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Abstract: The article presents an original method for determining the modulus of elasticity of
natural materials. A studied solution was based on vibrations of non-uniform circular cross-section
cantilevers solved using Bessel functions. The derived equations, together with experimental tests,
allowed for calculating the material’s properties. Assessments were based on the measurement
of the free-end oscillations in time using the Digital Image Correlation (DIC) method. They were
induced manually and positioned at the end of a cantilever and monitored in time using a fast Vision
Research Phantom v12.1 Camera with 1000 fps. GOM Correlate software tools were then used to
find increments of deflection on a free end in every frame. It provided us with the ability to make
diagrams containing a displacement–time relation. To find natural vibration frequencies, fast Fourier
transform (FFT) analyses were conducted. The correctness of the proposed method was compared
with a three-point bending test performed on a Zwick/Roell Z2.5 testing machine. The presented
solution generates trustworthy results and can provide a method to confirm the elastic properties of
natural materials obtained in various experimental tests.

Keywords: natural materials properties; plant stems experimental testing; non-uniform bar vibra-
tions; solution by Bessel functions; tapered pipe vibrations; eigenfrequency calculation; modulus of
elasticity determination

1. Introduction

The properties of a material can be identified using various experimental methods [1–3].
One primary property, the modulus of elasticity, can be evaluated by obtaining natural
vibration frequencies in simple static schemes. When using clamped–free boundary con-
ditions, the first natural frequency can be determined by measuring oscillations at the
cantilever’s free end. The Digital Image Correlation (DIC) technique [4] is valuable, because
vibration can be assessed without deploying other sensors, which can result in increased
concentrated mass. With moderately light samples, this approach is essential. Plant stems
or other natural materials [5,6] belong to this group. The subsequent case we present is one
in which the cross section may differ along the length of the tested element. Simplifications
are often introduced by averaging dimensions, which may generate calculation errors
for non-uniform sections. In consequence, this may lead to under- or overestimation of
mechanical properties. Thus, diverse sections should be incorporated when evaluating
characteristics of the elements in experimental tests. The authors of the paper consider a
cross section’s non-uniformity in calculations and examine its influence compared to the
results achieved with simplified cross-section approximations.

Because of the native characteristics of the elements examined, the cross-sectional
divergences, which led to the development of model plants, are especially significant. Such
structures often have circular-symmetric cross-sections with tapering along the length.
Solid circular, or pipe, cross sections are the most common choice for modelling slender
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bars with variable stiffness, and capture the behaviour of plant elements reliably well. The
challenge of determining the eigenfrequencies of such bars, despite the long history of such
endeavours, still fascinates researchers, who advance solutions to this task using multiple
methods. These are analytical (exact or approximate) or, in more recent times, numerical,
wherein the most typical choice is the finite element method or, much less often, the finite
difference method.

Conceivably, the first solution to the problem of vibration of a rod with a circular cross
section of linearly varying diameter was proposed by Kirchhoff [7] for a clamped–free
scheme. He calculated the first natural frequency and the amplitude of oscillation using
the power series method to solve the differential equation and compared these results
to the quantities obtained for a rod with a constant circular cross section. The accuracy
of this solution (four correct significant digits) was exact, considering the computational
capabilities at his disposal in the late 19th century. Subsequent papers describing a similar
problem appeared in the early 20th century. Nicholson [8] and Wrinch [9] implemented
Bessel functions in their solutions. Wrinch, similarly to Kirchhoff, studied the vibration
of a cone fixed at the base and calculated several eigenfrequencies utilising the results of
Airey [10], who obtained them by examining the vibrations of circular plates.

Similar problems were often solved by the Ritz–Galerkin method in the second half
of the 20th century. Significant achievements in its applications were made by Rao [11],
who solved the equations of motion of cantilever bars with a rectangular tapered cross-
section. Computational methods were applied too. Numerical integration of the equation
of transverse vibration of a Bernoulli–Euler beam was performed by Mabie and Rogers [12],
who determined the free vibration frequencies of a beam with a linearly double-tapered
rectangular section. The equation of motion was numerically integrated; however, details
about the method were not provided. The boundary conditions described in the paper
correspond to a clamped–simply supported beam, but the authors mention the cantilever
scheme in the introduction.

Abdelghany et al. [13] analysed three examples of circular section members imple-
menting several boundary conditions, such as simply supported, clamped–clamped and
clamped–roller beam. They employed the differential transformation method. A 3D analy-
sis was performed by Kang and Leissa [14], who examined thick, tapered circular section
bars. Results were shown for nine different cases with linear, quadratic and cubic variations
of radial thickness. Jaworski [15] utilised the Rayleigh approach to investigate a cantilever
column as a truncated cone and a hollow truncated cone. An analytical solution was
reached for the first form of the vibrations’ eigenvalue. A differential quadrature method
was used, among others, by, Al Kaisy et al. [16], who studied a general non-uniform bar,
whereas De Rosa et al. [17] attempted to derive the frequency–axial load relationship for
a variable circular section beam. In a preceding paper [18], these authors analysed the
dynamic characteristics of beams with a linearly changing cross section with elastic support
at the ends. The equation of motion was solved using Bessel functions. The article includes
full expressions for the boundary conditions that led to the eigenfrequencies.

Bessel functions were used, among others, by Li [19], who studied non-uniform
shear beams with an arbitrary distribution of mass or stiffness. Taha and Abohadima [20]
considered non-uniform viscoelastic flexural structures and attained results for a wide range
of their characteristics. Kisa and Gurel [21] analysed circular section members containing
non-propagating open cracks. Three numerical examples were given to investigate the
effects of location and depth of cracks. Attarnejad and Shahba [22] studied revolved
non-prismatic cantilevers.

