
γ = 8
γ = ∞

FIG. 3. (Color online) Density-density correlation on the saddle-
point state in momentum space k (in units of kF = πn) and (inset)
in real space x ∈ [0,L] (from top to bottom for increasing values
of γ ). At x → 0 the numerical results approach the analytical ones
for g2 (open dots). Curves are obtained by joining data from system
sizes N = 64 (small k), 32, and 8 (large k). Error bars and shaded
region are, respectively, estimates of finite-size discretization errors
or missing intensity based on sum-rule saturation levels. At k = 0
numerical data suggest S(k) → 1/2 irrespective of the interaction,
which agrees with the Bogoliubov prediction for small γ [10].
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Fourier transform using the Lehmann representation,

S(k) = L
∑

I

|〈Isp|ρ̂(0)|I 〉|2δk,PI
, (33)

where the state |Isp〉 scales to the saddle-point distribution.
The matrix elements are known exactly through the method of
algebraic Bethe ansatz [29] and summed into correlations by
the ABACUS algorithm [30] following the method in Ref. [31].

VII. TIME EVOLUTION TOWARDS THE STEADY STATE

Within the quench action logic, the full time evolution
is recovered by excitations around the saddle-point state
according to Eq. (16). For the special case of a quench to the
Tonks-Girardeau gas the density operator creates only single
particle-hole excitations, and the complete time evolution of
the density-density correlation can be calculated explicitly by
simply summing over all parity-invariant pairs of particle-hole
excitations (see Appendix C). We then obtain

〈ρ̂(x)ρ̂(0)〉t − 〈ρsp|ρ̂(x)ρ̂(0)|ρsp〉

=
∣∣∣∣
∫ ∞

−∞

dk

π

nk

4n2 + k2
e−2itk2+ikx

∣∣∣∣
2

, (34)

where 〈ρsp|ρ̂(x)ρ̂(0)|ρsp〉 = nδ(x) + n2(1 − e−4n|x|). This eas-
ily reproduces the recently calculated result of Ref. [32]
and therefore represents a nontrivial check of the validity of
expression (16) for any time t after the quench.

VIII. CONCLUSION AND OUTLOOK

In this paper the logic of the quench action was used to
obtain an exact description of the quench from the noninter-
acting LL Bose gas in its ground state to arbitrary repulsive
interaction described by the parameter c > 0. A generalized
TBA equation was derived from an exact expression for the
overlaps and subsequently analytically solved. For late times
after the quench the system is well described by a saddle-point
state that is very different from any thermal state, as the
distribution of rapidities has a polynomial λ−4 tail for any
nonzero value of the final interaction c. This tail leads to
the divergence of all conserved charges Q2n for n > 1 (the
divergence of Q4 indicating infinite energy fluctuations) and
thus the inapplicability of the standard GGE logic, since the
chemical potentials associated with the conserved charges
cannot be determined from expectation values on the initial
state. The GGE free energy would be of the form �nβnQn

with Qn = �jλ
n
j . The overlaps, however, give terms of the

form ln λ in the quench action which have no expansion in
powers of λ. It should be noted, though, that in the limit of
small postquench interaction parameter the thermal and exact
distributions become increasingly alike.

The logic also recovers the exact time evolution of expec-
tation values of generic operators at any time after the quench,
thereby circumventing the problematic double sum over the
full Hilbert space. As a nontrivial confirmation of our method
the density-density correlations in the Tonks-Girardeau regime
were worked out and verified to give correct results. In
future presentations, we will investigate the time evolution of
observables such as g2,g3 and the dynamical structure factor

S(k,ω) for any value of the final interaction. The question
of whether the overlap formula (7) can be generalized to
interacting initial states will also be addressed. Our method,
combined with recent developments in the computation of
overlaps in lattice systems [21,33–35], opens the way to
studying nonequilibrium quench dynamics in other interacting
integrable systems such as quantum spin chains.

ACKNOWLEDGMENTS

We acknowledge useful discussions with M. Panfil, M.
Kormos, A. Shashi, Y.-Z. Chou, J. Mossel, M. Rigol, F. H. L.
Essler, P. Calabrese, G. Mussardo, and I. Carusotto.
J.-S.C. acknowledges inspiring discussions with the late A.
Imambekov. We acknowledge support from the Foundation for
Fundamental Research on Matter (FOM) and the Netherlands
Organisation for Scientific Research (NWO).

APPENDIX A: THERMODYNAMIC LIMIT
OF THE OVERLAPS

Let us consider the expression for the overlaps at finite size

〈λ, − λ|0〉 =
√

(cL)−NN !

detNj,k=1 Gjk

detN/2
j,k=1 G

Q
jk∏N/2

j=1
λj

c

√
λ2

j

c2 + 1
4

. (A1)

We want to compute this expression for a generic Bethe state
in the thermodynamic limit up to corrections O(1/L).

