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SOLUTION METHODS FOR EIGENVALUE PROBLEMS IN 
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SUMMARY 

A survey of probably the most efficient solution methods currently in use for the problems K+ = w2M+ and 
K+ = XK,\lr is presented. In  the eigenvalue problems the stiffness matrices K and KG and the mass matrix M can 
be full or banded; the mass matrix can be diagonal with zero diagonal elements. The choice is between the well- 
known QR method, a generalized Jacobi iteration, a new determinant search technique and an automated sub- 
space iteration. The system size, the bandwidth and the number of required eigenvalues and eigenvectors deter- 
mine which method should be used on a particular problem. The numerical advantages of each solution technique, 
operation counts and storage requirements are given to establish guidelines for the selection of the appropriate 
algorithm. A large number of typical solution times are presented. 

INTRODUCTION 
In the dynamic response analysis of an assemblage of structural elements using conventional mode super- 
position the generalized eigenvalue problem 

K+ = w2M+ (1) 

is considered. In this equation K is the stiffness matrix and M is the mass matrix of the element assemblage, 
both are of order n.7,20 The n solutions to equation (1) can be written as 

K@ = M9Q2 (2)  
where the columns in 9 are the M-orthonormalized eigenvectors (free vibration modes) . . ., +n and Q2 is 
a diagonal matrix listing the eigenvalues w:, ..., (free vibration frequencies squared). 

Considering the complete dynamic analysis the most time consuming phase is usually the solution of the 
eigenvalue problem. For a most efficient solution it is necessary to take maximum advantage of the special 
properties of the matrices K and M and the specific solution requirements. 

It is of particular importance that in structural analysis both matrices K and M are banded, i.e. 

I kii = 0 for j > i + m ,  

mij = 0 for j>i+m, 
(3) 

where (2m, + 1) and (2mM + 1) are the bandwidths of the matrices K and M, respectively. Assuming that all 
rigid body modes have been removed from the system, K is positive definite. If in a finite element formulation 
a consistent mass matrix is used, M is also positive definite and mM = mK. In a lumped mass analysis M is 
diagonal with mii positive or zer0.~,20 

With regard to solution requirements it is usually not necessary to include in the mode superposition 
analysis the response in all modes. Many structures respond to particular types of dynamic loading primarily 
in a few modes, and the contribution of the other modes can be neglected. Also, the element assemblage 
must have been selected such that its lower frequencies and vibration mode shapes can accurately represent 
the structural resp0nse.l Therefore, in the solution of the eigenvalue problem we may reduce the numerical 
effort by only solving for the required lowest eigenvalues and corresponding eigenvectors. 
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Another generalized eigenvalue problem arises in buckling analysis. The equations governing buckling 
of an assemblage of structural elements are 

K@ = XKG@ (4) 
where K is the small deflection stiffness matrix used in equation (1) and K,, which is always banded, is the 
geometric stiffness matrix of the element system. The eigenvalues give the buckling loads and the eigenvectors 
represent the corresponding buckling modes.1' Because K, is in general indefinite, equation (4) is re-written 
as 

KG@ = KK@ ( 5 )  

where K = 1 / X  and can be negative or positive. In this equation the maximum value of K is required (and 
possibly the next lowest values) which gives the lowest buckling load. Using a shift which is an upper bound 
on the maximum eigenvalue in equation (5),  the problem is to determine the eigenvalue nearest to the 
shift.2 

Many different solution procedures have been developed for eigenvalue problems in general, see Reference 
19 for a list of references. More specifically of interest are the solution methods surveyed by Peters and 
Wilkinson16 and Bronlund.6 Reference should also be made to the work by Bauer,5 Dong and others? 
Jennings,12 Jennings and Orr,13 Gupta,ll FelippalO and Rutishauser.l* With a large number of different 
solution techniques available it need be noted that for the specific eigenvalue problems considered here, there 
is no single algorithm which always provides an efficient solution; however, it is only necessary to choose 
between a few most effective techniques. 

