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PREFACE

Many practical problems in industrial and social planning require op-

timal decisions to be made periodically through time. Linear programs, called

dynamic linear programs, can often be formulated to model the requirements

of these decision processes. These programs are generally quite large and

difficult to solve. The search for efficient methods in finding their optimal

solutions has been a major topic in operations research for the past 25 years.

Often the problem modeled by a dynamic linear program involves un-

certainties which can complicate and exponentially increase the program's

size. There may be several possible outcomes in the future, but determinis-

tic linear programs usually only consider the most likely outcome. In this

dissertation, we present methods for solving the stochastic dynamic linear

program, the dynamic linear program with uncertainties explicitly included.

Our methods take advantage of the program structure. Dynamic linear

programs are characterized by a staircase structured coefficient matrix, in

which non-zero elements appear only in blocks along the diagonal or adjacent

to the diagonal. This structure makes many efficient techniques possible. We

will show that the stochastic model's specific structure can lead to additional

procedures, and that these procedures may improve upon complicated "brute

force" solution methods.

We begin in Chapter I by presenting sufficient conditions for a deter-

ministic problem's optimal solution to solve a stochastic problem. The second

chapter discusses the difficulties involved in using deterministic solutions in

general. We also explore the possibilities for combining separate deterministic

solutions and give examples of problems that require the stochastic dynamic4
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linear program to be solved.

Chapters III, IV, and V present methods for solving the full stochastic

program. The first method follows from the decompositions approach to

large--scale programming. The next two methods employ different large-scale

structured programming techniques, in which, the basis is partitioned but not

completely decomposed.

Chapter VI demonstrates that the methods we present are actually

dynamic programming approaches. They only differ in their strategies for

approximating the optimal state space solution at each stage.

In the final chapter, we present some computational results for our

algorithms and discuss potential areas of applications. We also state our

conclusions on the use of stochastic dynamic linear programs and suggest

areas of future research.

In this dissertation, we use standard mathematical notation. More specific

notational conventions are defined in the text. Within each chapter, we refer

to equations and propositions by their order of presentation in that chapter

(eg.,equation (12)). In reference to equations in other chapters, we prefix the

equation by the chapter's roman numeral (eg., (11.12)).
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CHAPTER I

Deterministic Solutions for Stochastic

Dynamic Linear Programs

1. Introduction

Dynamic linear program models have been formulated for many different

practical situations. When these models involve uncertain quantities, the

solution of the resulting stochastic dynamic linear program can be very

difficult. Under some circumstances, however, an associated deterministic

problem can be stated that is easier to solve and can be used as the "solution"

to the stochastic program.

In this chapter, we will state conditions that imply that this deterministic

solution is in fact optimal for the stochastic dynamic linear program. We

call a solution 'deterministic" it solves a program that does not allow for

any uncertainty in the program parameters. We also will use myopic solution

to refer to a solution of a program in period t that does not make use of

information from periods after t. A solution that considers uncertainty in

the future, is called stochastic.

In our development of an optimal deterministic solution, we first present

the basic multi-stage model and the various approaches taken for its solution.

Also, in Section 2, we introduce some terms and notation that appear in

the following chapters and discuss the value of having information about

the random variables. To do this, we present inequalities that measure the

superiority of the stochastic solution over a deterministic solution.

The chapter concludes in Section 3 with the description of conditions

1
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for an optimal deterministic solution. We also give an example of a prob-

lem in which a deterministic solution is optimal and illustrate how added

complications can necessitate a stochastic solution.

2. The Multi-Stage Problem

The dynamic, or multi-stage, linear program, to which we shall refer,

has the following form:

min Z = CiZi +C 2 Z 2  +CTZT

subject to Alzl = bl,

-BZ+A2Z2  =C2(DLP)

-BT-ZT-I+ATZT eT,

zt > ior all t,

where z, E t' s (nt-dimensional Euclidean space), bt E RMl
, t E mtn , and

the vectors, e,, and matrices, At and Bt, are dimensioned to conform.

For a DLP problem, the right-hand sides, et, are given. For a situation

in which ft is random, the DLP becomes one possible program out of the

possible outcomes for ft. In our analysis here, we will not let any of the

other quantities be random, so ct, At, Bt, and bl, will be assumed known.

Moreover it is assumed ft and CV are independent t 34e .

We can also view DLP as an optimal control problem by assuming more

structure for the matrices. In this case, we would have zt = (ge,, ut), where

Vt is a state variable and ut is a control variable, and we would partition the

matrices and vectors as

At 0),
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and

A A(t Bt) (2)

This formulation includes transitions from state to state according to

-Atyt- Btut = yt+l

and interperiod requirements of

Gt+izt+l + Dt+lut+l = t+l-

The random vector yt+ I represents unknown state to state transitions and fu-

ture requirements. Although some computational efficiency may be afforded

by the special structure of this model, we will restrict our discussion to the

general case of DLP.

The first approach we consider for DLP is to solve it for all possible

ft and then take the expected value of z, as the measure of cost. This

approach requires perfect information of the outcomes of all future events

and is known in the literature as the "wait-and-see" solution (see Madansky

[38]). It would be the optimal solution, if one could somehow wait and see

until the end of the planning horizon and could beforehand make decisions

based on what will occur. Obviously such a perfect information solution is not

implementable. When averaged over every possible ft, it provides a measure

of the best expected value one could achieve given advanced information

about the random variables. We write the expected value of this solution as

3



71, where,

= 1 1 (3)

the expectation, "E", is with respect to the random variables, C2, ... , )Cr, and

z, is defined as in DLP with parameters C2, .. , CT.

An alternative and more realistic approach to the stochastic problem is

to consider that during each period t the value ft is known and a decision

on zt must be made without knowledge of the realizations of the future

periods' uncertainties. This is known as the "here-and-now solution because

it reflects the need for current decisions. The program can be written as

min z2 = clz + Ef 2 [czX 2  + Ea[c[zC3 ++ EeT[CTZTI]

subject to Aizl = b ,

-BlZl +A 2Z2  - C2,

-BT-1zT-1 +ATZT = CT,

Zt >0,

ft E Et,

for t = 2,...,T.
(4)

Problem (4) states that for t = T, IT-1 is given, CT = (T is observed

and IT _> 0 chosen so that CTZT is minimum. Assuming that IT will be so

chosen, IT-1 is chosen so that, T-IT-1 + EfT[CTzT] is minimum given

IT-2 and CT-I observed, etc.

In general, the decision process for an actual implementation proceeds

as follows:

A. A decision, 11, is made and implemented.

B. A realization, 2, of C2 is observed, and a decision, 12, is made and

4



implemented.

C. The process is repeated to find each It in period t, given the past decision

IT-1 and the outcome of the random vector CT-1.

We are going to investigate the effects of using different methods for

determining the decisions, t. Not all of these methods exactly solve (4), so

we must evaluate the expected value of the objective function for solutions

by each method. For a given method, p, of choosing 11, 2 2 ,... I T, we first

define a function of the random variables, ft, which gives the cost of using

those decisions. We write this as

Z(I, U) = C. -!(/4

+ C2 . .2%., 2 I1 1) + + CT -T(1,...,)--1, 2, ., ;T- I At

(5)

where t(11,.. ., It- 1, 2 ,.., , I ) is the decision chosen by p given the

previous decisions, I t,..-, , and observations, C2,..., e.

We can then take expectations over the random vectors to determine the

expected cost of the solution found by method I. We write this as

)-Ee [z(2,C I p,)]. (6)

An exact (but expensive) method for finding an optimal solution to (4)

is to proceed by a dynamic programming scheme with backward iteration.

We will call this 'Method 2". We begin by setting the terminal valuation

function:

z(ZT-1, CT)= min CTZT

subject to ATZT= f + BT-IZT-1, (7)

ZT _ 0

5



and let z(zT-,) - Ef[Z(zT-1, T)I. We further define the recursion on

the valuation function as:

z4(Xt-i, t)-= min ctXt + z t+ l(zt)

subject to Atzt= ft + B-izt- 1, (8)

Zt> 0

and let z(z_..1) = E ,[zt(zt 1 , f)]. We finally arrive at

zl(b) m main C1 -- Z(Z 1 )

subject to A 1z= bl, (9)

X1> 0.

Method p = 2 leads to a sequence of decisions, lt(j - 2). We can take

expectations of the outcome of these decisions as in (6). This yields

Y2 = EC[z 2 (, I -= 2)]. (10)

We observe that for some outcome C = (C2,.., &),

IAp = 2) = cl 1 (z I ) + C21 2 (Z'(21 , +2 )) + "- CTIT(ZT(...1, CT))

where, for each t, It(zt(!.-_, Ct)) is the optimal solution of (8). Hence, by

integrating, we obtain

T2= Z21(b1).

So, for Method 2, the result in (9) is the minimum expected cost found by

the method.

The expected value, !2, is the best possible solution for situations in

which decisions must be implemented over time. (For details on this result,

6
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see Chapter VI on dynamic programming.) Enumerating the states, zt-1,

in general, can be very difficult, especially when ft can have a continuous

distribution. For this reason, we assume that either the distribution of 6t is

discrete for all t or that we can approximate the continuous distribution by

a discrete sample of size Ect where kt is not too large. We assume, therefore,

that for all t and some E Mm()

Pt if

2Y if et

P( t ) - ., (11)

Pt if

10, otherwise.

where by our independence assumptions the probabilities pt do not depend

on earlier outcomes.

We have then It possible outcomes for the random right-hand sides in

period t. The outcomes form a tree of possible values (see Figure 1.).

Period

2 3 4

2

Scenario

kT

Figure 1. The outcome tree.

7
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We also define kt as the total number of possible outcomes from period

1 to period t, thus

kt= II'= (12)

The tree of outcomes includes kt nodes in each period t. We call each node a

scenario. In period t then, a scenario corresponds to a realization of outcomes,

Using this framework, a descendant of a scenario j in period t, is defined

as any node in periods t + 1 to T on the branch connected to node j. We

adopt the notation J for descendants of j. An ancestor of j is then a node

on the same branch as j in periods 1 to t - 1. We denote an ancestor of j

as J. These definitions will apply in this and all subsequent chapters.

Given the discrete distribution, we can write (4) as an explicit linear

program. (4) becomes

k k

z m clz + Ej=..P3C24 + T y Y1'rTCT y

subject to

-Bix1  +A 2 2z i for all j

-BTzi +ATZ --- C, for all",

zt > 0 for all t.
(SDLP)

This program, SDLP, is the primary focus of our presentation. It repre-

sents a formulation of the general stochastic dynamic linear program given a

discrete distribution. By defining pi as the probability of a node in the tree of

8
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outcomes, we can also incorporate interdependence of the time periods into

the model.

SDLP will be analyzed as a structured linear program (presented in

Figure 2). Its structure resembles the staircase structure of deterministic

dynamic linear programs, but the repetition of the -Bt blocks for each

descendant scenario forms spikes below the diagonal. This property makes

the strict application of staircase approaches difficult.

Another complication of the stochastic model is that the number of

blocks, non-zero partitions of the coefficient matrix, grows exponentially with

the number of periods, as we see in (12). We will present methods for solving

SDLP that reduce the effects of this complication.

The decision process of solving SDLP will be called Method is 3. The

expected cost found by this method is

-- E[zs(l, Ip-3)], (13)

Figue 2. Alternative structures.
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An extreme simplification in SDLP would be to consider only one pos-

sible outcome for each random variable. A reasonable choice would be the

expectation, Zt. The corresponding program has the same form as DLP in

which the means, Z2,. . T, appear on the right-hand side. The solution of

this problem eliminates the increasing size problem of SDLP and is, therefore,

the form usually chosen in practice. In some instances, as we show below, it

can even yield the optimal solution to the stochastic program.

We call this deterministic approach of substituting the expectations for

the random variables, Method y = 4. We compute the expected cost of

Method 4 then as

14 = Ef[z4(, Ip = 4)]. (14)

The above four approaches to the stochastic dynamic linear program are

all related to one another as the following lemma states.

Lemma 1. The expected cost of the approacles presented above are ordered

by

z 1  12 3 , T1i 5 2 z 4 , (15)

and, for (discrete) distributions without approximations TIi <_ 2 = 7 <1 4.

Proof. Each method can be shown to improve upon the solution by the

previous method. For 71 _< 7 2 , we observe that z1 (z, f I p - 1) _< z2 (z, f I

IA = 2) since Method 1 chose the optimum solution for each C whereas p = 2

does not in general. Integration preserves the inequality, hence, I1 _< 12.

The next inequality involves either p = 3, where an incorrect discrete

distribution can be used to approximate the correct one, or A = 4,where

the distribution is replaced by one calculated at the expected value. Since

10
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Method 2 optimizes (8) for all C,, Ee,1[z(z,_1, et)] E_ , -)

for all t. Hence, -2 73 or 72 !_ 74 follows. *

The lemma includes the obvious result that, for the expected value of

perfect information, EVPI, where EVPI- 71i - 72 if the correct distribution

is used or 7i - if not, I

EVPI > 0.

This difference represents the maximum amount that one would pay for

information about the future. When the EVPI is low there may be little

necessity in refining forecasts, but, when it is high, incomplete information

about the uncertainties may be costly. In the following chapter, we present

an example of this possibility.

A second quantity that we want to examine here is the difference Y2 -

74 or X3 - 74, which we call the value of the stochastic solution , VSS.

VSS measures the benefit from solving a stochastic program over solving its

deterministic approximation. A low VSS indicates that the more complicated

SDLP might not be worth the extra effort. VSS can be bound without solving

SDLP, as we show in the next chapter.

We note that in Lemma 1 to guarantee that 73 74, we had to assume

that the discrete distribution was correct. If the distribution used was only an

approximation, then it is possible to make an estimate of the distribution that

would lead to 73 > 74. This anomaly can occur because some scenarios could

lie under sections of the piecewise linear curve, Zt4(z,_ , et), that lead to high

penalties. We discuss these scenario results more closely in Chapter 2. For

our purpom, we asme that the discrete distribution used suffices because

moe information about the distribution is not available. The considation

i 11



of individual scenarios is the only alternative.

Given these assumptions about the distribution, we would still like to

know when SDLP should be solved. To show when SDLP need not be solved,

in the next section, we present some conditions that imply VSS-O. In the

following chapter, we will give bounds on VSS that also aid in evaluating

whether SDLP is worth solving.

3. Optimal Determnistie Solutions

When the numerical costs of solving a stochastic problem are high, a

deterministic solution technique is attractive. Since decisions often cannot

wait for the detailed analysis of all futur possibilities, the method baed

on assuming some best guess" of the future eavironmeut, is most often the

one implemented. In fact, the even simpier policy of using a myopic solution

may provide a good basis for decisions. By finding conditions for VSS=O,

we are trying to avoid the effort of correctly solving a general stochastic

program. With the conditions below, we can check whether the stochastic

program need be tried at all. The following lemma, a well-known result from

sensitivity analysis, is fundamental in our development.

Lemma 2. Let B be an optimal basis for DLP with C = %, & s,..., T). If

B remains feasible for all C E E, then B is an optimal basis for DLP for all

C.

Proof. Partition the coefficient matrix and cost row according to basic

variables, z&, and non-basic variables, ZN. DLP becomes

12



min CBZB+CNZN

subject to Bz+NzN -- (b1, )',

ZR >0O

ZN >0

where we use the notation V to indicate the transpose of v, so (bl, _-' is the

column vector of right-hand sides in DLP.

For B optimal, there exist prices, ir, such that

rB = c, (17)

"N < CN,

and

zB = B-l(b, C)T> 0,
ZN ~.(18)

If zU remains feasible for all C in (18), (17) still holds, guaranteeing dual

feasibility and complementarity. Hence, B is still an optimal basis. I

The next problem we might encounter is that of testing whether B is

indeed feasible for all values of f. An enumeration of all possible f is not

necessary. Garstka and Rutenberg [251 showed that simple computations for

many practical problems, could be performed quickly to find the probability

that a given basis is optimal. Their process involves fixing some components

in the lattice of discrete values of C and then finding the feasible range for the

remaining components. This method also proves valuable in the subproblem

solutions we investigate in Chapter 3.

To use a basis which satisfies the conditions in Lemma 2 in SDLP, still

other conditions must be met. The next lemma helps us find these conditions.

For this lemma, we will use a solution from DLP in SDLP. We do this by

letting the set of basic activities in DLP, {z: t - 1,..., T}, be repeated to

13



form a basic set in SDLP. This basic set in SDLP is {z • j =1 ,..., kt; t =

I,..., T},where z f = zx for all j.

Lemma 3. Let the set of activities for a feasible basis, B, in DLP be

{4,.. ., x where each 4 represents activities from period t. Also, let

SDLP have at least two distinct new scenarios at each period (i.e., -t > 2).

The activities, {z B I }, where zxB = B for all j, form a feasible basis in

SDLP if and only if z4 consists of m(t) activities for all t.

Proof. (See Figure 3.) Essentially we shall show that if the count on the

number of basic Zt is not m(t) for all t that the corresponding SDLP candidate

for basis will be singular. For the necessity of the condition, first let A(t) be

the number of elements in z B . Assume z(t) does not have m(t) elements for

all t. Thus, there exists some p(t) > m(t). ( If not, since ' m(t) =

p(t) = m(t) for all t.)

We note that, for 4(t) > m(t), t < T. This is true because, if p(T) >

m(T), then 't.- p(t) < E-t_--, m(t), which contradicts the fact that { '

corresponds to a basis. Set e' = min {t :/I(t) > m(t)}. We note that there

exists no t l < e' such that p(t") < m(t). Again, this would mean the basis
tI V

was not of full rank. Now, we have Z t p--I I(t) - Et=l m(t) = 1v .6t, where

6= P(t) - m(t). But, for t> t, t ) - m(t) =

6t, since each deficiency is repeated It,+i times. Hence, = I p(t) =

S(1-t,+ i)" 6c- _i= m(t), which, by our assumption, implies the columns

of the activities, {z}, do not form a basis in SDLP. To show sufficiency, first

note that if z9 has m(t) elements in each period t, then, for all t, there exists

a square non-singular partition of the basis, Bt, with columns and rows only

in t. (If not, B does not span the row space in period t.) Therefore, in SDLP,

the set of columns, {Bt(j)}, is linearly independent. By construction, the z

14



correspond to m(l) + T ktm(t) columns, so the activities form a basis.

t

From this lemma, we obtain our result as stated in the following theorem.