The thermodynamic limit consists in recasting any sum over
rapidities of the state as an integral weighted by the density of
rapidities. Given a state specified by its set of rapidities λ, this
means that for any smooth function f of the quantum numbers

lim
th

N∑
j=1

f (λj ) = L

∫ ∞

−∞
dλ ρ(λ)f (λ) + O(L0). (A2)

The subleading corrections depend on how we define micro-
scopically the ρ(λ). For each smooth distribution ρ we can
choose a “maximally flat” state |λρ,−λρ〉 such that all O(L0)
corrections in (A2) are zero,

lim
th

N∑
j=1

f
(
λ

ρ

j

) = L

∫ ∞

−∞
dλ ρ(λ)f (λ) + O(1/L). (A3)

By adding a set of m particle-hole excitations to the maximally
flat state such that limth(m/N ) = 0 we can split the set of
rapidities in “nonexcited ones” {λ̃j }N−m

j=1 and in a set of particle
excitations {λ̃p

j }mj=1. The set of holes {λ̃h
j }mj=1 contains fictitious

rapidities which represent the empty slots left by the particle
excitations. The rapidities in the first set are related to the ones
of the maximally flat state by the shift function [20]

λ̃j = λ
ρ

j +
m∑

k=1

F
(
λj |λ̃p

k ,λ̃h
k

)
L

+ O(1/L2), (A4)

where the shift function for a particle-hole excitation is defined
by the integral equation

2πF (λ|μp,μh) −
∫ ∞

−∞
dμ ϑ(μ)K(λ − μ)F (μ|μp,μh)

= φ(λ − μp) + φ(λ − μh), (A5)
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with the scattering matrix given by φ(λ) = 2 arctan(λ/c) and
the weight function by ϑ(λ) = ρ(λ)

ρ(λ)+ρh(λ) . We can thus write

ln

⎡
⎣N/2∏

j=1

λ̃j

/
c

√
(λ̃j /c)2 + 1/4

⎤
⎦

= L

∫ ∞

0
dλ ρ(λ) ln[λ/c

√
(λ/c)2 + 1/4]

+
m∑

k=1

{∫ ∞

0
dλ ρ(λ)

1 + 8 λ2

c2

λ
(
1 + 4 λ2

c2

)F (λ|λ̃p

k ,λ̃h
k

)

+ ln
[
λ̃

p

k

/
c

√(
λ̃

p

k

/
c
)2 + 1/4

]
− ln

[
λ̃h

k

/
c

√(
λ̃h

k

/
c
)2 + 1/4

]}+ O(1/L). (A6)

Regarding the two determinants in Eq. (A1), we can rewrite
the determinant of the Gaudin matrix Gjk as

N

det
j,k=1

Gjk = LN

N∏
j=1

[
1 + 1

L

N∑
l=1

K(λj − λl)

]

×
N

det
j,k=1

[
δjk − K(λj − λk)

L +∑N
l=1 K(λk − λl)

]
.

(A7)

From the Bethe equations in the thermodynamic limit, Eq. (10),
we have

1 + 1

L

N∑
l=1

K(λj − λl) = 2π ρt (λj ) + O(1/L), (A8)

where ρt = ρ + ρh. Furthermore, in the thermodynamic limit
the matrix on the right-hand side of Eq. (A7) becomes an
integral operator on the real line:

δjk − K(λj − λk)

L +∑N
l=1 K(λk − λl)

→ 1 − K̂ρ

2π
,

where (K̂ρ g)(λ) =
∫ ∞

−∞
dμK(λ − μ)

ρ(μ)

ρt (μ)
g(μ).

(A9)

The matrix G
Q
jk can be analyzed analogously, using instead of

K̂ρ the operator K̂Q
ρ acting as

(K̂ρ g)(λ)

= �(λ)
∫ ∞

0
dμ [K(λ −μ) + K(λ +μ)]

ρ(μ)

ρt (μ)
g(μ),

(A10)

where �(λ) is the Heaviside step function. Putting everything
together, one finds that in the thermodynamic limit the ratio of
determinants in Eq. (A1) becomes the ratio of two Fredholm
determinants (denoted with Det) [36],

lim
th

⎛
⎝ detN/2

j,k=1 G
Q
jk√

detNj,k=1 Gjk

⎞
⎠ =

Det
(

1 − K̂Q
ρ

2π

)
√

Det
(

1 − K̂ρ

2π

) + O(1/L). (A11)

Finally we can write the logarithm of the overlap of the BEC
state |0〉 with a generic state |λ̃,−λ̃〉, which scales to the
distribution ρ in the thermodynamic limit, as

lim
th

ln(〈λ̃, − λ̃|0〉)

= −L

2

∫ ∞

0
dλ ρ(λ) ln

[
λ2

c2

(
λ2

c2
+ 1

4

)]

− Ln

2

(
ln

c

n
+ 1

)
+ ln

⎡
⎢⎢⎣ Det

(
1 − K̂Q

ρ

2π

)
√

Det
(

1 − K̂ρ

2π

)
⎤
⎥⎥⎦

−
m∑

k=1

{∫ ∞

0
dλ ρ(λ)