The purpose of this paper is to summarize the probably most efficient solution techniques currently in 
use and to establish guidelines for the selection of the appropriate solution method for a given problem. 
The methods under consideration are the Householder-QR-inverse iteration technique,lg a generalized 
Jacobi iteration? a determinant search rnethod2p3 and an automated subspace Only the basic 
steps of these solution methods are presented, where it is hoped that a structural analyst with relatively 
little experience in eigenvalue solution techniques can follow the exposition. The development of the 
individual techniques and their detailed relationships to other methods are given in the references. 

The proper choice of solution method is most important in the analysis of large systems; however, the 
guidelines given are general and apply to the solution of any order eigenvalue problem. The numerical 
advantages of each of the solution methods are discussed. The high speed storage requirements and the 
number of operations needed for solution largely determine which of the methods is most efficient in specific 
practical problems. Typical solution times using the algorithms in a wide spectrum of practical analyses 
are presented in order to emphasize the recommendations given for their use. 

As will be apparent later, there is little difficulty in choosing the appropriate algorithm in buckling analysis. 
For this reason, in the next sections specifically the solution of the problem K+ = u2 M+ is discussed; 
however, guidelines for the choice of algorithm in the solution of buckling problems also follow. 

TRANSFORMATION OF GENERALIZED EIGENVALUE 
PROBLEM TO STANDARD EIGENVALUE PROBLEM 

Much attention has been given to the solution of the standard eigenvalue pr0b1em.l~ The solution procedures I 

developed can be used if the more general form of the eigenvalue problem 

K+ = u2M+ (6) 
is first transformed to the standard form. 

(6) is equivalent to the solution of the standard eigenvalue problem 
Assume that M is positive definite, then if M = SST for any non-singular matrix S, the problem in equation 

g+ = u2+ (7) 

i( = S-lKS-T, $ = ST+ (8 )  

where 
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It is computationally efficient to use as S the Cholesky factor EM of My i.e. M = Z,E'&. The trans- 
formation is then a stable process provided M is well-conditioned with respect to inversion. However, if 
M is ill-conditioned the transformation process is also ill-conditioned; namely, as M becomes semi-definite, 
the system has very large eigenvalues and as w ~ < l l E ~ K ~ ~ T l l ~  the elements in E are large and the eigen- 
values of normal size are determined inaccurately. 

Another transformation matrix S is obtained using the spectral decomposition of My i.e. M = RD2RT, 
in which case S = RD, where the columns in R are the eigenvectors and D2 is a diagonal matrix with the 
eigenvalues of M. The use of this transformation matrix has an advantage because an ill-conditioning of M 
may now be concentrated in only a few small elements of D. Then in k only those rows and columns corre- 
sponding to the small elements in D will have large elements and the eigenvalues of normal size are more 
likely to be preserved. 

has the same bandwidth as K when M is diagonal. In this case both trans- 
formation procedures give i(; = MAKM-*, and the transformation is very cheap. However, consider that 
M is not a diagonal matrix; then the Cholesky transformation is still quite economical, but is full, and if 
the order of the matrices is large, the solution of the standard eigenvalue problem in equation (7) can be very 
expensive. 

It should also be pointed out that if M is ill-conditioned we may consider the problem M+ = (1/w2)K+ 
and use a decomposition of K instead. However, K is banded and therefore the transformation always leads 
to a full matrix. 

It is important to note that 

STATIC CONDENSATION 

The transformation of the generalized eigenvalue problem K+ = w2 M+ to the standard eigenvalue problem 
g$ = w2 6 can only be carried out when M is positive definite. In lumped mass analysis M can have in general 
zero elements on the diagonal. In this case it is necessary to use first static condensation on the massless 
degrees of freedom. 

