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SMMARY

The flow over a helicopter rotor blade in forward flight is an important
example of three-dimensional time-dependent flow. The boundary layers on the

rotor blade set loss levels and control retreating blade stall. As a conse-

- quence there i8 considerable interest in developing a numerical scheme for

solving the time-dependent viscous compressible three-dimensional flow to aid
in the design of helicopter rotors. In the present report candidate numerical
algorithms are examined to determine their overall suitability for the
efficient and routine solution of an appropriate system of partial differential
equations. 'It is concluded that a consistently split time-linearized block
implicit scheme using either quintic B-spline collocation or the generalized
operator compact implicit approach to generate a fourth order accurate
algorithm is particularly well suited for use on the present problem. High
cell Reynolds number behavior leads to favoring the generalized operator
compact implicit approach over the quintic B-spline collocation method.
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INTRODUCTION

The behavior of boundary layers on wings and bodies has long been of
interest to aerodynamicists. In both steady and unsteady flows the boundary
layers are known to govern a major portion of the losses and to significantly
influence the vehicle 1ift and moment coecfficients. When the flow is steady,
boundary layer prediction schemes based on numerical solution to the governing
partial differential equations of motion have reached a high level of sophis-
tication and predictive accuracy, even in three space dimensions. In
unsteady flows, such as are commonly encountered in rotary winged aircraft,
some progress has been made in two space dimensions but little to date has
appeared on unsteady three-dimensional boundary layers.

Two particular problems arise with time-dependent three-dimensional
boundary layers relative to the steady case. The first of these is the
rather obvious one of time integration with its added requirements of transient
accuracy coupled with an increase in the computational labor. The second of
these is the so-called negative cross flow problem, which to some extent has
troubled the steady boundary layer prediction schemes. Kendall et al.,

(Ref. 1) discuss the negative cross flow problem for steady three-dimensional
boundary layers in a very 1lluminating fashion. This particular problem
arises when the spanwise component of velocity changes sign and will be
discussed in detail subsequently. Because of the interest by external
aerodynamicists in swept wing boundary layers where the negative cross flow
problem (in this case flow from tip to root) is not usually encountered, the
negative cross flow problem has not received a great deal of attention to
date. However in transient flows, particularly those encountered on rotor
blades in forward flight, negative cross flows are frequently encountered.
For instance, the advancing rotor blade has cross flows of one sign duting
the first ninety degrees of rotation and these can change sign over part of
the blade during the second ninety degrees.

Thus to be of practical value, time-dependent three-dimensional boundary
layer prediction schemes require high computational efficiency and transient
accuracy coupled to the ability to treat arbitrary cross flow profiles,

These attributes are not available in any existing available computer code

and hence in view of the potential use for a code of this type its development
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is appropriate and timely. In this report the initial phase in the deveclopment
of an efficient time-dependent three-dimensional boundary layer prediction
procedure is investigated, namely, the choice of the computational algorithm

and spatial differencing technique.
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LIST OF SYMBOLS

Coefficient in Eq. (6)
Coefficients in Eq. (54)
Coefficient in Eq. (6)
Coefficients in Eq. (55)

1th B-spline

1th B-gpline of order k
Coefficient in Eq. (6)
Cocfficient in Eq. (6)

Spatial operator - auyy + cuy,
Spatial operator - bu,, + du,
First order difference operators
Spatial operator in x direction
Spatial operator in y direction
Spatial operator in z direction
Function defined in Appendix A
First derivative approximation at point j (Eq. 12)
Function defined in Appendix A .
Spatial step size

Function defined in Appendix A
Number of intervals in x direction
Number Bf intervals in y direction
Maximum number of intervals
Number of intervals in z direction
Spatial operator

Spatial operator

Operator defined in Eq. (A7c)

nth time level

Number of equations

Nonlinear spatial operator
Pressure

Difference weights in Eq. (15)
Operator defined in Eq. (17)
Difference weights in Eq. (15)
Operator defined in Eq. (17)
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LIST OF SYMBOLS (CONT'D)

Rey Cell Reynolds rumber

ﬂ -] Spline approximation to u

; 55 Second derivative approximation at point j (Eq. 13)
f sn Source term

e )

A t Time

3 0_.6

3 TJ-TJ Truncation error terms, Eq. (23)

= u Streamwise velocity component

3 ug,uy4 Velocity components

] v Normal velocity component

" w Spanwise velocity component

L Weighting function

=5 x Streamwise direction

"44 y - Surface normal direction

g 2 Spanwise direction

‘ a,B,Y,8,¢€ Coefficients in model equations (Eq. 56 and Eq. 57)
B ay Coefficient of B-spline

] 84,9y Boundary condition values

« B Parameter to allow centering of time step

w By Coefficient of B-spline

t At Time step

1 Ap Parameter in Eq. (25)

~ A, = At/A22 Viscous stability parameter

{ u Roots of characteristic equation (cf. Eq. (28))
: v Exponent defined in Eq. (23)