Lee Jung and Lee Youn [23] used the transfer matrix and Frobenius methods to find
the values and eigenvectors of a bar with a linearly varying section height. They noticed
that the number of terms of the series which must be summed up to obtain the required
accuracy strongly depends on the cross-section taper ratio. The results were subsequently
discussed by Banerjee and Ananthapuvirajah [24], who applied Bessel functions in their
solution, proving the greater efficiency of the method.
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Li et al. [25] analysed the free longitudinal vibration of a circular truncated nanocone
based on the theory of non-local elasticity. The results apply to the design of sensors and
oscillators based on circular truncated nanocones. Nguyen Thi Nhung et al. [26] used
the perturbation method and finite element analysis for the stochastic natural frequency
problem of inhomogeneous beams with a random elastic modulus field. Their findings
showed that the mesh density did not affect the natural frequency significantly.

Due to a vast number of related studies, the preceding review was limited to a few
works. Furthermore, some of them contain an extensive bibliography, enabling the expan-
sion of the topic under consideration.

2. Materials and Methods
2.1. Motivation for the Approach

The solution for a cantilever beam with a non-uniform cross section can be used for
many purposes. One of them can be a reverse method of exact determination of mechanical
properties in natural plant stems or other materials undergoing non-uniformity of the cross
section. An example is the method suggested, but not explained thoroughly, by the authors
in our earlier works [1,2]. The determination of the modulus of elasticity, being a main goal
of a procedure, was based on the first plant stems’ cantilevers’ eigenfrequency. Vibrations
were induced manually and oscillations of the free end of the cantilever were measured in
time using a fast Vision Research Phantom v12.1 Camera with 1000 fps. GOM Correlate
software was then used to read increments of deflection u(+) and u(−) on a free end in
every frame. It enabled us to create diagrams containing a displacement–time relation. In
order to find the first eigenfrequency, fast Fourier transform (FFT) analyses were performed
(Figure 1).
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The free vibration frequency of a prismatic bar can be determined by the well-
known [27,28] Formula (1):

ω =
β2

l2

√
E=
$A

(1)

where:

ω—the angular frequency [rad/s];
$—mass density;
A—area of the cross section;
=—moment of inertia of the cross section;
E—elastic modulus (Young’s modulus);
l—length of the bar;
β—the coefficient depends on the boundary conditions of the bar.

After small rearrangements, Formula (1) can be written as (2):

ω = 2π f → E =

(
2π f
β2

)2 $Al4

= (2)

where f is a natural frequency [Hz].

Boundary conditions of an analysed bar lead to the so-called transcendental equation,
which has an infinite number of roots. The highest accuracy can be obtained for the first
(lowest) free vibration frequency. For a prismatic cantilever bar, an equation can be used
with the form cosh(β)cos(β) + 1 = 0 [27,28], and the first root of this equation has the value
β ∼= 1.8751. Calculating the Young’s modulus is then possible using Equation (2), after
determining the vibration frequency of a tested material.

Analysing a bar with variable stiffness, the problem is to define a correct value of the
β-factor. In many investigations, this issue is often simplified by accepting the β-factor as
for a constant-stiffness bar. In the authors’ opinion, this may lead to significant calculation
errors. Thus, the subsequent parts of the paper focus on incorporating non-uniformity of
the sample section and discussing difficulties that occur during calculations.

2.2. Theoretical Introduction to the Approach

The equation describing the free undamped flexural vibration of the Euler–Bernoulli
bar, shown in Figure 2, can be written as follows (3) [28]:

d2

dX2

(
E=(X)

d2Y
dX2

)
+ µ(X)

d2Y
dt2 = 0 (3)

where E denotes the modulus of elasticity (Young’s modulus), = is the moment of inertia of
the cross section, and µ is the mass per unit length of the bar. After taking a dimensionless
coordinate, x = X/l, and assuming a solution in the form (4):

Y(x, t) = ly(x) sin(ωt) (4)

an equation describing the transverse displacement of the bar is obtained (5):[
1
l4

d2

dx2

(
E=(x)

d2y(x)
dx2

)
− µ(x)ω2y(x)

]
sin(ωt) = 0 (5)
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Since the natural frequency is of interest, the problem can be reduced to solving an
ordinary differential Equation (6):

d2

dx2

(
=(x)

d2y(x)
dx2

)
− $A(x)ω2l4

E
y(x) = 0 (6)

where µ(x) = $A(x) and A(x) is the cross-sectional area and $ is the material density.
Characteristics of a bar cross section, =(x) and A(x), for many types of variation in

bar geometry, can be presented in the form (7)—(cf. Appendix A):

=(x) = =oxn+2, A(x) = Aoxn (7)

where:

n = 1—for a tapered pipe of a constant thickness or wedge with a fixed width;
n = 2—for a truncated cone or a tapered pipe of a variable thickness, as well as a pyramid
with rectangular cross section.

An explanation of these values is provided in the next section and in Appendix A.
After taking into account the relation (7), Formula (8) is obtained:

d2

dx2

(
xn+2 d2y

dx2

)
− η4xny = 0 (8)

where: η4 = ρAoω2l4

E=o
.