Re-writing equation (6) as 

where Ma is positive definite, we obtain the reduced generalized eigenvalue problem 

Ka+a=w2Mu+a 

K u  = Kaa - K a c K 2  Kc, 

where 

and 
+ =-K-  ccl Kca +a 

In practice K, can be obtained as follows 

Ka = LcY = Kcu, K, = Kaa-YTY (13) 

where Lc is the Cholesky factor of Kc,. 
Instead of using equation (lo), alternatively, a flexibility matrix Fa corresponding to the mass degrees of 

freedom, i.e. Fu = K i l ,  could be calculated.2 The eigenvalue problem then to be considered is 
(1/w2) +, = Fa M a  +a, which using a factorization of Mu can obviously also be transformed to the standard 
form. 

Although the order of the matrices in the eigenvalue problem has been reduced, matrix K, (and certainly 
Fa) is in general full. To decrease computational requirements in the solution of equation (10) the mass of 

t I( 11 denotes any norm. 
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the structure may have been lumped at only a few degrees of freedom. This can be appropriate in the analysis 
of some structures, such as high-rise buildings. However, depending on the engineer's experience, in the 
analysis of complex structures the calculated eigensystem may then only be a very crude approximation to 
the required eigensystem of the actual structure. 

HOUSEHOLDER-QR-INVERSE ITERATION SOLUTION 

A very efficient procedure, which is probably regarded as the best method for finding the complete eigen- 
system of R in equation (7), is the Householder-QR-inverse iteration solution.1g The name suggests the 
following three solution steps: 

1. Householder transformations are used to reduce the matrix to tridiagonal form. 
2. QR iteration yields the eigenvalues. 
3. Using inverse iteration the eigenvectors of the tridiagonal matrix are calculated and transformed to the 

eigenvectors of R. 

The Householder reduction 
The Householder reduction to tridiagonal form involves (n - 2) orthogonal similarity transformations 

it,,, = PzRkP,, k = 1,2, ..., n-2, it1 = ii (14) 
where 

Consider the case k = 1, which is typical. Let 

and 

Then 

The vector El is determined from the condition 

where el is the (n- 1) dimensional unit vector, i.e., e: = [l 0 0 ... 01. It is only necessary to solve from 
equation (18) for a multiple of W1, and we can use 

The equivalent steps for k = 2,3, . . ., n - 2 are obvious. 
In the calculations we can use the symmetry property of K and store only the lower triangular part of the 

matrix. Also, we can use the storage locations of the elements which are zeroed in the reduction in order to 
store the wk for the calculation of the eigenvectors. 

t 1 1  1 1 2  denotes Euclidean norm. 
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The QR iteration 

is as follows 
Consider now the QR iteration with shifts on the tridiagonal matrix &+l, which we call T,. The iteration 

Tk-PkI= Q k R k  (20) 
T k + l =  RkQk+pkI ,  k = 1,2, ... (21) 

where Qk is an orthogonal matrix, R, is an upper triangular matrix and p, is the shift: In each iteration we 
perform an orthogonal similarity transformation 

and then 
Tk+l = QT Tk Qk (22) 

Tk+l-+S222 as k+co 
Regarding the convergence of the iteration it can be shown that the QR iteration is intimately related to 

the probably more familiar inverse iteration.lg In particular, the QR iteration with p k  properly chosen 
corresponds to the Rayleigh quotient iteration, which converges cubically in the neighbourhood of an 
eigen~a1ue.l~ In the iteration the eigenvalues are not found in order of their magnitudes and it is usual 
practice to calculate them all. Ortega and Kaiser14 have developed explicit formulae which relate the elements 
in Tk+l to the elements in T,. 

Solution of eigenvectors 
Once the eigenvalues have been obtained to full machine precision we calculate only the required eigen- 

vectors of Tl by simple inverse iteration with shifts equal to the corresponding eigenvalues. Two steps of 
inverse iteration are usually sufficient. These vectors need be transformed with the Householder trans- 
formations used to obtain the eigenvectors of R. 

