
Solution Methodologies for

the Smallest Enclosing Circle Problem

Sheng Xu1 Robert M. Freund2 Jie Sun3

Tribute. We would like to dedicate this paper to Elijah Polak. Professor Polak has made substantial
contributions to a truly broad spectrum of topics in nonlinear optimization, including optimization for
engineering design centering, multi-criteria optimization, optimal control, feasible directions methods, quasi-
Newton and Newton methods, non-differential optimization, semi-infinite optimization, conjugate directions
methods, gradient projection and reduced gradient methods, and barrier methods, among many other topics.
His many and varied contributions to our field are important today and will influence the research in our
field well into the future.

Abstract. Given a set of circles C = {c1, ..., cn} on the Euclidean plane with centers {(a1, b1), ..., (an, bn)}
and radii {r1, ..., rn}, the smallest enclosing circle (of fixed circles) problem is to find the circle of minimum
radius that encloses all circles in C. We survey four known approaches for this problem, including a second
order cone reformulation, a subgradient approach, a quadratic programming scheme, and a randomized
incremental algorithm. For the last algorithm we also give some implementation details. It turns out the
quadratic programming scheme outperforms the other three in our computational experiment.

Keywords: Computational geometry, optimization.

Received September 27, 2001, Revised February 3, 2003

1 Gintic Institute of Manufacturing Technology, Singapore. E-mail: sxu@gintic.gov.sg. This author’s work
was partially supported by Singapore-MIT Alliance.

2 Sloan School of Management, Massachusetts Institute of Technology and Singapore-MIT Alliance. E-mail:
rfreund@mit.edu. His research was partially supported by Singapore-MIT Alliance.

3 Department of Decision Sciences, National University of Singapore and Singapore-MIT Alliance. E-mail:

jsun@nus.edu.sg. His research was partially supported by grants from Singapore-MIT Alliance and grants

R314-000-026/028/042-112 of National University of Singapore.

1 Introduction

Given a set of circles C = {c1, ..., cn} on the Euclidean plane with centers {(a1, b1), ..., (an, bn)} and

radii {r1, ..., rn}, the smallest enclosing circle (of fixed-center circles) problem is to find the circle

of minimum radius that encloses all circles in C.

The smallest enclosing circle problem arises in various application areas, such as:

• To plan the location of a shared facility. For example, to build a hospital servicing a number

of circle-shaped communities so as to minimize the distance between the hospital and the

farthest community from it.

• To rotate a set of circles into any arbitrary alignment: The minimal enclosing circle of the

points is the amount of space on the plane that must be empty to permit this rotation.

• To provide a rough approximation to the points of the minimal enclosing circle: Through the

test of proximity between sets of points/circles and the computation of the minimal enclosing

circle, the distance between a new point and a given set could be quickly determined.

• To solve problems in environmental science (design and optimization of solvents), pattern

recognition (finding reference points), biology (protein analysis), political science (analysis

of party spectra), mechanical engineering (stress optimization), and computer graphics (ray

tracing, culling) etc. More descriptions of these applications can be found in [2, 5, 7].

Most algorithms discussed in the literature consider only the special case of enclosing points, namely

the case of ri = 0, i = 1, ..., n. The simplest algorithm is to check every circle defined by two or three

of the n points (we say a circle is defined by two points if its diameter is the line segment between

the two points) and finds the smallest of these which contains every point. There are O(n3) such

circles and each takes O(n) time to check, so the total running time is O(n4). This algorithm is

computationally expensive and improvements date back as early as in 1860, see [7]. While the most

theoretically efficient method so far is shown to have an O(n) complexity (Megiddo [10]), a lot of

practically efficient methods exist for the enclosing point problem, see Chrystal [4], Elliosoff and

Unger [5], Elzinga and Hearn [6], Gärtner [7], Hearn and Vijan [8], and Welzl [12]. For the general

cases where at least one circle has non-zero radius, the problem can be formulated as a convex

program (See Section 2.1 below). Therefore, any suitable methods of convex programming can in

principle be used for solving this problem. The key point is which one is more efficient for large

1

practical problems, which can only be answered by practical testing. In this paper, we survey four

approaches that come with very different theoretical background (second-order cone optimization,

subdifferential optimization, quadratic optimization, and combinatorial optimization) and report

our numerical results in testing randomly generated problems.