Theorem. f the optimal basis, B, for the program DLP, with - , is

feasible for all C E S, and if B has as many columns as there are rows in each

period, then the set of activities in B forms an optimal basis in SDLP, and

V$8 = 0.

Proof. First, to show primal feasibility, let A; J be the square non-singular

submatrix associated with the activities zB in scenario j. For all t and j, we

have

-=A; -f) (e, + Bt-I ), (19)

which is the same value as I in DLP for fet = . Hence, IR' > 0 by

Lemma 1 for all j and t.

Let ir9 be the dual variables in DLP for the basis, B. Next, define

r- pJf. In period T, we obtain
t

[Un

111 a. [jIiiiJ b. [127

Figure S. Example of (a) a basis and (b) non-spanning columns for a 2 period example.
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4t tpw (20)

and

WBAN < pcN, (21)T AT -- T(1

where the cT are the non-basic costs in scenario j for j - 1,.., kT. In

general, for 7r in SDLP, we have

tz

- B' + [ + 1A;' = -p 7rtB + 9rtA f pjc (22)

J= 1

and

Bt+ NJ t A;N t (23)

By (22) and (23), for zB' feasible, B is an optimal basis in SDLP. (19)

implies that the solution in SDLP given scenario j is the same as in DLP.

Hence, 93 = Y4, and VSS = 0. We further note that this also implies the

optimal solution is myopic. I

This result gives us a method to check for deterministic optimality, but

it may be difficult to satisfy these conditions in practical examples. Even

when not satisfied, they could be useful, however, in finding an optimal

solution with confidence a, where a is the probability of being optimal. The

Garstka and Rutenberg procedure mentioned above would be useful for these

computations. (This could also be applied to a problem of the form of a

chance-constrained program as in Charnes and Cooper [14], but we wish to

restrict our development to the recourse problem, SDLP. )

16



The next result presents an alternative set of conditions that may prove

useful when the conditions in our theorem are not satisfied. We state them

as a corollary.

Co.oilary. Let {B(i)} be a family of bases for DLP, where B(i) is optimal for

G, E S. Assume also that, for all periods t and nodes j of scenario i, the set

of basic activities, {z {('))}, is the same for all i(j) that include the nodes,

{ 1 1,..., -}, the descendants of j. If each B(i) additionally has square

blocks in each period, then the set of basic activities chosen from {B(i)} is

optimal in SDLP, and VSS = 0.

Proof. Since x ('b)) is the same for all j, we can define a set of activities for

SDLP as -x
" ' z=(i()) for all t and j. Now, for primal feasibility, we again
t t

have (19) for all t and j, so I BI 0.

For the dual, define

= (24)

Hence, at period T,I sBABf -48 (25)

and

ir8JAN1' < P'c~ (26)

For general t, we have

-"t BB + w tA;' = ;)(- D, t A;
t+ t (27)

17



and

Y B + : pjCN (28)

(25), (26), (27), and (29) give us dual feasibility and complementarity,

proving that the set of variables {ztB-} is optimal. Again, from (19), the

values are the same as in solving any deterministic form DLP, so VSS = 0.

I

The corollary gives us more conditions for finding the optimal solution

to SDLP without actually solving it. An example of a model which meets

these requirements is the Hotelling-Nordhaus model of exhaustible resources

(see [34] and [461) and its extension by Chao [12].

In Chao's model, a dynamic production schedule is chosen to minimize

the cost of satisfying an increasing sequence of demand requirements over

time. The demands may be satisfied by any of - 1 technologies, each using

one distinct resource, with finite availability and one "backstop" technology

with no resource limits. The program is

min m fcs -i + tkizit (29)

i=1 t=O i=1 t-

subject to

E",-_0 yt< Ri,i = 1, 2,...,,i,

,=, yit- Dt, t = 1, 2,.. T,

V,,+= wt + E - _, t.,.
fi >! Ot = oil,...,

x; _ 0,i , 1,2,...,
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where yit is the amount of the demand, Dt, satisfied by resource i at time t,

zit is the amount of resource i committed at t so it may be extracted later,

ci is the current cost of technology i, ki is the capital cost of i, 8 is the

discount factor, 6t is the extraction rate, and Ri is the initial availability of

the resource used in technology i.

Chao showed that, for this model, a myopic solution is optimal for all

future demands and supplies. This solution implies that a family of bases,

{B(i)}, exists that satisfies the conditions of the corollary. Therefore, the

stochastic program for (29), in which, Dt and Ri are random, has a deter-

ministic and myopic solution and VSS = 0. We note that this very simple

model can be modified so that VSS grows. Chao explored the case of price-

responsive demands and found that, with a "sufficiently high" discount rate,

the optimal decisions are still insensitive to "distant-future" uncertainties.

Our example in Chapter II shows how near future uncertainties can greatly

affect current decisions, also making VSS high.

This chapter has described the value of information in the consideration

of decisions made over time. We presented the program, SDLP as a method

for incorporating uncertainties into a decision process and explored the pos-

sibilities for finding a solution to SDLP without solving the full problem.

The value of the stochastic solution is, however, not always low.
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Chapter II

The Nature of the Stochastic Solution

1. Introduction

In Chapter I, we presented conditions, under which, the optimal solution

to a certain deterministic program is the solution to the stochastic dynamic

linear program. The deterministic model used the expected values of the

random right-hand sides. . Unfortunately, the great majority of stochastic

problems do not meet the certainty equivalence criterion, ie. the sufficient

conditions for deterministic optimality. When a model fails the conditions

of Chapter I, it would be desirable to solve the stochastic problem directly.

In this chapter, we explore the value of that solution and the costs that can

arise from not finding the optimal stochastic solution.

We shall concentrate on decisions based upon "risk neutrality", meaning

we wish to optimize the expected value of our policy decisions. Alternatively,

the decision maker might want to minimize the probability of a catastrophic

loss or, otherwise, reduce the variance of his expected utility. These at-

tributes could be reflected in a carefully defined nonlinear utility function or

in penalties placed on the less attractive scenarios. In this discussion, we do

not consider such specifications. Our consideration of linear models should

be, however, sufficiently general to allow for further analysis in this area.

This chapter begins with a discussion of bounds on the expected value

of perfect information. It then proceeds in Section 3 to examine uses of the

deterministic optimization of different scenarios. In Section 4, the possibilities

for combining these solutions and the inherent difficulties in the stochastic

program are discussed. Sections 5 then presents examples of these problems.
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The chapter concludes in Section 6 with a suggestion for a general strategy

to be applied in linear optimization under uncertainty.

2. Bounds on the Expected Value of Perfect Information

We discussed above the expected value of perfect information (EVPI)

and value of the stochastic solution (VSS) and showed examples when these

quantities might be zero. When the conditions for deterministic optimality

are not met, we would like to have simple bounds on the EVPI that may

help us determine the worth of solving the stochastic program. If the EVPI

and VSS are bounded within a tight range, it may be adequate to use a

deterministic approach to the problem instead of following an expensive

stochastic method.

The expected value, z, of the objective function, z(e), can be bounded

because of its convexity. Madansky [42] and later Huang, Ziemba and Ben-

Tal [35] examined this property using the theory of moment spaces to bound

the expectation. Their work rests on the following result.

Lemma 1. The objective function, z(e), in (1.3) is a convex and continuous

function of f, the right-hand side.

Proof. See Madansky [42].

This result then allows the application of Jensen's inequality for convex

functions. Directly from this, we have

=E[z(e)] , z( E(C)) = z,, (1)

giving a lower bound on the perfect information solution, J1. (In this analysis,

we use the definitions of zi, z2, zs, and z4 from Chapter I.)

An upper bound also can be found for X1. We present here only the one
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dimensional case. The multidimensional case can be found in Madansky [42].

The bound is known as the Edmundson-Madansky inequality, and it states

that, for E [a, b] _ O1, #= E[e],

r, E[z(')] < (P )z(a) +(P )z(b), (2)

wnere y aenniion nere p = rst j. inis is snown easuy, since xor any r t

[a, b], t = (a(b - t) + (t - a)b)/(b - a) = Xa + Xb, and, for z(t) convex,

z(t) <_ Xz(a) + Xz(b), which by integrating yields (2). We can now state (1)

and (2) as

Theorem 1. For e E [a, b] C 1, E(e), and z as defined above,

(b - IA)/(b - a)z(a) + (IA - a)/(b - a)z(b) _ ' _ z(pA).

Huang, Ziemba and Ben-Tal carry these principles further. They sub-

divide the interval [a, b] and apply successively finer approximations, which

they show approach the expectation. This method makes possible the refinement

of the EVPI to whatever level is desired.

Another method for computing bounds on the EVPI was presented by

Avriel and Williams [5]. They showed that

0 < EVPI < z 2 - z4  4 -z 4, (3)

where z 2 is the best stochastic solution and z 4 is the expected value deter-

ministic solution, as in Chapter I. They also show that, for z(f) differentiable,

the bound using the expected value of (as in z4 ) is the tightest possible.

These approaches give us methods for estimates of the benefit we may

gain from knowledge about the random variables. We concern ourselves here
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with the VSS, the value of solving a stochastic program over solving a deter-

ministic one. The EVPI is used to find the value of additional information,

but, in looking at the VSS, we assume that no more information is available.

We ask: what given our present state of knowledge, is the value of solving a

large stochastic program?

Similar results to those above can be found for VSS. We can bound VSS

as in the following theorem.

Theorem 2. The value of the stochastic solution (VSS -- - 3s, as defined

in Chapter 1), satisfies the inequalities

0 < VSS < -z 4 . (4)

Proof. We showed VSS > 0 in Chapter I. It suffices to show z4 ' Is. We

had 71 7 2  JT3 . Now, z4 -- z(E(t)) and r1 = E(z(f)), so, for z(t)

convex, by Jensen's inequality, z4  r j. The result follows. *

This bound can prove useful in estimating the benefit of the stochastic

program, but, if it remains high, further analysis may be required. As a

first step in solving the stochastic program, we may find other deterministic

solutions corresponding to different scenarios or outcomes of the random

variables. We describe this approach in the next section.

3. The Scenario Approach

In evaluating the perfect information or "wait-and-see" solution, 2i, a

solution to the program, zl(e), must be found for each possible outcome of

the random vector, C. The scenario approach, also known as "modified wait-

and-see" in Gunderson, Morris, and Thompson 1311, involves solving several

of these deterministic programs, evaluating the expected cost of using the

23

ii .. ... ..



strategy that is optimal for each scenario, and choosing the strategy that

minimizes this expected cost. In many cases, one of the first period bases

dominates the others, and the choice for a decision is clear. As Gunderson, et

al, emphasize, this method can be quite responsive to management concerns

and may prove very useful since it presents alternative possibilities and risks

in a compact and easily understandable form.

In the scenario approach, we first choose a set of possible outcomes for

, which we call, 2, where

E CO.. (5)

For each C0 E 2, we find the optimal solution, z*, for z(C°). Then, we

compute

.(Co) - E[ '(z*(Co), C')] (6)

for each CO, where jzx*(C 0 ), C) is the resulting objective value from using z*

when C actually occurs.

Next, we find

min o .( 0). (7)

This value represents the least expected cost from using the solution of a

deterministic program.

This implies that a deterministic problem other than the expected value

problem may result in a better solution. This is because less penalty may

be incurred by following a piecewise linear section of the objective function

other than that that covers the expected value. (See Figure 1.)

We can also bound C* as in the following theorem.
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Theorem 3. For E discrete, the best scenario solution, *, satisfies

73 _< r* < 74,. (8)

Proof. We know

Sm rin E[r(z(f 0 )), Cl -5 E[&(?), )] Y4

and, for z* optimal in ,

73 - min es E[&z(C)), ] _< EIC(z*), f] - .

Hence, the result.I

The inequalities in (8) show that the scenario approach may be useful

in finding a closer approximation to the solution of the stochastic program.

* may be especially valuable when * - z4 is small, since it also bounds

T3 - z4 and may show that solving the stochastic program is unnecessary.

II Iz (X(MV

------- z(xr(',

Figure 1. The expected value of '(za), is greater than that of z(()), )

25

-" N .-_ tt....



This outcome is most likely when the optimal decisions in the first period

(those that are actually implemented) correspond to the same basis for most

of the scenarios.

The scenario approach can also be used to find activities that may be

basic in the optimal solution of the stochastic program. If the set of optimal

basic activities remains fairly constant for the possible realizations of f, then

this set of activities may be optimal in the stochastic program. We discuss

this possibility in the next section.

4. Combining Scenarios

A natural approach to solving the stochastic program would be to use

the optimal solutions of the different scenarios and to combine them in an

appropriate manner. The proper combination may, however, be quite difficult

to find and may lead to as much effort as solving the stochastic program

directly. We present below the problems inherent in combining scenarios and

some situations, in which, the optimal combination may be found directly.

In this analysis, we restrict ourselves to a two period case, for which there

are only two scenarios considered. The difficulties involved in this example

are typical of all stochastic programs, so we present this case because of

its simplicity. The results may be easily generalized to more periods and

scenarios.

We begin by defining two scenario problems as

minL z(W) = ¢lZ- C2z2

subject to Aizx = (Si)

-Bzl+A 2z 2 = E1

Z1, Z2 0,

and
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mini Z($2 ) =lIC2T

subject to Alzl =b (S2)

-Bzi+A 2Z2 = 2

Z1, Z2 > 0.

Solving Si and S2 yields the optimal solutions, z1," and z 2 , , and optimal

dual prices (xl,;o"') and ( 2,.;o2,.), where z * 1 x - " a . We also

define the following index sets:

8' _{j: A,(*,j) is basic in S1 }

and

pf2  {j: A,(*, j) is basic in S2 }. (9)

The complements of fi and #2 are defined as and 2, respectively.

Now, our actual goal is to solve the following two-period version of SDLP

min cIz 1  +P czzl +PC 2 X

subject to A 1x1  = ,

-BlZ 1  +A 2 4T' = f (SDLP2)

-Bi:1  +A 2 Z2 2

:i, > 0.

We would like to use the activities in fi and p2 as the optimal basis

of SDLP2. In other words, for 8 = {j : A1(*,") is basic in SDLP2 ), we

are looking for P g #1 U.82. Unfortunately, this is not always possible.

The difficulty results from the properties of the basis in SDLP2. In order to

maintain full rank of the basis in this program, the optimal basic activities
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from (Sl) and (S2) cannot all be in the optimal basis of SDLP2, unless the

square block situation we discussed in Chapter I holds.

In general, when we attempt to combine scenarios, we face a duality gap

as the following lemma states.

Lemma 2. For z*, the optimal value of SDLP2,

z = (p1o1 ,, +p 2 2 , + p12 1,, + p2 2,.'e

< z (10)

c(pl l,* +p 2z2'*) + pc2  p2 -PC 2 Z2 =,

where z1. and z 2* are the optimal primal solutions for S1 and S2, i2,, and

.il,,are the values of the second period basic variables in S1 and S2 chosen to

satisfy A 2!1 - el + Bl(pz.. + p2 x.*) and A 2 4" = 2 + B 1,(p'" +

p 2 
2,.), [if i 1'* or i2- * < 0, set X = +oo], and rl,., 72,*, or,., and a2,. are

the optimal dual values for S1 and S2. Furthermore, the duality gap, if 4*
and i2  are feasible, is

-- z 1 = (2 oi2'*A + , 2 *B )p 2 p1xI,4* + (C2 - o"A2 + B- ,9Bi)plp
2z 2 '*,

(11)

where c - {c :j E 1- 2}, c 2 {cj E flP2}, A' - {a= j : a

is a column of A, and " E f l }, Al = (aj a: is a column of A, and

j"E ; f 2}, and B2 and BI are columns of B, corresponding to A' and

A 2, respectively.

Proof. First, we show that (plor, + p2 02.*;plIjr1,*;p 2 ;r2,*) is a feasible

solution to the dual of SDLP2. We have r2,*A2 ! C2 and r1 l,*A2  C2 ,

since ir', and w 2,* solve S1 and S2. This also yields -xl,*B +Or',*A, e l

and -r2 Bl + o2,*Al C2 , so
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-( I i ' " +p9ir 2 )B + (p 1o' " +p2o 2"*)A, c1, (12)

since p, p2 > 0 and pl + p2 = 1. Therefore, the solution is dual feasible,

hence, by duality, we have z" > z.

Now, we consider (pI1, *-+p 2 a2,n o -v t2-rv ; 2 2#) and observe that A,(plzl,+
2z2" - b, that, by definition, 11,0 n i,

2  2 satisfy the second set of in-

equalities in SDLP2, and, that, if 4'" and i2 are not feasible, - oo.Thr1oe i2 ar-otfasbe,,=,
Therefore, if " > 0 and i,* > 0, the solution is feasible and z* < .