1 + 8 λ2

c2

λ
(
1 + 4 λ2

c2

)F (λ|λ̃p

k ,λ̃h
k

)

+ ln

⎡
⎣ λ̃

p

k

√(
λ̃

p

k

/
c
)2 + 1/4

λ̃h
k

√(
λ̃h

k

/
c
)2 + 1/4

⎤
⎦
⎫⎬
⎭ . (A12)

We can split this in an extensive part which depends on the
distribution ρ,

S[ρ] = L

2

{∫ ∞

0
dλ ρ(λ) ln

[
λ2

c2

(
λ2

c2
+ 1

4

)]

+ n

(
ln

c

n
+ 1

)}
, (A13)

and in a nonextensive part δse[ρ] which does depend on details
of the excitations of the state. The latter contains information
about the time evolution after the quench and is given by

δse[ρ] = − ln

⎡
⎢⎢⎣ Det

(
1 − K̂Q

ρ

2π

)
√

Det
(

1 − K̂ρ

2π

)
⎤
⎥⎥⎦

+
m∑

k=1

{∫ ∞

0
dλ ρ(λ)

1 + 8 λ2

c2

λ
(
1 + 4 λ2

c2

)F (λ|λ̃p

k ,λ̃h
k

)

+ ln

⎡
⎣ λ̃

p

k

√(
λ̃

p

k

/
c
)2 + 1/4

λ̃h
k

√(
λ̃h

k

/
c
)2 + 1/4

⎤
⎦
⎫⎬
⎭ . (A14)

APPENDIX B: ASYMPTOTICS OF THE
SADDLE-POINT DISTRIBUTION

The asymptotic expansion of the saddle-point distribution
2πρ(x) in Eq. (29) for x → ∞ and arbitrary fixed 0 < τ < ∞
is given by [up to O(x−10)]

2πρ(x) ∼ τ 2

x4
− τ 2 − 24τ 3

4x6
+ τ 2 − 120τ 3 + 464τ 4

16x8
. (B1)

The first two terms were previously found within an approach
using q-bosons. The Tonks-Girardeau limit c → ∞ at fixed
density n, i.e., τ → 0, can be easily performed,

a(x) ∼ a(0)(x) = τ 2

x2(x2 + 1/4)

⇒ 2πρ(x) ∼ τ 2

x2(x2 + 1/4) + τ 2
. (B2)
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Substituting τ = n/c and x = λ/c yields 2πρsp(λ) ∼ 4n2/

(λ2 + 4n2).
The limit c → 0 at fixed density n, i.e., τ → ∞, is

more complicated. The first observation is that the scaled
density ρs(x) = 2ρ(2

√
τx)/

√
τ , calculated by using the exact

expression (28), has a proper limit,

lim
τ→∞ ρs(x) = lim

τ→∞
2ρ(2

√
τx)√

τ
= 2

π

√
1 − x2 �(1 − x2)

⇒ ρ(x) ∼
√

τ

π

√
1 − x2

4τ
�(4τ − x2). (B3)

This can be proven by analyzing the asymptotic behavior of
Bessel functions. First of all, we write

2π
2ρ(2

√
τx)√

τ
=

√
τ∂τ a(2

√
τx,τ )

1 + a(2
√

τx,τ )

= a(2
√

τx,τ )

1 + a(2
√

τx,τ )

√
τ∂τ a(2

√
τx,τ )

a(2
√

τx,τ )
,

(B4)

where the partial derivative is with respect to the second
argument. We analyze the two factors separately. The first one

becomes

lim
τ→∞

a(2
√

τx,τ )

1 + a(2
√

τx,τ )
=
{

1 for |x| � 1,

f (x) for |x| > 1,
(B5)

where f is a function with f (1) = 1 and which decays
algebraically as (2x)−4 for large x. In order to analyze the
second factor in Eq. (B4) we set z = 4

√
τ . Using formula (28)

and the abbreviation ν = xz we obtain, due to τ∂τ = z
2∂z and

I ′
ν(z) = [Iν+1(z) + Iν−1(z)]/2,

√
τ∂τ a(2

√
τx,τ )

a(2
√

τx,τ )

= 4

z
+ I−iν(z)

I1−iν(z)
+ I2−iν(z)

I1−iν(z)
+ Iiν(z)

I1+iν(z)
+ I2+iν(z)

I1+iν(z)

= 4 Re

[
I−iν(z)

I1−iν(z)

]
. (B6)

Note that the partial derivative acts only on the argument, but
not on the order of the modified Bessel functions. Now we use
the uniform asymptotic limit of the modified Bessel function
of the first kind [37], which is also known as the uniform
Airy-type asymptotic expansion of Bessel functions [38]:

I−iν(νz′) ∼ eπν/2

2ν1/3

(
4ζ

1 − z′2

)1/4
{

[Bi(−ν2/3ζ ) + 2ie−πν sinh (πν)Ai(−ν2/3ζ )]
∞∑

s=0

(−1)s
As(ζ )