After minor transformations, Equation (8) can be presented in a compact form (9), as
in [29]: (

x
d2

dx2 + (1 + n)
d

dx
+ η2

)(
x

d2

dx2 + (1 + n)
d

dx
− η2

)
y = 0 (9)

The solution of this equation is the sum (y = y1 + y2) of the solutions of two simpler
relationships (10):

x
d2y1

dx2 + (1 + n)
dy1
dx

+ η2y1 = 0 and x
d2y2

dx2 + (1 + n)
dy2
dx
− η2y2 = 0 (10)

The functions y1(x) and y2(x), which are solutions of these equations, can be repre-
sented as linear combinations of Bessel functions (11) and (12):

y1 =
1√
xn

[
C1 Jn

(
2η
√

x
)
+ C2Yn

(
2η
√

x
)]

(11)

y2 =
1√
xn

[
C3 In

(
2η
√

x
)
+ C4Kn

(
2η
√

x
)]

(12)
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where:

Jn—Bessel function of the first kind of order n;
Yn—Bessel function of the second kind of order n;
In—modified Bessel function of the first kind of order n;
Kn—modified Bessel function of the second kind of order n;
C1, C2, C3 and C4 are constants.

For the convenience of further transformations, a new variable ξ = 2η
√

x is introduced,
which leads to (13) and (14):

ξ2 = 4η2x, x =
1

4η2 ξ2, dx =
1

2η2 ξdξ, xn =

(
1

2η
ξ

)n+2
(13)

y =

(
2η

ξ

)n
[C1 Jn(ξ) + C2Yn(ξ) + C3 In(ξ) + C4Kn(ξ)],

dy
dx

=
2η2

ξ

dy
dξ

(14)

C1, C2, C3 and C4 are constants that should be chosen in order to satisfy the boundary
conditions of the problem. At the fully restrained end, they are (15):

X = X2 →
dY
dX

= 0, Y = 0 (15)

and at the free end (16):

X = X1 →
d2Y
dX2 = 0,

d3Y
dX3 = 0 (16)

which leads to the equivalent conditions (17a,b):

x = x2 → y = 0,
dy
dx

= 0 (17a)

x = x1 →
d2y
dx2 = 0,

d3y
dx3 = 0 (17b)

After applying the recursive formulas for Bessel functions [30] and small transforma-
tions, Equations (18) and (19) are obtained:

y =

(
2η

ξ

)n
[C1 Jn(ξ) + C2Yn(ξ) + C3 In(ξ) + C4Kn(ξ)] (18)

dy
dx

= −η

(
2η

ξ

)n+1
(C1 Jn+1 + C2Yn+1 − C3 In+1 + C4Kn+1) (19)

Boundary conditions (17a) are equivalent to the conditions (20a,b):

C1 Jn(ξ2) + C2Yn(ξ2) + C3 In(ξ2) + C4Kn(ξ2) = 0 (20a)

C1 Jn+1(ξ2) + C2Yn+1(ξ2)− C3 In+1(ξ2) + C4Kn+1(ξ2) = 0 (20b)

Conditions (17b) lead to the Equations (21a,b):

C1 Jn+2(ξ1) + C2Yn+2(ξ1) + C3 In+2(ξ1) + C4Kn+2(ξ1) = 0 (21a)

C1 Jn+3(ξ1) + C2Yn+3(ξ1)− C3 In+3(ξ1) + C4Kn+3(ξ1) = 0 (21b)
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After introducing substitutions (22):

ξ1 = 2η
√

x1 = ηζ1 → ζ1 = 2
√

x1, ξ2 = 2η
√

x2 = ηζ2 → ζ2 = 2
√

x2 (22)

the system of Equations (20) and (21) may be written in a matrix form as (23):
Jn(ηζ2) Yn(ηζ2) In(ηζ2) Kn(ηζ2)

Jn+1(ηζ2) Yn+1(ηζ2) −In+1(ηζ2) Kn+1(ηζ2)
Jn+2(ηζ1) Yn+2(ηζ1) In+2(ηζ1) Kn+2(ηζ1)
Jn+3(ηζ1) Yn+3(ηζ1) −In+3(ηζ1) Kn+3(ηζ1)

 ·


C1
C2
C3
C4

 =


0
0
0
0

→ B(η) · c = 0 (23)

The above leads to the condition of zeroing the determinant (24):∣∣B(η)∣∣ = 0 (24)

Eigenvalues ηi determined using the condition (24) enable us to calculate natural
vibration frequencies (25):

η4
i =

$Aoω2
i l4

E=o
→ ωi =

η2
i

l2

√
E=o

$Ao
(25)

Inserting A2 and =2 instead of Ao and =o (the bar section parameters at the clamping
point)—(cf. Appendix A), where x = x2, Formula (26) is obtained:

η4
i =

$A2x2
2ω2

i l4

E=2
→ ωi =

η2
i

x2l2

√
E=2
$A2

(26)

Comparing Formula (26) with Equation (1), a relationship between the eigenvalue η
and the searched-for β-factor is obtained, which results in the vibration frequency of the
non-uniform bar: β2 = η2/x2.

3. Results and Discussion

The main goal of the examples presented was to study an effect of cross-sectional
variations on the first natural frequency of a bar fixed at the “thicker” end. This allowed us
to find the correct value of the β-factor (cf. Equations (1) and (2)), necessary for estimating
the Young’s modulus of the material under consideration. Two examples were included in
the calculations: (1) a tapered pipe of a constant wall thickness, (2) a truncated cone and a
tapered pipe of linearly varying thickness. Assumptions which should be introduced into
the model are given subsequently.

In all presented calculations, the examples assumed:

• Bar length: l = 500 mm;
• External diameter of the bar at the support: D2 = 14 mm;
• Thickness of the pipe wall at the support, in the case of linearly varying thickness:

g2 = 3 mm;
• Constant thickness of the tapered pipe: g = 2 mm.

A tapering coefficient of a cross section was defined as: ϑ = 1− D1/D2, which varies
from 0, for a prismatic bar to 1 for a conical bar.