Table I summarizes the Householder-QR-inverse iteration algorithm and gives the high speed storage 
and number of operations required for solution. In the operation counts one operation is assumed to consist 
of one multiplication which nearly always is followed by an addition. 

Table I. Summary of Householder-QR-inverse iteration solution 

Operation Calculation 
~~ ~ - 

Householder K ~ + ~  = PTZ.,P,, %= iL2, ..., n-2  
transformations K1 = K 

QR iterations Tk+i = QT TI, Qro k = 1 3 ,  ... 
TI = KnPl 

I 

Calculation of (K,,-l- UJ: I) x!'+') = XI", k = 1,2 
p eigenvectors 

Transformation 

i = 1, 2, . . . , p  

i = 1,2 ,  ..., p 
- 

= Pl ... Pn+ xi3), 
of eigenvectors 

Total for all eigenvalues and p eigenvectors 

~ 

Number of 
operations Required storage 

$n3 + &aa 

9n2 
Using symmetry 

of matrix 
lOpn 

&(n + 1)1+ 6n 

in3  + ?n2 +pn2 + 9 pn 

As was noted above, the complete solution of the generalized eigenvalue problem requires static con- 
densation of the massless degrees of freedom and the transformation to the standard eigenvalue problem. 
The storage requirements and operations for these calculations are not included in the table. 

It should be noted that this operation count as well as those given in the next sections represents an 
estimate of the actual number of operations performed by a solution routine. Only the significant terms are 
included in the operation counts and the actual number of operations will vary slightly depending on 
programming details. 

9 
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GENERALIZED JACOB1 ITERATION SOLUTION 

For solution of the generalized eigenvalue problem using the Householder-QR-inverse iteration technique, 
we first need to transform the problem to the standard form. A generalized Jacobi iteration avoids this 
transformation and solves directly for all eigenvalues and eigenvectors of the generalized eigenvalue problem. 
The massless degrees of freedom in a lumped mass analysis do not need to be statically condensed. When the 
off-diagonal elements are small or sparse this direct solution can be very efficient. Another advantage of the 
method is that the algorithm is very 

In the iteration let K, = K and M, = M, then we form for k = 1,2, . . . 
Kk+l = pz K, p,, Mk+l= PT M, p, 

where P, is a generalized rotation matrix 

P, = 
l a -  

Y 1 -  

1 

-1 

-j 
(24) 

The variables 01 and y are selected to zero simultaneously the (i,j) elements in K, and M,, where then 
assuming that M is positive definite 

Kk+, -f diag (Zr), Mk+, -f diag (Ar) as k -+ co 
The required eigenvalues are 

!2 = diag (Xr/Ar) 

and if I iterations were required for convergence the required eigenvectors are 

9 = P, Pz . . . Pl diag (A;') (26) 
When M is diagonal with zero diagonal elements simple provisions need be made for it in the algorithm. 

iteration in which a rotation is applied if either of the coupling factors 
The generalized Jacobi iteration has been found to be very efficient when implemented as a threshold 

where the superscript refers to the matrices K, and M,, is larger than the current threshold. Naturally, when 
M is diagonal the mass coupling factor is always set equal to zero. 

The calculations in general performed in the solution are summarized in Table 11, where the storage 
requirements and an operation count are also given. The total number of operations in one sweep are an 
upper bound because it is assumed that both matrices are full and that all off-diagonal elements are zeroed, 
i.e. the threshold tolerance is never passed. The actual number of operations per sweep is naturally much 
less if the off-diagonal elements are already small or the matrices are not full. The total number of sweeps 
for solution depends on the magnitude and positioning of the off-diagonal elements and the eigensystem 
accuracy required. In general, the solution can be obtained in two to eight sweeps. 