ν2s

+ [Bi′(−ν2/3ζ ) + 2ie−πν sinh (πν)Ai′(−ν2/3ζ )]
∞∑

s=0

(−1)s
Bs(ζ )

ν2s+4/3

}
, (B7)

where 2
3ζ 3/2 = ln ( 1+

√
1−z′2

z′ ) −
√

1 − z′2. Ai and Bi are Airy functions and the lowest expansion coefficients are given by
A0 = B0 = 1. Expanding the quotient in Eq. (B6) for large z to the leading asymptotic order we have to bear in mind that,
in the denominator, imaginary order and argument are ν + i and z′ν/(ν + i), respectively, instead of ν and z′ = 1/x, as in the
numerator. Using the asymptotic expansions of Airy functions

Ai(−z) ∼ sin
(

2
3z3/2 + π

4

)
√

πz1/4
, Bi(−z) ∼ cos

(
2
3z3/2 + π

4

)
√

πz1/4
, (B8)

we eventually obtain by putting z = νz′ = ν/x,

Re

[
I−ixz(z)

I1−ixz(z)

]
z→∞

= Re

[
I−iν(νz′)
I1−iν(νz′)

]
ν = xz → ∞
z′ = 1/x < ∞

∼ Re

[
1 +

√
1 − z′2

iz′

]
ν = xz → ∞
z′ = 1/x < ∞

= �(1 − x2)
√

1 − x2. (B9)

In the last step we used that, due to the real part, the leading order is only nonzero if the absolute value of x is less than one.
For |x| > 1 the leading order vanishes and we have limτ→∞ ρs(x) = 0 for every fixed |x| > 1. Taking the factors 2π and 4 in
Eqs. (B4) and (B6) into account we finally get ρs(x) = 2

π

√
1 − x2 for |x| � 1 and ρs(x) = 0 elsewhere, which proves Eq. (B3).

Substituting τ = n/c = 1/γ , x = λ/c in Eq. (B3) and defining λ∗ = 2n
√

γ , we obtain

ρsp(λ) ∼ n
2

πλ∗

√
1 − λ2

λ2∗
�(λ∗ − |λ|), (B10)

which reproduces the leading term of the ground-state distribution of the LL model in the low-γ expansion [39].

APPENDIX C: TIME EVOLUTION OF THE DENSITY-DENSITY CORRELATIONS FOR γ = ∞
In order to determine the time evolution of the density-density correlator, one needs the density-density matrix elements

between two different N -particle Bethe states |λ〉 and |λ̄〉 in the limit c → ∞. Using the first quantized version of the density
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operator ρ̂(x) = �N
j=1δ(x − xj ) and the standard expression for the wave function for the Tonks-Girardeau gas, we have

〈λ̄| : ρ̂(x)ρ̂(0) : |λ〉 = 1

N ! LN

∫ L

0
dNx

⎡
⎣∑

P

(−1)[P ]
N∏

j=1

e
i xj λPj

⎤
⎦[∑

P ′
(−1)[P ′]

N∏
k=1

e
−i xk λ̄P ′

k

]
N∑

l,m=1

δ(x − xl) δ(xm)

= 1

(N − 2)! LN

∑
P,P ′

(−1)[P ]+[P ′]e
i x(λP1 −λ̄P ′

1
)

⎡
⎣ N∏

j=3

∫ L

0
dxj e

i xj (λPj
−λ̄P ′

j
)

⎤
⎦ . (C1)

The product of N − 3 integrations is only nonzero if the two states are the same up to at most two rapidities. This is a well-known
property of the density operator acting on Bethe states at c = ∞. Since both the left and right states have to be parity invariant
we focus on states which differ only by two rapidities,

λ̄j = λj for j = 3,4, . . . ,N, (C2)

and two rapidities λ1 and λ2 are, in general, different from λ̄1 and λ̄2. The integrals are nonzero only if Pj = P ′
j for j = 3,4, . . . ,N

and if the permutation P ∈ SN is restricted by

Pj ∈ {3,4,5, . . . ,N} for j = 3,4,5, . . . ,N. (C3)

There are 2 · (N − 2)! such permutations, namely (N − 2)! permutations for which P1 = 1 and P2 = 2, and another (N − 2)!
permutations for which P1 = 2 and P2 = 1. The permutation P ′ is almost completely fixed by P ; the only possible choices are

(P ′
1 = P1 and P ′

2 = P2) or (P ′
1 = P2 and P ′

2 = P1). (C4)

We thus obtain

1

(N − 2)! LN

∑
P,P ′

(−1)[P ]+[P ′]e
i x(λP1 −λ̄P ′

1
)

⎡
⎣ N∏

j=3

∫ L

0
dxj e

i xj (λPj
−λ̄P ′

j
)

⎤
⎦

= 1

L2

∑
Ptruncated

[ei x(λP1 −λ̄P1 ) − ei x(λP1 −λ̄P2 )] = 1

L2
(ei xλ1 − ei xλ2 )(e−i xλ̄1 − e−i xλ̄2 ). (C5)

With this expression for off-diagonal matrix elements, we can now recover the whole time evolution of the density-density
operator. The only contribution to the sum