Therefore, z* < Y. For the expression of the duality gap, we

observe that

z = (pll,* +p 2 2'*)( 1 Alx1 ,* +p 2 Az 2 ,*)

p 1,* (A 2 i2" - p'B 1I Z" - p2 Biz , ')

+p 2 1r2.*(A 2i2, -p 1PBIZ," - p2  Bz )

_ c-(pl1,* +p 2 Z--) 2,I1( ' I,*=,~~ ~C +P )+ Iz + pX,*) '
+ 2 (p'4, + P2 __) + p 2 o*"(p A) ---- ,* + PA " )2,*I I I I 1 1 +1 A ) ''

+ 2 ,*( I2* 2 2  
1 - 1,* Z *)± pws(-plxzia - P B'ZI~ + P plel1 1-'.,* Z , - 2 2 2*

(13)

where cO -- {c(j) :j E ,1 f}. We then have

- - P 
2 C1(pl *

1  
+ p 2z2,*) - 1 p2I +p2Z,*)2, ~~ - 2 1, 2 2 11 11 '*)2*(4

+ or "a*A' - P ir'*B{ + pl','*A2 - p Ir ,Bj)(pI _,*. + p.2zIl.P (4

which, since c2. z1,4 == 0 and c1 . = ,* = 0, yields

I - (C~ o2 A r 2"Bl)(p2pl__1 ") (5

-C (c- o'1 ,Al + ir 1 "*B,)(p~p2 Z2,*)
... , the resut i, (;1) fell"
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Measuring the duality gap in (11) is another way of finding the value of

solving the stochastic problem directly. If the gap is small, then we can use

the simple weighted average of the optimal scenario values without incurring

a great penalty. A large gap signifies greater variance among the scenario

solutions and should lead to a stochastic approach. A large difference can

also result from infeasibility of the primal solutions since by definition in this

case, 0 oo. In some instances, the gap may be closed easily as we discuss

below.

We first consider the case of j8 = 8 1 = # 2 (same first period basic

activities in S1 and S2), but where 161 > ml, the rank of A1 . This situation,

which we described in Chapter I, signifies that the same basic activities cannot

exclusively be used to solve SDLP2. They will not span the row space of the

matrix. If we have an inequality form, however, the we'.9hted average of

optimal first period values may be optimal in SDLP2.

We write the coefficient matrix of SDLP2 as

AO Al AN 4 ,
A= -B1 -Bj -Bi -B N  A14 N (16)

where A° = (Ax(*,7) "j" E P1~j 2), Al, A2 are defined as in Lemma 2,

AI j= (A1(*,j) :j E I nlo), A, Ai are the basic second period columns

in S1 and S2, respectively, the columns of A,N and AN are non-basic, and

the B(.'s are defined correspondingly.

Now, we assume that 81 = 62 and that we can replace the second

equality in SDLP2 with an inequality. SDLP2 becomes
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mi CO y 0 +C +c1 NN +PI I +p 1  +p 2c22 +PI C,N 1,N +p2NV2NI I Iy +I +2C2 2 2 y2 + 2 2y=.

s.t. AI01 -+Aly1 +A'v N  b,
1 1 1 1 1_

-BO y0 -BltjI -Brvr +Ay N N >eII I11 1 2 %'Y2 -2

-Bly 1 -Bly 1 -BNyf N  +A4 2  + 2N 2N

YI, Y2 >0,

(SDLP2')

where the variables (yi, y2) replace the variables (zi, Z2) in SDLP, so that

we can compare their values. First, we define a solution to SDLP2' by the

following. Let a solution (y; yj4y) be

0* I* ( AO A' -1(b 1 b1

(0l *;Y1l f /2 ) ( _BO _-BI , / (11 )

This solution is the same as (zr", 4*). Next, define

i -- {i: zX,(i)is basic in row j of Si for j > ml}, (18)

where ml is the number of rows in A,. Now, partition A as

=E

and

4V p  (AUk~, , M" ). (19)

A,17 is non-singular because the basis in (17) is non-singular.

We complete the definition of V* by

V.-= (A;,V)-1(fV + BO, ,. + Bvv*)

and
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2 C&#* + BIwV0'* + 1~w~* (20)

Here, y 2' " represents the slack variables. Now, we wish to show that y* is

an optimal solution to SDLP2'. We will have to restrict the solutions of Sl

and S2 for this to be true. We first look at the dual of SDLP2'.

Let w2uV = (r" j E Y) = 0 and r2 , - ( A so

we have r 2A - (p2c2 ; 0) where the objective row coefficients of the slacks

22,0 are 0.

Next, let

WIV = plc(A ,-v) - , (21)

and

- (c_ - oA- _ -

where B' = (BI(*, i) : i is basic for row j such that j E v) and BI, A' are

defined accordingly. Now, let -(B-"(A;") - I A ' , - B) - 1 and compute

or as

or = [Cv + (Bv - ( - B (A,)-cd )I I 1 -1 2~ (212)--

+ - B'( v)]- lcl] (A;eP + (B" - B ( .A' 1A v)(h) A 1) (.

We substitute for wl,& in (21) and find that, WOLD and UOLD, the optimal

dual prices in S1 (or S2, since the bases and objective functions are the same),

satisfy
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(i) 2,L 0,

(ii w'7  P OWLD + 'rOLDA.2 (4 2
1 ) )

!LD

(iii) IrL PCOD'

anld (v) Or = aOLD .

Hence, we have

-rB 7r2 vB1 - r1-vBj - irl'YB1 + oA1  23

-rOLDB, - wOLDB, + OOLDA1  5 el,

-OLDe B- 7rSLDB7 + aOLD4j= ' (24)

and

XOLDl I tOLD Bi + OrOLDA' c'. (25)

We also observe that

S+ p' PILDA4I + IsL '
-

2 V _LDA _ P2 (26)
-pC

2,

and that, similarly,

~ + = 2c~ (27)

We need only that

7 1 .lIX4Nv + Ir 1,N. s < 11 P C2u (28)
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and

,.2,.,VD + r2,,4,v,,, < p 2 N (29)

in order for feasible y* to be optimal, since we have already shown com-

plementarity in (24), (25), (26), and (27). (23) also shows dual feasibility for

the first period constraints.

To ensure that (28) and (29) hold, we need to have the following equality

satisfied:

OLDA 2 "(AV' )-" (30)

By the definition of iri and 2 , (30) implies (28), since

+l D p1C- 4 ", " + 2-,OLDA")

+ P2 (W'LD 4 I - WOLD(;')A 2

< I C N

and (29) holds by

W2,74,NV + 7r2,v 4 ,v 2 NNr DAfv 2v 2V iN

=2 p(rVL 4 Vr + 2rOLDA2)

Hence, we have shown the following theorem.

Theorem 4. For y" as defined in (17) and (20), if y* is a feasible solution

to SDLP2' and the optimal dual prices in S1 and S2 are such that (30) is

satisfied, y* is an optimal solution to SDLP2Y.

The restriction of the prices in (30) guarantees optimality, but (28) and

(29) may be true even if (30) does not hold. In examining a problem of this
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type, if (30) fails, one may want to carry out the additional computations in

(28) and (29) before solving the stochastic problem.

The difficulty in finding optimality conditions for combining scenarios

for even a simple problem such as SDLP2', shows the importance of the

stochastic solution. The conditions in (30) can be generalized to allow for

penalties in satisfying inequalities in the second period, but the results are

more restrictive and direct computation of the dual feasibility conditions be-

comes more efficient than checking additional inequalities. Our development

leads to the following method for combining scenarios.

(A.) Combine the first period scenario solutions, zx,..., , by a simple

weighted average, y* - P Zl

(B.) Follow the branch of worst cases (what we shall call the catastrophe

branch), that is, the set {C} where C -= (e(1), et(2),. .. , (mt)) such that

,(i) = sup j(i) for i 1, 2,..., mt. Using these right-hand side values,

we have that, if

-Bt- I y__- -+Aty' > ;

then

-Bt-ly*_ I+ At*>

for all j. This procedure guarantees primal feasibility for yt. We use the

non-singular blocks from this scenario to determine new values based on yV.

(C.) Use similar blocks for the other branches and maintain primal

feasibility (by, perhaps, paying penalties).

(D.) Compute the dual prices and check for closure of the duality gap.
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This approach would be most successful when the different scenarios

have nearly identical bases. In these cases, the noncomplementarity would

exist in only a few terms. The difficulty of using these optimal linear program

solutions, however, is that they all correspond to extreme point solutions and

may include very different sets of basic activities. This property could make

their combination in a stochastic program most difficult. In the next section,

we present small examples of this occurrence.

5. Examples

The extreme point properties of the basis in a linear program are cru-

cial in understanding stochastic program solutions. Critical values of the

parameters limit the use of different scenarios. In some cases, the implemen-

tation of any deterministic solution may lead to heavy penalties relative to

the solution of the stochastic program. One example of this occurrence is

the following linear program:

min z- z1 +4X2 El min i + 1 0 V2 1 z, and X2]

subject to 21 +1 2 

-1 +2X2 +Y 1 +2 =

0 << 23

ZI, Z2, Y2 >0

is Uniform [0, 4].
(EXI)

We solve EX1 for (1, 3) and find the expected value of using the

optimal decisions for these scenarios as

• T -E~zT(')], (31)

where
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II C1X() + [ m f CVIZ.), f.. (32)

We define

(33)

and

jIi T(3). (34)

We want to consider also the perfect information solution

1 p - Ef[ min ciz +C2-YJf], (35)

and the stochastic solution, I., where we allow = 1 or 3 with equal

probability.

The function zC) for z1 , z11 , ze, and zp appears in Figure 2. We observe

that the optimal basis changes as C ranges over [0,4].

For _ 1, z, only is in the optimal basic set of variables, for 1 < e _ 3,

{ZI, z2} is optimal, for 2 < C _ 3, an alternative optimal set includes Z2

alone, and, for 3 < C _5 4, the only optimal first period activity is Z2. In

the stochastic solution, z, and z 2 must be in the optimal basis, reducing the

expected loss relative to the perfect information solution. We find this from

the figure as

71 - Tp = 10.25, (36)

Yrr - 7p = 5:50, and (ST)
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S- = I.. (38)

The losses in (36), (37), and (38) associated with this problem demonstrate

the usefulness of the stochastic solution. By assuming any deterministic value

for the right-hand side, a large loss may result. The simple stochastic for-

mulation with two possible e values, however, reduces the risk of this situation

and enables us to approach the perfect information solution. The stochastic

solution, therefore, lends resilience to the result. It provides a rationale for

hedging strategies.

To demonstrate further the sensitivity of models to uncertainty, we

return to the exhaustible resource model of Chapter 1, (1.29). We stated that

this model had an optimal deterministic solution, but, by adding an uncertain

return from investment in exploration, we again arrive at a situation, in

which, every deterministic solution will be associated with losses relative to

/
3 /

/
25 /

15. ! /J. // Zp

S S

1 2 3

FIgure 2. Example costs.
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the stochastic solution.

The modified problem is

min~ ciui,0 + E ,.I kiy,,0 + f il2 1  p'ictz +t kiv,]

subject to CO + ,o < Ro; for i 1,..., m,

I 1 ,,o >Do;

z + u ,, t R,,.; for allsj, andt,

=o,t > Dt; for all j and t,

-,,- + - at; for all i,j, and t,

zj > 0w >- > ), for all ij, and t,

(ERM)

where R,j D,, ,t, and u3  are as defined in (1.29). V,, represents the

amount invested at time t under scenario j, and at is the return for invest-

ment.

ERM includes deterministic investment, but we can formulate an as-

sociated stochastic model by allowing a4 to take on several values, ai a
sit)

and restricting investment in y4i to be only one of the a,'q for each scenario.

By doing this, we maintain the random variable in the right-hand side as a

constraint on g, for the different scenarios.

By solving ERM for fixed values, the investment decision may quickly

swing from one resource to another as a different extreme point in the linear

program becomes optimal. The stochastic solution has more basic activities,

allowing for hedging against the different possible environments that one may

face. To show this property, we consider a two period case of ERM with three

alternative resources. We will call them oil, solar power, and some other high
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cost backstop technology. We use the following inputs in Table 1.

Resources

Cost(c,) Availability(Ri)

Oil 5 25
Solar 10 10
Backstop 16 00

Investment

Cost (k,) Return(a,)

Oil 1 1 1
Oil 2 1 0.1
Solar 1 1

Demand

Period 1 15
Period 2 25

Probabilities

Scenario 1 0.5
Scenario 2 0.5

Discount Rate

,6--.80

Table 1. Two period model inputs.

The only uncertainty in this model is on the return for oil exploration.

Investment in solar power can be interpreted as the relatively certain am-ount

of capacity increase from investment. Each unit invested in oil in this model,

however, results in either a full unit increase or a tenth of a unit increase

in oil availability according to a. These two scenarios are assumed to occur

with equal probability.

The deterministic models for 'bad luck" (a - .1), 'good luck (a - 1),
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and "myopic" (solving only given the first period availabilities and demands)

were solved and compared to the stochastic program solution, in which both

values of a were considered simultaneously. The results were:

Model Expected Cost

Myopic 275

Good Luck 239

Bad Luck 245

Stochastic 231

Here, the stochastic solution represents a savings over the deterministic

models because its solution involved investment in both oil and solar tech-

nologies, while the deterministic scenarios allowed for investment in only one.

The relative savings would also increase with a higher cost backstop. It is

interesting to note also that, with the addition of investment in exploration,

the myopic solution is now far from optimal.

These examples have shown that models can be very sensitive to future

uncertainties. The exhaustible resource model demonstrates the possibility of

sharp changes in decision-making from near-term uncertainties. We, there-

fore, want to examine models with a strategy that considers their sensitivity

to uncertain parameters. We discuss a general method for dealing with these

problems in the following section.

6. A General Strategy

Problems modeled as dynamic linear programs often involve many un-

certain assumptions about the parameters involved. In this case, a solution

to the stochastic program is desired, but it may be quite costly. We have

presented methods for checking whether deterministic solutions may be used.
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The strategy resulting from our development in Chapters 1 and 2 follows.

I. Solve the expected value problem and check for basis feasibility and

a possible optimal deterministic solution as in Chapter I.

II. If I fails, use the properties presented in 2.3 to bound the VSS and

EVPI.

I. If the VSS bound is large, solve different deterministic scenarios

and look for a dominant basis. Then, attempt to close the duality gap by

combining scenarios.

IV. If the gap persists and if no single basis is indicated, proceed to solve

SDLP.

This procedure outlines how we would evaluate the worth of solving

successively more complicated problems. As our examples have shown, we

may find that the stochastic program is worth solving, and that its solution

may result in a substantial savings. We might attempt to solve such problems

directly by brute-force methods. Alternatively, the next three chapters

present methods that take advantage of the structure of SDLP to reduce

the size of these possibly very large linear programs.
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CHAPTER M

A Nested Decomposition Algorithm for SDLP

1. Introduction

Stochastic dynamic linear programs have natural subdivisions correspond-

ing to the separate decisions made in each period under various scenarios.

These divisions give SDLP a special structure that can lead to improved

efficiency in its solution. In the next three chapters, we present three methods

employing distinct optimization techniques, each of which exploits the pro-

gram's structure. The structure is essential for our development. It is the

basis of each technique: decomposition, partitioning, and basis factorization.

These methods have been used extensively in large-scale structured

programming, but their application in solving stochastic programs has been

limited. In our presentation, we demonstrate how these techniques can be

applied to the stochastic version of the multi-stage linear program. We will

then show that our algorithms may yield substantial savings over straight-

forward, "brute-force" techniques by using the program structure effectively

in reducing the computational cost.

The first method we present is called a nested decomposition algorithm
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for SDLP or NDSDLP, because it decomposes a large problem into succes-

sively finer subproblems.

The basic principles of optimization that we employ are outer linearisa-

tion and inner linearization, as described in Geoffrion [241. Through outer

linearization we optimize over a larger convex region than is feasible and

then, by increasing the restrictions obtained from the subproblems, approach

optimality within the true feasible region. To perform inner linearization one

optimizes over successive subregions of the feasible region and approaches

thereby a global optimum.

The method below applies outer linearization to the primal problem

of SDLP. It can also be viewed as applying inner linearization to the dual

problem. We then have a master subproblem relationship in the primal as in

Benders' method [91 or in the dual as in Dantzig-Wolfe decomposition [191.

We also follow a procedure of passing between periods that is similar to the

nested decomposition of primal inner linearization as in Glassey [29] and Ho

and Manne [32]. The relationship between the two methods is well-known

as Kallio and Porteus showed in [38].

We begin our presentation of the nested decomposition algorithm in

Section 2, by examining some properties of objective functions and show-

ing the basic master- subproblem relationship for SDLP under the outer

linearization scheme. Section 3 presents the analogous development for inner

linearization, or Dantzig-Wolfe decomposition. We follow this in Section 4

with a description of a fundamental problem inherent in SDLP, degeneracy.

We present suggestions for its resolution and some of its special difficulties in

the stochastic framework. Lastly, in Section 5, we present the full algorithm

and its strategy in passing through the scenarios.
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2. The Master-Subproblem Relationship

The decomposition algorithm we discuss below relies on certain fun-

damental properties of the multi-stage program under uncertainty. These

properties concern the convexity of the objective function and the repre-

sentation of the solution set as a convex polyhedron. Wets first observed

these attributes in [61] and [62). These are reviewed below.

We begin by formulating the equivalent convex program to SDLP. We

then use this formulation to examine how we can find the set of linear

constraints that constitute the solution set. This procedure involves inducing

feasibility in the subproblems and finding the conditions for optimality. The

section concludes with an explanation of how the cutting planes for these

operations are constructed.

Every stochastic dynamic linear program (with continuous or discrete

distribution of the random variables) is equivalent to a convex program with

linear constraints, as we state in the following theorem of Wets:

Theorem I The stochastic dynamic linear program SDLP, as defined in
Chapter 1, is equivalent to a program of the following form:

minczx + Qi(zz)

subject to

A1x = el

zi E Di, (ECP)

z 0,

where Q(:i) is a convex function and D1 is a convex polyhedron.

Proof. See Wets [62]. i
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The QI(z1 ) of Theorem 1 is defined as

QI(z1) = E 2 [Q1 (Z2 , f2)I (1)

where

QI(z2,f2) = {min[c2 z2 +Q2(X 2 )]IA 2z2 = 2 +Blzl,z 2 E D2 ,z 2 _ 0}. (2)

The subsequent Qt(z) are defined iteratively. We can solve SDLP by repeated

solutions of these convex programs, but the objective function and solution

set may be hard to find. We present below methods for finding Qt(zt) and

Dt without explicitly determining the functions.

ECP above is called the equivalent convex program of the stochastic

program. We note that this theorem holds when f has a continuous or discrete

distribution.