g

3 v,a Coefficients in Burgers equation

; p Density

B T Truncation error

L:“ ¢ Vector of unknowns with components ¢3, ¢2, ¢3
5 ¥ ¢ - ¢" ~ increment value

3

|
o

5

3

Sey B e S - — -

~~~~ ——



LIST OF SYMBOLS (CONT'D)

Superscripts

(L) Order of derivative

n Defined in Eq. (25)

n nth time step, t = nAt

n+l (n+1)5t time step, t = (n+l)At

“yCyt+ Indicates where r and q coefficients are evaluated
() Primes indicate derivatives '

) Terms in Eq. (9) not divided by a(x)

Subscripts
3 Index - designates grid point
n Defined in Eq. (39)
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ANALYSIS
Background

In this section we discuss the requircments of a three-dimensional
unsteady boundary layer code and demonstrate how the physics of the flow
influences the choice of a computational technique.

Three-dimensional boundary layers occur on the wings and fuselages of
both conventional and rotary wing aircraft. In both types of vehicles, the
boundary layers are important in settin~ loss levels and determining useful
operating ranges. As is well known, boundary layers are sensitive to pressure
gradients. In time-dependent flow the temporal acceleration terms appear in
the momentum equation in a form very simflar to the conventional imposed
pressure gradient and so for qualitative evaluation purposes can be regarded
as 'pseudo' or 'auxiliary' pressure gradients. Viewed in this manner the
temporal acceleration terms are likely to be able to influence quantities of
practical importance such as skin friction, displacement thickness and the
) onset of separation. At the range of frequencies typically encountered in
rotary wing aircraft aerodynamic problems, it is clear, for instance, from
the very thorough review of McCroskey (Ref. 2), that very significant transient
boundary layer effects can be observed.

In examining the flow problems of practical interest such as loss levels
or the onset of separation it is evident that all three space dimensions must
be considered. In conventional aircraft the sweep effect is of interest and
inherently three-dimensional. 1In rotary wing aircraft in fcrward flight
clearly very substantial transient changes occur in what might be termed the
local sweep angle. However generally speaking, the boundary layers remain
‘thin unless catastrophic flow separation occurs or the flow at the wing or
rotor tip is considered. As a consequence it might be supposed that the usual
three-dimensional thin boundary sheet approximations (Nash and Patel, Ref. 3)
could be used to produce a valid set of governing equations., Fortunately some
improvements in thin boundary sheet approximations are possible as a result
of having to treat the negative cross flow problem mentioned carlier.

The negative cross flow problem is best explained in a somewhat intuitive
manner, and for steady boundary layers a very good physical description of the
problem is given by Kendall et al., (Ref. 1). Looking at the suction surface of

a conventional swept back wing the bLoundary layer cross flow, w, is usually



outward in the z positive direction along the span from root to tip. Thus
conventional steady boundary layer integration schemes have developed by
forward marching the streamwise velocity u in the streamwise x direction and
simultaneously marching out along the span in the z positive direction. 1In
view of the physics of the problem, the spanwise marching scheme does not
normally encounter negative w, 1i.e.,, spanwise inflow. This is very fortunate
because it is difficult, indeed it could be argued impossible, to structure a
physically satisfactory unconditionally stable scheme which permits forward
marching in the spanwise direction with a negative w cross flow. At least
intuitively the problem of negative cross flow implies information being
transferred upstream against the spanwise marching direction. Conventional
stability analyses confirm the inability to forward march into regions of
significant negative w. From experience with attempts to march the two~
dimensional boundary layer equations into a region of separated flow and its
obvious relationship to the negative cross flow problem, it is not surprising
that spanwise marching into a negative cross flow region is not accomplished
without special treatment, for instance the Krause "zig-zag" scheme (Ref. 4).
Recently conventional boundary layer developers have been turning to a span-
wise as well as normal implicit formulation to remove the restriction of only
positive cross flows (Kendall et al., Ref. 1). With a spanwise implicit
formulation spanwise diffusion is allowed, and the resulting implicit system
of equations can be treated by direct elimination (Ref. 1), by a predictor-
corrector iterative approach (Ref. 5), or by the process of matrix splitting which
reduces the matrix elimination labor (Refs.6 and 7). Lin and Rubin (Ref. 5)
in their predictor-corrector boundary region solutions for flow over a yawed
cone at moderate incidence showed that allowing diffusion in the spanwise
direction not only eliminates the problems associated with negative cross flow,
but improves upon the solutions obtained by three-dimensiemal boundary layer
techniques. Again intuitively a spanwise implicit construction permits
information transfer in either direction. Boundary conditions applied at the
tip can influence the flow inboard, if required by the physics of the flow.
For these reasons the implicit spanwise construction has been a feature of
the three-dimensional duct flow analysis of Briley (Ref. 6) and McDonald and
Briley (Ref. 7). Based on the experience in Refs. 6 and 7, the additicnal

computational effort resulting from a spanwise implicit formulation could be
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as little as a 207 increase relative to the explicit spanwise marching approach.
The extension of the steady three-dimensional boundary layer equations to allow
spanwise diffusion is easily accomplished, and in view of the improved physical
representation which thus follows, it is recommended. As a matter of course it
has been assumed that normal to the wall an implicit formulation would be
structured. In recent years for boundary layer type problems there has been
little dispute as to the efficiency gains to be had from an implicit formula-
tion normal to the wall (Ref. 8). However in the streamwise direction for
steady two-dimensional flow, the equations are normally forward marched and

the implicit stability obtained entirely from being implieit in the normal to
the wall direction.

For unsteady bourndary layers the problem can again be formulated in
either an explicit or implicit manner. As with spatial marching of steady
boundary layers for usual aerodynamic applications, the locally refined
spatial mesh required to define a (turbulent) boundary layer influenced by a
(transiently) varying pressure distribution, when an explicit (stability
restricted) scheme is employed, results in a maximum time step that is much
less than the time scale of the physical processes of interest. Thus for
solving unsteady boundary layers of the type usually encountered in rotary
winged aircraft an implicit formulation is desirable. Since in time-dependent
flow diffusion in the streamwise direction is normally negligible due to the
usual boundary layer approximations, it is possible to formulate an implicit
time-dependent scheme that retains the implicit structure in the spanwise
and normal directions (which was found desirable for the steady boundary
layer) and march the solution in the streamwise direction.

As mentioned earlier the streamwise marching sweep would probably require
less computational effort by about 20% than a fully implicit formulation and
of course less storage. However since the solution is being time marched, the
opportunity to use a streamwise implicit formulation at roughly the same cost
as the streamwise marching sweep does arise. If one does perform a streamwise
marching sweep, then the linearization of nonlinear terms is performed about
the known spatial marching level. f a fully 1iplicit structure is adopted,
then full time linearization can be utilized. That is the linearization of the
nonlinear terms is performed about the known time level. As is pointed out in

Ref. 7, it is easier to obtain a consistent spatial-temporal order accurate
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linearization by marching in time than in space (in time the nonlineaf marching
derivatives have the form pujy whereas in space marching they have the form
puiuj). Further by structuring implicitly in the space marching direction,
(small) regions of axial reverse flow would be permitted. As a result of

these combined benefits of linearization and separation, a fully implicit
structure is advocated.

Transient calculations mean that, in essence, a full three~dimensional
spatial integration is carried out at each time step. Thus, spatial accuracy
is very important to minimize the spatial grid point density for efficiency
since many time steps are contemplated in a given cycle, In order tn get the
most out of a given spatial difference formula, the errors from repiesenting
nonlinear terms by linear combinations of terms should be less than or equal to
the spatial discretization errors. If the linearization introduces a greater
error than the spatial differencing, then either a coarser spatial mesh could
be used, or iteration, or some form of linearization improvement is called
for. Iteration across a time step is not recommended since this only reduces
the linearization error and computationally costs as much as a complete time
step. Cutting back the time step would be preferable to iterating to preserve
the linearization error at some acceptable level, since cutting back on the
time step would improve both’ the transient error and the linearization error.
To obtain a linearization, which introduces errors of at most the same as the
spatial difference formulae, a Taylor series expansion about the known time
level can be performed. This process clearly demands a formal block, i.e.,
coupled, treatment of the system of equations. For instance in the streamwise

momentum equation a typical term is linearized:

n ne n
(Uw)n+| = o™ 4" - W + 0 At?)

and clearly one cannot lag wn+1 at the old time level n without introducing a
first order time error in order to get an uncoupled system, {.e=., wn+1 not

appearing in the streamwise momentum equation.. Thus formal linearization and
consideration of the resulting errors indicate the coupled system ought to be
treated from the accuracy point of view., This is further reinforced when it
is realized that direct elimination of block, i.e., coupled, banded systems

are not computationally expensive compared to the iterative solution of an

10
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uncoupled system. The linearization technique is described in detail in

Appendix A.
Additionally a second type of approximation arises unconnected with

linearization but arising from basic coupling terms in the original equations
and if indeced some terms in an equation are time lagged in order to uncouple

the equation system and these terms are of equal importarce to the terms

- retained, then again an iterative updating is called for in order to achieve

stability, accuracy and consistency. (This could be termed ad hoc equation
uncoupling). Blottner (Ref. 8) has shown that many iterations around the

ad hoc uncoupled set (>10) i3 sometimes required in order to achieve an overall
solution accuracy commensurate with the local diffcrence molecule accuracy.
Thompson and MacDonald (Ref. 9) found in a three-dimensional momentum integral
procedure that a lagged sequential iterative type of calculation would not,

in a number of instances, even converge. The weight of opinion definitely
favors the block coupled approach.

As a genera) observation, care is required to obtain acceptable transient
accuracy for long time integration with conventicnal finite difference schemes,
A Crank-llicolson centered time implicit scheme for instance, although second
order in time, shows quite a dispersion problem (relative to other schemes) on