3.1. Tapered Pipe with Constant Wall Thickness

Taking the value of the tapering coefficient ϑ, Formula (27) is obtained:

x2 = ϑ−1, x1 = x2 − 1, ζ1 = 2
√

x1, ζ2 = 2
√

x2 (27)
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With the cross-sectional variation considered, the exponent is n = 1 (cf. Appendix A.1),
so the boundary conditions matrix (Equation (23)) takes the form (28):

B(η) =


J1(ηζ2) Y1(ηζ2) I1(ηζ2) K1(ηζ2)
J2(ηζ2) Y2(ηζ2) −I2(ηζ2) K2(ηζ2)
J3(ηζ1) Y3(ηζ1) I3(ηζ1) K3(ηζ1)
J4(ηζ1) Y4(ηζ1) −I4(ηζ1) K4(ηζ1)

 (28)

Equating a determinant of the matrix B to zero enables us to find its eigenvalues ηi:

det(B(η)) = 0 → η1, η2, η3 . . . η∞ → β = η1
√

ϑ (29)

Since determining an elastic modulus (Equation (2)) is of interest, it is enough to calcu-
late only the first eigenvalue η1, which will give the requested parameter β = η1/

√
x2. The

method described gives x2, x1 → ∞ for a bar with constant thickness when ϑ = 0. Because
of that finding, this value requires using a different approach. Thus, a classical equation is
used [27,28]: cosh(β) cos(β) + 1 = 0, which gives the first eigenvalue β ∼= 1.8751. For a full
(conical) taper of the pipe, ϑ = 1, so x2 = 1, x1 = 0, which also gives ζ1 = 0, ζ2 = 2. Such a
value of ζ1 results in infinite values of the Bessel functions Y(ζ1) and K(ζ1), which results
in unlimited displacements of the bar end. Therefore, zero values of constants C2 and C4 in
Equations (20) and (21) should be assumed and only Equations (20a) and (20b) should be
solved. Boundary conditions for the free end of a bar (Equation (21)) are satisfied automati-
cally, because the functions J3(ζ), J4(ζ) and I3(ζ), I4(ζ) describing them have zero values
at ζ1 = 0. Subsequently, a simple equation is obtained: J1(2η)I2(2η) + J2(2η)I1(2η) = 0,
whose solution is η ∼= 2.3054.

Table 1 shows the results of the eigenvalue search, calculated for many values of the
tapering coefficient ϑ in the range 0 ≤ ϑ ≤ 1, and D2 = 14 mm, g = 2 mm, l = 500 mm.
The values marked in red do not apply to the pipe, since at this tapering and wall thickness,
the end is filled completely. The values highlighted in blue indicate a significant error (ε) in
the approximation of the moment of inertia at the end of the bar. The =1 here has a value
more than 10% less than the exact value. An explanation of the cause and magnitude of this
error can be found in Appendix A.1 (Equation (A2)). All values in the table are obviously
correct for a constant-width wedge.

Table 1. Results of calculation of eigenvalues η1 and β -factor for tapered pipe.

ϑ
D1

(mm)
ε

(%) x1 ζ1 x2 ζ2 η1 β

0 14.0 4.1 ∞ ∞ ∞ ∞ - - - 1.8751

0.05 13.3 4.5 19 8.7178 20 8.9443 8.4102 1.8806

0.10 12.6 5.0 9 6 10 6.3246 5.9655 1.8865

0.20 11.2 6.4 4 4 5 4.4721 4.2475 1.8996

0.30 9.8 8.3 2.3333 3.0551 3.3333 3.6515 3.4961 1.9149

0.40 8.4 11.3 1.5000 2.4495 2.500 3.1623 3.0566 1.9332

0.50 7.0 16.3 1 2 2 2.8284 2.7654 1.9555

0.60 5.6 25.5 0.6667 1.6330 1.6667 2.5820 2.5607 1.9835

0.70 4.2 45.4 0.4286 1.3093 1.4286 2.3905 2.4147 2.0203

0.80 2.8 — 0.2500 1 1.2500 2.2361 2.3164 2.0718

0.90 1.4 — 0.1111 0.6667 1.1111 2.1082 2.2683 2.1519

0.95 0.7 — 0.0526 0.4588 1.0526 2.0520 2.2711 2.2136

1 0 — 0 0 1 2 2.3055 2.3055
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Figure 3 shows the results simultaneously checked using the finite element analyses.
The FE model of a tapered pipe was created using shell elements available in Autodesk
Simulation Mechanical software. However, the use of FEA has some limitations, such as
those regarding obtaining satisfactory results for a conical end of a pipe (ϑ = 1). The solid
line in the graph shows a polynomial approximation of the ϑ− β relationship obtained
analytically. A 6th degree polynomial provided an excellent agreement with the results,
making it easy to find a correct value of the β-factor. The maximum difference of the values
determined by the polynomial did not exceed 1.56 · 10−3, which was completely sufficient
in practical applications and experimental results. The equation of the polynomial used
is (30):

β(ϑ) =
6

∑
i=0

ai ϑi, a =



1.8754728
0.0551546
0.8589286
−4.1604536
9.9737731
−10.723535
4.4254473


(30)
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Figure 3. β-factor in dependence on the pipe tapering coefficient ϑ for tapered pipe with constant
wall thickness (compare Figure A1) and constant-width wedge (compare Figure A2).