〈0|eiHLLt ρ̂(x)ρ̂(0)e−iHLLt |0〉 = 1

2

∑
e

e−δse−iδωet 〈ρsp,∅|ρ̂(x)ρ̂(0)|ρsp,e〉 + 1

2

∑
e

e−δs∗
e +iδωet 〈ρsp,e|ρ̂(x)ρ̂(0)|ρsp,∅〉 (C6)

comes from particle-hole excitations consisting of only one parity-invariant pair:

{λ̄1 = λp,λ̄2 = −λp|λ1 = λh,λ2 = −λh}.
Their spectrum is the one of free particles δωe = 2λ2

p − 2λ2
h and since the shift function (A5) is trivial, the difference of the two

overlap coefficients is simply δse = − ln λp + ln λh. Putting everything together we obtain

〈0|eiHLLt ρ̂(x)ρ̂(0)e−iHLLt |0〉 − 〈ρ̂(x)ρ̂(0)〉sp =
∑
λp>0

∑
λh>0

e−δse−iδωet

[
4

L2
sin (λhx) sin (λpx)

]
→
∣∣∣∣
∫ ∞

−∞

dk

π

nk

4n2 + k2
e−2itk2+ikx

∣∣∣∣
2

,

(C7)

where we used the saddle-point distribution in the fermionized regime ρsp(λ) = 1
2π

1
(λ/2n)2+1 and ρh(λ) = 1

2π
− ρsp(λ).
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(2012); P. Krüger, S. Hofferberth, I. E. Mazets, I. Lesanovsky,
and J. Schmiedmayer, Phys. Rev. Lett. 105, 265302 (2010);
A. Vogler, R. Labouvie, F. Stubenrauch, G. Barontini,
V. Guarrera, and H. Ott, Phys. Rev. A 88, 031603 (2013);

D. Clément, N. Fabbri, L. Fallani, C. Fort, and M. Inguscio,
Phys. Rev. Lett. 102, 155301 (2009); N. Fabbri, D. Clément,
L. Fallani, C. Fort, and M. Inguscio, Phys. Rev. A 83, 031604(R)
(2011); N. Fabbri, S. D. Huber, D. Clément, L. Fallani, C.
Fort, M. Inguscio, and E. Altman, Phys. Rev. Lett. 109, 055301
(2012).

[16] J.-S. Caux and F. H. L. Essler, Phys. Rev. Lett. 110, 257203
(2013).

[17] J. Mossel and J.-S. Caux, J. Phys. A: Math. Theor. 45, 255001
(2012).

[18] E. H. Lieb and W. Liniger, Phys. Rev. 130, 1605 (1963); E. H.
Lieb, ibid. 130, 1616 (1963).

[19] B. Davies, Physica A 167, 433 (1990); B. Davies and V. E.
Korepin, arXiv:1109.6604.

[20] V. E. Korepin, N. M. Bogoliubov, and A. G. Izergin, Quan-
tum Inverse Scattering Method and Correlation Functions
(Cambridge University Press, Cambridge, UK, 1993).

[21] M. Brockmann, arXiv:1402.1471.
[22] J.-S. Caux (unpublished).
[23] C. N. Yang and C. P. Yang, J. Math. Phys. 10, 1115 (1969).
[24] J. M. Deutsch, Phys. Rev. A 43, 2046 (1991); M. Srednicki,

Phys. Rev. E 50, 888 (1994).
[25] A. C. Cassidy, C. W. Clark, and M. Rigol, Phys. Rev. Lett. 106,

140405 (2011).
[26] G. Mussardo, Phys. Rev. Lett. 111, 100401 (2013).
[27] M. Kormos, Y.-Z. Chou, and A. Imambekov, Phys. Rev. Lett.

107, 230405 (2011).
[28] B. Pozsgay, J. Stat. Mech. (2011) P01011.
[29] N. A. Slavnov, Theor. Math. Phys. 79, 502 (1989); ,82, 273

(1990).
[30] J.-S. Caux, J. Math. Phys. 9, 095214 (2009).
[31] M. Panfil and J.-S. Caux, arXiv:1308.2887.
[32] M. Kormos, M. Collura, and P. Calabrese, Phys. Rev. A 89,

013609 (2014).
[33] J. Mossel and J-S. Caux, New J. Phys. 12, 055028 (2010).
[34] B. Pozsgay, arXiv:1309.4593.
[35] M. Brockmann, J. De Nardis, B. Wouters, and J.-S. Caux,

arXiv:1401.2877.
[36] F. Bornemann, Math. Comput. 79, 871 (2010).
[37] T. M. Dunster, SIAM J. Math. Anal. 21, 995 (1990); N. S. Witte,

J. Phys. A: Math. Gen. 31, 807 (1998).
[38] A. Gil, J. Segura, and N. M. Temme, J. Comput. Appl. Math.

153, 225 (2003).
[39] M. Wadati, J. Phys. Soc. Jpn. 71, 2657 (2002).