the simple pure convection problem. However the problem of transient accuracy

is significantly reduced in the typical boundary layer problem since the time
dependency is continuously input through initial and toundary conditions and
relatively the concern is with 'short' time integrations. The computational
problem is more of what the phase lag of the wall shear 1is, relative to the

prescribed free stream disturbance, than concern over the convection velocity

of a wave in a shear after a long propagation time. The interest {s in forced

oscillations with a minimum scale of the boundary layer thickness over a few
cycles of the motion, just enough to obtain repetition cyelically. It is
therefore expected that a significant dispersion problem will not arise with
a conventional implicit scheme.

The equation system which will be considercd is formally of block size
four, consisting of the continuity and two momentum equations and an ‘energy'
equation for p, u, v, w (p is specified everywhere). If constant stagnation
temperature is assumed, p, u and w are related by an algebraic equation and

the problenm can be reduced to a block-three system rather than block~four upon

11



option, with significant reduction in computer time. Matrix splitting A
techniques such as those described in Refs. 6 and 7 have considerable potential
to reduce the computational labor of solving the block {mplicit system of
(linear) algebraic equations which result from discretizing the governing
equations. ‘Schemes of this general type are termed split linearized block
implicit or for brevity split LBl schemes and arc reviewed in detail by

Briley and McDonald (Ref. 10). With a careful ordering of the sweeps with

a split LBI scheme it is possible to use a block-two with the third equation
uncoupled on th of the sweeps so that this would be a potential major
advantage of a split LBI approach.

The ultimate goal of the "optimum" scheme is to diminish both storage
requircoents and running times in order to achieve a desired accuracy level.
Although schemes can be constructed to satisfy either one or both of these
goals, the robustness of a method can only be verified by considering its
applicability to a general class of problems. Our concern here is with an
approximate form of the three-diwensional unsteady compressible Navier-Stokes
equations, so that the method chosen will by necessity be required to treat a
coupled system of nonlinear partial differential cquations. At the outset the
following observations can be made concerning the characteristics of the method.
1. Iwmplicit methods (preferably in all three spatial directions) are desired
in order to eliminate stability écstrictions and permit solutions with both
positive and negative streamwise and spanwise velocities.

2. The nature of the nonlinear coupling of the variables in the governing
equations require that the equations be solved coupled.

3. Iteration should be avoided and “"time lincarization" procedures employed
(a discussion of this point 1is given in the following section).

4, The pethod should allow for general boundary conditions.

5. The method should allow the flexibility of incorporating higher order
spatial differencing methods.

Although Item 5 pertains to spatial differencing, in the next section we
will demonstrate that it alse plays a crucial role in choosing the type of
temporal scheme. It would thus appear that first an overall temporal discreti-
zation procedure must be chosen and only then an efficient spatial scheme that
could be incorporated with {t.

The arguments above, lincarization, stability considerations and physics
lead us to suggest that the current state of the art dictates that the recommended

scheme should be in the framework of a time linearized block implicit method.

12
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With the foregoing as background indicating the recommended overall
approach to the problem of developing an efficient accurate computer code to
predict time-dependent viscous flows, attention is turned to the specific prqb-
lem dealt with in this report, This report concerns itself with firat which
overall numerical algorithm to adopt and secondly which spatisl differencing
scheme to employ or what basis of approximating solution functions to use.

In the next section we will discuss three methods for solving general
systems of multidimensional parabolic equations, the consistently split block
implicit scheme, Rubin's Predictor-Corrector technique and the Hopscotch
algorithm. The following two sections will describe two spatial differencing
methods, which we classify as Q-R operator schemes and basis functfoun schemes
(which deal mainly with B-splines). Applications of these methods to model
two point boundary value problezs and to a coupled systca of two nonlincar once-
dimensional parabolic equations possessing a 'three-dimensional boundary

layer-like behavior" are then given.
Temporal Schemes

Consider a system of three-dimensional nonlinear parabolic differential

equations
by '3(¢'¢x'¢‘1x'¢y'¢w'¢z"f’zz'x'y’z’” 1

wvhere ¢ is a vector of unknowns (¢1. ¢ 03). With the equations appropriately
linearized, at each time step, a system of N = 3(I-1)(J-1)(K-1) linear equations
result, where I, J, K are the nuaber of intervals in the x, y, z directions,
respectively. Direct inversion of the system is not practical in three space
dimensions except for extremely coarse meshes since the operation count is
proportional to N3/3 *. Although higher order spatial schemes allows one to
reduce the number of grid points, results of model problems indicate that for
the range of accuracy desired, one can expect at best a reduction of a factor

of four in grid points in each coordinate direction. As significant as this may
seem, it may not appteciébly affect the overall computation unless the original

problen is reduced to a more tractable form,

*For I = J =K = 10 N = 2187 and the matrix inversion operation count is
. proportional to 1010,
For I = J = K = 50 N = 352947 and the matrix inversion operation count is

proportional to 10t0,

13



e The usual procedure is to tranaform the original problem into a sequence
of simpler problems or into a sequence of one-dimensional problems. We
consider the linearized version of Eq. (1) (sece Appendix A for a description of

the time linearization procedure) with the differential operators identified
wvith their coordinate direction, namely

e
)

(¢""-¢")/At=(.‘b:+3;+2:)(ﬁ¢""+(|-p)¢")+s" (2)

wvhere superscripts indicate the time level, {.e., t" - nAt, s® 1s a source
term and 0 S 8 £ 1 {5 a parameter allowing one to center the time step, i.e.,

g = 0 corresponds to a forward difference, 8 = 1/2 to Crank-Nicolson and
g = 1 to a backward difference.

Consgistently Split Block Implicit Scheme

We will first consider the consistently split block ‘mplicit scheme.

A

Solution of Eq. (2) is accomplished by applicaticn of a generalization to

Lrepa pirhea e RN TSI T ATSEARAE PN vt R e §

systems of PDE's of an alternating-direction implicit (ADI) technique for

parabolic~-hyperbolic equations. The original ADI method was introduced by

Peaceman and Rachford (Ref. 11) and Douglas (Ref. 12); however, the

alternating-direction concept has since been expanded and generalized., A

discussion of various alternating-direction techniques is given by Mitchell

(Ref. 13), Yanenko (Ref. 14) and more recently by Briley and McDonald (Ref. 10),
The present technique is simply an application of a generalization of

the procedure developed by Douglas and Gunn (Ref. 15) for generating consis-

tently split ADI schemes as perturbations of fundamental implicit difference

schemes such as the backward-difference or Crank-Nicolson schemes in its

natural extension to systems of partial differential equations. In this

context a consistent scheme is one where the intermediate levels represent

a discrete approximation to the governing equations whose truncation error can

be made to vanish as the time or spatial mesh is arbitrarily reduced. Consistency

in this sense is a very valuable property as it can greatly simplify the

accurate implementation of boundary conditions (Ref. 10).

}'5': ‘:7"’:*, E’“ :..w‘..‘.;»ﬁr bl Rk kR e Q"xl-'r"\"'?, Ty T."?‘y.;. B .,',,{ ..“-;}-.‘,

For the present, it will be assumed that :b(¢) contains derivatives of first

and second order with respect to the coordinate direction, but no mixed deriva-

ey
».__;-}.,‘

G
o

tives, Mixed derivatives are allowable within the formal framework but unless

£
—-.-——

they are Iimportant they are best treated explicitly (lagging) or by extrapolation,
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(g™ -¢Nsat - B2 G +BD

" The Douglas-Gunn representation of Eq. (2) can be wristen as the following

three-step solution procedure:

(¢"- ¢ /a1 =B 4" +[0-812,+2+2, ] ¢"+s"

+ [0-BAD, + 242, ] ¢"+s"

(™" - ¢") /a1 = B2,¢" +8D, " + B¢ + [(I-B)(.‘Z),l + .‘by+.‘bz)] ¢ +s"

N+ - ¢¢u+ O(Atl)

é
(3)

In increment form Eq. (3) reduces to the algorithm given by Briley and
McDonald (Refs. 10 and 17) for solving the compressible time-dependent three-

dimensional Navier-Stokes equations, viz.,

(1-BAD @ - M) 81D, +D, +2,)¢" +ats"

(1-BoD NG™ - ¢ = ¢ - ¢
)

(1-Bar2)(¢™"-¢") = ¢*7- ¢

¢n’" - ¢l*§+ O(A'S)

* *k

where ¢ and ¢ are intermediate solutions. Each of Eqs. (4) can be written

in narrow block-banded matrix form and solved by efficient block-eliminaticn
* *k

methods. If ¢ and ¢ are eliminated, Eqs. (4) become

(1= BatD NI - BALD T - BAID, NP - ™) = A [(.’b‘ +2,+2,)4" + s"]
(5)
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If the multiplication on the left-hand side of Eq. (5) is performed, it
becomes apparent that Eq. (5) approximates Eq. (2) to order (At)z. Although
the stability of Eqs. {4) has not been established in circumstances suffi-
ciently general to encompass the Navier-Stokes equations, it is often suggested
(e.g., Richtmyer and Morton, Ref. 16, p. 215) that the scheme is stable and
accurate under conditions more general than those for which rigorous proofs
are available. This latter notion was adopted her2 as a working hypothesis
supported by favorable results obtained in actual computations (e.g., Refs.
17, 18 and 19). '

Several observations can be made concerning Eqs. (3) and (4).
1. The system of three-dimensional equations has been reduced to three
systerns of one-dimensional equations.
2. The inversion of the total system 18 now at most approximately 108
(IJ + JK + IK) operations compared to aﬁproximately (3IJK)3 operations for the
direct inversion problenm.
3. The first step involves at least 40Z ~ 50Z of the operations (Ref. 7).
4, The method does not have a CFL stability condition and for B8 2 1/2 is
von Neumann stable,
5. The method is applicable to rectangular domains. Although it does not
necessarily preserve symmetry along diagonals of rectangular domains, the
procedure can be corrected if so desired (Ref. 20).

A major attraction of the Douglas-Gunn scheme 1is that the intermediate

n+l

* *k
solutions ¢ and ¢ are consistent approximations to ¢ . Furthermore,

n * ok n+l
for steady solutions, ¢ =¢ =¢ = ¢ independent of At. Thus, physical

boundary conditions for ¢nf1 can be used in the intermediate steps without a
serious loss in accuracy and with no loss for steady solutions. In this
respect, the Douglas-Gunn scheme appears to have an advantage over locally one-
dimensional (LOD) or "splitting" schemes, and other schemes whose intermediate
steps do not satisfy the consistency condition., The lack of conaistency in
the intermediate steps compliéates the treatment of boundary conditions and,
according to Yanenko (Ref. 14, p. 33), does not permit the use of asymptoti-
cally large time steps.

It is worth notinglthat the operator D ean be split into any number of
components which need not be associated with a particular coordinate direction.

As pointed out by Douglas and Gunn (Ref., 15), the criterion for identifying

16
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sub-operators is that the associated matrices be “easily solved" (i.e., narrow-