2 Four algorithms for the smallest enclosing circle problem

In this section we survey four algorithms for the smallest enclosing circle (of fixed circles) problem.

Two of the algorithms have theoretical proofs of convergence while the other two are heuristics.

All four algorithms converge on our numerical tests of several thousand problems, demonstrating

that all four methods are very robust. The test results of these methods are reported in Section 3.

2.1 A formulation as a second order cone optimization problem

The most direct way to solve the enclosing circle problem is to formulate the problem as a second

order cone optimization problem.

Suppose the center of the enclosing circle is (x, y), and its radius is R. The smallest enclosing circle

problem can be formulated as a constrained convex program as follows.

min R s.t.
√

(x − ai)2 + (y − bi)2 + ri ≤ R i = 1, ..., n. (2.1)

By introducing auxiliary variables xi = ai−x, yi = bi−y, and zi = R−ri, i = 1, ..., n, this problem

can be reformulated as follows:

min R

s.t. xi + x = ai i = 1, ..., n

yi + y = bi i = 1, ..., n

zi + ri = R i = 1, ..., n

zi ≥
√

x2
i + y2

i i = 1, ..., n.

This formulation is a second order cone optimization problem, for which there are interior point

algorithms of iteration order O(
√

n| log ε|) (e.g., Lobo et al [9]) and related packages (e.g., Sturm

[11]), where ε is the user specified optimality tolerance. Since each iteration typically utilizes O(n3)

arithmetic operations [3], the complexity of this type of algorithms is O(n3.5| log ε|).

2

2.2 A subgradient method

Another formulation of our problem is an unconstrained non-differentiable convex program

min f(x, y) = max
i=1,...,n

{√
(ai − x)2 + (bi − y)2 + ri

}
.

The recent paper of Barahona and Anbil [1] shows that the subgradient method can be very effective

in solving extremely large linear programs, which motivates the following heuristic approach.

Step 1 : Starting point: x0 = (a1 + a2 + · · · + an)/n, y0 = (b1 + b2 + · · · + bn)/n. Set k := 0

Step 2 : Compute a subgradient of f(x, y) at (xk, yk).

Step 3 : Use line search to determine the step length.

Step 4 : If the step length is greater than 0, then k := k + 1, and proceed to Step 3. Otherwise,

stop.

In Step 3, to compute the subgradient at (xk, yk), the following procedure is used. Let I =

{i|f(x, y) =
√

(ai − x)2 + (bi − y)2 +ri} be the index set of the active functions in function f(x, y).

Then it is well known that

∂f(x, y) = co

{(√
(ai − x)2 + (bi − y)2

)−1 (x − ai

y − bi

)
: i ∈ I

}
, (2.2)

where ∂f(x, y) is the subdifferential of f at (x, y) and “co” stands for the convex hull. Thus, any

element in this set is a subgradient of f(x, y). In particular, if this set is a singleton, then f(x, y)

is differentiable at this point and we obtain the steepest descent direction by taking the search

direction as (ai − x, bi − y), i ∈ I (the negative gradient direction). If there is more than one

index in I, then we take the negative subgradient of smallest norm, namely we compute the search

direction as the projection of 0 onto −∂f(x, y).

We give a geometric interpretation of the algorithm. At (xk, yk) we look for the farthest circle from

(xk, yk), where the distance from (xk, yk) to each circle ci is di =
√

(ai − xk)2 + (bi − yk)2 + ri, for

i = 1, ..., n. If there is only one such circle, we move toward its center to reduce the radius of the

enclosing circle, which is the direction (ai −xk, bi − yk)T . If there more than one farthest circle, say

{ci | i ∈ I}, we move using the projection of 0 onto −∂f(xk, yk), which is the polytope generated

by the unit vectors along the directions (ai − xk, bi − yk)T , i ∈ I.