033601-9

http://dx.doi.org/10.1088/1742-5468/2012/07/P07022
http://dx.doi.org/10.1088/1742-5468/2012/07/P07022
http://dx.doi.org/10.1103/PhysRevB.84.212404
http://dx.doi.org/10.1103/PhysRevB.84.212404
http://dx.doi.org/10.1103/PhysRevB.84.212404
http://dx.doi.org/10.1103/PhysRevB.84.212404
http://dx.doi.org/10.1088/1742-5468/2012/09/P09011
http://dx.doi.org/10.1088/1742-5468/2012/09/P09011
http://dx.doi.org/10.1088/1742-5468/2012/09/P09011
http://dx.doi.org/10.1103/PhysRevLett.109.247206
http://dx.doi.org/10.1103/PhysRevLett.109.247206
http://dx.doi.org/10.1103/PhysRevLett.109.247206
http://dx.doi.org/10.1103/PhysRevLett.109.247206
http://dx.doi.org/10.1088/1742-5468/2012/04/P04017
http://dx.doi.org/10.1088/1742-5468/2012/04/P04017
http://dx.doi.org/10.1088/1742-5468/2012/04/P04017
http://dx.doi.org/10.1103/PhysRevB.87.165106
http://dx.doi.org/10.1103/PhysRevB.87.165106
http://dx.doi.org/10.1103/PhysRevB.87.165106
http://dx.doi.org/10.1103/PhysRevB.87.165106
http://dx.doi.org/10.1103/PhysRevLett.110.245301
http://dx.doi.org/10.1103/PhysRevLett.110.245301
http://dx.doi.org/10.1103/PhysRevLett.110.245301
http://dx.doi.org/10.1103/PhysRevLett.97.156403
http://dx.doi.org/10.1103/PhysRevLett.97.156403
http://dx.doi.org/10.1103/PhysRevLett.97.156403
http://dx.doi.org/10.1103/PhysRevLett.97.156403
http://dx.doi.org/10.1103/PhysRevA.80.063619
http://dx.doi.org/10.1103/PhysRevA.80.063619
http://dx.doi.org/10.1103/PhysRevA.80.063619
http://dx.doi.org/10.1103/PhysRevA.80.063619
http://dx.doi.org/10.1088/1367-2630/12/5/055019
http://dx.doi.org/10.1088/1367-2630/12/5/055019
http://dx.doi.org/10.1088/1367-2630/12/5/055019
http://dx.doi.org/10.1088/1367-2630/12/5/055019
http://dx.doi.org/10.1103/PhysRevLett.107.150602
http://dx.doi.org/10.1103/PhysRevLett.107.150602
http://dx.doi.org/10.1103/PhysRevLett.107.150602
http://dx.doi.org/10.1103/PhysRevLett.107.150602
http://dx.doi.org/10.1103/PhysRevLett.100.030602
http://dx.doi.org/10.1103/PhysRevLett.100.030602
http://dx.doi.org/10.1103/PhysRevLett.100.030602
http://dx.doi.org/10.1103/PhysRevLett.100.030602
http://dx.doi.org/10.1088/1367-2630/12/5/055020
http://dx.doi.org/10.1088/1367-2630/12/5/055020
http://dx.doi.org/10.1088/1367-2630/12/5/055020
http://dx.doi.org/10.1088/1367-2630/12/5/055020
http://dx.doi.org/10.1103/PhysRevLett.100.100601
http://dx.doi.org/10.1103/PhysRevLett.100.100601
http://dx.doi.org/10.1103/PhysRevLett.100.100601
http://dx.doi.org/10.1103/PhysRevLett.100.100601
http://dx.doi.org/10.1088/1742-5468/2010/05/P05012
http://dx.doi.org/10.1088/1742-5468/2010/05/P05012
http://dx.doi.org/10.1088/1742-5468/2010/05/P05012
http://dx.doi.org/10.1140/epjd/e2009-00314-3
http://dx.doi.org/10.1140/epjd/e2009-00314-3
http://dx.doi.org/10.1140/epjd/e2009-00314-3
http://dx.doi.org/10.1140/epjd/e2009-00314-3
http://dx.doi.org/10.1103/PhysRevLett.100.080406
http://dx.doi.org/10.1103/PhysRevLett.100.080406
http://dx.doi.org/10.1103/PhysRevLett.100.080406
http://dx.doi.org/10.1103/PhysRevLett.100.080406
http://dx.doi.org/10.1103/PhysRevLett.105.150403
http://dx.doi.org/10.1103/PhysRevLett.105.150403
http://dx.doi.org/10.1103/PhysRevLett.105.150403
http://dx.doi.org/10.1103/PhysRevLett.105.150403
http://dx.doi.org/10.1088/1367-2630/12/8/083065
http://dx.doi.org/10.1088/1367-2630/12/8/083065
http://dx.doi.org/10.1088/1367-2630/12/8/083065
http://dx.doi.org/10.1088/1367-2630/12/8/083065
http://dx.doi.org/10.1103/PhysRevLett.109.115304