DETERMINANT SEARCH SOLUTION 

In the solution of large eigenvalue problems the number of required eigenvalues and corresponding vectors 
is usually much smaller than the order of the matrices. In this case it is much more economical to find only 
the required eigensystem. 
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Table 11. Summary of generalized Jacobi solution 

Operation Calculation 
Number of 
operations Required storage 

Calculation of 
coupling factors 

Calculation of 
eigenvectors 

6 

4n+ 12 

Total for one sweep 3nS + 6n8 

Using symmetry 
of matrices 
n(n + 2) 

na 

2n2 + 2n 

For matrices with small bandwidth a determinant search algorithm provides a very efficient s0lution.2~~ 
The algorithm uses triangular factorization and vector inverse iteration directly on the general problem 
K+ = w2M+ and solves for the required eigenvalues and vectors in succession from the leastdom inant 
eigenpair upwards. In the eigenvalue problem M can be diagonal, with zero diagonal elements, or may be 
banded positive definite. 

Figure 1. Characteristic polynomial p(p) 

Consider the solution for the eigenpair (wf, +J, where w4 may be a multiple root. 
The first objective in the iteration is to obtain a shift near wf. Here we use the fact that the eigenvalues 

are the roots of the characteristic polynomial p(p) = det(K-pM). To evaluate p(p) the matrix K-pM is 
factored into LDLT using Gauss elimination, where L is a unit lower triangular matrix and D is a 
diagonal matrix. We then have p(p) = 

Let pk-I<pk<wf as shown in Figure 1. The next shift pk+l is calculated using an accelerated secant 
iteration in which 

dse 

where I) is a constant. When I) = 1 *O we have the well-known secant iteration in which case Pk+l<  w; and 
pk+l -+ w; as k+ 03. However, convergence in this iteration can be slow. Because the aim is to obtain merely 
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a shift near cot the program uses an efficient acceleration scheme in which 7132.0. Starting the iteration 
7 equals 2.0 because in this case pk+l < ui, where co; is the smallest stationary point of p. A jump over a 
simple root would be detected by a sign change in p. However, when we iterate towards a multiple root or a 
cluster of roots, convergence with q = 2-0 is still slow. Fortunately, in this case the eigenvalue separation 
theorem (Sturm sequence property) allows us to accelerate the iteration further by increasing 7 still more. 

Once a shift near co; has been obtained by either jumping over it or by approaching it sufficiently close 
from below, inverse iteration is used to calculate the eigenvector +1 and the Rayleigh correction pc, which 
added to the shift gives the eigenvalue to the required precision (see Table 111). 

Table 111. Summary of determinant search solution 

Operation Calculation 
Number of operations 

m = mK = rnM m = mK,mM = 0 

Secant K = K--*M 
iteration K = LDLT 

Inverse - K%+l = 
iteration Y k + l  = M X k + i  

Total for p lowest eigenvalues and associated eigenvectors 
assuming six secant and six inverse iterations per eigen- 
pair 

n(m + 1) 
&m2 +- #nm 

n 

n(2m + 1) 
n(2m + 1) 

2n 

13n 

(3nm2 + 39nm + 114n)p 

n 
Jnm2 + %nm 

n 

n(2rn+ 1) 
n 

2n 

13n 

(3nmz + 21 nm + 114n)p 

Required storage 
m = mK = mM m = mK,mM = 0 

Using symmetry of matrices 

n(m + 1) -k 10n 2n(m + 1) + 9n 

This iteration for w! and is typical because the advantage of the one-sided approach to uf is also obtaingd 
by using instead of p(p) in equation (28) the deflated polynomial p&), Figure 2, for any other root, say 

where 
j 

PjW = P(P) rI (p- 0 4 )  (29) li-, 
The calculations in a secah iteration and in a vector inverse iteration are summarized in Table 111, where 