banded). Thus, mixed derivatives can be treated implicitly within such a
framework, although this would increase the number of intermediate steps
and thereby complicate the solution procedure. Finally, only minor changes
are introduced if, in the foregoing development of the numerical method, D,
and S are functions of the spatial coordinates and time, as well as ¢.
A;ternative techniques to the consistently split linearized block implicit
scheme presented here have been proposed as general algorithms. We discuss
two such methods, a predictor-corrector scheme due to Rubin (which we will
refer to as P/C) and the Hopscotch algorithm of Gourlay and his co-workers.
Although these authors have had success with these methods, it will be shown
that in order to meet the requirements of the problem under consideration,
they are not as versatile or as efficient as the consistently split linearized

block implicit scheme previously discussed.

Predictor-Corrector Method

A predictor-corrector method has been successfully employed by Rubin and
Lin for three-dimensional viscous flows in which diffusion is important in
two directions (Refs. 5 and 21). Their objective in developing a compromise
between explicit techniques-and implicit methods (AUI) was to eliminate viscous
stability restrictions and to minimize CFL stability limitations common to
explicit methods and to reduce the total work per time step by eliminating one
of the block tridiagonal inversions required in the usual ADI procedure. In
addition they desired a "symmetric" method that would easily treat symmetry
conditions and other derivative boundary conditions.

A comparison of ADI with Rubin's predictor-corrector method can be

obtained by considering the model two-dimensional linear parabolic equation.

uy = (au  +cuy) + (buy, + du,) (6

yy

The P/C method reduces to the following expression
s n
{I - Bato, +2szb}[u -u ] . At{oy +Dz}u
+ BA?DZ[U*—u"] + 2\, 8b(u* -u")

)
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* Ak .
where u denotes u at a previous iteration, u denotes u at the latest
2
iteration,'Dy - auyy + cuy, Dz - buzz + duz and Az At/Az". As a first
guess one of the following extrapolations is used;

* n
linear replacement u =u

O(Atz) Taylor series u¥ - 2y" 0l

The use of linear replacement achieves consistency only with many iterations
or small time steps.

The sequence of steps for solving Eq. (7) by the P/C method are:
1. In Eq. (7) compute At(Dy + D,)u".
2. Compute BAtDz(u* - u®) and 2A26b(u* - u") using u* from a previous

iteration.
3. Compute the coefficient matrix of (u** - uh.
4, Obtain (u** ~ u™) (requires one tridiagonal sweep).
5. Repeat steps 2-4 until convergence, usually two to three iterations.
Note that even for linear problems, iteration is necessary to obtain the
desired accuracy. Thus at a minimum two to three tridiagonal sweeps and two or
three explicit evaluations of the terms in step two are required.

By comparison the Douglas-Gunn ADI procedﬁre gives for the combined two
steps

[1-Bato,][u**-u"] = atfo, +0,]u" + Barp,[u* - u"] (8)

where u* corresponds to an intermediate solution and u** to the solution at the
(nt+1)st time step. Note that Eq. (8) differs from Eq. (7) in appearance only
in" the underlined terms iﬂ the former equation.

The sequence of steps in the Douglas-Gunn procedure for the two-dimensional
problem is as follows: X
1. Compute the right-hand side to be used in the first sweep At[Dy + Dz]un.
2. Compute (u* - u"), which requires one tridiagonal inversion, i.e.,

(I - 88tD,) (u* - u™) = Ac(Dy + DHu™.
3. Compute (u** - uM) wkich requires one tridiagonal inversion, i.e.,

(1 - 8atd) (v = uM) = (u* - u®).
4.  Evaluate uf*tl = (u** - u®) 4 ub,

The major effort is expended by both methods in evaluating the term

18
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At(Dy + Dz)un. Neglecting the evaluation of the coefficient matrix of

(u** - uM), two passes of P/C is equivalent to one double sweep of ADI. Hence
by'comparing the sequer:ce of steps for both P/C and ADI we see there is no
apparent advantage to the predictor-corrector method. Furthermore, due to the
"explicit" nature of the P/C method in the "z" direction it possesses a CFL
stability condition while ADI does not.

If we were to consider higher order spatial approximations in both
coordinate directions, each operator evaluation could involve a matrix inver-
sion, (see section on spatial approximations). Hence the P/C method could be
more costly than an ADI procedure. Finally the P/C methed, to the authors'
knowledge, has not been formulated for a full three-dimensional problem (with
diffusion in all three directions, such as is required for the present problem)
s0 that its applicability under such conditions is unknown. We see no

advantage to the P/C method and therefore do not recommend it for the present
problem. .

The Hopscotch Algorithm

The so-called family of Hopscotch algorithms have been advocated by
Gourlay and his coworkers (Refs. 22, 23 and 24) for the solution of multi-
dimensional parabolic equations. Several variants of Hopscotch exist; for two-
dimensional problems there is the fully explicit odd-even Hopscotch which
resembles the DuFort-Frankel algorithm and the partially implicit line and ADI
Hopscotch procedures which resemble the Peaceman-Rachford ADI method. These
methods have lower operation counts than ADI schemes due to their partial
explicit nature that, depending on the scheme, eliminates some or all of the
matrix inversions. For instance, line Hopscotch requires only half the number
of matrix inversions of a comparable ADI computation. However, the Hopscotch
methods have stability restrictions and are only first order accurate in time.

Numerical results of model linear scalar parabolic equations (Ref. 23)
when the stability conditions are not violated, confirm the above conclusions,
i.e., Hopscotch is more efficient than ADI, However, recent results for the
driven cavity problem (Ref. 25), which requires the solution of a coupled
system of nonlinear equations, lead tc contrary conclusions. The Poisson

equation for the stream function was solved separately by a direct method
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(Ref. 26), while the vorticity transport equation was solved by both ADI and
odd-even Hopscotch. The ADI solutions were 20Z faster than Hopscotch to
obtain a converged steady state solution. Although Hopscotch requires fewer
operations per time step than ADI, the CFL stability condition necessitaten
the use of a smaller time step which results in the noted increased runniag
times.

More recently, Greenberg (Ref. 27) has added a number of new members to
the Hopscotch family for three-dimensional parabolic problems. As with the
two-dimensional procedures, these new members also have restrictive stability
conditions. To date there has not been widespread use of Hopscotch-type
schemes, in particular for coupled nonlinear parabolic equations, and their
viability under such circumstances is still an open question.

In general, Hopscotch owes its favorable characteristic to what Gourlay
terms E-operators, of which the standard tridiagonal finite differences is a
member. For other higher order spatial differencing, where the operators are
tridiagonal but not E-operators, e.g., evaluations of spatial operators of the
form auyy + bu, which even for an explicit temporal scheme involves a matrix
inversion, the method loses most of its desirable features (see section on
spatial approximations). In addition the ability to handle coupled implicit
boundary conditions is also not as flexible with Hopscotch. Finally, there
have been claims that one of the attributes of Hopscotch is its ease of
programming., While this may be true for model problems, for more complex
problems, i.e., coupled systems of three-dimensional nonlinear parabolic
equations, the basic logic for setting up the block inversions, whether in one
direction as in Hopscotch, or in three directions as in split LBI, is
comparable. Hence, in this case, programming considerations should not greatly
influence one's choice of method.

The lack of versatility of the method, i.e., stability restriction,
inability to incorporate higher order spatial methods, and results of more
realistic problems (Ref. 25) lead us not to recommend the Hopscotch algorithm.
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Spatial Difference Approximations

Implicit Tfidiqgonal Finite Differences

Q-R Operator Notation

In this section implicit tridiagonal finite difference approximations to
the first and second derivatives and to the spatial differential operator
will be considered. The very versatile Q-R operator notation will be intro-
duced, which allows as special cases a variety of schemes such as standard
second order finite differences, first order upwind differences, fourth order
operator compact implicit (OCI), fourth order generalized OCI and exponential
type methods. Since all these schemes are of the same form, a single sub-
routine which defines the difference weights is all that is required to
identify the method, while leaving the basic structure of the program
unaltered. Subsequently, the results of numerical experiments for a number
of these schemes will be presented.

The Q-R formulation allows for ADI methods and permits the treatment of
systems of coupled equations, i.e., LBI methods. Although variable mesh
schemes can be employed within the Q-R framework, it is believed preferable
to use analytic transformations to obtain a uniform computational mesh, hence
attention 1is restricted to uéiform mesh formulations.

The general concepts and notation for two point boundary value problems
will be introduced and then the methodology entended to more general linear
and nonlinear parabolic partial differential equations in one dimension. The
extension to multidimensional problems will also be indicated.

Consider the two point boundary value problem

Tlu) = 3(x)u,, + Bx)u, + <(x)u = Tix) @

with u(0) and u(l) prescribed. Derivative boundary conditions, although not
treated here, can easily be incorporated into the framework of the Q-R
operator notation. Let the domain be discretized so that Xy = (3-1)h,
jeoi, 2,..., J+1, and Uj "N u(xj), Fj j), Sj " uxx(xj) and h = 1/J

is the mesh width. The numbering convention was chosen here to be compatible

n
ux(x

with FORTRAN coding.
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Without loss in generality for a(x) ¥ 0, Eq. (9) can be divided by a(x)
80 that we may treat instead the following equation

C(u) « U + bUx)u, +clx)u = f(x)

- (10)
wheré
blx) = B(x)/Tlx), clx) = E(x) /&(x) ang f(x) = T(x)/&(x)
The spatial differential operator is identified as
L{u) = u,, + b(x)u +clx)y an

Substituting the finite difference approximations to the first and second
derivatives

i -Us

0 - _J'H ]" - - 2

5 Yj ST Fj = ulx;) + 0(h?) (12)
D D_ U; 1 2U +Ui41
_;.2._ ;- _,T—J— - s, -uxx(x)+0(h2) (13)

into Eq. (10) and rearranging, we obtain

| by 2 b

or

Rc » Re
i B i
[l- 2 ]Ujl +[h Cj ] +['+ 2 ]Ujﬂ=h2fj

= hbj is the cell Reynolds number.

(14)

where Rc
J
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Equation (14) can be generalized by introducing operator format, i.e.,
- c + .« h2(a" c + (15)
YU +ryup+rpug, = h (qj flat +q;f) +q;f),))

where the superscripts (-) minus, (c) center, and (+) plus indicate the
difference weight that multiplies the variable evaluated at the (j-1), (j) and
(j+1) grid points, respectively, and where the rj's and qj's for grid point j
are functions of h, bj—l’ bj’ bj+1’ Cj-l’ cj and °j+1' Comparing Eqs. (14) and

(15) we can identify the rj's and qj's. viz,,

r]-l-Bc,/z qy =0

C 2. - C’ ’

r -hcj 2 qj | (16)
+ +

T -I+Rc,/2 qj s 0

We now define the tridiagonal difference operators Q and R

‘R[Uj] T U+ r‘ju. +1U

j I+

an
- [
olt] -ajtp + oty +ajty,
Noting that L(u) = f and substituting Eq. (17) into Eq. (15) we obtain
- h2 L h2 13
r[u;] - n o[ 1.tu);] = n2a[ )] | (8

Alternatively by employing the invérse operator Q-.1 an expression for L(u)j
can be obtained

!
Llu), = ?O"RUJ (19)