http://dx.doi.org/10.1103/PhysRevLett.109.115304
http://dx.doi.org/10.1103/PhysRevLett.109.115304
http://dx.doi.org/10.1103/PhysRevLett.109.115304
http://dx.doi.org/10.1103/PhysRevA.87.053628
http://dx.doi.org/10.1103/PhysRevA.87.053628
http://dx.doi.org/10.1103/PhysRevA.87.053628
http://dx.doi.org/10.1103/PhysRevA.87.053628
http://dx.doi.org/10.1088/1367-2630/14/7/075006
http://dx.doi.org/10.1088/1367-2630/14/7/075006
http://dx.doi.org/10.1088/1367-2630/14/7/075006
http://dx.doi.org/10.1088/1367-2630/14/7/075006
http://dx.doi.org/10.1103/PhysRevB.88.205131
http://dx.doi.org/10.1103/PhysRevB.88.205131
http://dx.doi.org/10.1103/PhysRevB.88.205131
http://dx.doi.org/10.1103/PhysRevB.88.205131
http://dx.doi.org/10.1088/0953-4075/43/15/155002
http://dx.doi.org/10.1088/0953-4075/43/15/155002
http://dx.doi.org/10.1088/0953-4075/43/15/155002
http://dx.doi.org/10.1088/0953-4075/43/15/155002
http://dx.doi.org/10.1103/PhysRevA.88.063633
http://dx.doi.org/10.1103/PhysRevA.88.063633
http://dx.doi.org/10.1103/PhysRevA.88.063633
http://dx.doi.org/10.1103/PhysRevA.88.063633
http://dx.doi.org/10.1038/nature04693
http://dx.doi.org/10.1038/nature04693
http://dx.doi.org/10.1038/nature04693
http://dx.doi.org/10.1038/nature04693
http://dx.doi.org/10.1038/nature06149
http://dx.doi.org/10.1038/nature06149
http://dx.doi.org/10.1038/nature06149
http://dx.doi.org/10.1038/nature06149
http://dx.doi.org/10.1126/science.1175850
http://dx.doi.org/10.1126/science.1175850
http://dx.doi.org/10.1126/science.1175850
http://dx.doi.org/10.1126/science.1175850
http://dx.doi.org/10.1103/PhysRevLett.100.090402
http://dx.doi.org/10.1103/PhysRevLett.100.090402
http://dx.doi.org/10.1103/PhysRevLett.100.090402
http://dx.doi.org/10.1103/PhysRevLett.100.090402
http://dx.doi.org/10.1103/PhysRevA.85.031604
http://dx.doi.org/10.1103/PhysRevA.85.031604
http://dx.doi.org/10.1103/PhysRevA.85.031604
http://dx.doi.org/10.1103/PhysRevA.85.031604
http://dx.doi.org/10.1103/PhysRevLett.105.265302
http://dx.doi.org/10.1103/PhysRevLett.105.265302
http://dx.doi.org/10.1103/PhysRevLett.105.265302
http://dx.doi.org/10.1103/PhysRevLett.105.265302
http://dx.doi.org/10.1103/PhysRevA.88.031603
http://dx.doi.org/10.1103/PhysRevA.88.031603
http://dx.doi.org/10.1103/PhysRevA.88.031603
http://dx.doi.org/10.1103/PhysRevA.88.031603
http://dx.doi.org/10.1103/PhysRevLett.102.155301
http://dx.doi.org/10.1103/PhysRevLett.102.155301
http://dx.doi.org/10.1103/PhysRevLett.102.155301
http://dx.doi.org/10.1103/PhysRevLett.102.155301
http://dx.doi.org/10.1103/PhysRevA.83.031604
http://dx.doi.org/10.1103/PhysRevA.83.031604
http://dx.doi.org/10.1103/PhysRevA.83.031604
http://dx.doi.org/10.1103/PhysRevA.83.031604
http://dx.doi.org/10.1103/PhysRevLett.109.055301
http://dx.doi.org/10.1103/PhysRevLett.109.055301
http://dx.doi.org/10.1103/PhysRevLett.109.055301
http://dx.doi.org/10.1103/PhysRevLett.109.055301
http://dx.doi.org/10.1103/PhysRevLett.110.257203
http://dx.doi.org/10.1103/PhysRevLett.110.257203
http://dx.doi.org/10.1103/PhysRevLett.110.257203
http://dx.doi.org/10.1103/PhysRevLett.110.257203
http://dx.doi.org/10.1088/1751-8113/45/25/255001
http://dx.doi.org/10.1088/1751-8113/45/25/255001
http://dx.doi.org/10.1088/1751-8113/45/25/255001
http://dx.doi.org/10.1088/1751-8113/45/25/255001
http://dx.doi.org/10.1103/PhysRev.130.1605
http://dx.doi.org/10.1103/PhysRev.130.1605
http://dx.doi.org/10.1103/PhysRev.130.1605
http://dx.doi.org/10.1103/PhysRev.130.1605