also the required number of operations and the storage requirements are given. Note that the factorization 
of K-pM is performed without interchanges which has proven to be numerically adequate.2 Also, the 
iteration vector is orthogonalized in each iteration to the last found six eigenvectors. In this operation count 
the half bandwidths mM and mK are assumed to be full, and terms involving the bandwidths only have been 
neglected. In most actual systems the bandwidths vary and many zeros occur within the band. The solution 
routine should take due account of both. The number of iterations required for the solution of an eigenpair 
depends on the system under consideration; experience shows that about six secant steps and six inverse 
iterations are required. 
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The determinant search technique is most efficient and has been implemented as an in-core solution 
routine. Because relatively many triangular factorizations are required, much tape handling would be 
necessary in an out-of-core solution.2 Also, the technique is most efficient in the analysis of small-banded 
systems, and in this case relatively large order systems can be solved on reasonable size computers. 

Figure 2. p(p) with w: suppressed 

SUBSPACE ITERATION SOLUTION 

In the subspace iteration solution the required eigenvalues and vectors are also calculated directly without a 
transformation to the standard 

The aim is to solve for the p lowest eigenvalues and associated eigenvectors satisfying 

KQ = MQQ2 (30) 

where the columns in Q, are the p eigenvectors and QZa is a diagonal matrix with the corresponding eigen- 
values. The specific idea used in the solution is that the eigenvectors form an M-orthonormal basis of the 
p-dimensional least dominant subspace of the operators K and M .  

In the solution we iterate simultaneously with q linearly independent vectors, where q?p .  In the kth 
iteration the vectors span the q-dimensional subspace &k+l and ‘best’ eigenvalue and eigenvector approxi- 
mations are calculated, i.e. when the vectors span the p-dimensional least dominant subspace the required 
eigenvalues and eigenvectors are obtained. 

Let X, store the starting vectors, then the algorithm is defined as follows: 
For k = 1,2, . . . iterate from &k to &k+l 

K 8 k + l  = M X k  (31) 

Find the projections of the operators K and M onto 8k+1  

Kk+l = xz+l Kgk+l 

Mk+l = xf+l Mgk+l 

Solve for the eigensystem of the projected operators 

Find an improved approximation to the eigenvectors 

Xk+l = xk+l Qk+i 

Then provided the starting subspace is not orthogonal to one of the required eigenvectors, we have 

+ a’, X k + l +  as k + 00 

(32) 

(33) 

(35) 
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The iteration is performed with q vectors because the asymptotic convergence rate of the ith column in 
Xk+, to +( is given by O ~ / W & ~ ;  therefore, the larger q the higher the convergence rate for the p vectors of 
interest, but also more operations need be carried out in each iteration. In the implementation of the 
algorithm q = min {2p,p + 8} has been found to be effective. 

Table IV. Summary of subspace iteration solution 

Number of operations 
Operat ion Calculation m = m = m  M m = m, mM = 0 Required storage 

Factorization K = LDLT 
of K 

Subspace a k + l  = Yk 

iteration K k + i  = X&I y k  

Y k + l  = m k + l  

M k + i  = X ~ + I  Y k + l  

K k + l  Q k + i  = M k + l  Q k + i  !%+I 

Y k + l  = Y k + l  Q k + i  

Sturm sequence P = K-pM 
check = LDLT 

Total for solution of p lowest eigenvalues and 
associated eigenvectors assuming that eight 
iterations are required and q = min {2p, p + 8 )  

n(m + 1) n 
inme + #nm 

nmt + 4nm 

&nm2 -+ #nm 

nme + 3nm 
+16nq(2rn+q+#) +16nq(m+q+%) 

as out-of-core 
solver 

The total number of iterations required depends on how ‘close’ the starting subspace is to the p-dimensional 
least dominant subspace of the operators and, of course, on the required accuracy of the eigenvalues and 
associated eigenvectors. Also, it should be noted that in exact arithmetic convergence to an eigenvector is 
not possible if the starting vectors are all orthogonal to the eigenvector. It is therefore most important to 
establish a ‘good‘ starting subspace. But there is no need to find for the columns in X, vectors each of which 
is ‘close’ to a required eigenvector. In the implementation a scheme has proven very effective which, for the 
special case when K and M are diagonal, establishes a starting subspace, whichis the least dominant one of 
the operators. At convergence error bounds on the eigenvalues can be evaluated and a Sturm sequence 
check can be applied to verify the results. As the solution accuracy for the lowest eigenvalues and corre 
sponding vectors is highest, in general, a four to five digit accuracy in the pth eigenvalue can be sufficient. 