Before we proceed with this development, we further note that, since

every period of SDLP corresponds to an identically formulated optimization

problem, we can form a subproblem in every period, t, and for every scenario,

3, that is similar to ECP. Let " be the immediate ancestor of j, and e t

B-lI + , we have

= ain Ctz + Qt(z')

subject to

D~tzj > X. (ECP(t,j)

= >o,

where we have written the convex polyhedron, D, as Dtzj > Xf, and Qt(zi)

is defined as in (1).
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ECP(t, j) is used in the subsequent analysis to develop the master sub-

problem relationships that are encountered in the nested decomposition al-

gorithm. We first want to find a method for constructing D~t so that zi will

be feasible for its descendant scenarios. Let J be a descendant of j in period

t + 1 for a given solution ziC) of ECP(t, j). We have

minzi Ct+1z
t+1 t1+Q2 1

subject to

Atlx+,= C'I + Btz',

D; > X,? (ECP(T + 1,)

2:J > 0,

Now, if ECP(t + 1, ) has no feasible solution, then by Farkas's lemma,

there exists a vector [1oi 1 2 Oiri such that
it+i t++ 7+D <

a~lo At+1-2 oj t~lDj+ 1 :5 0, (3)

(-20t'.l) !5 0, (4)

and
,0

10Jj 1( .1 + BtZ.40) +2 O ' l > 0. (5)

So, in order for ECP(t+ 1,3) to have a feasible solution z2 must be

chosen such that

+ia.j~lrtif >++ 1 +2 1~ t1i. (6)

This implies the following lemma:

Lemma 1. For every descendant scenario of j, "' in period t + 1 and for

all Jul and 2ot+1 satisfying (3) and (4) if zJ is feasible in SDLP, then it

satisfies the inequality (6).
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Using this result, we can add (6) as an additional constraint to ECP(t, J).

We repeat this for each descendant Y of j. We solve ECP(t, j) again after

all of these cuts have been added and proceed downward again with a new

value, zt' . In this manner, we iteratively construct the constraint set for

zi. From now on, for clarity of exposition, we will write the equations of the

form (6)as

-- a2 Bt - -a k .-- 1

where k = 1, ... , p.

We know how to find the constraint set of ECP(t, j) and we must now

find a method of constructing the convex function, Q(zi). To do this, we

first observe that ECP(t, j) is equivalent to

min = ctzj + Oi (8)

subject to

--(t .,B)z I .1 ( + 1); k J1...,p,

Q(zi) > e,
X >0.

With this formulation, we consider that z 0O is again a solution to ECP(t, 3)

and that ECP(t + 1, 1) is feasible for all j. Next let

lr(z' 0), - (3 °Or ; , 2,(z, 3); 3) (9)

be the optimal dual prices vector for each ECP(t +1, h, given zi ,° a solution

to ECP(t, j), and define

,O, E,o)= ,,.[ir(z, 4 ,(V
P,(, .o = j+ ,, z.~). t+,)]

(10)
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and

#2 (zj~') Ee (E211)j'Iet21
k=1

Now, for (z'+i,) optimal in ECP(t+ 1, ) for any z+ the following

inequality must hold

p ---
!P

rr(zi, )+ Bt ) + E jr+2( + (12)k= 1

and, since r(z, 3) is optimal, we have

Q(ztj) = i(z 2)(m+1) + Bt) + (j i oi'+,de+i). (13)

k= 1

Therefore, by taking expectations,

Q(() P-(Z-- P2 ) ri(z0) (14)

Letting P(Ztj'0 ) = p1(zX °") + p2(Zjt') in (14), we have the following lemma.

Lemma 2. If (z, ') is a feasible solution to ECP(t, j) written as in (8), then

Of > 4z o) + (r,( to )Bt)z,.

This lemma enables us to form additional constraints, as

(?r- B,)j + Of > p (15)

for successive 1, where ,ri = -- (zj i) and p - p(x4'). These cuts are then

also added to ECP(t, j) whenever we find that a solution (t1, Dj, ) is such
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that

Of' < o +v'BtZ 'c. (16)

When (15) is solved for all z4, and pi, then we have achieved master-subproblem

optimality between ECP(t, j) and its descendants, ECP(t, j).

We have shown how the master problems and subproblems can be con-

structed in SDLP by using the fundamental results in Lemma 1 and Lemma 2.

We will present below the basic algorithm for finding master-suboptimality.

This algorithm follows closely from Benders [91 and has been presented in

the two-stage case by Van Slyke and Wets [56]. It is an outer linearization

scheme because the feasible regions Dt and convex functions Q- are succes-

sively approximated by the inequalities in (7) and (15). We call this procedure

OLSDLP, for outer linearization of SDLP. This exposition includes Step 2',

the case of an unbounded solution in ECP(t, "). The justification for this

procedure can be found in Van Slyke and Wets [56] for a deterministic prob-

lem. We omit details here, because, in general, we will use the algorithm

with upper bounded variables and no unbounded solution will be possible.

OLSDLP

Step 1. Solve the current form of ECP(t, j), using Phase I and Phase II of

the simplex method:
min ctzi + j

subject to
=

-(OJt'+B)z2 > o~t+ )k=

-(jr' Bt)zj -+ Ot I_ p,-- I.,q,

4 > 0,

(17)
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where we set p -q -0 initially and let -co, if q O. If (17) is

infeasible, stop. If (17) is feasible and unbounded, go to Step 2'. If (17) is

feasible and bounded, go to Step 2.

Step 2. For (ztn~,"') a solution of (17), solve the Phase 1 problem of

ECP(t + 1,1):

min w2 = ev + eu+

subject to

At+IzJ+ + Iv = + Btzj,+ e +
1. J+. -+ IU + - Iu- = )'J.p

z. 1),u+- > 0.

(18)

For each 3, such that wT > 0 in (18), use the resultant multipliers to

build a cut of the form in (7). Add these cuts to (17) and increment p. If

w " > 0 for any j, go to Step 1; otherwise, go to Step 3.

Step 2'. From (17), we obtain an unbounded ray, zj' ° + Xy J ° , for X > 0.

Now, solve (18) for each 3, but replace +6 - Btz ' by Bty , °. If w) > 0,

for any J, add cuts as in (7) and return to Step 1. If w" = 0 for all 3, solve

ECP(t + 1, ) for all 3 with the same replacement. Let 21(t + 1, 3) be the

expected value of the objective functions and compute irl and pl.

Next, solve (18) with z4"' for each j. If w3 > 0 for any j, add the

feasibility cuts and return to Step 1. If w3 = 0 for all 3, then we check if

Ct/ ' + (t + 1,) < 0. If so, the objective function is unbounded, stop. If

c'Ytg' + 1 (t + 1,3) > 0, then 'we must eliminate y4'I as a feasible direction.

We do this by using the rl and pi found above in forming a constraint of the

form (15) and adding it to (17). In this case, we return to Step 1.
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Step 3. Solve ECP(t+I, ) for each j. Compute J?'-1 " f++I Z$+

xr, and p . If V- I < I", stop. ECP(t, j) is solved. Otherwise, generate a

cut of the form (15) add it to (17), and return to Step 1.

This algorithm terminates in a finite number of steps as we state in the

following theorem.

Theorem 2. The algorithm, OLSDLP, for finding the solution of ECP(t, J),

results in either an infeasibility criterion, an unbounded solution, or an

optimal solution in a finite number of steps.

Proof. Every iteration of the algorithm results in the addition of a constraint

of the form (7) or (15) to the optimization in (17). Since there are a finite

number of bases for each ECP(t + 1,, the number of these constraints is

finite. They also cannot be repeated since ,j' would already have had to

satisfy that constraint. Therefore, the algorithm terminates after a finite

number of steps. *

The finiteness of OLSDLP can also be maintained if we delete the cuts

in (17) that are slack after each iteration. This is true because the objective

function in (17) is monotonically decreasing as new cuts are introduced. We

also need only keep at most m(t+1)+1 cuts because the solution of ECP(t, j)

has at most m(t) + m(t - 1)+1 basic variables, as Murty showed in [45]. We

will return to this important property in more detail in Chapter V in our

discussion of the local basis method for SDLP.

We have seen how a master problem at period t in SDLP can be solved by

outer linearization using subproblems at period t+ 1. As we stated above, this

development is completely analogous to applying inner linearization to the
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dual. In the next section, we demonstrate the relationship between OLSDLP

and a Dantsig-Wolfe decomposition form of inner linearization.

3. The Relationship to Dantsig-Wolfe Decomposition

Dantzig and Madansky [18] in their fundamental paper on programming

under uncertainty first proposed that two-stage stochastic linear programs

could be solved by applying Dantsig-Wolfe decomposition to the dual of the

stochastic linear program. In the context of our development here, we want

to apply this decomposition to the linear subproblem of SDLP at period t

and scenario j. We call this program LP(t,j). (Note that in this case we

must assume that Ct+l has a discrete distribution as in SDLP.) The problem

we address is then

minZ1 = Ctj + PI+ -+P I

subject to

Atz + Bt I "1

This is the program for one section of SDLP. We have removed the constraints

before period t and after t + 1.

The dual of LP(t, j) can be written as

maxu(E + Atl + 1  t+~ 1 + P~~

subject to

v1 ,.Y i I >0) i = 1,..., k.
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Next, let {w1} = {(rl,..., 4)}, where 1 = 1,...,q, be the set of all possible

combinations of k extreme points of P = {rirAt+i ct+1}, and let {Um},

where m = 1,... ,p, be the set of extreme rays of P. Define also T -F i i V, " "

irkA=E ,r - and yv71"= ov' '". DP(j, t) can be written

in Dantzig-Wolfe decomposition form as:

q p

maxu(C t + Bt-zJ 1 ) +E xlg + E i "Pm. i

subject to

q p

ut- E XLTBt - E 1Sm*ipCrv ~ ct,

q

1=1l

Xe > 0; , > 0, for all i, 1, and m.

(DWD(t, j)

Now, we take the dual of DW(t, J1 and use z4 and 0 as multipliers. The

result is

min ctzi + 0

subject to

(- m B,)z > ,Ynf,'#; i = 1,...,k; m-- 1,...,p (DWD(t,f)(-a'B t' -I- ( WDl- 1,..,q

z > 0.

DWD(t, J1 has the same form as (17) except that we have not included

the extra constraints that enter into the subproblems of ECP(t + 1, ). The

feasibility criteria correspond to the subproblems' proposing an extreme ray

to the master problem in DW(t, j), and the optimality cuts on 9 correspond
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to extreme point proposals. Optimality in the outer linearization corresponds

then to the absence of better proposals from the subproblems in the Dantzig-

Wolfe approach. We state these results in the following lemma:

Lemma 3. The outer linearization of the primal problem ECP(t,1) in

(17) is equivalent to solving the dual of Dantsig-Wolfe inner linearization as

applied to the dual problem of ECP(t, j), DP(t, j).

Having completed the analysis of this basic algorithm, we would like to

show how it is implemented in solving the entire program, SDLP. Further

complications enter into OLSDLP because of possible degeneracy in the

subproblems. In the next section, we discuss these difficulties and how they

relate to stochastic programs. We also propose ways for resolving them.

4. The Degeneracy Problem

One weakness of decomposition techniques is that much of the work to

optimize subproblems can be wasted, because the final inputs from the sub

to the master differ so much from the initial ones. This can lead to many

iterations from master to subproblem that a method with more interaction

between the problems might be able to avoid. The next two methods we

present have a more unified framework, and hence, fit this description. In

this section, we will show how to make OLSDLP more responsive in the

subproblems to changes in the master.

One property that might cause unnecessary iterations in decomposition

schemes is the fact that excess columns in the basis of the master problem

(that is,more than those required to meet the original set of constraints) cause

degeneracy in the solution of the subproblems. Dantzig and Abrahamson
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[1] first observed (and then proved) this property in their experiments with

a dual nested decomposition algorithm for deterministic multi-stage linear

programs. They also noticed that repeated sub-optimization changed the

basis in the master problem very slightly, and they theorized that some

efficiency may be gained by allowing the subproblems to determine some

of the values of first period basic variables. This is possible because of the

subproblem degeneracy.

To show degeneracy in SDLP, we will again refer to ECP(t, I) as written

in (17) and will use ECP(t+ 3) as

min + I - +.

subject to

A,+,d ,t~ = et+ + Bzt

z > 0.t(19)

where we have dropped the Q3 and V. from ECP(t+ 1,) for the sake

of clarity. Equation (19) is the form of ECP(t + 1J) used before any of its

subproblems have been encountered. The degeneracy result is included in

the following lemma.

Lemma 4. If a constraint of the form (7) is binding at the optimal solution

t , to (17), then every feasible primal basic solution of (19) with right-hand

side, e+, + Btzl", is degenerate.

Proof. For the binding cut, we have

(-et+,Bt)z:," = + . (20)
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Now, let A+i be a feasible basis for (19). By applying z2:+ 1 to this, we find

ol+A+z~ = a"t(fCt+ 1 + Btz") - 0. (21)

We have < 0, but or+ 1AI # 0 for AF+j a basis, hence, there

exists some = 0, proving the result. I

This lemma implies that a degeneracy will occur in any subproblem that

has forced a tight feasibility cut on the master problem. The constraints in

0 which enter the optimality conditions can also cause degeneracies in the

subproblems. The difficulty with these degeneracies, however, is that they

may enter in any subproblem, and we may not be able to determine which

one. We state this degeneracy result in the following lemma.

Lemma 5. f two constraints of the form (12) are binding at the optimal

solution (z*, - *) to (17), then every solution of (19) for all - which satisfies

the optimality criterion, rJ+ I !O,*, includes a degenerate solution for some

7.

Proof. Let the binding constraints be

-('IB,)z'+* + ' = p1, (22)

and

(w2Bt)Z", + gI' = p2 . (23)

Let the optimal set of bases for {-1... Y} be {A4 ,. At_1}. Associated

with these bases are prices ({'*, ...I ,ro'k}. These prices may be the same

as those for one of (22) or (23). Without loss of generality assume they are

identical with the prices in (23). They must be distinct from (22) because,
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in the progression of the algorithm, (23) must have been violated, when (22)

was satisfied and before (23) was added to the constraint set of (17). Now,

letting
k k

tI I il'r1 andp01 = ~lis
i= 1 i -l

we have
k k

- " 7+ pi ,( -+1  + Btzj,'), (24)

and
k h

-- P +S-A -- * ..B,,++ + Btxzi*). (25).

i=1 i=1

So, by assumption

kE ,i j,= + B ,t ,, ,.
9j i B <p~i( Catz~

d AT+1 - €, and ir"At . <;' for rli feasible for all i. Therefore,
and ir,*ADI+c, +1-

we obtain
h k

its; A ,. i-'- ,,(26)

i= 1 i=1

or

EP(CB -V 4i)zjs+ = 0.
i=1

Now, p1 > 0, Z3 t 0, and c€' - l7iLf_ l 0, but we must have

e
B
' $ A ,lAt41 for ir,* unique; therefore, there exists some 3"i such that

z4I is degenerate. Hence, the result. I

The degeneracy we have shown implies that the subproblems are too

restricted to alter the direction of the solution to the master problem. Dantsig

and Abrahamson [1] have proposed remedying this difficulty in the multi-

stage deterministic model by passing columns forward from the master to the
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subproblem and allowing the subproblems to determine the weights of these

surplus columns in the master problem. We present below an application of

this technique to SDLP and discuss its weaknesses in the case of stochastic

programs.

We assume an optimal solution, z ", of (17) is partitioned as

t = (zr, 4) (28)

where zt corresponds to a square nonsingular submatrix of At, AP, and z

corresponds to A;. We can write ztB in terms of 4t as

- t;i A =)(A)-( +B +,)- -(A;)- A . (29)

So, we can let z4 vary as long as z8 > 0. We then can write (19) for
each J as

rainc+z

subject to

At+ +i= ,+, + B(A .)-4(E + ,- )
-BR(Ap)-Af4s + BS

S+ > 0 s > o,
(30)

or, letting
tf BS - B,, (4)-, Af ad et+1 1 ,+ +Bt," €") -' €V, + ,-, lz ),

as

mi Ct+ 1 + 1

subject to

At+lz'_l. :r tS -

x + > o, z8 >0 o(,, > o),

(31)(5g



where we have added the constraint z > 0, parenthetically, because we

must check in optimizing (31) that this is not violated. If so, we would fix

the variables at zero and proceed.

This problem of checking for feasibility of zB enters both the deter-

ministic and stochastic programs, but, in the stochastic program, any of the

subproblems of type (31) may determine x4. Since 4t enters the program

in which a degeneracy is caused (filling the degenerate variable's position in

the basis), we must know for which J the program (31) will have some 4

basic. This would be possible if all the z4 corresponded to tight feasibility

(type (7)) cuts, because then the degeneracy would occur in the correspond-

ing scenarios which generated those cuts. For the optimality cuts (type (12)),

however, degeneracy, where z is basic, can be in any scenario.

To apply this column passing technique, in general, to SDLP, we can

formulate the following alternative form of (17). It includes constraints to

keep zB feasible as well as the remaining additional cuts.

min +s xt I

subject to

_~~(114 U)1,zt -(A '(e~ + Bt,~-)

-(OlBi) _ [ik,(i +il,k = 1..p

'B"xtf [a ~ t,] opt
.-(irB8)z# + > ,.,q$

Zt, >0,

(32)

where E,= c- (Af)l-lA- + 4, and the other quantities under tilde are

correspondingly defined to reflect the substitution of (29) for 4.
The program (32) is a second master problem that we can use to deter-

mine the optimal values of 4 given 4f. Our proposal then is to follow

60



OLSDLP with (32) in place of (17). We would do this after solving the sub-

problems of the form (31), which have generated tight feasibility cuts for (17)

and in which we know degeneracies must occur.

The use of this method of passing some columns for tight feasibility cuts

and then determining the other zt by using (32) in OLSDLP depends on

the difficulty of solving the first master problem. If the repeated solution

of (17) has indicated that some variables, zxt, are persistent in the basis,

then the solution of (32) could obtain the optimal values without involving a

reoptimization of (17). Furthermore, if the number of surplus variables, zt is

sum il, (32) may become significantly easier to solve than (17). This alternative

method then is one that must be adopted to the individual problem and

its requirements. The complications of creating an additional optimization

problem in (32) may outweigh the savings in solving this smaller problem.