3

2.3 A quadratic programming approach

The smallest enclosing circle can be found by solving a sequence of convex quadratic program-

ming problems. For this purpose, we first introduce a new variable θ and consider for fixed

R ≥ max{ri, 1 ≤ i ≤ n} the problem

min θ s.t. (x − ai)2 + (y − bi)2 − θ ≤ (R − ri)2 i = 1, ..., n. (2.3)

Theorem 2.1 Problem (2.3) is equivalent to problem (2.1) in the sense that (x∗, y∗, R∗) is an

optimal solution of (2.1) if and only if (x∗, y∗, 0) is an optimal solution of (2.3) for R = R∗.

Proof: Let (x∗, y∗, R∗) be an optimal solution of (2.1) and solve (2.3) for R = R∗. By the feasibility

of (x∗, y∗, 0) to (2.3) one has θ∗ ≤ 0. It is obvious that one can not have θ∗ < 0 since if there exists

a feasible solution (x̄, ȳ, θ̄) of (2.3) such that θ̄ < 0, then (x̄, ȳ, R∗) is a feasible solution of (2.1)

such that all of its constraints are satisfied with strict inequalities. Therefore R∗ is not optimal to

(2.1), a contradiction. This implies that θ∗ = 0 in problem (2.3).

Conversely, if the optimal value θ∗ of (2.3) is equal to zero, then R must be equal to the optimal

value R∗ of (2.1). Otherwise, let R < R∗ and let (x, y, θ∗) be a feasible solution of (2.3). Then for

R = R∗, all inequalities in the constraint system are strict for the same x, y and θ∗, which further

implies that the optimal value of θ is negative or −∞. Thus, θ = 0 is not the optimal value of (2.3).

The case of R > R∗ can be proved similarly. In this case let (x∗, y∗, R∗) be an optimal solution

to (2.1). Then it is easy to show that (x∗, y∗, 0) is a feasible solution of (2.3) for R > R∗ with all

constraints being satisfied with strict inequalities. This again contradicts with θ∗ = 0. Finally, it is

easy to see that if R = R∗ and θ∗ = 0, then any optimal (x∗, y∗) of (2.3) is also optimal for (2.1).

Now, we will reformulate problem (2.3) as a series of linearly constrained quadratic programming

problems.

Define z = x2 + y2 − θ, this problem can be reformulated as follows:

min x2 + y2 − z s.t. − 2aix − 2biy + z ≤ (R − ri)2 − a2
i − b2

i i = 1, ..., n. (2.4)

If R is fixed and sufficiently large, then problem (2.4) is a linearly constrained quadratic program-

ming problem, which can be solved efficiently. If its optimal value is zero, then R is optimal for

4

(2.1) and we are done. Otherwise, we reduce R and solve the new quadratic program. Based on

this idea, we propose the following algorithm to solve the smallest enclosing circle problem:

Step 1 : Start with (x, y) = (0, 0) and compute R = max
i

{√
(ai − x)2 + (bi − y)2 + ri

}
.

Step 2 : Solve problem (3.3) to find z, x, and y.

Step 3 : If |x2 + y2 − z| ≤ ε (where ε is a predefined tolerance), then stop, otherwise re-compute

R = max
i

(
√

(ai − x)2 + (bi − y)2 + ri), and proceed to Step 2.

Remarks. The main idea of the method is to solve a series of quadratic programming problems

so that θ is always negative, and the results of (x, y) are used to find a better estimate of R at each

iteration.

2.4 A randomized incremental algorithm

The last method we study is a randomized incremental algorithm, which was first proposed by

Welzl [12]. Suppose that none of the given circles is contained in another given circle. By using the

fact that the smallest enclosing circle should be tangent to one, two, or three of the given circles

(see proof below), we could start from a single circle and enlarge it gradually to enclose all given

circles.

Definition 2.2 Circle a is said to lie on the boundary of circle b if circle a is contained by circle

b and is an internally tangent circle of circle b.

Definition 2.3 Given a set C of n circles in the plane, let sb(C,B) denote the circle of smallest

radius containing all circles in C, where B is the subset of C, containing all circles lying on the

boundary of sb(C,B). We define sb(C,B) = ∅ if C = ∅.

Clearly, when n = 1, one has C = {c1}, sb(C,B) = sb({c1}, {c1}) = c1. When n = 2, since none

of the circle is contained by the other, one has sb(C,B) = sb({c1, c2}, {c1, c2}) and it is easy to

construct this circle, namely the circle whose center lies on the line segment between the two centers

of c1 and c2 and have the two given circles lie on its boundary.