Table IV summarizes the algorithm and gives the number of operations required for solution. Based on 
the experience with the algorithm it is assumed that eight iterations are required. Also, it is assumed that 
the number of required eigenvalues and vectors is much smaller than the order of the matrices. In this case 
the solution for the eigensystem of the subspace operators requires a negligible amount of operations. 

The subspace iteration solution is most efficient in the analysis of systems with large bandwidth and in 
out-of-core solutions because relatively little tape handling is necessary. For the routine developed the high 
speed storage requirements are small, and the lowest eigenvalues and corresponding vectors of very largL 
systems can be calculated. However, it should be noted that the actual cost of an out-of-core solution also 
includes the cost of the Peripheral Processor (tape and disc reading) time. This time is very -system and 
programming dependent and is not mentioned in Table IV. 

SELECTION OF SOLUTION TECHNIQUE 

The appropriate solution technique for a given problem should be selected by considering the information 
given in Tables I-IV. The choice for a solution routine is governed by the number of operations needed for 
solution and the required high speed storage. The Householder-QR-inverse iteration solution, the generalized 
Jacobi iteration and the determinant search method have been presented as in-core solution routines because 
they are likely to be used on systems which can be solved in the high speed storage of the computer. If the 
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techniques are implemented in out-of-core solution routines, relatively much tape handling is necessary, but 
the high speed storage requirements would be small. 

The generalized Jacobi iteration is most efficient when the complete eigensystem is required and either 
not many off-diagonal elements are present or they are already small, i.e. the eigenproblem is already 
'nearly' solved. For this reason the technique is efficiently used for the solution of the eigensystem of Kk+l 
and Mk+l in the subspace iteration, equation (34). When the order of the matrices is relatively small, the 
solution of the eigenvalue problem is not very expensive and the Jacobi iteration may also be attractive 
because of its simplicity and elegance of solution. 

The Householder-QR-inverse iteration solution is most efficient when all eigenvalues and eigenvectors 
of a matrix are required which has a large bandwidth or is full. As was pointed out, this solution requirement 
can arise after static condensation of the massless degrees of freedom. A full matrix is also obtained if the 
generalized eigenvalue problem with a banded mass matrix is transformed to the standard form. 

Whether the procedure of static condensation and solution of the reduced eigenvalue problem is efficient 
depends on the original bandwidth of the stiffness matrix, the increase in bandwidth due to static conden- 
sation, the number of original and final degrees of freedom and the number of required eigenvalues and 
vectors. In most analyses mass is associated with about one half or more of the degrees of freedom; therefore, 
if the order of the system is large, the static condensation still leads to a large order system which may have 
lost the bandform. In this case a direct solution of the eigenvalue problem which takes full advantage of 
the banding characteristics and solves only for the required eigenvalues and associated vectors is more 
efficient. 

When the mass matrix is banded and the system is large the transformation to the standard eigenvalue 
problem is practically always very inefficient. 

The determinant search technique is very effectively used to calculate the lowest eigenvalues and corre- 
sponding vectors of systems with small bandwidth. In the solution the eigenvalues and vectors are calculated 
to high precision. If compacted storage is used also relatively large order systems can be solved in core. 
The use of a banded mass matrix increases the cost of solution relatively little. Note also that depending on 
the bandwidth to find the complete eigensystem the determinant search method can be more efficient than the 
Householder-QR-inverse iteration solution. 