5. The Complete Methods

We are prepared now to present the algorithm NDSDLP for the entire

stochastic problem. This method involves repeated use of the algorithm

OLSDLP, and proceeds through the tree of possible scenarios in SDLP in a

forward and backward manner. Our presentation here does not include the

resolution of the degeneracy problem as discussed in Section 4, but this may

be added as a modification to OLSDLP. The algorithm follows.

NDSDLP

Step 0. Set up a problem of the form (17) with no extra constraints for each

scenario j in each period t of SDLP.

Step 1. Solve (17) for period T (written 17-1). Use the result z*, and solve
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(17) for each node in period 2 ((17-2j) for j = 1,..., k2 ). If any subproblem

is infeasible, add a feasibility constraint of type (7) to (17-1). Solve (17-1)

again and proceed to period 2.

After each subproblem at t = 2 is feasible, proceed to solve (17-3j) for

j 1 1,..., k3 . Again, for any infeasibilities, pass back cuts. Continue in this

manner to period T, until there is a feasible solution for (17-tj) for all t and

j. If an infeasible solution to (17-1) ever results, then stop-the problem is

infeasible. Else, the result is a feasible primal solution of SDLP.

Step 2. Solve OLSDLP for every scenario in period T - 1. This implies

master-suboptimality for the last period. Set T - T - 2 and go to Step 3.

Step 3. If t = 1, go to Step 4. Otherwise, solve OLSDLP for every scenario

in period t. For some scenario 3" at t, this may involve resolving OLSDLP

for its descendants Y at t + 1 in order to get optimality for the subproblems.

We say a subproblem is 'solved', in terms of the algorithm, when OLSDLP

applied to it ends in master-suboptimality.

After OLSDLP has been solved for each j at t, set t = t - 1 and repeat

Step 3.

Step 4. Solve OLSDLP for the original master problem at period 1. This

program may again involve resolving the subproblems. If OLSDLP at 1

results in an unbounded or infeasibility termination, then stop-SDLP is ac-

cordingly unbounded or infeasible. If OLSDLP ends with master-suboptimality,

then stop-the current solution is optimal for SDLP.
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This algorithm follows an iterative procedure as in dynamic program-

ming. We pursue this relationship more closely in Chapter VI. NDSDLP also

terminates in a finite number of steps as we state in the following theorem.

Theorem 3. The method, NDSDLP, terminates in a finite number of steps

with an optimal solution to SDLP or the unbounded or infeasibility conditions

from OLSDLP.

Proof. From Theorem 2, we know that each implementation of OLSDLP

must terminate in a finite number of steps. Since the algorithm proceeds

backwards after each period's scenarios are solved by OLSDLP, the terminal

conditions in Step 4 must be met in a finite number of steps. I

Several improvements can be made to NDSDLP to aid in its efficiency.

We have already mentioned the second decomposition possible in OLSDLP

as a resolution to the degeneracy problem. We may also want to proceed be-

tween the periods without completely satisfying master-suboptimality. This

modification may help efficiency, but it must be done carefully in order to

avoiU any excessive number of iterations among the periods.

Another possibility for speeding the search for a feasible primal solution

in Step 1 is that SDLP may have inequality constraints. In this case, the

subproblem at period t is

min ctzt

subject to

Zt > 0,

(33)
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for all '. Hence, to find feasibility for all y, we need only solve the Phase I

problem

minev

subject to

Atzt - Iu + Iv at + Bt-+ zt-1

Zt 0,

(34)

where at = (at, I at, = maxy t,,), thus at for all 3. A feasible

solution to (33) implies that each subproblem 3 at period t is feasible for

Zt-1.

By solving (33) in Step 2 of OLSDLP, instead of solving the Phase I

problem (18) of each , we eliminate many unnecessary optimizations. This

would greatly aid the efficiency of NDSDLP for SDLP's that have inequality

constraints. These programs are quite common in practice and, thus, (33)

should prove most valuable.

This modification and our presentation of NDSDLP above demonstrate

some of the possibilities for solving SDLP by concentrating on the optimiza-

tion of smaller subproblems. In Chapter VII, we discuss the computational

aspects of the algorithm more carefully. In the next two chapters, we present

other methods that rely upon subproblem optimization, but maintain closer

ties between the sub- and master problem.
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Chapter IV

A Plecewise Strategy

1. Introduction

The decomposition algorithm, NDSDLP, in the last chapter broke the

stochastic program SDLP into a sequence of master-subproblem relations.

A drawback to NDSDLP could come from wasted effort in optimizing sub-

problems without affecting the master problems' inputs. The approach in

this chapter, the piecewise strategy for SDLP, or PCSDLP, also separates the

program into master and subproblems, but it allows for only one optimization

of the subproblems without the master's involvement. This method, which

maintains some ties among the separate scenarios, forms a bridge between

the decomposition approach in Chapter III and the local basis factorization

of Chapter V.

The method is called 'piecewise' because it relies on the piecewise

linear property of the objective function. Piecewise methods in general

(see Geoffrion [271) follow an optimizing trajectory across the regions of the

feasible set. For a convex function, an optimization is performed on each

region that leads either to a boundary or interior solution. If the solution

is interior, then that point is optimal. If a boundary point is optimal, one

optimizes on the adjacent region and repeats the process. (See Figure 1.) If

no direction in an adjacent region is improving, then the current point again

is optimal.

The piecewise strategy has been applied to large-scale linear program-

ming through a method, called 'partitioning", for which, J. B. Rosen [531

has been most responsible. Our use of the strategy in this chapter will be to

65



exploit the repetitions of the blocks of SDLP and to form an algorithm that

can adapt to different scenarios and combine them adequately. In Section 2,

we present the basic master-subproblem algorithm for this method and show

where efficiencies can be made in its implementation. Section 3 then states

the strategy for the full program and presents the difficulties that may occur

with PCSDLP.

2. The Master-Subproblem Relationship

The method proceeds by performing two-period optimizations for suc-

cessively larger problems. In this section, we present the two-period problem,

in which, the first, parent, scenario forms the master problem for its direct

descendants, the subproblems. Without loss of generality, we assume that

this optimization takes place between the first and second periods.

The first period problem we solve is

ilgm 1. The piecewise path begins at zo and leads to zs.
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min CO(zi) = €z

subject to A 1zl-= i, (1)

Xi 0.

If (1) is infeasible, the program is infeasible, and we stop. If (1) is

unbounded, then we follow Step 2' of NDSDLP to remove this case. If we

succeed, we return with the cuts that eliminate the unbounded ray mad resolve

(1). Now, for z,, an optimal solution to (1), we want to find Q(zO) as ECP

of Chapter IU, where

Q(z ) = E,,[ min C2Z2 s.t. A2 z 2 = C2 + B 1 z°, Z2 01. (2)

Here, if there exists ej such that there is no feasible solution in the

jth scenario, then we form a cut as in (3.7) and add it to (1) as part of

its constraint matrix. We continue until each subproblem is feasible. Next,

associated with each CJ, there exists an optimal basis, Af, for the problem

in Q(z°). We write Q(z0 ) as

Q(O) = p'c(( ,)-' + A,)-B1 Z ), (3)

,=1 (

The function Q(zl) from (3) is linear for all X2 feasible for ABr. Thus,

ka

,(ZI P'C(AA 2)- C + (-4YlBIzI) (4)

for all z such that

Z2 = (4S')-- 1  + (A')j-1 z1 > 0, (4)

where we have assumed a single lower bound for all Z2 at 0. In general,

and, for most practical purposes, both lower and upper bounds should be
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included, augmenting the constraints in (4a). In implementations, this is

especially important for artificial variables, where lower and upper bounds

coincide.

Now, we can write °(zl) in (1) as

0(ZI) = (C1 + 1: pJcBJ(AI)-IBIz1 + pjcB'(AV')-'I, (5)
j= j==1

for all z, such that (A4')-1Q + (AB)-lBz _> 0 for all j = 1,... ,k.

We note, for optimal multipliers 0' in subproblem j, that c2 - (A; )- ,

which makes computations in (5) somewhat easier. We also note that each

A:' need not be unique, so we may use one basis several times without check-

ing (4a) for each j. We will return to this idea below, but, for the current

exposition, we will use constraints (4a) explicitly. Thus, for z, restricted as

in (4a), we look for an improving direction along the current linear section

of Q(zl) by solving

min C(zI) =[C1 + E Pc 2 A1')-1B1]zl

subject to

A 1:1  = b, (6a)

whr P_ B0,

From (6), we obtain an optimal solution, : , and optimal objective value,

rl(z:). This is the initial point of our feasible path. We next look at the set

of constraints in (6b) which are active. We define

T = f(iJ : [(A ,)- 1B1 ](i,,) •z = p }, (7)
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where p3 is the ith component of the vector pT. T includes the rows and

scenarios that generated a binding cut. It corresponds to the set of degeneracies

in the subproblems of NDSDLP and is directly related to the surplus columns

described in the next chapter. We next order the pairs (i, a") E T lexicographi-

cally and write T = {ri, r2,..., r}.

Now, if T = 0, then z0 is a solution of (6), so, by our convexity result

in Lemma 2.1, z(z0 ) = c1 z 0 + Q(z 0) :5 cizl + Q(zi) for all feasible Zl.

Hence, z° is an optimal solution of this two-stage SDLP.

For T # 0, we consider subproblem " for ri = (i, j). Here, we have

(4 V l2 + (A;,)-1BiZi (8)

and

21(i + 0= *)42 0, (9)

where z2 is the non-basic partition of the variables, Z2. We now want to

force z2(i) out of the basis, so we can follow a new path in the adjacent

feasible region. To maintain optimality, we find the entering variable as in

the Dual Simplex Method, (see Dantzig [16])

- m N (10)

-A; (i, a) -X(nj) > 0 N'i

where EN and 7N are the representations of c2 and 4 relative to the basis,

A,.

We can now pivot out zB'(i) and replace it with zN(s). In doing this,

we keep A~j and call the new basis A;, an auxiliary basis, where

(A;") -  --(i, a)- (A; I)- 1 (1
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for 9(i, s), the elementary matrix corresponding to the pivot of Z2(a) into

the basis in position i. This new basis is used to restrict z in (4a).

We now can formulate our auxiliary problem, for p -1,

Min r ) =[1 + pcfI(A'9 )1'Bl]

subject to

Azx= b1, (12)

(Ap~)Bizi p.
1

,, = 1, ... ,# k2 1

z1 0.

In (12), we have changed the objective function from (6) and some of the

constraints (6b). The variables z1 still form a feasible basis, but they may

no longer be optimal.

We proceed to price out the cost row in (12) with the new parameters

and to check optimality. If z is still optimal, then we drop A;B' and return

to T for r2, again find an entering variable, and form the auxiliary problem

(12). As long as we cannot improve on z for ri, we try rf+1. If we find

+ + 1 > p, then no direction can improve on z4, hence, it is optimal.

If we find that, for any n, z1 is not optimal in (12), then we optimize

(12) and obtain zi. We set 12(2 ) -1 c'(: 2), replace A;' by A;', form a

new set, T, of the tight constraints, and proceed again with r, in search of

an improving direction.

We follow the above procedure to obtain a sequence of decreasing objec-

tive values, C t(Zl) > e(z2) > ..- > CA(z*), until we cannot improve our

current solution. The algorithm we have described has the following steps

PCSDLP(2)

Step 0. Find an optimal bounded feasible solution of (1), or terminate if

infeasible or if Step2l of NDSDLP implies unboundedness.
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Step 0'. Find an optimal feasible basis, A';, for each subproblem j in Q(zO)

by applying feasibility cuts (3.7) to (1).

Step 1. Form the program (6) using the set of bases, B - {Ai }. Solve (6)

and obtain fl(zi) and z'. Form T. If T = 0, stop, zo is optimal. If T 34 0,

set I 1 1, M = 1, and, go to Step 2.

Step 2. If I > p, stop, z is optimal. For r = (i, 1), find the entering variable

a in scenario j by (10). Form the auxiliary basis, A; -f and the program

(12) for f' "(zi). Using z ' as a starting solution, solve (12) and obtain z .If

CA,*(z) - ,*(z), set I = 1+ 1 and return to Step 2. If CA',*(z*) < C',*(z"),

go to Step 3.

Step 3. Update T and B. Set zA+ 1 = z , I = 1, =p + 1, and go to Step

2.

The following theorem states the finiteness of PCSDLP.

Theorem 1. The method described above, PCSDLP, terminates in a finite

number of steps with an infeasible, unbounded, or optimal solution to the

two-stage (T = 2) form of the program, SDLP.

Proof. From Chapter Il, we know that Steps 0 and 0' must terminate in a

finite number of steps. After Step 2, the solution to (6) and (12) must be

feasible in SDLP because primal feasibility of the last solution is maintained.

It is bounded because (6) and (12) are more restrictive than (1).

T is finite since the number of constraints (12b) is finite and each im-

proving solution corresponds to a new set of bases, B. Since there are a finite

number of possible basis set combinations, the algorithm must terminate. I
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3. A Method for Reduced Basis Storage Requirements

Efficiency and storage requirements in the solution of (12) can be significantly

improved, if we do not include redundant constraints that occur with dupli-

cated bases, A;'. To do this, begin by checking in Step 0' for a repetition of

A28'. We start with I = 1 and increase 1, letting each distinct new basis be

A'. We obtain B = f4'I -- 1,... ,q}. We also define

P(O = i (13)

where J(l) = { all scenarios j with optimal bases, A:'.

Now, when we construct the constraints (12b), we define

S=- max jEJ(QPj '*, (14)

and, for each component i, we store "(l, i) for every 1, where p" (i) ,"*(0,

for all j E J(). Thus, (12) becomes

min C"'*(zi) =[c1 + D'= 2

subject to

AIzI= bi, (ISa)

(A,*)-IB zi> pl.*, = 1,.. .,q,(15b)

Cl> 0.

Now, in Step 2, write the elements of T as tx = (i, "(L)). Each time a

new auxiliary basis, Aj,*, is investigated, if A i '* E B, then we adjust p(L)

and possibly p'*, but do not change the coefficient matrix. If A4j" 9' B,

then we must add another set of constraints to (15). At Step 3, we update

B, the associated probabilities, p( 1 , and update T using the pair, (i, '(I)).
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This modification can significantly reduce the number of constraints

since a large number of scenarios may have the same basis. We could again use

the Garstka-Rutenberg procedure (see Chapter I) to find the probability that

each basis is optimal in Step 01 without solving the individual problems. This

effect combined with the smaller size of (15) can lead to greater computational

efficiencies.

Another efficiency can be gained from using a method similar to the

column passing technique of Chapter I. During the algorithm, we may

observe that one set of variables, {4z}, remains in the optimal basic set,

{z}, while the other variables are chosen from a set, {xs}. If the columns

of the set {zHB} have full rank, we can take a square non-singular submatrix,

Af, from (15) and find

- - - (A y')-1 4. (16)

We then eliminate zB from (15) and obtain

min O.'o*(zS)

subject to

(A B"'*)-'Bi)z-_9 > ", I =1.,q,

Z4> o,

(17)

where tilde indicates that Ee, AL, ((A-IBi), and , are defined relative

to through substitution of (16) into the program (12). The definitions are

completely analogous to those in (3.32).

The optimization procedure can then continue with the reduced problem

(17) to find the optimal values zJ , given z. Using the result of (17) in

(15) would then determine optimality. When decisions can be narrowed to
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choices among a few variables, this modification may again prove effective in

improving efficiency.

The algorithm, PCSDLP(2), is stated for two-period optimizations. It

does not require the subproblems to be reoptimized after Step 0y. By main-

taining primal feasibility, it is always on a feasible path to the solution and

may eliminate the problems of wandering among multiple suboptimal points.

In the next section, we present the implementation of PCSDLP(2) for general

multi-stage programs.

4. The Complete Solution Strategy

The PCSDLP method follows a procedure very similar to NDSDLP in its

passing through the scenarios from period to period. In fact, both of these

methods can be seen as local approximations of a dynamic programming

scheme, which we present in greater detail in Chapter 6. PCSDLP even

begins by finding a feasible primal solution through NDSDLP, but PCSDLP

never allows for primal infeasibility or non-optimality in a subproblem after

a single optimization.

First, we set up subproblems for each node as in Step 0 of NDSDLP.

Next, we find a feasible primal solution by Step 1 of NDSDLP, passing

feasibility cuts as we proceed through the periods from 1 to T. After finding

this feasible solution, we start by applying PCSDLP(2) to the master-subproblem

relations at period T - 1. Primal feasibility is then maintained throughout

the optimization.

For each scenario j in period T - 1, we solve
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min CrizT_1 + E1.71 P'CTZI

subject to

Tz_1 _ Oi_- 1 + BT.2-4..,

(18)

by using PCSDLP(2).

For a solution to (18), define

=- =i : xJ.(i) is basic in subproblem j)

and

"y' {i i is basic in row l and (I,) E T}.

Now, with the solution from PCSDLP(2), we want to find the optimal

basis for the full problem (18). This larger matrix will form the basis of a

subproblem for period T - 2. We first include the set of basic variables in

the master problem, {z'T-11. The basic variables from the subproblems will

be chosen as

Xi. = {ZJ.(i) :i E (19

This definition eliminates the degenerate variables from the basic set. Since

the elements of Xj. are the only non-zero variables in an optimal feasible

solution to (18), if (18) is not degenerate, then the union of {4L._} and X

must form a basic set of variables in (18).

If (18) is degenerate, then we must check whether the columns cor-

responding to {zBT } and Xj span the solution space. If not, we add

columns from those corresponding to

T. T{z(i) i E. ~fl . (20)
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If a column of zj (i) E Y'T is independent of the columns in the present basis,

then it is added until full rank is a achieved. We know that we must obtain

a basis since the union of all columns for {z By }, Xi., and I. spans the

space.