The properties of the Sida hermaphrodita stem specimen can be assumed as:
l = 425 mm, D1 = 12.88 mm, D2 = 14.17 mm, g = 1.77 mm, $ = 0.475 mg/mm3. Then,
the tapering coefficient can be calculated: ϑ = 1− D1/D2 = 0.09104, as well as the fac-
tor β = 1.8851, using Equation (30). The cross-sectional area at the fixed end of the bar
A2 = πg(D2 − g) = 68.805 mm2 and the moment of inertia =2 ∼= 0.125πg(D2 − g)3 =
1323.4 mm4 together with the results of vibration frequency measurements (see Figure 1
and Table 4) allow us to estimate the Young’s modulus of the material. FFT analysis gives
the first vibration frequency f = 66.41 Hz and E = 11.109 GPa, using Equation (2). The
β-factor determined by solving Equation (29) directly is slightly larger, β = 1.8854, and
produces a value of E = 11.103 GPa. As shown, the polynomial approximation of the
β-factor gives a result that is sufficiently exact when applied to the interpretation of the
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experimental data. Such an approach is convenient and reduces the results’ obtaining time.
There is no need to use complex algorithms to solve Equation (29).

In Equation (3), the member responsible for the damping of vibrations is omitted. A
negligible effect on the obtained vibration frequency can be proved by an example. An
analysis of the signal enables us to find a logarithmic damping decrement δ, and hence a
correction in Equation (2), resulting in the frequency of damped vibrations ωd (31):

ωd = 2π f
√

1− α2 → E =

(
2π f
β2

)2 $Al4

=(1− α2)
(31)

where α = δ/
√

δ2 − 4π2 is the damping ratio. In the described test sample, an estimated
value of logarithmic damping decrement was equal to δ = 0.1315, which resulted in
α = 0.02093, and the correction to the Young’s modulus value was E′ = E/

(
1− α2) =

1.0004E. As can be seen, the value of this correction is insignificant compared to the
accuracy of the experimental results.

3.2. Tapered Pipe with Linearly Varying Thickness

The relationships presented in this section apply to such variations in the cross section,
wherein the area changes according to the equation A(x) = A0x2, and the moment of
inertia to =(x) = =0x4. The variation parameter n = 2 can be assumed not only for a
truncated cone and tapered pipe with linearly varying thickness, but also for a pyramid.
Details of these relationships can be found in Appendixes A.2 and A.3. Solving the prob-
lem allows us to find the eigenvalues of the matrix describing the boundary conditions
(Equations (15) and (16)). This is analogous to that which was presented in the earlier
section. The matrix describing the boundary conditions, for parameter n = 2, takes the
form (32):

B(η) =


J2(ηζ2) Y2(ηζ2) I2(ηζ2) K2(ηζ2)
J3(ηζ2) Y3(ηζ2) −I3(ηζ2) K3(ηζ2)
J4(ηζ1) Y4(ηζ1) I4(ηζ1) K4(ηζ1)
J5(ηζ1) Y5(ηζ1) −I5(ηζ1) K5(ηζ1)

 (32)

As before, by changing the section tapering parameter ϑ in the interval 0 ≤ ϑ ≤ 1, the
first eigenvalues η1 of the B matrix and the β-factors using the condition (33) can be found:

det(B(η)) = 0 → η1 → β = η1
√

ϑ (33)

As in the earlier paragraph, the classical equation cosh(β) cos(β) + 1 = 0 was used
for a constant section (ϑ = 0). A simplified equation was solved for the conical end of the
bar when ϑ = 1: J2(2η)I3(2η) + J3(2η)I2(2η) = 0, whose solution is η1 ∼= 2.9528.

The results of the calculations are shown in Table 2, where, as before, the diameter
D1 and the thickness of the pipe at the “thinner” end g1 are also given, assuming that
D2 = 14 mm and g2 = 3 mm.

β(ϑ) =
6

∑
i=0

bi ϑi, b =



1.8749150
0.4155574
−0.1076414
1.6658948
−3.0310535
2.7504146
−0.6147947


(34)
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Table 2. Results of calculation of eigenvalues η1 and β -factor for tapered pipe.

ϑ
D1

(mm)
g1

(mm) x1 ζ1 x2 ζ2 η1 β

0 14.0 3 ∞ ∞ ∞ ∞ — 1.8751

0.05 13.3 2.85 19 8.7178 20 8.9443 8.4760 1.8953

0.10 12.6 2.7 9 6 10 6.3246 6.0611 1.9167

0.20 11.2 2.4 4 4 5 4.4721 4.3903 1.9634

0.30 9.8 2.1 2.3333 3.0551 3.3333 3.6515 3.6820 2.0167

0.40 8.4 1.8 1.5000 2.4495 2.500 3.1623 3.2859 2.0782

0.50 7.0 1.5 1 2 2 2.8284 3.0414 2.1506

0.60 5.6 1.2 0.6667 1.6330 1.6667 2.5820 2.8894 2.2381

0.70 4.2 0.9 0.4286 1.3093 1.4286 2.3905 2.8054 2.3472

0.80 2.8 0.6 0.2500 1 1.2500 2.2361 2.7831 2.4893

0.90 1.4 0.3 0.1111 0.6667 1.1111 2.1082 2.8294 2.6842

0.95 0.7 0.15 0.0526 0.4588 1.0526 2.0520 2.8826 2.8096

1 0 0 0 0 1 2 2.9528 2.9528

Figure 4 shows the results of the β-factor calculations, in dependence on the tapering
coefficient ϑ. The determined values were used to find an approximating polynomial
“b” (Equation (34)). The approximating polynomial “a” described by Equation (30) is
also shown to allow for comparison of the differences between the models of a pipe with
constant thickness and a pipe with linearly decreasing thickness.
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Figure 4. β-factor in dependence on the cone tapering coefficient ϑ for truncated cone (compare
Figure A3), elliptical cone and solid prism (compare Figure A4) and pipe with linearly varying
thickness (compare Figure A5).