The subspace iteration solution is very efficient in the calculation of the lowest eigenvalues and corre- 
sponding eigenvectors of systems with large bandwidth and which are too large for the high speed storage 
of the computer. Note, however, that the eigensystem of the projected operators in equation (34) is calculated 
in high speed storage, and that, in case many vectors are calculated, this high speed storage requirement may 
solution govern the problem size. 

The most important eigenvalue problem in dynamic analysis is the solution of the lowest eigenvalues and 
corresponding eigenvectors. However, in some dynamic analyses eigenvalues within a specified intermediate 
range only are of interest.17 If the order of the matrices is not large, a solution using the Householder-QR- 
inverse iteration technique or the determinant search method is efficient, unless only a few eigenvalues and 
corresponding eigenvectors are needed. In that case a bisection technique such as described in References 
11 and 16 can be economical. When the order and bandwidth oE the matrices is large, a subspace iteration 
solution with a shift should be carried out.2 

The above considerations for the choice of the appropriate algorithm are also applicable to buckling 
analysis, equation (4). As only one eigenvalue is required, for large order systems the Householder-QR 
inverse iteration solution and the Jacobi method are obviously inefficient. Depending on the order and 
bandwidth of the system either the determinant search or the subspace iteration method provides the more 
efficient solution. 

SAMPLE SOLUTIONS 

The sample solutions summarized in Table V are actual practical analyses. They have been selected to show 
typical solution times. In the Jacobi, Householder-QR-inverse iteration and the determinant search 
solution the eigenvalues have been obtained to near full word precision (12 digits). The subspace iteration 
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solved in each case for the largest required eigenvalue to about 5 digit precision with the lower eigenvalues 
being more accurate. Note that the central processor speeds of the CDC 6400, CDC 6600 and CDC 7600 
computers are approximately as 1 : 3 : 8. 

The Jacobi iteration was only used on rather small order systems such as indicated in the table. The size 
of the systems which have been solved by the Householder-QR-inverse iteration and the determinant 
search technique was restricted by the maximum high speed storage available. As indicated in Tables I and 
I11 the determinant search method can solve larger order systems. The subspace iteration solution has been 
used in most cases because the algorithm has been programmed to allow practically unlimited system size 
and bandwidth. 

The solution times in Table V can only be used as a guide to estimate the computer effort involved in 
using the appropriate algorithm in a required analysis. The table does not demonstrate the relative efficiencies 
of the different solution techniques when used on the same problems. Tables I-IV do this and it would 
be too expensive to run comparative example analyses merely to arrive at the same conclusions. However, 
the solution times do emphasize the points made in the previous section about the selection of the 
appropriate algorithm for a given problem. 

CONCLUSIONS 

A single algorithm which always gives a very efficient solution of the generalized eigenvalue problems does 
not exist. In this paper the probably most efficient solution methods currently in use have been summarized. 
An efficient solution of a specific eigenvalue problem is obtained if the appropriate one of these methods is 
used. 

The Householder-QR-inverse iteration technique is a general method for the solution of standard eigen- 
value problems and requires a transformation into this form. 

The generalized Jacobi iteration, the determinant search method and the subspace iteration algorithm 
have been developed specifically for direct solution of the generalized eigenvalue problems. The methods 
are very efficient because advantage is taken of the specific solution requirements and the specific properties 
of the stiffness and mass matrices, e.g. the banding characteristics, the relative magnitude and the relative 
positioning of the elements in the matrices. Using the specific properties of the matrices it appears that much 
potential lies in the subspace iteration solution. The starting subspace generated by the algorithm has proven 
to be very effective, i.e. only about eight iterations are required for convergence. However; the potential of 
the method lies in that a ‘better’ starting subspace would further reduce the number of required iterations, 
and it is felt that future research should be directed towards this aim. 
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