It is also clear that for n ≥ 3 one has sb(C,B) = sb(B,B) and B �= ∅ (These are always true if

C �= ∅ and will be shown in Corollary 2.5 below). Thus, the smallest enclosing ball is completely

determined by B. Note that sb(B,B) is easy to compute: If |B| (the cardinality of B) is one or

5

two, then sb(B,B) is either sb({c1}, {c1}) or sb({c1, c2}, {c1, c2}); if |B| ≥ 3, then take arbitrary

three circles and solve the following equation system.

(x − a1)2 + (y − b1)2 = (R − r1)2 (2.5)

(x − a2)2 + (y − b2)2 = (R − r2)2 (2.6)

(x − a3)2 + (y − b3)2 = (R − r3)2 (2.7)

Subtracting (2.5) − (2.6), (2.5) − (2.7), and (2.7) − (2.6) yields the following linear equations:

2(a2 − a1)x + 2(b2 − b1)y + 2(r1 − r2)R = r2
1 − a2

1 − b2
1 − (r2

2 − a2
2 − b2

2) (2.8)

2(a3 − a1)x + 2(b3 − b1)y + 2(r1 − r3)R = r2
1 − a2

1 − b2
1 − (r2

3 − a2
3 − b2

3) (2.9)

2(a2 − a3)x + 2(b2 − b3)y + 2(r3 − r2)R = r2
3 − a2

3 − b2
3 − (r2

2 − a2
2 − b2

2) (2.10)

From any two of equations (2.8), (2.9), and (2.10), we obtain x, y as functions of R. For example,

we use equations (2.8), (2.9) to derive:

x +
b2 − b1

a2 − a1
y +

r1 − r2

a2 − a1
R =

r2
1 − a2

1 − b2
1 − (r2

2 − a2
2 − b2

2)
2(a2 − a1)

(2.11)

x +
b3 − b1

a3 − a1
y +

r1 − r3

a3 − a1
R =

r2
1 − a2

1 − b2
1 − (r2

3 − a2
3 − b2

3)
2(a3 − a1)

, (2.12)

which gives

x =

(
r2
1 − a2

1 − b2
1 − (r2

2 − a2
2 − b2

2)
2(b2 − b1)

− r2
1 − a2

1 − b2
1 − (r2

3 − a2
3 − b2

3)
2(b3 − b1)

)
/

(
a2 − a1

b2 − b1
− a3 − a1

b3 − b1

)

−R

(
r1 − r2

b2 − b1
− r1 − r3

b3 − b1

)
/

(
a2 − a1

b2 − b1
− a3 − a1

b3 − b1

)
(2.13)

y =

(
r2
1 − a2

1 − b2
1 − (r2

2 − a2
2 − b2

2)
2(a2 − a1)

− r2
1 − a2

1 − b2
1 − (r2

3 − a2
3 − b2

3)
2(a3 − a1)

)
/

(
b2 − b1

a2 − a1
− b3 − b1

a3 − a1

)

−R

(
r1 − r2

a2 − a1
− r1 − r3

a3 − a1

)
/

(
b2 − b1

a2 − a1
− b3 − b1

a3 − a1

)
(2.14)

Substitute (2.13) and (2.14) in any of the three equations (2.5), (2.6), or (2.7) to compute R and

then use equations (2.13) and (2.14) to compute x and y. The existence of solution is guaranteed

by the non-colinearity of the three centers.

In summary, the determination of the smallest enclosing circle is equivalent to the determination

of B, whereas |B| ≥ 3 we only need three arbitrary circles in B.

6

Let Ck = {c1, ..., ck} be a set of k ≤ n circles randomly chosen from C and let sb(Ck, Bk) be the

smallest enclosing ball of Ck. We note that Bk can be recursively computed from B1 = {c1}. Before

we state the algorithm, we need the following proposition.

Proposition 2.4 If ck �⊂ sb(Ck−1, Bk−1), then ck ∈ Bk.