We thus obtain a basis for all j in T- 1. We call this basis, DBI, and

we further define

-AT-1

DA-T- -AT (21)

\-BT-1 AT

dT-1 = (CT-IP 1 cT,. .. ,P TCT), (22)

_ = 1_, ,..., fI ), T(23)

and

YT 1 -(29 .. I (24)

Now, the problem for PCSDLP(2) is

mm 2 T -2 + F -- -1dT-- l (25)

subject to

AT-2Z. 2 VT-2 + BT-1Z , (25a)

-BT-2Z r + D-1= 0-, 1, ... ,kT-1,(25b)
T -2 - 0 oT-> 0, " 1,...,

where BT-2 is the matrix BT-2 augmented by zeroes to correspond with

DJ-.

To begin PCSDLP(2) for (25), we substitute constraints of the form in

(6b) for (25b) and enter Step 1 in PCSDLP(2). We never reoptimize the

subproblems, but look for feasibility maintaining pivots in both periods T- 1
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and T. In general, after solving the two-stage problem for each scenario

j in period t, we would again find the bases, DB', and construct a two-

stage problem for t - 1 as in (25) by combining zi with (y~,'", t+l)"

PCSDLP(2) would begin by optimizing

min 1) =[ct-i + i," pdB%(DJy1BiIx. (26)

subject to

A t - z-' -1 - 1 + B t- 2Z t- 2,

Zi > 0.

The dual pivoting operations could then be performed in any of periods t

through T.

PCSDLP continues by combining master problems with subproblems

and following these iterations back to period 1. This process uses the basis

structure depicted in Figure 2b. of Chapter I, in which, we view each scenario

as starting a new problem. The steps we have described for PCSDLP follow.

PCSDLP

Step 1. Follow Step 0 and Step 1 of NDSDLP to obtain a feasible solution

to SDLP. Set t - T - 1 and set up a program of the form (12) for each

scenario j in T - 1. Set j = 1.

Step 2. Follow Steps 1, 2, and 3 of PCSDLP(2) for the problem at node (j, t).

If j = kt, go to Step 3. If j < kt, set j = j + 1 and return to Step 2.

Step 3. If t = 1, stop, z is optimal. If t > 1, combine the master and

subproblems of each scenario j at period t and form programs as in (26) to

initiate PCSDLP(2). Set t = t - 1 and go to Step 3.

The finite termination of this method is guaranteed by the finiteness of
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PCSDLP(2) and our passing back one period in each encounter with Step 3.

We state this as a Corollary to Theorem 1.

CMlary. PCSDLP terminates in a finite number of steps with an infeasible

or unbounded solution from the procedures of NDSDLP or with an optimal

bounded feasible solution to SDLP.

PCSDLP's greatest potential improvement over NDSDLP is, as we Lave

emphasized, its maintenance of primal feasibility and subproblem optimality.

This advantage over the possible suboptimizations and infeasibilities in NDSDLP

must be discounted, however, by the growth of the bases, DR, in the sub-

problems. Their larger size may lead to a greater number of computations

in performing pricing and the minimum ratio test in (1). We can, however,

gain efficiency with a compact factorization of Df. The following chapter

describes such a technique and its application to the full problem, SDLP.

This local basis method could then be used in conjunction with PCSDLP to

gain still greater efficiency.
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CRAPTER V

A Local Bad!s Simplex Method

1. Introduction

The two methods presented above, NDSDLP and PCSDLP, require the

optimization of subproblems essentially independent of the main problem.

This practice can be costly, leading to a great number of iterations. We

describe below an adaptation of the Simplex Method for linear programs with

stochastic structure. This method reduces the complications of stochastic

linear programs by taking advantage of some fundamental properties of the

basis. We call this approach a local basis simplex method, LBSMPX ,

because it relies on the near square block triangularity of the bases for these

problems.

Block triangular linear programs, in general, have the form:

min C1Z + C22 +' + CTZT

subject to

xt 0,I)T

zt_ O,t-- ,...,T.

where Zt E Rt',b t E R"",Ct E Rnt , and the matrices Aij are dimensioned

accordingly.

The detached coefficient matrix is then:L(All
A A2 1 A 2  (2)

T AT2 ... AT)
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and has dimension,m X n, where m - tn and n = ET- T

Dantsig [15] introduced the idea of using an artificial basis for these

programs in which square (mt X mt) basis blocks appeared along the diagonal.

The true basis could be derived from the artificial basis by a set of side

conditions. He observed that, because of the persistence property in dynamic

linear programs, the additional computations would be few.

This concept of basis factorization and the use of pseudo- basic variables,

as in Beale[6], have been applied in a variety of examples. Recent implemen-

tations are found in Kallio and Porteus[38],Perold and Dantzig[48],Fourer[22],

and Propoi and Krivonozhko[52]. This last approach is close to the develop-

ment here, using local bases as a factorization for multi-stage linear programs.

A thorough and unified presentation of the relationships among basis fac-

torization, partitioning, and decomposition can also be found in Winkler[67].

2. The Structure of the SDLP Basis

The program,SDLP, is another member of the class of block triangular

linear programs as the following shows.

Lemma 1. The program, SDLP, has the structure of a block triangular

linear program, as in (1).

Proof. Define

A tt = (At At( )

At

where At is repeated kt times to correspond with each scenario in period t.

Define also
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(-Bt~l- B, 4A;-I.t = -t (4)

where kt-1 repetitions of the matrix, -B_1, correspond to the possible

outcomes of period t - 1.

Then, we define At-l,t as

At.--- ,,,

The other Aej matrices are void, so SDLP has the desired structure. U

The SDLP has other advantages that it shares with general multi-

stage linear programs. In these programs, the number of additional columns

required in finding the true basis from the artificial basis is limited. This

bound means that storage requirements should not grow excessively with the

problem size. This well-known property is stated in the following lemma:

Lemma 2. For a dynamic linear program ( a block triangular linear program

where At = 0 for all 8 > t + 1, ie. a staircase structure), the number of

surplus and deficient columns in each block of the basis, Bt, is bounded by:

(i) 0 < 11 <_ M2,

(ii) -- mt !5 It 5 mt+1, t = 2,..., T- 1,

(iii) IT > -MT,.

where It + mt is the number of basic columns in the basis from period t,and

the basis has the form:
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(B11

B2 1  B2 2

B 0 B8 2  B 3  (5)

0 0 0 BTT-1 BTT

Proof. (ia). In order for B to be nonsingular B1 1 must have full rank.

Therefore, Li > 0.

(ib) and (iia). It _K mt+,. Assume It > mt+,, then B has greater than

mt + mt+, independent columns in period t, but the row rank of this block

is less than or equal to mt + mt+,, a contradiction. Hence, It _ mt+,.

(iib) and (iii). It >_ -mt. Assume It < -mt, then there are greater

than ' m. independent columns in periods 1, 2,..., t- 1, which again

contradicts row rank, so It _! -ntl

The direct application of this lemma to the stochastic linear program,

SDLP, would imply that for any period, t, there are at most kt -mt+1 surplus

columns in the basis. Because of the highly structured nature of SDLP,

however, a much tighter bound can be found. We show this below in the

following lemma. Murty (451 first observed this property for the two-stage

case of programming under uncertainty with continuous distributions of the

random variables in 1968.

Lemma 3. For SDLP and for each scenario j in period t

(i) 0 < 11 M i 2,

(ii) -mt I <_ _ mt+,," j 1,...,kt;t = 2,...,T- 1,

ONi -m _< Pt;3. i . ,k.

where Il is the number of surplus columns in the basis for period t and

scenario j, and mt is the number of rows for a single scenario in period t.
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Proof. (ia) This follows from Lemma 2.

(ib) and (iia). Assume that Lt > m +,. This implies that there are

greater than mn + ms+ I independent columns) in the matrix:

At

-Bt

Dt= -Bt (6)

k-Btf

but, again, Dt has row rank mt + mt+l, a contradiction. Therefore, III

mt+l.

(iib) and (iii). As before, the number of independent columns cannot

exceed the row rank of the submatrix including that scenario, and the result

follows.|

From this result, we proceed to find an efficient implementation of the

Simplex Method to the problem, SDLP, in which, a limited number of

additional computations are used to perform the simplex routines of finding

the true basis representation of a column, the cost row, and prices.

3. Finding the true basis representation of a column

To find the column representation, first define a square block triangular

artificial basis for SDLP as
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U1

v 1U
V, U

matrix, A, we also define

, a ={a3 E A : a3. is a column in the artificial basis}.

tI

We further define

r _ {a 3 E A : aj, is a column in the true basis }.

The complements of a and r are defined as N sad r.

For every U,, there also is a partition

-1 TT

where PU and T are square and non-singumlar, the columns in P are pseudo-

bapic, chosen from n, and T contains columns from the true basis. We

define here

S{k : aj E a fr where a is the baic column for row k}.

To replace these columns in the basis at period t, there must be surplu

baic ariables from period t - 1. We write these columns in terms of the
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artificial basis as

where P-,'- , consists of rows from Al- . 1 and is mt.. I X (f- the number of

surplus columns in period t - 1 under scenario ).The rows corresponding

to B~ 1 are partitioned between Qj... 1 an of 1  matrix, and R-t.. 1 ,

a (kt m - x~' 1)Xo- matrix.

The coefficient matrix,A, is then

Q1

PP1

2

U-1 A= U 1 A (10)

Qua
'42

whic, b rowandcolun pRmuaioi

85s
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QP 2

Q'

: (11)

Q1

I

T- 1

The following allows us to use this partitioning for computations.

Lemma 4. Relative to the artifcial basis, U, the true basis, T, of SDLP has

coumns partitioned as in (11), where each Q " is square and nonsingular.

Proof. By the definition of the surplus columns in (9) and suitable

permutations, we arrived at (11).

Next, define Q as the matrix, relative to the artificial basis, of surplus

columns with rows in €, that is
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pT-1
QkT-

T- 1

which is clearly nonsingular because U- 1 and T are both nonsingular.

Now, index Qj for all j and t along the diagonal as Q,..., Qk. Let Qp

be the first singular matrix in the list. Its row rank is r. < ap, the number

of columns. In order for Q to be nonsingular, however, the row rank of the

submatrix of the remaining columns, p+ 1, is

Vpx> E 8j .
jI

This violates the column rank, therefore, each Qj is nonsingular.1

Given that the Qj's are nonsingular, we can proceed to eliminate the

pseudo-basic columns from the basis. This procedure involves premultiplying

U- 1 A by a product of matrices, F 1 , F',..., FTK' .. We first define

F1- - (12)
P 1Q

1

and observe that
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I1Q51
"1

II

QT.- 11

F1U- 1 A _pxQ - 1(13)

-RIQI 1

I

We next define

and, in general,

F - (Q )-i (14)

fl(Q,)i).

where 7 and 1 are the partitions of the surplus columns, relative to the

previous F 's. By repeated multiplication, the matrix relative to the true

basis is found:

Fk'-1 ' "'ElU- 'A =k F _..Fj Fk'T- '-...FIU - IA 15

In order to facilitate finding the matrices, F-, we note that the growth

of nonzeroes in every period and scenario is limited. The following lemma

states this.

Leamma 5. After multiplication by F - 1, F 2 ,..., F1,..., Fi, the additional

nonsero blocks in the surplus columns of scenario I in period t occur only in

rows, for which, l's ancestor scenarios are basic.
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Proof. We proceed by induction on p, where we order all the blocks of surplus

columns with p = 1,..., k. For p = 1, the result is true trivially since no

new nonzero blocks are added.

Assume this is true for all p :_ n. We look at the surplus columns in

n + 1, and assume, without loss of generality, that this is scenario I in period

t. We then define

F,. "F", (16)
/

Next observe that every F. in periods 1,..., t - 2 has only identities in
columns corresponding to PI, Q1, and RI, so that only the F_ 1 need be

considered. If the scenarios are not ancestors of I at period t, then again by

the hypothesis, they have no block entries that correspond to R', Q1, or PI

and so do not alter St.

Therefore, we have

Pt t 'l(t- 1 Pt'

S'= F1, (17)

_t rJt t-

and the only additional blocks occur where -PI - 1

By the hypothesis, the only nonzero blocks in Sit 1 are in its ancestor rows

from previous periods, so the only additional nonzero blocks in SI will occur

in these rows and the rows where columns are surplus in t - 1, scenario 1.

This completes the induction. |

89



This lemma proves valuable in computing the columns relative to the

true basis . Multiplications and storage are limited since only sections of

each surplus block need to be considered. We next wish to compute the

value of a column, z,, where zi E T(t, 1), the non -basic columns in period t

and under scenario I.

We first observe that

F,-.F U-'zi= F' -FT E.T,(18)

where I is the first ancestor scenario of 1, since for every FP such that j

{t,t- 1} or p I 1

f j- = Y,(19)

by the definition of FP.

Next partition the components of the vector Yj as

~b,-- ' E O(t + 1))

= = j, e (t))

-- E (t + 1)). (20)

Then, i can be written as

r l rn -1 (QI -1

X! ,• + •b, + (21)

-RJ- (Q'()9
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With this representation, we form the following procedure, called LBFTRN

(for local basis forward transformation) to find T.

LBFTRN

Step 0. Identify an incoming column zi. Find

-- =W (U+i)1 (V.((U.) a -+ b,)) -- (1j; )as defined in (20).

(22)

Step 1. Identify ?,'. and Wp. Find

-0- 14 ((23-),

=(Q'- )1p,.

Step 2. For all 3 E U= '(a) (all preceding pseudo-basic columns) find

S -P~t----(j, *" - -PT3, *" (24)

for j E 1(t- 1),

tPTI (j(25)

for E 0(t),

~ u, (26)

for E E U8=I 1(a),

-Rl- (27)

and for " E f(t - 1),

,= -RtL3, *)u. (28)

Step 3. For iE (t, 0,

9 1j + 1,, (29)



and for i E j(t + 1, )

+. , (30)

LBFTRN results in the updated vector,T.. Therefore, from (21) and our

previous results, the following proposition holds.

Proposition 1. The representation of an incoming variable, zi, relative

to the current basis in SDLP can be found as 9! from the above procedures

in LBFTRN.

This routine allows for quick computations of an incoming column when

there are few surplus columns. It requires current information of which rows

belong to %(t) and 10 (t + 1), the pseudo-basic columns in period t and period
t ~ 1, the representations of P1 - 1 , PI, RI - 1 , RI, and the inverses of Q 1

and Q1. This storage requirement would be small, relative to the storage of

the entire matrix, if few surplus columns are present.

4. Finding the Dual Prices and Pricing

The backwards transformation involved in computing the dual prices for

SDLP can also be done more efficiently with the use of a square block trian-

gular artificial basis. A savings here could be substantial because the pricing

operation aften requires a majority of the effort in linear programming codes

(viz., Fourer [22] ). The method presented below requires only the present

and previous scenario blocks' surplus column updates for computation of the

reduced costs.

We assume again that we are in period t and at scenario 1. The dual

prices relative to the artificial basis are computed first, by transformations

from the last period to the beginning. We define

7r= C,(U)- 1 for all I = 1,...,kT. (31)
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and define by the general recursion:

I l P 1(t+1)W .(t+1)]v l)(Uzr1 (32)
• =-t t_ +, t+1 / t

for all I = 1,..., kt, where 1(t + 1) denotes all descendants of 1(t) at t + 1

and 1(t+ ) is the probability of each descendant.

Now, to find the prices relative to the true basis, we look for p such that

O= c.-p.aj for alljE r,a EA. (33)

We have from r defined in (32) and (33) that

O= -jr.aj for alliE rn a, (34)

or, since w = - ,
0 = i- c(U-'a) 

(35)

= Cj - C3. Ij,
where Ii is a unit column with identity in row j.

Thus, for c partitioned as

c = (c :E rna), and

CR (ci :E fc), (36)

we have from (35) and the definition of Q and R in (9),

ij = cj- c ,P,- ',. Qj - M R for all ,nw. (37)

We seek next a such that

0 =~,- ~,(c + o,)ej - (c'Q + aj)Q, - eRRj for allE" fN . (38)
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We do this iteratively by finding first

0"1 = 6IQ - 1  (39)

and, in general,

- [ - L(t- )PtJ(Q')-1 for all I = 1,..., k,. (40)

We define p as
ej + ai, if j E
Sifj E(41)

Hence, (33) holds by the construction of a in (39) and (40) and the

preservation of ?R _ 0.

The computation of p, using a as defined in (39), allows pricing in an

individual period t to involve only the inverse of Q1. If pricing proceeds from

period t to t + 1, then, for a constant artificial basis, the previous prices

need not be recomputed. This strategy may result in substantial savings by

eliminating unnecessary multiplications for the other periods. It also saves

on storage, since extraneous surplus block inverses can be ignored.

The local basis simplex procedures for finding dual prices are then:

LBBTRN

Step 0. For period t and scenario 1, c,- = (cj(t, 1): " E r f n).
Step 1. Find 6j(t, 1) as defined in (37) for all " E r(t, ) fl n.

Step 2. Compute at as in (40).

Step 3. Form p as in (41).

This procedure is then followed by LBPRCE which finds

'Ij =cj -p aj(42)
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for all j E r'(t, 1). The incoming variable in this strategy is then chosen as

the variable with the most negative reduced cost in that period and scenario.

We define this as

L.(t, 1) = minjE7(t,,)cj - p aj. (43)

If r,(t, 0 0, then the algorithm would proceed to the next scenario in

period t, or, if I = kt, the first scenario in period t + 1 would be considered.

5. Updating the Pseudo-Bases and Surplus Blocks

After the incoming column is chosen in (43) a leaving column is selected

by the minimum ratio criterion of the standard simplex method. This pro-

cedure, called CHUZR, finds

-i, > ), (44)

where f is the representation of the incoming column found by LBFTRN

and Z, is the current value of the right hand side in the ith row.