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For standard central finite differences Q = Q = = I, the identity matrix,

(the spatial operator is given explicitly in terms of Uj-l' UJ and U4+1) s0

-
that nothing was gained in obtaining Eq. (19). However, in general, for higher
order methods Q is tridiagonal and Q'1 is a full matrix. Hence Eq. (19) gives

us a means of expressing the spatial operator for a wider class of difference

‘- approximations. The formalism in Eq. (19) is also applicable for Eirst and

second derivatives appearing alone (cf. Ref, 28)., It must be pointed out however
that Eq. (19) is not the most general formulation since the compact implicit
formulas cannot be combined to yield a single scalar equation relating the
spatial operator to the function values (Ref. 28).

In the next section a method due to Berger et al., (Ref. 29) is described
that enables one to construct fourth order tridiagonal methods with certain
desirable properties, i.e., evaluate the qj and r, coefficients.

3

Generalized Operator Compact Implicit Schemes

Given

L(u) = u,, + b(x)u, +clx)u

an expression relating L(u) and u is sought in the form

! (20)
= RYj - alLu)y + 14
vhere 1, is the truncation error and Q and R are tridiagonal displacement

"operators. The maximum accuracy attainable is fourth order, i.e., Tj ~v O(hﬁ).

Expanding Eq. (20) in terms of q}’c’+ and r;’c’+ we obtain,

' alLy), = — [rru, + Sy +ed

Tj hz RU’ Uj o ?i- riU]-l fjul r] U]%I]

(21)

- [qj'(Lu)H +qj (L)) + q}'(Lu)lﬂ]
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A Taylor series expansion yields for 1_1 F POOR QUALITY

T - T? u(x]) + T'u“’(x ) + Tfum(xl) + T13u“’(xl) )

T () + rf’ ‘5’( x) + T/ x)) + 0(n®)

where superscripts in parcntheses denote derivatives with respect to x, and

wvhere

|
- 2, - c
‘r," . —h'z—[(rl + rlc + r;) +h(Q) e+ qpe; + q}cj")]

] ‘ -
I G L IE TR YL T W (a}eye = 7))

2 _L_ + -y - ¢ .
T3 (r‘ +r]) (ql +q +ql‘) (23)

2
- h(af by = Q] byy) - T lafey, + ajey)

v. 1 . -
T e 0 — ey ) - o ”,(q bju +1"qy b))

" ooz (qf + (-I)Vq") + hz(q]’c,,l + (-|)"q'j‘cl_l) v=3,4,56

For second order central finite differences we set To - T1 - Tz = 0. This

yields, when q§ = 1 and q; = q} = 0, the following relations

(4 . 2, . c
ry = ol e+ Rlaje Fage) + ey,
Fy -t = hby = Rey

rj +r]'=2
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which recovers Eq. (16), i.e., _ : OF POCR 4 uIvT

< EERL 3

c .. 2
f 2+hcj
rl-"' -I-Rc,/2

+
f, |+RCJ/2

To obtain the fourth order operator compact implicit scheme we again set
70 « 7! @ 12 = 0 to obtain three expressions for r °S*F
—-,c,+ - +
qj'c’ » (note that q , q ¥ O and qc is not necessarily unity), i.e.,

in terms of the

c - -
e -(rf )+ h®(a;¢;., +qfcj +qj’cm) (24a)
r,‘- rj' * Rejqf + chqf + Rc]”qj’ + hz(q;‘;jn + Q{cj_l) (24b)

r” +o = 2(qy +q§ +q]‘) + Z[Rc,,lqj‘ - ch_,q,‘] + hz(q)‘cm + qj'c‘-,) (24¢)

How T3 and Tl' must be set to evaluate q;’c'+

3:1‘[‘:0’

. The standard Swartz OCI
method requires T

_16- (r*-r7)- —;[Rcwqj‘ + ch-qu-] - [q; -qj'] + 0

(244)
- h(afep, - aje)

—l-—(r‘+r')--—'-[R *-R '] : + -

24 6 LTGaq) ~Re 9l =% [qi +q ] -0
- he(q"cw + q"cj_,) (24e)
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and regults in a leading truncation error term of (Au(s) + Bu(G))h“. Substi-
tuting (24b) and (24c) into (24d) and (24e) rj and r; can be eliminated and a
system of two equations in q; and qg with qj as a parameter is obtained. The
paranmeter qC is proportional to the determinant of the system. The values of
q-.c.+ and r-,c,+
3 h]

As shown in Ref. 28, a cell Reynolds number stability condition exists

are presented in Table I,

for the Swartz OCl scheme, {.e., for Rc 2 /12 nonrealistic or oscillatory

solutions will be obtained. In order to eliminate this restriction one can

relax the conditions T3 - Ta = 0, and allow the coefficients of u(3) and u(é)
4 .
to be of 0(h).
By expanding q;’c'+ in a series in Rec
c 3 -C,*+ fn
q"! * e YA St pe (25)
mig M }

12 parameters, A;’c'+ m=20, 1, 2, 3, arc introduced, The equations for
T3 = O(ha) and T4 = O(ha) yield 5 linear relations, leaving for disposal 6
“"free" parameters plus a factor.

These parameters can be set according to some criteria that would yield
certain desirable properties for the difference cquations. The following

constraints are prescribed
q;20,a7>0,q[>0
c - +
9Py 2y By * by

(26)

* -
rl > rJ >0

- c + -
I

and h is sufficiently small so that
I0b;-by_,-by,, >0 ond hecy,/b), <2

for J=»2,...,Jand clso

27
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These conditions assure that R is diagonally dominant and Q is invertible for
all Rc' Further details are given in Ref. 29. The significance of this
approach is that one can construct a scheme possessing certain desired proper-~

ties employing a set of preassigned rules. This 1is contrary to usual practice,

in which a scheme is chosen, and then its properties are determined. It is
important to note that the derivation of the q and r coefficients is not a
trivial task., In computational effort it is also not cheap. This point will
be discussed in greater detail in a later section.

The q and r coefficients for the generalized OCI scheme described in

Ref. 29 are given in Table I1I. Irn this report comparisons are made with another

generalized OCI scheme, whose coefficients are given in Table IIl1. Numerical

experiments indicate that these two schemes are comparable, differing only in
the magnitude of the truncation error.

Exponential Type Schemes

Another family of schemes that can be expressed in Q-R operator notation
are the so-called exponeniial methods. The idea, originally due to Allen
(Ref. 30) (independently derived by I1'in (Ref. 31) and McDonald (Ref. 32))
and employed by Dennis (Ref. 33), is to set the difference weights so that the
numerical solution is equated to the analytic solution for the locally frozen

constant coefficient equation. Allen (Ref. 30) and 11'in (Ref. 31) considered

the homogeneous constant coefficient equation,

L(u) =uy, + bu, =0 (27)

so that the difference approximation was set identically equal to the analytic
solution.

The analytic solution of Eq. (27) has the form

usA+ge”

where A and B are determined from the boundary conditions.

The Q-R operator formulation of Eq. (27),

GV ¥y +rY, =0 (28)
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possesses a fundamental solution of the form u”. Solving for u and employing

Eq. (24a) we odtain

pet, r,‘/rj'

With the aid of Eq. (24b) and setting uj to the analytic solution e—bjx'we
obtain

-biX - -
p.’-ebl -eblh]-eRcl-r"/r]'
+ - 1 -, Gt
With the condition rj - rj = ch (Tj = 0 in Eq. 23), we can define rj' as

e Re e R/ (1-eF)
= Re, /(1 -e R (29)

c
r' = 'RC]

and q = q+ = 0 and qc = 1 where we have allowed bj to vary. Equation (29) can
be rearranged to yield an alternate form

Rc Re
. —L 30)
l.(u)J > [coth —2!—] 0,D_u; + b0,y (

Qhere D+, D_, Do are the forward, backward and central first difference oper-
atorsg, respectively.

This method is second order accurate for Re A~ 0(1) and becomes first order
accurate as Rc + = where the scheme reverts to first order upwind differencing
(in Eq. (28) r3 + 0, rj - ch, rg -+ -ch for bj > 0 to give ch(Uj+1 - Uj) = 0).

Another exponential scheme which 18 uniformly second order accurate was
developed by El-Mistikawy and Werle (Refs. 34 and 35). The "exponential box
scheme" which 1s incorporated in their solution of the boundary layer equatioms
with strong blowing, is based on a spatial operator of the form given in

Eq. (10). Berger et al., (Ref. 36) derived the counterpart for an operator of
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the form given in Eq. (27). The q and r coefficients are presented in
Table IV. Although this scheme reverts to second order upwind differences as
Rc + =, it does not possess a maximum principle analogous to the ordinary
differential equation it is approximating as does the exponential scheme of
Allen (Ref. 30).

The Allen exponential scheme can be applied to differential equations of

the type given in Eq. (10). Substituting the Q-R representation for L(u), we
obtain

!
e o 'R[y] + ey Gy

Multiplying through by Q, and combining terms, the difference approximation to
Eq. (10) becomes

R[Uj] + h"’o[clu]] . hzof]

or

(R +hzocj)[u]] = hzcyfj (32)

Note that the only difference between Eq. (32) and Eq. (18) (where cj z0) i

the coefficient matrix multiplying U Hence the methodology is unaltered.

3

Application of G-R Operator Schemes to 1-D Parabolic Equations

: *
Consider the one-dimensional linear parabolic equation

(33)
uy =au, +bu +cu+d
with appropriate boundary conditicns and initial conditions, where a, b, ¢, d

could be functions of x and t. Dividing by a # 0, identifying L(u) = u + bux’

*
If Eq. (33) were nonlinear, assume it was linearized by the method described
in Appendix B.
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and employing a two point temporal difference scheme, we obtain

| n+ uf“-un n¢ﬁ net n n¢ﬁ

where 8 = 1 reduces to a backward difference and 8 = 1/2 to the Crank-MNicolson
approximation.

Letting

e [P (]

and with some algebra we cobtain,

n+f ! _ nefB| . nul |
° (o,’"ﬁ) MBRTTH Yy (34)

0"’3(——;;2;—) +\0-PIR™P uyf + Ato"*B[d?’B]

9

where )\ = At/hz.

Again, Eq. (34) 1is general and permits second order finite differences,
upwind differencing, exponential type schemes, and OCI schemes. Aside from the
evaluation of the Q and R operators, the problem is no more complicated than
standard second order finite differences. Results of model problems can be
found in Ref. 28.

Application to Coupled Nonlinear Parabolic Equations

Given a system of m nonlinear parabolic equations in m unknowns,

m ! it -u)
IE ij i}

_ N+
H oun*ﬁ A' Ni (U

n“z’""“m”‘u"z"‘s") e}

fai,2,...,041
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where N:+B is a nonlinear nonconservative spatial operator, the Q-R formalism
carries directly over provided that for any equation only one independent

variable is operated upon by the differential operator. For example,

Sluwy Ut " U + DLV Wy, + clu,vw)

is allowed since x derivatives of u only appear, while

{
oy Uy = u,, + bluwvwlu, + cluw,w) + dluv,wiw,

is not allowed since x derivatives of both u and w appear. The modified

unsteady Navier-Stokes equations for the three-dimensional time-dependent

boundary layer, when written in quasilinear form, fall within the class of

allowable differential operators. Thus for the problem being addressed
in the present study the OCIl schemes are applicable.

Multidimensional problems and/or more general equation forms can usually
be accommodated by a splitting procedure, which reduces the differential
operator to a seduence of one-dimensional problems which have the appropriate
allowable form. However, as with standard finite differences, special proce~-
dures must be applied to cross derivative terms, e.g., extrapolation or lagging
at the previous time step or increasing the number of intermediate steps in the
splitting. -

In Appendix B an example of the above procedure is presented for a
coupled system of one-dimensional nonlinear parabolic equations possessing

“"boundary layer-like reverse flow" behavior.

Basis Functions

A convenient approach for developing numerical procedures for the solution
of partial differential equations is founded on a basis function representation

of the dependent variable; i.e., iu one dimension,

ulx) = ?aiei(x)

32
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where u(x) is represented by a linear combination of suitably chosen basis

functions, Bi(x), and the a, are determined by some set of constraint relation-

i
ships. The advantage of the basis function representation is that once the @

are determined, one can obtain at very little additional cost the function !
and its derivatives anywhere in the domain. ‘

The major concern here will be with the B-spline basis functions. However
by way of comparison some of the characteristics of plecewise Lagrange poly-
nomials and plecewise Hermite polynomials will also be given. 1In the following
basis functions are sought, polynomials of order k {degree k-1), that possess
certain smoothness properties, and the computational efficiency of these