Proof. Let the center and radius of sb(Ck, Bk) be (x, y) and R, respectively. Then the KKT

conditions give

 0

0
1

+

k∑
i=1

λi

 x − ai

y − bi

ri − R

 =

 0

0
0

 , (2.15)

λi

[
(x − ai)2 + (y − bi)2 − (R − ri)2

]
= 0, i = 1, 2, ..., k, (2.16)

λi ≥ 0, (x − ai)2 + (y − bi)2 ≤ (R − ri)2, i = 1, 2, ..., k. (2.17)

If λk = 0 the conditions imply that sb(Ck, Bk) = sb(Ck−1, Bk−1). Thus ck ⊂ sb(Ck−1, Bk−1), which

contradicts with the assumption. Hence one obtains λk �= 0, which implies (x − ak)2 + (y − bk)2 =

(R − rk)2 by (2.16). The equation shows that ck lies on the boundary of sb(Ck, Bk).

Corollary 2.5 sb(C,B) = sb(B,B) and if C �= ∅ then B �= ∅.

Proof. Note that any (x, y) and R that satisfy (2.15) – (2.17) also satisfy the KKT conditions for

sb(B,B) which is the same as (2.15) – (2.17) except deleting the terms corresponding to (x−ai)2 +

(y − bi)2 < (R − ri)2, i.e., the non-boundary circles. Hence sb(C,B) = sb(B,B).

The proof of the second part is also trivial: Just note that if B = ∅ then all λi = 0, i = 1, ..., k in

(2.15), leading to 1 = 0 in (2.15), a contradiction.

The results above help to develop the following recursive algorithm, which we call the randomized

incremental algorithm. Its pseudo code is as follows.

Algorithm 2.6 % The Randomized Incremental Algorithm

% C is a set of circles to be enclosed, and B is a set of boundary circles

FUNCTION miniCircle(C,B);

IF C: = ∅ THEN

IF B:=∅ THEN

7

D:=∅;
ELSE IF B:={p} THEN

D:=p;

ELSE IF B:={p, q} THEN

D:= the smallest enclosing circle of p and q;

END IF

ELSE

Choose random ci ∈ C;

D:=miniCircle(C − {ci}, B);

IF ci /∈ D THEN %ci is on the boundary of D

IF the number of elements in set B ≤ 1 THEN

D:= miniCircle(C − {ci}, B + {ci});
ELSE % Three boundary circles are found

Calculate D’s radius R and D’s center (x, y) using equations (2.5), (2.13), and (2.14);

END IF

END IF;

END

RETURN D;

Justification of the algorithm. We compute the smallest enclosing circle sb(C,B) by recursively

computing sb(Ck, Bk) from sb(C1, B1) = {c1}. We justify the algorithm by induction.

At step k + 1, we have sb(Ck, Bk) and randomly select another circle ck+1. If ck+1 ⊂ sb(Ck, Bk),

then Bk+1 = Bk and sb(Ck+1, Bk+1) = sb(Ck, Bk). Otherwise, we start with Bk+1 = {ck+1} and

call to miniCircle which computes the smallest circle enclosing {c1, c2, ..., ck} with ck+1 on its

boundary.

The procedure is as follows. We randomly pick a circle among C = {c1, c2, ..., ck}, say c1, and

construct the smallest circle enclosing {c2, ..., ck} with ck+1 on its boundary. According to the

induction supposition, such a circle D is available. We then ask whether c1 ⊂ D. If yes, then D =

sb(Ck+1, Bk+1) (obvious); if not, then both c1 and ck+1 should be on the boundary of sb(Ck+1, Bk+1)

(Proposition 2.4). For convenient of terminology, let us call this process the layer-1 process.

8

In the “not” case of layer-1, we then pick another circle c2 randomly and construct the smallest

circle enclosing {c3, ..., ck} with c1, ck+1 on its boundary. According to the induction supposition,

such a circle is available and we also call it D to be consistent with the pseudo code. We ask if

c2 ⊂ D. If yes, then D = sb(Ck+1, Bk+1) (obvious); if not, we are done because Bk+1 = {ck+1, c1, c2}
(Proposition 2.4). Let us call this process the layer-2 process.

Thus, the case of k+1 circles is reduced to the case of k or k−1 circles. At each step, the algorithm

generates sb(Ck, Bk). By induction, the algorithm is justified.

Note that the algorithm is almost the same as the randomized incremental algorithm of Welzl [12].