The computations in CHUZR can also be reduced because nonzero entries

in 7 are restricted to certain blocks as we discussed in Section 3. For up-

dating the basis, a can be pseudo- basic or non-basic in period t (ie.,a(t, 1) E

a l r(t, i) or 8(t, 1) E n r(t, ) ), and a can enter the true artificial basis

in period t or become surplus basic in period t + 1 (that is, r E r(t -

1, l a, r(t + 1,fln a,r(t + 1,onl ,or r(t + 1, t) n a). We discuss these

cases below :

U1. r E r(t- 1, 1).

In this case * replaces a surplus column from the previous period. To

update, we remove a column and row from Q(t - 1, 1) and update the

corresponding list of pseudo-vectors in period t. We also update U(t, L)

by replacing the pseudo-basic column, 0(r), that corresponded to 7 with 8.
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This is done by adding an elementary matrix to the eta file of U(t, )- 1 as

in standard simplex codes. (Note that if 8 E a, the artificial basis remains

unchanged.)

U2. r E r(t, l) n a.

Here, 8 replaces a currently true basic column in the artificial basis. If

a E ct, then we must replace the row in Q(t, 1) for which 8 is basic with the

row for which r was basic. The artificial basis is unchanged. If 8 E W, then

we need only update the artificial basis, U(t, 1), as in UI.

US.r E r(t + , ) l .

In this case, a replaces a surplus column which is basic in the next period.

We maintain the same artificiv:l basis and update the surplus block,Q(t +

1, L). To do this, the column occupied by r in Q(t + 1, 1) is replaced by the

corresponding row entries of 8. This is performed easily by premultiplying

by an elementary matrix for this pivot.

U4. r Er(t -- 1, t) na.

In this case, 8 replaces a basic column in the next period. This involves

adding a column and row to Q(t + 1,1). The new row has entries from each

of the surplus basic columns. The list of pseudo-basic variables in the next

period must also be updated with the addition of the row for which r was

basic. Again, the artificial basis remains unchanged.

The updating procedure can be confined to the current local artificial

bases and current and following pseudo-bases. This property enables us to

store only the present and following bases for updating purposes.

6. The Algorithm

The previous sections have presented the basic routines for a local basis

simplex method. We discuss below the method's basic strategy and im-
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plementation. The algorithm is similar to the nested decomposition approach

of Chapter I in that it alternately follows a forward and backward procedure

through the periods. This strategy is also similar to dynamic programming

since the algorithm proceeds from one local optimum to the next. The basic

method, call LBSMPX, follows.

LBSMPX

Step 0. Find an artificial basis. Do this by solving first

min ClZl

s. t. Alzl"-= (45)

z1__0,

and proceeding to solve

min ctz

s.t. At4= f + Bt-ilt-1) (46)

4 0,

for all (t,L),t = 1,...,T,l = 1,...,kt. If any of these programs has no

feasible solution, use the last infeasible solution basis as U1. Otherwise, we

store each locally optimal basis as lfy and form the artificial basis from these

matrices.

Step 0. Set t = T - 1,1 = 1,NDRCTN = 'BACK',CFLAG =

'NO',MSTAT = 'YES',ITNO = 0.

Step 1. Invert the current basis and find all basic variables values. This

procedure, called INVERT, is equivalent to performing LBFTRN on the right

hand side. If all variables have feasible values, MSTAT = 'YES'. Else,

MSTAT = 'NO'.

Step 2.Form a Phase I objective row, if MSTAT = 'NO'. Else, use the

objective row,ct. This routine is FORMC.
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Step 3. Call LBBTRN for (t,l) to find the current prices. Set ITNO -

ITNO+ 1.

Step 4. Call PRICE for (t,l). If 'E 0, check basic variable values. If

there exists x(t', n' infeasible, set MSTAT = 'NO', and

(a) If t = TJl = kT,NDRCTN z-'FORE',and CFLAG ='NO',

if MSTAT = 'YES', the solution is optimal,stop. If MS TAT ='NO'

and the objective value, z(1, 1) > O,then the solution is infeasible, stop. If

z(1, 1) = 0, then, set MSTAT ='YES', and go to Step 2.

(b) If t =1,1 = 1,NDRCTN = 'BACK', and CFLAG = 'NO', then

if MSTAT ='YES', the solution is optimal, stop. Else, if the objective

z(1, 1) > 0, then there is no feasible solution, stop. If z(1, 1) = 0, then set

MSTAT ='YES' and go to Step 2.

(c) If t = T,L = kT,NDRCTN = 'FORE', and CFLAG = 'YES',set

t = T - 1,1 = 1,NDRCTN = 'BACK',CFLAG = 'NO',set MSTAT =

YES. If ITNO < MAXIT(the maximum number of iterations between

reinversions),go to Step 2, else go to Step 1.

(d) If t = 1,1 = 1,NDRCTN = 'BACK', and CFLAG 'YES',

then set t -2,1 = 1,NDRCTN = 'BACK',CFLAG = 'NO',MSTAT-

'YES'. If ITNO < MAXIT, go to Step 2. Else, go to Step 1.

(e) If t < l and I1< kt, then set 1 1 1+1. If ITNO < MAXIT, go

to Step 2,else go to Step 1.

(f) If 1 < t < T2,1 = kt,NDRCTN ='BACK', set t = t - 1,1 = 1, go

to Step 2.

(g) If 1 < t < TL = kt,NDRCTN = 'FORE', set t =t + 1,1 =1,

go to Step 2.

If ir, < 0, set CFLAG = 'YES'.

Stop 5. Call LBFTRN.
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Step 6. Call CHUZR. If no r is found (ie., all 7*,: O), then the soluti n

is unbounded, stop.

Step 7. Call UPDATE to perform U1, U2, U3, or U4, depending on r,

go to Step 2.

The preceding method leads to an optimal, unbounded, or infeasible

solution as the following theorem states.

Theorem 1. Assuming nondegeneracy (or suitable resolutions by choice of

outgoing variable in CHUZR (see Dantsig [17])), the method, LBSMPX,

terminates in a finite number of steps with an optimal solution, an unbounded

feasible solution or an infeasibility criterion.

Proof. Each pass through Step 7 results in a decreased objective value under

nondegeneracy. Since there are a finite number of bases, the algorithm can

pass Step 7 at most a finite number of times. The method would, therefore,

terminate as in the simplex method as long as it takes at most a finite number

of steps between passes of Step 7.

The algorithm does not return to Step 7 for each iteration that Step

4 results in (c), (d), (e), (f), or (g). However, in these cases, the algorithm

progresses to the next scenario or period in either the forward or backward

phase. Therefore, conditions (a) or (b) in Step 4 must be met after each

phase.

When (a) or (b) are encountered in Step 4, the algorithm proceeds in the

opposite direction, if Step 7 was ever encountered in the last pass through

every scenario (the case, CFLAG = 'YES'). If no improvement was made,

that is, if Step 7 was not passed in the last phase, the algorithm terminates.

Therefore, LBSMPX always terminates in a finite number of steps. *

As in the Simplex Method, variations in LBSMPX may be used. The
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most negative pricing strategy in PRICE, for instance, can be altered. We

can also choose to proceed to the next period with a criterion other than

ie(t, ) _O. *(t, ) _ - could be used with c decreasing in size as the optimal

solution is approached.

LBSMPX uses the standard simplex techniques by efficiently partition-

ing the basis. As in the nested decomposition approach, NDSDLP, and the

piecewise method, PCSDLP, LBSMPX concentrates on different sections of

the basis one at a time. It differs with the previous methods, however, by

continuously reflecting changes in the entire problem. The advantage of

this property is that the global solution reflects the local optimization more

quickly. The disadvantages, however, are that the method requires more

computational effort in maintaining these instantaneous changes. These rela-

tive computational requirements are, again, discussed more closely in Chapter

VII.
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Chapter VI

The Relatlonship to

Dynamic Proramming

1. Introduction

In Chapter I, the dynamic programming formulation for the general

stochastic dynamic linear program, SDLP, was presented. In principle, SDLP

could be solved exactly by this method. Since the random vectcrs, et, were

allowed to have continuous distributions, the program at stage t was an

infinite dimensional optimization problem. To avoid this complication, we

approximated the distribution with discrete valued random vectors, e, and

formulated a linear program, the solution of which we discussed above.

We considered linear programming techniques, but we could have used

dynamic programming to solve this discrete distribution problem. In a produc-

tion example, Beale, Forrest, and Taylor [7] estimated that four state vari-

ables in a time period could be handled. For larger problems, they concluded,

an approximation must be used.

We chose the linear programming formulation because of the histori-

cally good performance of the Simplex Method and simplex-based algo-

rithms. Using these algorithms, large problems with over a thousand rows

and columns can be solved easily (see White [661 for a discussion of computa-

tional experience with large-scale linear optimization). Dynamic program-

ming techniques using the standard computational procedure are generally

limited to problems with six state variables and six decision variables (see

Larson and Casti [41]). Advanced techniques can, however, be implemented
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for larger problems in order to approximate and then refine the state and

policy space. These methods prove very valuable for general transition equa-

tions and objective functions (see Larson [39]), but linear programming methods

are most commonly used for problems with linear constraints and objectives.

They do not require quantization of the state space or knowledge of the

range of state variable values along the optimal path. Linear programming is,

therefore, often more efficient than dynamic programming-type algorithms.

Our methods in Chapter II and IV actually combine these two tech-

niques, although we have presented them as linear optimization strategies.

In the following sections, a standard dynamic programming formulation of

the stochastic linear program will be presented and its advantages will be

discussed. We will then show that the piecewise method, PCSDLP, and the

nested decomposition approach, NDSDLP, are simply different versions of

general dynamic programming.

2. The Quantized State Space Approach

A standard simplification in dynamic programming is quantization. SDLP

can be formulated in this manner by first creating a discrete approximation

of the state space. This will enable us to form a recursion at every stage t

and for every state yt. We first define

y, - Btzt.(1

and quantize this vector as {y4, t,.-., V4'}- The random right-hand sides

will again have discrete values, .

Now, the following backward algorithm, BDP, can be used.
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BDP

Step 0. For all y4, find

ZT(=1) EeT[zT(y1T-4 , T)], (2)

where

z(Yi4_., T) = min CTZT

subject to (3)

ATZT- V-I + CT,

ZT>: 0.

Set t=T. Go to Step 1.

Step 1. Set t = t - 1. For all Vi find

Ef_,p= Ee,zJt-v , Ct)], (4)

where zt(t.t.l, ft) = min .{zt((yl, et),v)}, where

z,((le. 1 , f,), i) = min ctzt + zt+i(C )

subject to
Atzt= f + et1, (5)

-Btzt= t,

Zt>: 0.

Step 2. If t-2, go to Step 3. Else, go to Step 1.

Step 3. Find z1 = zi(O, bh) - min Jz((O, bi), y' ), where z((O, bi), V') is as

defined in (5) for yo = 0, f I bi. Stop.

Proposition. The algorithm, BDP, converges in a finite number of steps to

an optimal solution, zt( t), for zt(V._.1), at every stage t of the program

SDLP, under the following assumptions:
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I. The support of the random vector, et, is St - {CI, f2...,

II. The values of the inventories from period t are Btzt, where Btzt E

Y = {Yt 1, t . .. IY

Proof. The result follows directly from Bellman's Principle of Optimality

and the finiteness of the Simplex Method for linear programming. I

BDP requires the solution of a great number of linear programs in Step

1. The storage requirements may be prohibitive for a large or detailed

state space, Yt. BDP does, however, have the advantage of solving small

subproblems and of following a single pass to optimality racursively from

period t back to 1. The method may even be implementable when one has a

great deal of advance information about the admissible states in the solution.

For more general problems, however, more efficient ways to characterize the

state space are necessary. In the next section, we show that the algorithms,

PCSDLP and NDSDLP, of Chapters III and IV are such methods, employing

approximations for a continuous state space.

3. Relation to the Nested Decomposition Method

In this analysis, we consider the optimization problem, DP(t), at some

time t

= Ef,[zdvsti, 6)], (6)

where zt(yt-1, 6) = min ,zt((yt-1, et), t) and
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z,((y-i, C) mirain cz, + Z+i(Vt)

subject to

At zt= yt-I + Ct, (7)

-Btzt= yt,

t > 0.

Here, we would like to have an explicit representation of z,x(yt), which

we approximated with the quantizations above. One way to find zt+ (yt) is

to exploit its convexity properties. The nested decomposition and piecewise

approaches do this, as we show below.

For the nested decomposition approach, the following problem at stage

t is solved instead of DP(t)

min ct2x -+at

subject to

!Atzt = t-I + Ct, N t)
t-(+ +;B)zw+-. p'+ik 1, ... ,p, (ND(t)(a)) (ND(t))

(-.-+iBt)z (I + 1+-), 1 = 1,... ,q,(NDt)(b))

Zt > 0,

where the constraints ND(t)(b) keep zt feasible and ND(t)(a) forms an outer

linearization of the convex function, Q(zt), as we showed in Chapter 3. The

following lemma then shows the equivalence of DP(t) and ND(t).

Lemma 1. For all t, 1 < t < T, z is the optimal solution of zt(y¢- 1 , ) if

and only if z; solves:

min ctzt+Q(zt)

subject to Azt-= Vt-I + C, (8)

Zt> 0.
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Proof. For t - T, we have

QT(ZT-1) - E[QT(ZT-1 CT)]
- Ef( min CTZTIATZT = CT + BT-ZT-i,ZT _ 0] (9)

= ZT(BT-ZT-1).

At t- =T- 1,

QT-I(zT-2, CT-i) = mil CT-iZT-1 + QT(ZT-1) (10)

subject to

AT-IZT-1= CT-1 + BT-2ZT-2,

ZT-1..i 0,

which, by (9), is equivalent to :

min CT-ZT-1 + zr(YT-i)

subject to

AT-lZT-i= CT-1 + BT-2ZT-2, (11)

BT-lZT = YT-I,

ZT-1> 0.

Therefore, the functions ZTI(gT_2, CT-) and QT-I(zT-2, CT-1) are

identical and have correspondingly the same optimal solutions, z4_-. The

result follows by induction on t.I

Lemma 1 shows that the cutting plane method used in the nested decom-

position approach is equivalently a method for finding the function, zt( t-i),

in DP(t). In doing this, the constraints in ND(t)(a) linearise the convex func-

tion in the neighborhood of yt-1.

In other words, at stage t + 1, for a given v , we find
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Zt+I(Vt) = Ef,[z+i(Vt,f,+)]
-- E ,[ ,i+i(t+i)( + C,+O], (2+ (12)

=(ri+iBt)zl + Po+,.

By convexity and for (3ti+iBt)zt + o 4 a support of Zt+i(Bzzt), we

obtain

Zt+i(Btzt) (ti+xBt)z, + pt+1. (13)

Now, we write DP(t) as

in ctzt + It (DPP(t))

Atzt= t-i + et,(DPP(t)(a))

Zt+i(Btzt)<_ 9t, (DPP(t)(b))

Zt _ 0,

and observe that, if (zt, 9t) is such that

s, < (3et+,Bt)zt + 4 +1, (14)

then (zt, Ot) is infeasible in DPP(t). This corresponds (see Figure 1.) to

finding a point within the feasibility space of the previously generated cutting

planes that is not feasible for zt+,. Another plane is added at the new zt

value and DPP(t) is solved again. The process is repeated until (z*, 0*) is

found such that 0* = zt+i(Btzt). The following lemma results:

Lemma 2. f (zt, 0*) is an optimal solution to ND(t) and O* =- zt+= (Btz*),

then z: is an optimal solution of DP(t).

Proof. (z,, U;) is optimal for the reduced constraints in ND(t) and z4 is

feasible for DP(t) since 0 - zt+i(Btzt), therefore, z; is optimal for DP(t).§
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From this lemma, NDSDLP can be seen as a method for flndiu an

optimal solution to the dynamic program, DP(t). We furtha observe that

the discreteness of the {t distribution was not necessary for this development.

The convexity of zt+1(yt) is sufficient for the outer linearization to properly

bound the objective function. The next section describes how PCSDLP uses

the piecewise linearity of zt+1(yt) to make local definitions of the dynamic

programming recursion.

4. Relation to the Pieeewise Method

For Et - {C, a,..., C}, from Lemma 1, it follows that

kI

tyt

Figure 1. Outer linearizations.
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Hence, zt and Q have the same properties u functions of zt. This

implies that zt is piecewise linear in zt, as we showed for Q(zt) in Chapter

4. Therefore, we can write DP(t) as

min etz + i. pJct+i [(A~ 1)-(Bzt+ + I)I
"t t.2-n( Bt-=l [ ( A; ' ) -'(Bt. Zt t " ,[ ,l) ])  ( PW (t) )

subject to

Atxz= t-I + et,

(A3'Y'Btz -("4') 1Ct+ j = , ... k,

zt> 0.

We proceed as in Chapter 4 to write PW(t) as

min tzt-k

subject to

Atzt= Vt-i + et, (PWW(t))
-tzt-> et-lJ =1.,,

Zt> 0,

where V is a constant, and Bt, B', and et--I j are the values relative to the

subproblem bases as in (3.12) and (3.15).

Here, the function z,((yt- 1, e), t) is limited to the linear piece, for

which, -'zt _ e for all j. The piecewise algorithm proceeds by look-

ing for improvements from z4, the kth optimal solution found to PWW(t).

A sequence,

zt((s- 1, G), /t) > z((yt- 1, et),j4) > ... > zt((Cy-1, Q), y), (16)

is found, such that, if zt((yt-1, Ct), t*+1) = zt((t-x, et), yh) for all feasible

directions from yk, then the 4k corresponding to Btz = VA is optimal for
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DP(t), and we can proceed to find '.(Vt-i). (See Figure 2, and note that the

optimum is determined for zt only, so that t+ 1 need not be at a minimum.)

From this development, we have

Lemma 3. Hf the piecewise linear approach, PCSDLP, terminates wfth

Zt VI, ft), vt4 +l) =zt((t-..., et), yh), then the associated 4A is an optimal

solution to zt((yt-1, f~t)) in DP(t).