As before, an exemplary specimen’s data for Sida hermaphrodita was taken. The
chosen bar corresponded best to a tapered pipe model with linearly decreasing thick-
ness. Geometrical and material data were as follows: l = 425 mm, D1 = 12.87 mm,
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D2 = 14.45 mm, d1 = 9.31 mm, d2 = 10.51 mm, $ = 0.489 mg/mm3. The cross-sectional
area at the fixed end of the bar was A2 = πg(D2 − g) = 77.667 mm2, and the moment of
inertia was =2 ∼= 0.125πg(D2 − g)3 = 1547.1 mm4. Next, the tapering coefficient could
be calculated: ϑ = 1− D1/D2 = 0.10934, and then the factor β = 1.9209 according to
Equation (34). FFT analysis gave the first vibration frequency, f = 54.69 Hz, and finally
E = 6.9466 GPa using Equation (2). The β-factor determined by solving Equation (33)
directly was slightly smaller, β = 1.9208, and gave a value of E = 6.9471 GPa. As before, it
was convenient to use a polynomial approximation, which produces results very similar to
the analytical solution.

3.3. The Use of Approximating Polynomials to Averaged Experimental Data

As shown in Figure 5, when observing naturally scaled specimens, their geometry
may vary significantly along the length. This can cause difficulties in obtaining an exact
solution when using simplified cross-sectional properties approximations.
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Figure 5. Naturally scaled Sida hermaphrodita and Miscanthus giganteus specimens with the
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As stated in an earlier work [2], several approximations of a cross section, presented
in Figure 6, may be proposed, with different degrees of accuracy in calculations.
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Figure 6. Possible cross-section approximations: (a) natural—no approximation, (b) circular pipe,
(c) elliptical pipe, (d) sine–cosine series pipe.

The most precise results were obtained when natural cross-sectional properties
(Figure 6a) were used in calculations. This attempt necessitated generating a high-quality
scan of the section slice, forming its vectorial contours and deciphering its mechanical
properties directly from it. Nonetheless, the technique was impractical for utilisation in
analytical approaches, due to many variables. The most accurate estimating technique
was using sine–cosine series pipe (Figure 6d). This strategy introduced only a 2.3% error,
compared to the natural section, with Sida hermaphrodita, and 1.7% error with Miscanthus
giganteus. Similarly to the native section, using this approximation in analytical approaches
can be very limited. Afterward, an elliptical pipe (Figure 6c) could be used with an aver-
aged error at a level of 3.5% for Sida hermaphrodita and 3.3% for Miscanthus giganteus.
This technique was significantly easier to implement in analytical approaches than the two
techniques mentioned earlier. The most basic but less precise one was the circular pipe
approximation (Figure 6b), which yielded a 3.6% error for Sida hermaphrodita and 7.5%
for Miscanthus giganteus. However, this method can be effective in complex analytical
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approaches. In summary, the choice of approximation methods depends on the case being
addressed. The one chosen in the paper was the circular pipe approximation, because
of its ability to utilise a compound solution for vibration examinations of non-uniform
cross-section cantilevers.

These inaccuracies can be substantially decreased when tests are done on a statistically
valid number of specimens. The averaged properties of 10 samples tested for each plant in
the experimental setup (Figure 1) were collected and are presented in Table 3. The percent-
age values in brackets are the averaged standard deviations of the measured characteristics.

Table 3. Averaged properties of Sida hermaphrodita and Miscanthus giganteus samples.

Material D2
(mm)

d2
(mm)

g2
(mm)

D1
(mm)

d1
(mm)

g1
(mm)

l
(mm)

$
(mg/mm3)

f
(Hz)

Sida
hermaphrodita

14.73
(4.8%)

10.88
(5.4%)

1.93
(6.1%)

13.23
(4.1%)

9.53
(4.3%)

1.85
(4.7%)

426
(1.1%)

0.491
(7.2%)

64.84
(4.3%)

Miscanthus
giganteus

7.47
(4.6%)

5.01
(4.8%)

1.23
(6.9%)

7.04
(6.5%)

4.72
(5.4%)

1.16
(10.3%)

392
(2.3%)

0.625
(6.1%)

40.23
(6.4%)

An important issue can be an uncertainty estimation. This was done for frequencies
found with FFT analysis. With a series of measurements, it is recommended to use the
standard deviation of the experimental value of the mean. The variance of the mean can be
used as a measure of uncertainty. An arithmetic mean is usually taken as the result of x
measurement. Thus, the uncertainty of measurement is given by Formula (35):

x = x =
Σxi
n
→ sx =

√
Σ(xi − x)2

n(n− 1)
(35)

where:

x—measurement;
x—measurement mean;
n—number of measurements;
sx—measurement uncertainty.

Table 4 presents FFT analyses results regarding the natural frequencies resulting from
free-end oscillation measurements and properties for uncertainty estimation.

Table 4. Result of FFT analyses of natural frequency and properties for uncertainty estimation.