functions for the solution of differential equations are investigated.

The simplest functions are the piecewise Lagrange polynomials, which can
be computed by the cardinal basis functions. Consider a grid numbered from
J=1toJ+ 1 (to be consistent with FORTRAN coding) so that one is consid-
ering J + 1 grid points and J intervals. Over each interval consisting of k
knots the basis functions are polynomials of degree k-1 which are equal to
unity at one particular knot and zero at the other knots. The dimension of
the piecewise Lagrange polynomials (the number of basis functions) is J + 1
(independent of the degree of the polynomial) and thus J + 1 constraints
must be satisfied to determine all the oy However, in order to evaluate a
function and its derivatives at a particular location, only k basis functions
distributed over k adjacent grid points are required. In addition Lagrange
polynomials are only C° at the end points cf each sub-interval, again
independent of the degree of the polynomial and thus allows for jumps in the
first derivative there. Due to the purely interpolatory character of piece-
wise Lagrange polynomials the a, are nothing more than the functions evaluéted
at the appropriate knots.

The interpolation probleﬁ reduces to an explicit procedure as does the
evaluation of the derivatives at the internal knots. When incorporated with
the method of collocation (the analeog of interpolation for the solution of
ordinary differential equations), the piecewise Lagrange basis functions used
locally on a uniform mesh (with k odd) recovers the standard centered finite
difference approximations. Thus a quadratic polynomial leads to a three point

formula and the inversion of a tridiagonal matrix of order J + 1 and a quartic
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polynomial leads to a five point formula and the inversion of a pentadiagonal
matrix of order J + 1.

In order to obtain smoother representations additional constraints must be
applied on the derivatives of the approximating functions.
more complicated basis functions.

This leads to

For example, the family of Hermite poly-

nomfals requires that for a (2m - 1) degree polynomial (m 2 2) on two adjacent

knots, m interpolatory constraints must be satisfied for the function and its

(m-1) derivatives. The approximation is still local, i.e., given a function

and an appropriate number of derivatives on two adjacent knots, the function
and its derivatives can be computed implicitly in the interior of that domain.
However, the solution of a differential equation by the method of collocation
involves the inversion of a matrix of order m{(J + 1) of bandwidth (3m - 1)

(= n + m where n = degree of polynomial).

Thus in the process of obtaining a
Cn-2

representation a substantial increase in labor in comparison to Lagrange

polynomials has been incurred. Further details can be found in Ref. 37.

B-Splines

Another family of functions are the polynomial splines, i.e., polynomials

of degree k-1 that are Ck-z. One would expect that the additional smoothness

of the spline approximation would translate into a better behaved solution -
perhaps even more accurate - for "smooth" functions, than a Lagrange or

Hermite polynomial of the same degree. Numerical experiments have shown this

However, the additional smoothness

constraints that must be specified not only change the nature of the approxi-

to be the case in many instances.

mation, but may add considerably to the computational effort, depending on the
manner in which they are applied.

There are several approaches for representing polynomial splines. The

first method involves specifying the polynomial and the smoothness conditions
*
separately, and then solving the imposed constraint equations

simultaneously
for the undetermined coefficients.

This approach has successfully been

*
The constraint equations may either be interpolatory conditions or a
differential equation.
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employed by Kendall and Bartlett (Ref. 38) in their solution of the chemically
reacting boundary layer equations, and Murphy et al., (Ref. 39) for the solu-~
tion of the boundary layer equations. With the aid of a skillful partitioning
of the resulting banded block matrix, the above authors were able to solve

for the function values directly. However, by so doing they lost ready access
to the interpolatory polynomial representation, which is one of the acknow-
ledged benefits of a spline technique. An alternate approach described in
Ahlberg, Nilson and Walsh (Ref. 40) and adapted by Rubin and Khosla (Refs. 41
and 42) in their solution of the boundary layer equations also employs a
polynomial formulation. However, the additional continuity and smoothness
conditions are used to transform their equations into expressions relating the

" are solved

function values and their derivatives. Their “"spline equations
simultaneously with the appropriate constraint equations, which entails for a
single scalar differential equation the inversion of 2 x 2 block tridiagonal
matrix to obtain fourth order accuracy and a 3 x 3 block tridiagonal matrix

to obtain sixth order accuracy.

In order to avoid inverting block banded matrices that arise even in
the solution of scalar differential equations a third alternative is
considered, the B-spline representation, which has the appropriate smoothness
built into the functions themselves. For the solution of the coupled Navier-
Stokes equations this procedure has a definite advantage in that the order of
the block submatrices, typically three or four, can be reduced by one. A
detailed discussion of B-splines, their construction and their mathematical
properties are given in Refs. 37 and 43 and will not be repeated here.
Instead, the properties of B-splines that make them attractive for the solution
of partial differential equations will be emphasized. In the following
discussion, without loss in generality, a uniform mesh will be considéred.

The normalized B-spline (the sum of the basis functions at any knot is
unity) of order k (degree k-1) is bell-shaped and spans k + 1 knots. Within
the interval the B-spline is positive while outside the interval, including
the end points, it is zero. For knots of multiplicity unity the first k - 2
derivatives of the B-spline are zero with a jump possible in the (k -~ 1)st
derivative. In general, for a knot of multiplicity k - v the vth derivative
of the B-spline is discontinuous at the point with 511 lower order derivatives

continuous. Due to the cowmpact support property of the B-splines at most k
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B-splines are ncnzero over any interval, while at a knot k - 1 B-splines are
nonzero. This property enables one to reduce the bandwidth of the matrices
that are obtained in the solution of differential equations, while retaining
the scalar structure.

DeBoor (Ref. 44) has shown that for B-splines of order k the dimension
of the basis i8 J + 1 + k - 2, where it is assumed that the knots are of
multiplicity unity and there are J + 1 nodal points (J intervals) in the
domain. Thus for cubics (k = 4) there are J + 3 independent basis functions
and for quintics (k = 6) there are J + 5 basis functions. Hence J + 1 + k - 2
conditions are required to fully specify the B-spline representation. In view
of the above, for a B-spline of order k, in order to determine all the oy the
resulting matrix is scalar, is of order J + 1 + k - 2 and has a bandwidth of k.
After the o4 are determined, the evaluation of the function and its k - 2
derivatives each require at most k additional multiplications.

For the pure interpolation problem

Moy =88 i k-3
u(x])-fl J=t,00., 041
() (¢)

u (xJﬁl).fJ§| 2",---. K'3

where superscript & designates a derivative of order &, and k even, Prenter
(Ref. 37) shows that a unique function exists, the polynomial spline of order
k. What is apparent from the statement of this problem is that the B-spline
interpolating polynomial is global in character, being "tied together" by
the derivative constraints at the end points. In contrast to pilecewise
Lagrange and Hermite polynomials where coefficients were determined for each
subinterval by the appropriate interpolatory constraints, the evaluation of
B-splines requires the inversion of a matrix. In additfon the ui's that are
determined are not equal to the values of the functions and its derivatives
at the knots as was the case for the Lagrange and Hermite representations.
It is in part due to.this global character that B-splines derive their

smoothness properties.
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DeBoor (Ref. 44) has presented a computer program to determine the
normalized B-splines of order k < 20, which allows for nonuniform meshes and
for discontinuities in lower order derivatives at the knots (knots of multi-
plicity > 1). He has also conditioned the B-splines near the boundaries to
simplify the setting of boundary conditions. Alternatively the procedure
suggested by Prenter (Ref. 34) could be employed (for a uniform mesh with
simple knots), but that would require additional algebraic manipulation to
modify the coefficient matrix so that one can obtain the appropriate band
structure., Since both methods are equivalent (the uniqueness of the B-spline
representation) the choice is a matter of convenience. Prenter's approach
employs the same basis functions throughout the domain, which reduces the
memory and computer logic requirements but increases the algebraic manipula-
tion, in particular for higher order splines. The more general DeBoor
approach requires more computer memory, but reduces the preprocessing required
of the user. In the subsequent work DeBoor's approach was used.

The accuracy of the B-spline representation is now considered. For a
function u that {s sufficiently smooth, with derivatives of order k that are
continuous, u € Ck (a,b), the B~spline representation of u, s (of order k,

k even), Prenter gives the following error estimates

lu-sll, = o(h%)

Nu'-s'll, = o(h*™"

Hu-s"l, = 0(h*"2)

Hence, to solve a second order ODE by collocation using cubic splines (k = 4)
we can expect O(hz) accuracy but require only a simple tridiagonal matrix
elimination. However, to obtain greater accuracy larger bandwidth matrices

are required. Consideration of this point is given in the following section,

Application of B-Splines to the Solution of Differential Equations

Since the B-spline representation will be employed as a spatial approxi-
mation, its properties, order of accuracy, efficiency and spatial stability
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behavior can be investigated by considering 1its épplicaticn to the solution

of two point boundary value problems.
In this section B-spline basis functions of order k are applied to

the solution of ordinary differential equations of the form

L(u)=u,, +bu, +cu=f xe[O,l] (35

with bouhdary conditions

u(0) = a, , ull) = a,
Several different approaches can be employed for the solution of Eq. (35),
depending on the degree of accuracy desired and the level of complexity one is
willing to accept. The techniques of collocation, Galerkin, subdomain,
least squares, etc., can be viewed as special cases of the method of weighted
residuals (of Crandall (Ref. 45) for instance). More recently Murphy (Ref. 46)
has shown the relationship of these methods to orthogonalization processes
and has characterized them as generalized Galerkin techniques. Here we will
review the relationship of the different approaches to the method of weighted
residuals and indicate how.they translate into computational effort.
The basic idea of the method of weighted residuals is to choose a trial

function for the independent variable

ulx) = Za;B,(x) ' (36)
|

" where Bki are the basis functions (here B-splines of order k) and a, are

coefficients to be determined. The derivatives that are given by

u'(x) = }ljaiB{d(x)

37)
u"(x) = %al B,'('l(x)

are substituted into Eq. (35) to yield
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tlu) - L?alam(x)- }lja,l.sk,(x)

(38)