The change is that we check whether a circle, rather than a point, is in the disk D at each iteration.

If the answer is “yes”, then both algorithms step into the next iteration. If the answer is “no”, then

both algorithms recursively proceed to the case of n − 1 circles or points with one more circle or

point on the boundary. When constructing the enclosing circle, both algorithms use ≤ 3 boundary

circles or points. Thus, the expected complexity of the algorithm here should be the same as Welzl’s

algorithm.

3 Numerical results

In this section we will compare the numerical performance of all four methods for the smallest

enclosing circle of fixed circles problem, namely , the second order cone optimization formulation,

the subgradient method, the quadratic programming method, and the randomized incremental

algorithm.

We implemented a version of the randomized incremental algorithm, the subgradient method and

the quadratic programming method to solve the smallest enclosing circle problem using MATLAB.

We also used SeDuMi, a software package for cone optimization problems, to solve the second order

cone optimization formulation of the problem. SeDuMi is a MATLAB package with some complied

portions, see Sturm [11].

The centers of the circles to be enclosed were generated as normally distributed random points, and

radii of these circles were generated as uniformly distributed random numbers and checked so that

no circles were contained in any other. We tried problems of different sizes, from 5 circles to 300

circles, and 50 random problems were solved using the four methods for each problem size. Figure

1 shows the average running time of these methods in solving these randomly generated problems

where the horizontal axis shows the size n of the problems.

9

Figure 1: Average running time of four methods

The numerical results show that all methods can find the optimal solution in reasonable time and

they perform similarly when the number of circles is small (≤ 50, say). We can also observe that the

quadratic programming method performs better than the other three methods when the number

of circles increases.

It is observed that the running time of the second order cone formulation is longer on average

than that of the other algorithms. It is no surprise the subgradient method is not the best due to

its zigzag behavior, a common problem of gradient based methods. To our surprise, however, we

note that the “direct” method, namely the randomized incremental algorithm is defeated by the

“indirect” quadratic programming method and it appears that as the number of circles increases,

the quadratic programming method tends to be more and more efficient than the other three

methods.

10

References

[1] Barahona, F. and P. Anbil (2000), “The volume algorithm: producing primal solutions with a subgra-
dient method”, Mathematical Programming, 87, 385-399.

[2] Berg, M. (1997), Computational Geometry: Algorithms and Applications, Springer.

[3] Bertsimas, D. and R. Freund (2000), Data, Models, and Decisions: the Fundamentals of Management
Science, South-Western College Pub.

[4] Chrystal, P. (1885), “On the problem to construct the minimum circle enclosing n given points in a
plane”, in: Proceedings of the Edinburgh Mathematical Society, Third Meeting, p.30.

[5] Eliosoff, J. and R. Unger (1998), “Minimal spanning circle of a set of points”, Computer Science 308-
507: Computational Geometry project, school of computer science, McGill University.

[6] Elzinga, J. and D. Hearn (1972), “The Minimum covering sphere problem”, Management Science., 19,
96-104.

[7] Gärtner, B. (1999), “Fast and robust smallest enclosing balls”, Nestril, J., editor, Algorithms - ESA’99
: 7th Annual European Symposium, proceedings, Vol. 1643 of Lecture Notes in Computer Science, pp.
325- 338, Springer-Verlag.

[8] Hearn, D.W. and J. Vijan (1982), “Efficient algorithms for the minimum circle problem”, Oper. Res.,
30, 777-795.

[9] Lobo, M., L. Vandenberghe, S. Boyd, and H. Lebret (1998), “Applications of second-order cone pro-
gramming”, Linear Algebra and its Applications, 284, 193-228.

[10] Megiddo, N. (1983), “Linear-time algorithms for linear programming in 	3 and related problems”,
SIAM J. Comput., 12, 759-776.

[11] Sturm, J. (1999), “Using SeDuMi 1.0x, A MATLAB toolbox for optimization over symmetric cones”,
http://www.unimaas.nl/ sturm.

[12] Welzl, E. (1991), “Smallest enclosing disks (balls and ellipsoids)”, H. Maurer, editor, New Results
and New Trends in Computer Science, Vol. 555 of Lecture Notes in Computer Science, pp. 359-370,
Springer-Verlag.

11