Sample Number
Sida Hermaphrodita Mischanthus Giganteus

f (Hz) (xi−x)2 (Hz2) f (Hz) (xi−x)2 (Hz2)

1 62.50 5.49 39.06 1.37

2 54.69 103.15 37.11 9.77

3 70.31 29.91 42.97 7.48

4 64.45 0.15 37.11 9.77

5 66.41 2.44 39.06 1.37

6 66.41 2.44 41.02 0.61

7 64.45 0.15 42.97 7.48

8 64.45 0.15 46.88 44.10

9 70.31 29.91 37.11 9.77

10 64.45 0.15 39.06 1.37

x = 64.48 Σ = 173.95 x = 40.24 Σ = 93.08
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The measurement uncertainty of the FFT analyses of natural frequencies and relative
error for Sida hermaphrodita stems can be estimated as (36):

sx =

√
Σ(xi − x)2

n(n− 1)
=

√
173.95 Hz2

10(10− 1)
= 1.39 Hz,

sx

x
=

1.39 Hz
64.48 Hz

= 2.16% (36)

and for Micanthus giganteus stems as (37):

sx =

√
Σ(xi − x)2

n(n− 1)
=

√
93.08 Hz2

10(10− 1)
= 1.02 Hz,

sx

x
=

1.02 Hz
40.24 Hz

= 2.53% (37)

As can be seen, the relative measurement error for both stems was slightly above 2%,
which seems to be acceptable in a case such as that of a natural material.

The proposed β− ϑ relationships from Figures 3 and 4 can be then directly utilised
to calculate the modulus of elasticity of the vibrating cantilevers, based on Formula (2).
Experimental levels of tapering were established using averaged values and their average
standard deviations. To demonstrate the method for using the polynomials (30) and (34),
three levels of tapering were compared:

• No tapering—using only one external diameter, as an average value from fixed support
and free end;

• Average tapering—using two different outer diameters—one from the fixed support
and another from the free end—averaged from the experimental data;

• High tapering—including average standard deviations of external diameters in such a
way as to get the biggest diameter at the fixed support and the smallest at the free end.

The constant values used in these cases were f = 64.84 Hz, l = 426 mm, $ =
0.491 mg/mm3, g = (g1 + g2)/2 = 1.89 mm for Sida hermaphrodita, and f = 40.23 Hz,
l = 392 mm, $ = 0.625 mg/mm3, g = (g1 + g2)/2 = 1.19 mm for Miscanthus gigan-
teus. The results are provided in Table 5. The “1st approach” means that Figure 3 and
Formula (30) were used, whereas the “2nd approach” indicates the use of Figure 4 and
Formula (34).

Table 5. Results for different approaches based on statistically valid experimental data.

1st Approach 2nd Approach

Material Level
of Tapering

D2
(mm)

D1
(mm)

E
(GPa)

E
(GPa)

Sida
hermaphrodita

No 13.98 13.98 12.961 12.977

Average 14.73 13.23 11.223 10.515

High 15.44 12.69 9.852 8.787

Miscanthus
giganteus

No 7.25 7.25 16.630 16.650

Average 7.47 7.04 15.310 14.739

High 7.81 6.58 13.386 12.106

As presented, the results may vary significantly depending on the assumed approach.
To state which of them fits the best to the analysed natural plant stems, a verification by
three-point bending test was used and is provided in the next subsection.

3.4. Validation of the Results by a Three-Point Bending Test

The experiment which can verify the proposed method is a three-point bending test,
standardised by ASTM D790 [31]. Such an evaluation, conducted on the Zwick/Roell
Z2.5 testing machine, is depicted in Figure 7. The cross-sectional properties were obtained
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directly from the vectorial contours of the middle slices, and no shape approximations were
executed, which should generate reliable results.
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After a small rearrangement of a beam deflection formula, the modulus of elasticity
could be calculated (38). P/w could be directly obtained as a slope of a force–deflection
line from experiments.

w =
PL3

48E=z
→ E =

L3

48=z

P
w

(38)

where:

w—deflection in the middle of the sample;
P—applied force;
L—span of the beam between supports;
E—modulus of elasticity;
=z—moment of inertia for central cross-section.

The complete examinations of 15 specimens were shown in earlier authors’ work [1].
Summarising the range of the modulus of elasticity for Sida hermaphrodita resulted in
values of 7.63 ÷ 11.01; the average value was equal to 9.32 GPa with an 18% deviation.
Subsequently, we found that the range of the modulus of elasticity for Miscanthus giganteus
was 12.77 ÷ 15.93 GPa, with an average value equal to 14.35 GPa with an 11% deviation.
As is visible, the spread of the results was considerable.

Based on Table 6, one can see that results depend on the assumed method of calcu-
lations. Comparing results from the vibrations approaches to a three-point bending, the
following statements can be made:

• The no-tapering assumption highly overestimated the value of the modulus of
elasticity—39.2% error for Sida hermaphrodita and 16.0% for Miscanthus giganteus;

• Averaging tapering produced the best results for Miscanthus giganteus (4.7% error)
and overestimated them for Sida hermaphrodita (16.6% error);

• High tapering gave perfect results for Sida hermaphrodita (0.0% error) and underesti-
mated them for Miscanthus giganteus (11.1% error).

Based on the above, it can be generalised that the most exact approach for Sida
hermaphrodita is the “high tapering” and for Miscanthus giganteus the “average taper-
ing” assumption.
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Table 6. Comparison of the averaged results from vibrations approaches and three-point bending.