L(u) -;::,{a:"i(x) + b(x)B;d(x) + c(x)Bkl(x)} » f(x)

He now require that the residual error in scme sense vanighes over the domain,

i.e.,

) _]: [Lu(x) - f(x)] Vi (x)dx « O 39)

m

where "m is a suitably chosen weighting function. The simplest method is to
force the residual to vanish at each of the nodal points in the domain. This
method of collocation is analogous to the interpolation problem which requires
the approximating function and/or its derivatives to be equal to the true
function at the nodal points,

In this case Hm is the Dirac delta function and we recover the system

of equations

Lulxp)-f(x ) =0 m=1,...,d+

or

?a,[e.’(’i(xj) +blx))B{x)) + clx))B(x))] - f; Qe (40)

For B-splines of order k there are J + 1 + k -~ 2 basis functions
(dimension of the B-spline basis) so that in addition to the collocation
relationships at each of the nodal points, including the boundary points, k -« 2
gupplemental conditions are required. For cubic B-spline (k = 4) the two
boundary conditions are sufficicnt to close the system. Hence a8 linear system
of equations of order J + 3 and bandwidth k -~ 1 = 3 (tridiagonal) 1is obtained.
Note that the problem is no mere difficult than the standard second order

finite difference case, except that J + 3 equations are solved instead of at
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post J + 1 equations. The overall accuracy of the ﬁethod is O(hk-z) which
corresponds to the accuracy of spline approximation of the second derivative.

Once the 01'8 are deterzined, u, u' and u'' can be obtained from Eq. (37).
For higher order splines, e.g., k = 6 (O(h‘) accuracy) an additional k-2~4%
conditions are required to close the system, which reduces to gpecifying two
more conditions than are available, i.e., the two boundary conditions. If one
has information concerning the behavior of the differential equation at the
boundaries (values of derivatives there), then that can be used. However,
in general this is not always the case, so it was decided to collocate at two
points that were noncoincident with the knotQ. These locations were set at
x = h/2 and at x = 1 - h/2 solely for ecase of computation (modifying the
matrix), but insight into the behavior of the differential equation could be
used to choose the collocation points, i.e., regions of rapid change. It is
important to note that thesa collocation points are located in a subregion
between two knots. There is no need to add grid points (knots).

The bandwidth of the resulting matrix has now been increased to 5 in
order to obtain an O(ha) solution. If the coefficients, b, ¢ and £ are not
known at x = h/2 and x = h/2 then these values must be obtained by interpola-
tion. '

It can be shown that more accurate results can be obtained (one order

better) if derivatives are introduced as unknowns, i.e.,

us Z':a,ekl
(41)
u' =188y
A system of two equations in oy and 81 are thus obtained
L)y = T {Bi[eyx)+b;8,0x)] +aie, 0x} = 1, (42)
and

40
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However, a 2 x 2 block matrix is now required to be inverted and boundary

conditions on u' must also be supplied.

Galerkin Method

1f we choose the test function Wy to be from the same family as the trial
function, then the weighted residual becomes analogous to an orthogonality
condition. This leads to the following relationship,

» ! "
£/ [ £ ately +blxey +clx)B i) -1]B,mdx = O (44)

and we obtain (J + 1 + k - 2) equations which is exactly cqual to the dimension
of the basis. However, the bandwidth of the coefficient matrix for the ui's

is increased to 2k - 1 (7 for cubics and 11 for quintics). This result can be
obtained by focusing our attention at the B-spline test function centered at
knot j = m. It will contribute to the integral in the interval (m - k/2,

m + k/2) where {t is nonzero. However, the B-splines centered in the interval
[m-(k-1), m+ (k - 1)] will also contribute to the integral. Hence the
Bki's will span (k - 1) + (k = 1) + 1 = 2k - 1 knots and will contain 2k - 1
entries,

The Galerkin scheme can be shown to be O(ha) accurate for cubic B-splines.
However, as compared to the method of collocation the bandwidth has increased
from k -~ 1 to 2k ~ 1 so that the procedures would be much more costly. Further-
more, the Galerkin scheme requires four nontrivial integrals which necessitates
an integration scheme consistent with the order of the method, e.g., for cubics
a fourth order Simpson's rule. Since the B-splines are not orthogonal in the
sense that integrals of products of basis functions are not zero, no simpli-
fications exist.

Since in general one is not solving a problem that stems from a variational
formulation, one would be justified in searching for test functions from a
different family which could simplify the integrations and reduce the bandwidth
of the resulting matrix. One such technique, the subdomain method (Ref. 45)
or what Murphy (Ref. 46) terms the generalized Galerkin procedure, employs a

unit step function as the test function. This formulation yields the following

system of equations
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f W[?a,{a&'ﬁ b(xl)e;d-n- c(xl)Bkl}-'f‘]dx =0 J21,2,.00,d  (45)
X

)

Since only J equations are derived for the (J + 1 + k - 2)u18’ k - 3 additional
relationships are required. For cubics, this leaves, aside from the two
boundary conditions, one as yet unspecified condition. Murphy (Ref. 37) and
Bartlett and Kendall (Ref. 38) in their viscous flow solutions specified an
additional derivative boundary condition at the edge of the viscous layer.
Although their condition was exact mathematically for the problem they
considered, for more general equations such conditions could overconstrain
the solution. Hence it is felt that collocating at some point, i.e., onc of
the boundaries, would be helpful and would not deteriorate the order of
accuracy of the solution (this point is further discussed in the section on
numerical results).

The bandwidth of the resulting matrix has now been reduced to k as
compared to 2k -~ 1 for the standard Galerkin scheme while still retaining
O(ha) accuracy. However, the integration scheme (now over two adjacent grid
points) needs to be appropriately handled in order to achieve the desired
accuracy of the method. In order to employ Simpson's rule for cubic B-splines,
values of the coefficients b, ¢ and £ are requifed at the intermediate points
xj +1/2° I1f they are not known analytically, interpolations would be
required which would increase the total computation time.

The advantages of the cubic B-spline generalized Galerkin procedure are
its decreased bindwidth of four and its applicability to treat equations in
conservative form. However, it has the disadvantage of being sensitive to
the type of boundary condition used to satisfy the extraneous condition
(cf., section on numerical results).

The advantages of the quintic B-spline collocation procedure are that
boundary conditions are easy to apply and it possesses the lowest truncation.
error for a given grid spacing. However, it is less efficient than the
generalized Galerkin method due to its larger bandwidth of five. At the
expense of increasing computer memory requirements, quintic B-spline collocatien
can be made more efficient.

Both methods have the advantage over nonbasis function schemes of allowing
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one to easily obtain derivatives of the solution vector as well as the solution

at any point in the demain. Their main shortcoming is in the cell Reynolds

number stability condition (cf., section on numerical results) which manifests

itself as oscillations in the solution. In view of the nbove‘a blanket

Only after an analysis of the problem under
consideration is made and the goals of the solution (accuracy and efficiency)
have been stated can one recommend either of the schenes.

recormendation cannot be given.

Time was not avallable to program either Rubin's method or the Murphy-

Kendall-Bartlett technique and thus a rigorous comparison with the B-spline

forrmulation presented here cannot be given. However, it would appear that

both B-spline procedures are competitive with these other spline variants,

and they do have the advantage of reducing the order of the blocks for coupled
systems of equations.

A comparison of the B-spline algorithms with the Q-R operator techniques
is given in the section on numerical experiments.

Application of B-splines to 1-D Parabolic Equations

*
Consider the one-dimensional linear parabolic equation

u} =au, + bux +cu+d (46)

with appropriate boundary conditions and initial conditions, where a, b, c, d
could be functions of x and t.

Employing a two point temporal difference
scheme, we obtain,

N+t +
X ) . o,mB(Bu}' "4 (I-B)ui'n) + bj"’B(Bu]'n 'y (I-B)uj'n)

*
If Eq. (46) were nonlincar, assume it was linearized by the method described

in the appendix.
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where B = 1 reduces to a backward difference and 8 = 1/2 to the Crank-Nicolson
approximation.

The B-spline spatial approximation can be combined dircctly with a
temporal discretization scheme to solve Eq. (46). Here collocation and the
generalized Galerkin procedures are considered. Although no numerical '
experiments were run with thcae'mcthods, they are presented here to indicate
how they can be applied.

1. Collocation
Substituting Eqs. (36) and (37) into (47) and rearranging one obtains

N+l _ nef3 _n nef3
2;,«:, {Bki(xl) At,B[o] Bk,(x,)+b, Bkl("l) 45

+ c]n§ﬁ8ki(x])]}-A' d]n‘ﬁ " RHSn j= Le, "'l"+|

where

n_ _ n+f 4N n+ef3 4N nef3 N n
is known from the previous time step and
of*? = Bal*" + (1-Ba]

and similarly for

b,"'B,c,-MB and d]"'ﬁ

2. Generalized Galerkin (cubic B-splines)
Integrating Eq. (48) over (j, J + 1) one obtains
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X
j;‘ b [ };ai""{ek,(xj) - AtB(olmBBk','(xj) + b‘"’pek,'(xl)

+ c[*Pa(x} - ard/*# ] ax - /
1

X
i (RHS"M dx

By the use of Simpson's rule the integrals can be evaluated in terms of the

function values at x and x If the values at the "half points",
an+8 bn+B cn+8 +8
J+1/2° T341/2° Tj+1/2 J+1/2

obtained by an interpolation routine,

3* *341/2
and d"

j41°
are not known analytically they must be
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~ RESULTS
Numerical Experiments

Spatial schemes can be analyzed by considering two point boundary value
ordinary differential equations. The properties of these schemes, accuracy
versus grid spacing, running time for a given accuracy, ease of programming,
storage requircments and cell Reynolds number effects can easily be obtained
without the encumbrance of temporal discretizations.,

Here the following differential equation is considered
by = (49)
u, +bu, =f

with appropriate boundary conditions specified.

The first type of problem investigated was the homogeneous constant

coefficient case

uu+bux-0

(50)
u(0) = 0, u(t) =
which has as its exact soluiion
j-e X (51)
Uexact ~ |-e'5

The aim of these numerical experiments was to verify the convergence rates
of the various methods and the effect of cell Reynolds number on obtaining
physically meaningful solutions. The convergence rates were verified by
considering the case of b = 1 for 10, 20 and 40 intervals, so that effects of
cell Reynolds number, which ranged from .025 to .100 would be ingignificant.

In Table V these results are presented for the generalized OCI schemes (0CI-Gl,
(cf., Table 1i1), OCI-G2, (cf., Table II)), cubic B-spline collocation, (CBS-COL),
quintic B-spline collocation, (QBS-COL), and cubic B-spline generalized
Galerkin, (CBS-GAL). All the schemes except for CBS-COL have fourth order
convergence rates, with QBS-COL possessing the lowest truncation error.
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The behavior of QBS-COL is due to the different orders of approximation of the
derivatives, i.e., O(h&) for the second derivative and 0(h5) for the first
derivative, which reduces to O(h4) for the overall approximation to the
spatial operator. It is also interesting to note that CBS-COL gives
identical results as the standard second order centered finite difference