http://dx.doi.org/10.1103/PhysRev.130.1616
http://dx.doi.org/10.1103/PhysRev.130.1616
http://dx.doi.org/10.1103/PhysRev.130.1616
http://dx.doi.org/10.1103/PhysRev.130.1616
http://dx.doi.org/10.1016/0378-4371(90)90126-D
http://dx.doi.org/10.1016/0378-4371(90)90126-D
http://dx.doi.org/10.1016/0378-4371(90)90126-D
http://dx.doi.org/10.1016/0378-4371(90)90126-D
http://arxiv.org/abs/arXiv:1109.6604
http://arxiv.org/abs/arXiv:1402.1471
http://dx.doi.org/10.1063/1.1664947
http://dx.doi.org/10.1063/1.1664947
http://dx.doi.org/10.1063/1.1664947
http://dx.doi.org/10.1063/1.1664947
http://dx.doi.org/10.1103/PhysRevA.43.2046
http://dx.doi.org/10.1103/PhysRevA.43.2046
http://dx.doi.org/10.1103/PhysRevA.43.2046
http://dx.doi.org/10.1103/PhysRevA.43.2046
http://dx.doi.org/10.1103/PhysRevE.50.888
http://dx.doi.org/10.1103/PhysRevE.50.888
http://dx.doi.org/10.1103/PhysRevE.50.888
http://dx.doi.org/10.1103/PhysRevE.50.888
http://dx.doi.org/10.1103/PhysRevLett.106.140405
http://dx.doi.org/10.1103/PhysRevLett.106.140405
http://dx.doi.org/10.1103/PhysRevLett.106.140405
http://dx.doi.org/10.1103/PhysRevLett.106.140405
http://dx.doi.org/10.1103/PhysRevLett.111.100401
http://dx.doi.org/10.1103/PhysRevLett.111.100401
http://dx.doi.org/10.1103/PhysRevLett.111.100401
http://dx.doi.org/10.1103/PhysRevLett.111.100401
http://dx.doi.org/10.1103/PhysRevLett.107.230405
http://dx.doi.org/10.1103/PhysRevLett.107.230405
http://dx.doi.org/10.1103/PhysRevLett.107.230405
http://dx.doi.org/10.1103/PhysRevLett.107.230405
http://dx.doi.org/10.1088/1742-5468/2011/11/P11017
http://dx.doi.org/10.1088/1742-5468/2011/11/P11017
http://dx.doi.org/10.1088/1742-5468/2011/11/P11017
http://dx.doi.org/10.1007/BF01016531
http://dx.doi.org/10.1007/BF01016531
http://dx.doi.org/10.1007/BF01016531
http://dx.doi.org/10.1007/BF01016531
http://dx.doi.org/10.1007/BF01029221
http://dx.doi.org/10.1007/BF01029221
http://dx.doi.org/10.1007/BF01029221
http://dx.doi.org/10.1063/1.3216474
http://dx.doi.org/10.1063/1.3216474
http://dx.doi.org/10.1063/1.3216474
http://dx.doi.org/10.1063/1.3216474
http://arxiv.org/abs/arXiv:1308.2887
http://dx.doi.org/10.1103/PhysRevA.89.013609
http://dx.doi.org/10.1103/PhysRevA.89.013609
http://dx.doi.org/10.1103/PhysRevA.89.013609
http://dx.doi.org/10.1103/PhysRevA.89.013609
http://dx.doi.org/10.1088/1367-2630/12/5/055028
http://dx.doi.org/10.1088/1367-2630/12/5/055028
http://dx.doi.org/10.1088/1367-2630/12/5/055028
http://dx.doi.org/10.1088/1367-2630/12/5/055028
http://arxiv.org/abs/arXiv:1309.4593
http://arxiv.org/abs/arXiv:1401.2877
http://dx.doi.org/10.1090/S0025-5718-09-02280-7
http://dx.doi.org/10.1090/S0025-5718-09-02280-7
http://dx.doi.org/10.1090/S0025-5718-09-02280-7
http://dx.doi.org/10.1090/S0025-5718-09-02280-7
http://dx.doi.org/10.1137/0521055
http://dx.doi.org/10.1137/0521055
http://dx.doi.org/10.1137/0521055
http://dx.doi.org/10.1137/0521055
http://dx.doi.org/10.1088/0305-4470/31/2/034
http://dx.doi.org/10.1088/0305-4470/31/2/034
http://dx.doi.org/10.1088/0305-4470/31/2/034
http://dx.doi.org/10.1088/0305-4470/31/2/034
http://dx.doi.org/10.1016/S0377-0427(02)00608-8
http://dx.doi.org/10.1016/S0377-0427(02)00608-8
http://dx.doi.org/10.1016/S0377-0427(02)00608-8
http://dx.doi.org/10.1016/S0377-0427(02)00608-8
http://dx.doi.org/10.1143/JPSJ.71.2657
http://dx.doi.org/10.1143/JPSJ.71.2657
http://dx.doi.org/10.1143/JPSJ.71.2657
http://dx.doi.org/10.1143/JPSJ.71.2657