Material Level
of Tapering

Vibrations
E (GPa)

Three-Point Bending
E (GPa)

Error
(%)

Sida
hermaphrodita

No 12.97

9.32

39.2

Average 10.87 16.6

High 9.32 0.0

Miscanthus
giganteus

No 16.64

14.35

16.0

Average 15.02 4.7

High 12.75 11.1

4. Conclusions

The article presented an original method for determining the modulus of elasticity of
natural materials. A studied solution was based on the vibrations of non-uniform circular
cross-section cantilevers and solved using Bessel functions. The derived equations, together
with experimental tests, allowed for calculating the material’s properties. Assessments
were based on measurements of the free-end oscillations in time using the Digital Image
Correlation (DIC) method. They were induced manually and positioned at the end of the
cantilever and monitored in time using a fast Vision Research Phantom v12.1 Camera with
1000 fps. GOM Correlate software tools were then used to find increments of deflection on
a free end in every frame. It provided us with the ability to make diagrams containing a
displacement–time relation. To find natural vibration frequencies, fast Fourier transform
(FFT) analyses were conducted. The correctness of the proposed method was compared
with a three-point bending test performed on a Zwick/Roell Z2.5 testing machine. Based
on our experimental results comparison, it was stated that the most exact approach for
Sida hermaphrodita was the “high tapering”, and for Miscanthus giganteus, the “average
tapering” assumption. As was proved in the third section, the method generates trust-
worthy results and can confirm elastic properties of natural materials obtained in various
experimental tests.

The factor of the specimens’ geometry deviating significantly from the ideal straight
rod with a tapered cross section can cause a noticeable discrepancy when interpreting
laboratory test results. Estimating the error interval obviously requires many trials and
wider statistical analysis. The simple statistics presented in the paper were based on a
mean and a standard deviation. They should be further extended, as shown by Giaccu
et al. [32], who applied a sensitivity analysis to the elastic modulus of plywood determina-
tion. An imperfections effect caused by a natural curvature of the samples on the vibration
frequencies was small, as verified by numerical models performed with the finite element
method. The stiffening effect of nodes (diaphragms) visible on the Miscanthus giganteus
stem specimen (Figure 5) requires a separate study, which the authors intend to perform.
The shape of a cross section deviating significantly from the adopted circular one does not
pose a problem when the specimens are treated as bent bars, because the stiffness depends
on the cross-sectional moment of inertia. Such properties are easily determined based
on cross-sectional slice scans after suitable graphic processing. Having both moments of
inertia and principal axes, the section can be modelled with an ellipse, or elliptical tube,
which belongs to the class of the section analysed in the work (see Appendix A.3). The
non-uniform tapering of the outer and inner diameters of the pipe’s cross sections remains
a considerable problem in modelling the stems. The Bessel functions cannot be used with
differences in the two tapers. In such cases, only the numerical methods can be used, as
Mabie and Rogers [12] did with doubly tapered rectangular cross-section bars. Finding
suitable solutions and approximating polynomials for these cases is the goal of the authors’
further work.
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Figure A1. Constant-thickness pipe denotations.

When D1 and D2 are the outer diameters of a pipe with a wall thickness of g, it can be
assumed that (A1):

A2 = πg(D2 − g) → A0 =
A2
x2
→ A(x) = A0x → A(x) = A0xn, n = 1 (A1)

For a pipe with a small and constant thickness, where g� D(x), a simplified formula
to calculate the moment of inertia =(x) can be applied (A2):

=2 ∼=
πg
8
(D2 − g)3 (A2)

Then (A3):

=0 =
=2

(x2)
3 → =(x) = =x3 → =(x) = =0xn+2, n = 1 (A3)

where:

D—cross-sectional diameter measured to the mid-thickness of the pipe;
A—cross-sectional area;
=—moment of inertia;
g—thickness of the pipe wall.
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The relative error of the estimation is proportional to 2(g/D)2. For example, a pipe
with a ratio D/g = 5 produces a moment of inertia =2, 8% smaller than the exact value.

For a wedge of constant width and linearly varying height, when A2 is assumed as
the cross-sectional area of the wedge at its thicker end and =2 as the moment of inertia of
the cross section at this end (Figure A2), relations identical to Appendix A are obtained.
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A2 = bh2 → A0 =
A2
x2
→ A(x) = A0x → A(x) = A0xn, n = 1 (A4)

=2 =
bh2

3

12
, =0 =

=2

(x2)
3 → =(x) = =0x3 → =(x) = =0xn+2, n = 1 (A5)

Equations (A4) and (A5) represent the variation of the cross-sectional area and moment
of inertia of a wedge of constant width.

Appendix A.2. Truncated Cone
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D(x) = D2

(
x
x2

)
(A6)

A(x) =
π

4

(
D2
x2

)2
x2 → A0 =

π

4

(
D2
x2

)2
→ A(x) = A0x2 → A(x) = A0xn (A7)
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=(x) =
π

64

(
D2
x2

)4
x4 → =0 =

π

64

(
D2
x2

)4
→ =(x) = =0xn+2, n = 2 (A8)

where:

D—cross-sectional diameter measured at the mid-thickness of the pipe;
A—cross-sectional area;
=—moment of inertia.

Similar relationships can also be obtained for a regular and truncated prism, when A0
and =0 is assumed to be dependent on the dimensions of the prism base as follows (A9):

A0 =
bh

(x2)
2 , =0 =

bh3

12(x2)
4 , (A9)

where b is the width and h is the height of the prism base. This type of cross-sectional
variation can also include the elliptical cone (Figure A4) and tapered pipe with linearly
varying thickness, which is described in the next section.
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A(x) =
π
(

D2
2 − d2

2
)

4x2
2

x2 → A0 =
π
(

D2
2 − d2

2
)

4x2
2

→ A(x) = A0x2 (A11a)

A(x) = A0xn, n = 2 (A11b)

=(x) =
π
(

D4
2 − d4

2
)

64x4
2

x4 → =0 =
π
(

D4
2 − d4

2
)

64x4
2

→ =(x) = =0x4 (A12a)

=(x) = =0xn+2, n = 2 (A12b)

where:

D2—external diameter at the thick end;
d2—internal diameter at the thick end;
A—cross-sectional area;
=—moment of inertia.
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