4. Conclusion

In Sections 3 and 4, we showed that the piecewise and nested decom-

position methods found values of xt that minimize the function zt for a given

state yt-i. The following theorem, which follows directly from Lemmas 3

and 4, states this result.

Theorem 1. The nested decomposition and piecewise methods presented in

Chapters 3 and 4 obtain optima) values of zt(V,-i,, ft) at each at age t of the

zt+ 1

+ t+

' 2 '3 4 Yt

Figure 2. At yj4, zt((yt- 1, ft), y) -t ((t-, 1, Vi).
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dynamic programming procedure.

PCSDLP and NDSDLP, when applied to this backward procedure, must

each start from some given state, Vt. The dynamic programming approach

of enumerating these states may be valuable here. If we let Vt take on

representative values and evaluate each of the associated zt(t-1) separately

before proceeding to stage t - 1, some computational effort may be saved in

both the nested decomposition and piecewise approaches.
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CHAPTER VII

Computational Results

and

Conclusions

1. Introduction

In this chapter, we synthesize our previous development of alternative

methods for reducing the complexity of problems under uncertainty. We also

present some results from solving these stochastic dynamic linear programs.

In this presentation, we wish to show that the difficulties in solving complex

stochastic programs are not so great that one should ignore uncertainties.

We will demonstrate that the stochastic solution can be evaluated without

prohibitive complications and that our techniques may prove beneficial in

this evaluation.

Our strategy has been first to consider deterministic problems and then

to extend them to the SDLP form. Our initial step in this approach dealt with

the properties of the basis for different scenarios. In Chapter I, we showed

that this analysis may result in finding an optimal deterministic solution.

Beyond this, in Chapter 2, we showed that a bound on the value of the

stochastic solution could be obtained before proceeding to solve SDLP. We

next gave three algorithms for solving this problem. In the following sections,

we present the computational properties of these algorithms in solving some

examples of SDLP.

Section 2 describes our computational results on representative test prob-

lems and compares the algorithms' performance with standard linear pro-
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gramming. In evaluating these methods, we also consider their usefulness

in models of actual phenomena. In Section 3, we discuss areas in which

stochastic linear programming has been applied, and we show that the solu-

tion of uncertainty models can lead to prudent decision-making. Following

this analysis, in Section 4, we state our conclusions on solving stochastic

linear programs and present directions for future research in this area.

2. Computational Results

The algorithms of Chapters III, V, and V have been programmed in

FORTRAN on the SCORE DECSystem 20 computer at Stanford University.

This system is useful for observing the properties of algorithms, but it is not

designed for solving the extremely large problems modeled in some stochastic

dynamic linear programs. Our goal was not to draw definitive conclusions

about the performance of each algorithm, but, instead, to observe some of

the algorithms' properties, so that, on systems with larger processors, they

may be implemented with a better understanding of their capabilities.

Since current linear programming packages take great advantage of the

sparsity (the relative number of zero entries in the coefficient matrix), we

compared our algorithms' performance with that of LPM-1, a program writ-

ten by J. A. Tomlin and revised by G. Kochman at the Systems Optimization

Laboratory. LPM-1 employs compact storage of the non-zero entries in the

coefficient matrix, performs an LU-decomposition of the basis, retains the

basis inverse in product form, and uses a merit counting sort for maintaining

sparsity in the inverse (see Pfefferkorn and Tomlin [49]). This procedure has

proved efficient in solving linear programs because the coefficient matrices are

characteristically very sparse. Since staircase linear programs (and SDLP's)

have considerable sparsity in their structure, it has been conjectured [471
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that efficient handling of these elements implicitly uses the structure and

that, except on very large problems beyond the capacity of standard linear

programming codes, no improvement can be made upon the packaged codes.

Our procedures have an advantage over these codes because they only in-

volve small sections of the program during an optimization. They do not re-

quire storage of the entire program parameters and, thus, may handle larger

problems. Apart from this advantage, we want to observe our algorithms'

performance on smaller problems that simplex codes handle easily.

The nested decomposition method, NDSDLP, was programmed in FOR-

TRAN as NDST1. This program includes the basic algorithm presented in

Chapter III, but does not include modifications, such as column passing. For

solving individual linear programs at each node, NDST1 uses the procedures

of LPM-1. It saves lists of the current basic variables at each node, but it

does not maintain the LU-decomposition for each node. Instead, it keeps

only one ETA file (the elementary matrices in the product form of the basis

inverse) for the current node and reinverts the basis each time it encounters a

new node. NDST1 also includes lower and upper bound capabilities on each

variable and, hence, does not require Step 2' of NDSDLP.

The piecewise approach, PCSDLP, was programmed as PCST1. It in-

cludes the feasibility routines of NDST1 for finding a primal feasible solution

of SDLP, and it follows the procedures of PCSDLP given in Chapter IV.

It,, " -tvt 1UIUWVM, Vl n tjrlitfet; vnL nl 'ifth-b V, hrhdpni ' .

Alternatively, it considers each subproblem basis individually and, therefore,

may be forced to solve larger than necessary master problems. PCST1 also

uses lower and upper bounds on all variables and checks for possible upper

bound violations of the equation (IV.4a), as we mentioned above. For the

case of artificial variables in the subproblem basic sets, the upper bounds are
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always included as additional constraints.

Storage in PCST1 is larger than that in NDST1 because of the need

to maintain both the last solution for ' and the solution for the current

auxiliary problem of , For this reason, ETA files are maintained for both

problems.

LBSMPX was implemented in the program LBS1. This program uses

the basic procedures of LPM-1 for the artificial basis, with updated transfor-

mations for the surplus basis blocks. It follows the cyclical pricing strategy

described in Chapter V and uses a "most negative" pricing criterion in each

period. Pricing is restricted to that period as long as the least reduced cost is

negative. Updates of the surplus basis blocks, QJ, are performed according

to U1, U2, U3, and U4 in Chapter V, and the inverse of this matrix is stored

explicitly.

We have chosen a set of representative problems to show the algorithms'

computational properties. The data for the test cases appear in Table 1.
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TABLE 1

Progvram Parameters

Number Number Number
of of of Density

Constraints Variable. Nodes

(M) (a) (k) (p*)

PAl 10 22 3 .15

RD1 10 25 3 .25

NG1 19 35 3 .28

PA2 22 50 7 .09

RD2 22 57 7 .14

PA3 46 106 15 .04

RD3 46 121 15 .07

* (number of non-zero elements)/(total number of elements)

These examples were chosen to represent the types of problems found in

applications.

The first cases, RD1, RD2, and RD3, were selected from a control

problem in Davis [20] and modified to reflect a production planning model

as in Beale et a) [7]. In this format, the expected present value of profits is

maximized for a firm planning the production and storage of a number of

products that require common resources. Their sales are determined by an

uncertain demand. The decision variables in this model are

z#0t - the amount of product i sold in period t,

yj, - the amount of i produced in period t,

sit - the amount of product i in stock at the end of period t.

The linear program for this problem is
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max x::2=1  = ., ; - Cvt, - kia,,)

a. t. q-- yit- Rt, for all t,

,t-I + yt - zt- sit, for all t and i,

0 < Zx,t 5 dit, for all t and i,

where Rt is the total capacity in period t, Pit is the selling price of product

i, ci,t is the production cost of product i, kit is the holding cost of stock in i,

T is the planning horizon, and q is the number of products. In this example,

we included random uncertainties in dit and formulated (1) as in SDLP for

optimizing the expected value of profits over the planning horizon.

The examples, PAl, PA2, and PA3, were contributed by P. Abrahamson

[11 and represent the discrete approximation of a continuous time linear

program. This program represents the optimal control of a particle subject

to state space constraints. It is written as

min f u(t)eotdt

s.t. z(t) - f(u() - z())da= 1,

U(t)_< 1, (2)

z(t)< .7- .2t,

z(t),u(t)>_ 0,

where we considered uncertainty in the state to state transitions for z(t).

The application of uncertainty to continuous problems, as suggested by this

model, is an important area for possible future applications.

The last example, NG1, is derived from the exhaustible resource model of

Chapter I. It includes uncertainty in investment in different technologies. This

example is included, because the basis must be changed significantly from the

myopic first period solution to the optimal stochastic solution. This process

requires more surplus basic variables in the first period and demonstrates
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TABLE 2

Sample Time. and Iterations

LPM-1 NDST1 PCST1 LBSl

No. No. No. No.
Time of Time of Time of Time of

(CPU@) Iter. (CPUs) Iter. (CPUs) Iter. (CPUs) Iter.

PA1 .18 12 .14 12 .19 12 .20 11

RD1 .30 15 .23 12 .42 13 .83 15

NGI .48 18 .83 29 1.01 23 .56 17

PA2 .94 29 1.71 29 2.41 30 1.05 28

RD2 1.59 31 .91 32 1.34 33 1.73 31

PA3 4.01 61 3.39 68 5.61 79 4.96 64

RDS 7.13 65 4.89 67 7.64 71 6.72 59

some of the complications of stochastic programs.

The solution times and number of simplex iterations required for the

optimal solution of these problems are presented in Table 2. The times

are in CPU seconds for solutions from a "cold start'(an infeasible basis),

and represent computing time excluding time for data input. The results

show that, on small programs, our algorithms may be competitive with

codes using sparsity techniques alone, such as LPM-1. This is especially

significant because NDST1, PCST1, and LBS1 are experimental codes and

are not programmed for maximum computing efficiency. Small problems,

however, are not representative of actual applications, and experience with

larger programs is mandatory for true comparisons. Again, we do not intend

to prove the superiority of our methods, but only to show how they perform.
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TABLE 3

Sample Times per Itevtion

LPM-1 NDST1 PCST1 LBS1
Time/No. of Time/No. of Time/No. of Time/No. of

Iterations Iterations Iterations Iterations

PAl .015 .012 .016 .018

RD1 .020 .019 .032 .022

NG1 .027 .028 .044 .033

PA2 .032 .059 .080 .037

RD2 .051 .028 .041 .056

PA3 .06 .049 .071 .078

RD3 .110 .073 .108 .114

NDST1 performs best overall on these examples, but, where it performs

poorly we can observe some of its properties. In NG1, a large number of

cuts were required on the first period and many suboptimizations were per-

formed, slowing its convergence to an optimum. We also see here that these

suboptimizations required NDST1 to perform 25 percent more iterations than

PCST1, which maintains subproblem optimality. This difficulty also appears

in PA2 where the added effort of reinversion at each pass from node to node

led to NDST1's having a larger average time per iteration than LPM-1 (see

Table 3.). We note that the small growth of non-zeroes in the basis inverse

of PA2 is a good example of LPM-1's advantage in performing backward

and forward transformations very quickly. On the other examples, because

NDST1 solves the smallest problems, it requires the least amount of time per
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iteration despite reinversion.

An interesting property observed in the solutions by NDST1 concerns the

set of basic variables in the master problem as cutting planes are added from

the subproblems. In our examples, we often saw that one set of basic variables

would remain constant in the master problem from iteration to iteration and

that the additional basic elements, would be chosen from another small set

of variables. The algorithm would choose a member of the additional set on

one iteration, replace it with another member in the next iteration, and then

bring the first element back into the basis at master-subproblem optimality.

For XB, the constant set of basic variables, and {z1, z2 }, the additional basic

variables, the basis in the master problem would follow the pattern:

Iteration Basic Set

1 {X}

2 {XB,' }

3 {XD, Z2}

4 {XB, Z1, Z2}- optimal.

It has been observed [1] that the deterministic problem often brings

additional variables into the basis and then adjusts them in subsequent

iterations without dropping them from the basis. This observation led to

the column passing technique we discussed above. Our observations indicate

that the set of columns passed forward to the subproblems should include

columns that were in the basis but were deleted. This would allow for the

entire set of columns to obtain the optimal weights in a single pass.

The behavior we have observed may be indicative of the hedging effect in

stochastic problems. In our example above, zl may be included to optimize

the first descendant scenario and 2 may correspond to optimizing with
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TABLE 4

Number o First Period Optivmniatione

NDSTt PCSTI

Number Number
of of

Pasnes P"-es

PAl 6 4

RD1 8 7

NG1 14 11

PA2 8 6

RD2 9 7

PA3 12 10

RD3 15 13

the second subproblem. The algorithm tries each of these activities before

decidin on the optimal combinatioa in Iteration 4. By including each of these

potenially basic variables in the set corresponding to the columns passed

forward, we may avoid eueuuive optimization.

PCST1 performed consistently worse than NDST1 based on CPU time,

but its strength of not requiring suboptimization appears in Table 4. This

chart displays the number of times the master problem in period 1 was

solved. PCST1 requires fewer of these optimizations and passes to the

subproblems. It thus decreases the possibility of lengthy suboptimization.

PCST1 solves, however, a larger master problem than NDST1, because it

includes the degeneracies associated with repeated subproblem bases. The

basis list approach presented in Chapter 4 should alleviate some of the
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difficulty here.

LBS1 also maintains more information than is necessary and its use of

the triangular basis differs only slightly from the factorization for sparsity in

LPM-1. LBSI's additional bookkeeping is most evident on smaller programs

and begins to be efficient for larger problems as we start to see in RD3.

These examples presented some of the properties of NDST1, PCST1, and

LBSI. Knowledge of these attributes should be helpful in determining what

method to use for a specific problem. To determine this, as we stated above,

the deterministic scenarios should be evaluated first and then the stochastic

problem should be solved. Because of its simplicity, we would recommend

NDSTI as a first method to try, followed by PCST1, if convergence to

optimality is slowed by excessive suboptimization. LBS1's implementation is

more determined by efficient coding and its evaluation should be made only

once its procedures have been efficiently coded for larger problems on faster

processors.

3. Areas of Application

We have mentioned that stochastic dynamic linear programs may be

found in many real-world contexts. In this section, we discuss some actual

applications of these problems in decision-making. We mention these ex-

amples to demonstrate the range of possible implementations of our tech-

niques.

The first use of stochastic linear programs was by Dantsig and Ferguson

[21] on a problem of airline scheduling with uncertain passenger demand.

Using a modification of the transportation simplex method, they demonstrated

that the net expected costs for meeting the carrier's demand could be reduced

from $1,666,000 to $1,524,000 by considering the complete distribution of
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demand instead of only the expected values of those demands.

More recent uses of stochastic linear programs include Manne's analysis

in [44] of the decision to develop breeder fission technology. Another analysis

of nuclear fuel choices appears in Avi-Itzhak and Connally [4], wherein,

they use the scenario approach of assuming decisions based on deterministic

solutions and evaluating the expected cost of these decisions under different

future scenarios.

Other areas of application are found in the investment management of

bank portfolios. Aghili et a] [2] evaluated the decisions of a small midwestern

bank in allocating their assets among a set of securities and loan positions.

They used the bank management's criteria for constraints and formulated a

two-stage stochastic linear program with uncertain interest rates and bond

yields. Their results using only financial and accounting constraints reflected

the extreme point property of optimal linear program solutions. Their model

would have placed almost all of the bank's portfolio into municipal bonds,

forgoing all commercial loans and mortgages.

The difficulty Aghili et a], encountered arose from their use of the risk

neutral linear objective function. To improve their results, they incorporated

management's concerns into additional policy constraints and obtained solu-

tions that were much closer to the bank's own decisions. From this analysis,

management became aware of the need to consider different future economic

environments. Previously, they had used only one forecast for the future

but were now able to consider several scenarios. This openness to changing

money conaiilons gave tne Danx management more options zo consiaer in

their policy decisions and led them to reshape some of their ideas on the

bank's operations.

The bank balance sheet model is a good example of decision makers'
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use of a stochastic model. Difficulties often arise in the implementation of a

model's optimal solution, but, in Aghili et al's experience, the model served to

inform management, and it became an important policy instrument. Another

example of this utility of stochastic linear models appears in Gaither's study

[24] of commercial fishing seasons. That research demonstrated that sub-

stantial savings could be accrued by proper fishing regulation in Alaska, but

modifying those regulations required difficult policy decisions that would not

be immediately forthcoming. Despite these problems, Gaither's model also

played an important role in demonstrating to the decision makers how they

should structure their strategy and what concerns they should have.

4. Conclusion

We have presented several approaches for solving linear models that in-

volve decisions made over time in uncertain environments. We have showed

that the resulting stochastic dynamic linear programs can be analyzed through

the use of deterministic scenario solutions and the subproblem solution methods

of nested decomposition, piecewise path following, and local basis factoriza-

tion. This analysis rests upon the fundamental properties of the basis in

linear programming, the understanding of which is crucial in understanding

the characteristics of a stochastic solution.

The stochastic solution succeeds because it allows for a regularization

of the extreme point solutions that occur in different deterministic scenarios.

This property should be carefully considered in evaluating any stochastic

solution because it can be a powerful stabilizing force in determining optimal

decisions. Within the framework of the stochastic model, a single decision

can be chosen that will reflect each of the future scenarios included in the

model.
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The methods we presented for solving these SDLP's demonstrated credible

performance on smaller examples. These results are encouraging for future

implementations on large-scale problems. This experimentation on large

models should be the major direction for future research.

The true test of our algorithms' benefits and of the usefulness of the

SDLP program, in general, must come from actual policy models. Our

presentation of examples from production planning, exhaustible resources,

and portfolio management demonstrate that many applications of SDLP are

possible. The inclusion of uncertainty into a linear model extends the range

of decision factors and helps stabilize policy strategies in dynamic settings.

These attributes may bring significant gains to the use of models in decision-

making.

Our primary goal has been to show that, by exploiting the stochastic

linear program's special structure, models may be able to include uncertain

parameters without becoming hopelessly complex. By proceeding from deter-

ministic scenarios through the stochastic solution, the modeler can be aware

of the value of proceeding to more complex stages and can develop a better

understanding of the nature of the deterministic linear programming solu-

tion and its relation to the stochastic strategy. To complete this analysis

most effectively, the computational costs of the stochastic program must be

reduced. We hope that our work will help make these reductions possible,

thereby, enabling models to become more powerful tools in affecting current

decisions in an uncertain world.
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