method, (CFD), since the resulting matrices of the two methods are linearly
related,

It has been observed (for instance in Ref. 47) that for the solution of
the boundary layer equations, near the outer edge (at large values of the
normal coordinate), where the flow is nearly uniform, oscillations and/or
overshoots in the velocity profile may occur. This nonphysical behavior,
which can be traced to the violation of a cell Reynolds number stability
condition could deteriorate the entire solution. Therefore an understanding
of the behavior of the spatial approximations with respect to cell Reynolds
number is desirable. Considered here is the constant coefficient equation
once more with b set equal to 80 for 10, 20 and 40 intervals which correspond
to cell Reynolds numbers of 8, 4 and 2, respectively. In Table VI these
results are presented. Solution profiles for Rc = 10 are shown in Table VII.
The generalized OCI schemes give uniformly monotonic solutions (they are
constructed to do just that), while the B-spline schemes give oscillatory
solutions for cell Reynolds numbers approximately greater than 2.

The behavior of the OCI schemes in the range of Reynolds number 2 to 4
is a property of such an unrestricted (with Rc) scheme (cf., Ref. 29). As is
true for all schemes, only in the 1limit as h + 0 does one obtain the convergence
rates predicted by the theory. Error estimates obtained by Berger et al.,
(Ref. 29) for the generalized OCI schemes indicate there are several over-
lapping regions that are dependent on the magnitude of Rc which varies as
h"P with h fixed. For p positive and large, Rc =+ 0 and one recovers an 0(h4)
convergence rate, while for.p negative and large, Rc + « and one obtains an
O(hz) convergence rate, The transition, which is automatic, results in a
second order upwind differencing formula when Rc is large. A more detailed
discussion for the entire range of p values is presented in Ref. 29.

By way of comparison, the exponential scheme of I1'in (Ref. 31) has been

shown to be uniformly first order accurate (Ref. 48) while the exponential box
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scheme due to El-Mistikawy and Werle (Ref. 35) is uniformly second order
accurate (Ref. 36). For the problem under consideration (constant coefficient)
both exponential schemes givc the exact solution as expected. The above
discussion points out one of the major advantages of the Q-R operator format.
Once a program has been written within such é framework, various schemes can
be implemented easily. Even hybrid type schemes that are evaluated pointwise
are allowed. For example, schemes can be chosen by considerations of accuracy,
cell Reynolds number behavior, or running time.

For actual viscous flow problems, where moderate to high cell Reynolds
numbers appear in uniform regions (near the outer edge of the viscous layer),
the generalized OCI schemes work well in practice (Ref, 49).

It is important to note that the cubic B-spline generalized Galerkin
procedure is sensitive to the type of boundary condition set at x = 0. When
collocation at x » 0 was employed, the results were nonphysical while setting
the first derivative to its exact value at that point gave results comparable
to QBS-COL. The boundary cundition was applied in a region of steep gradients
so that the second order collocation approximation is not sufficient to
prevent the erratic behavior. However, at the low cell Reynolds number range,

the collocation boundary condition worked well as the results in Table V

indicate.
The second case considered is the linearized Burgers equation
a ax (52)
Uyy +[ v tonh(?;-)] u, =0
which has the exact solution
ax (53)
Ueroct " a[ 1= tanh ('?;')] |

and

u(-o) =1, u(w)—=0

The coefficient o was set to 1/2 while v was varied; small v corresponds

to a shock near x = 0. Calculations were carried out in the regions

48



-5 2 x 20 andfor 0 £ ¥ £ 5, with the boundary conditions set to their

exact function values. The Burgers equation mimics a true boundary layer in
that regions of sharp gradients (near x = 0) corresponds to low cell Reynolds
numbers while in the "uniform flow" region (|x| + =) the cell Reynolds number
reaches a maximum,

Results are presented in Table VIII for v = 1/16 and for mesh intervals
50, 100 and 150 for the following schemes; 0CI-Gl, OCI-G2, CCI-Swartz, CBS-
GAL, QBS-CGL and Allen's exponential scheme, The QBS-COL method again has
the lowest truncation error for a given mesh distribution. However, the
computation times (on a CDC 7600 machine) as presented in Table VIII indicate
that in order to attain a given accuracy, OCI-G2 is the most efficient scheme
for ihis problem while there is little difference between OCI-Gl and CBS-GAL.
Although QBS-COL does not fare as well, its performance can be imprcved by
storing the values of the basis functions, Bi' at the nodal pointes anud not
computing them as needed. In Table IX OCI-Gl, OCI-G2, CBS5-CGAL, QBS-COL, the
Allen exponential and the El-Mistikawy-Werle exponential schemes are compared
for the case y = 1/24 as the cell Reynolds number is increased beyond 2.
Again, the OCI schemes and the exponential schemes have monotonic behavior
while the B-Spline techniques lead to oscillatory solutions.

The results indicate that with respect to accuracy there is little to
choose from among the generalized OCI schemes and the higher order B-spline
procedures. However, the B-spline procedures lead to larger banded matrices
and have cell Reynolds number stability restrictions. Note that it is
certainly not ruled out here that at some point in the future the B-splines
could be modifiecd to eliminate the oscillatory behavior at high cell Reynolds
number, Although the B-spline schemes do have the advantage of being able to
evaluate derivatives and treat derivative boundary conditions more easily than
the OCI methods, at present they do not seem to be as versatile as OCI at
least on equation systems that OCI can be applied to. It is therefore
recommended that for the problem under consideration here for the spatial
scheme, the family of Q-R operator schemes, in particular the generalized
OCI schemes be adopted.

As a model problem for investigating the chosen spatial and temporal

schemes, a coupled system of one~dimensional, nonlinear, parabolic equations
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was constructed which exhibit typical boundary layer-like behavior, and have the
form '

Up = Uy AUy AU+ Ajuw + AW +A, (54)
W, - Wyy + Bz“'y +B,w + 8B, uw +8,u + Bg (55)
where
2
A, =w, A, ®-a%, A,=a, As--a(e + sinwt),
Ag = weoswt(i-e V) + a®(e + sinwt)
and
B, »u 8, = -a° B, =a
2 ’ 3 ’ 4 L
. -ay \
By = -adsinwt - ye 7 (2y +Bsinwt),
) -ay -ay 20
B = wcosm{yﬁye +3(l-e )} + a“3sinwt
- Zye'ay {I -al2y +,Bsinwt)}
with boundary conditions
ulo,t) = w(O,1) =0
u{m,t) = ¢ + sinwt € > w({m,1) = Ssinwt 8§>0
The initial conditions were chosen to be the exact solution values at the
initial time.
The exact solutions are
u = (e +sinwt)(1-e” ) (56)
w = yyly + Bsinwtle ® + Ssinwt(1 - &™) (s7)
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The exact solutions possess the folloﬁing properties:
1. periodicity in time,

2. exponential decay in space,

3. nonlinearities and equation coupling,

and w exhibits a form of "flow reversal".

The Q~R operator spatial schemes were examined, including second order
central finite diffeténces, second order I1'in (exponential) and the fourth
order generalized operator compact implicit method. As noted previously, all
the above schemes require the inversion of a scalar tridiagonal matrix for a
single equation in one unknown.

In the computer code, Eqs. (54) and (55) were solved simultaneously,
resulting in a 2 x 2 block tridiagonal system. Both first order fully implicit
and second order Crank-Nicolson discretizations were included in the program.
Appendix B presents the appropriate lincarizations and describes the implemen-
tation of the methed.

The functions u and w were chosen, as previously mentioned, to mimic the
velocity components of a time-dependent boundary layer flow. The "u velocity
component” 1is always positive, with its maximum value (which is reached at the
outer edge) varying between € + 1 and ¢ -~ 1. The "w cross flow velocity
component”, as shown in Fig. 1, has a maximum value in the interior, and
exhibits a cross flow reversal in that w changes sign through a time cycle.

The numerical results to be discussed are for the case shown, i.e., a = 1,
B=4,0, y=-2.0, § = 0.40, and ¢ = 1.5.

A comparison of Newton iteration with the second order noniterac{ve time
linearization procedure was made. The results shown in Figs. 2 and 3 verify the
contention that the effort spent at iterating can be more effectively used in
decreasing the step size, thus reducing both the Eemporal truncation and
linearization errors. The spatial step size for the calculation shown in
Figs. 2 and 3 was chosen (at h = .2), and the method employed was OCI-Gl, so
that the predominant error would be due to temporal effects, e.g., linearization-
and discretization. As an auxiliary benefit, time linearization rcquires one
less time level of storage, and is easier to program (cf., Appendix B).

Figures 4 and 5 present a comparison of the generalized OCI scheme with
second order central differences. The benefits in accuracy of the higher order

OCI scheme is evident in these figures. 1In fact, for the J = 40 case, the
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temporal truncation error, which can be shown to be of order 10_4

, dominated
the spatial truncation error so that the OCI scheme did not attain its
i theoretical convergence rate,
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CONCLUSIONS

In this report scveral temporal schemes have been investigated, consis-
tently split block implicit, Rubin's predictor-corrector and Hopscotch,

It has been gshown that, in order to mecet the requircments of three-dimensional
unsteady boundary layer flows, the consistently split linearized block implicit
scheme is the most versatile and efficient of the three; and was thus
recommended,

Two approaches to spatial approximation were described, the Q-R operator
formulation and the B-spline basis function technique. Results of numerical
experimants indicate that both quintic B-spline collocation and generalized
OCI schcmes performed wecll and that the Q-R operator formulation, in particular
the generalized OCI schemes, are at present particularly well suited for the
problem of time-dependent boundary layers in regard to efficiency, cell
Reynolds number stability restrictions, and flexibility, ‘

The lincarized block implicit temporal scheme, in conjunction with a
generalized OCI spatial scheme, was employed to solve a system of two coupled
nonlinear parabolic equations that exhibit "three-dimensional unsteady boundary
layer" behavior. The results of numerical experiments indicate that the
generalized OCI approach is viable and can be applied to viscous flow problems,
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APPENDIX A
Linearization Technique

A number of techniques have been used for implicit solution of the

following first-order nonlinear scalar equation in onc dependent variable

¢(x,t):

3¢/t =Flg) aclg)/ox : (A1)

Special cases of Eq. (Al) include the conserv&tion form if F(¢) = 1, and
quasi-lincar flow if G(¢) = ¢. Previous implicit methods for Bq. (Al)

which employ nonlinear difference equations and also methods based on two-
step predictor-corrector schemes are discussed by Ames (Ref. 50, p. 82) and
von Rosenburg (Ref. 51), p. 56). One such method is to difference nonlinear
terms directly at the implicit time level to obtain nonlinear implicit .
difference equations; these are then solved iteratively by a procedure such
as Newton's method. Although otherwise attractive, there may be difficulty
with convergence in the iterative solution of the nonlincar difference
equations, and some cfficiency is sacrificed by the need for iteration. An
implicit predictor-corrector technique has been devised by Douglas and Jones
(Ref. 52) which 1is applicable to the quasilinear case (G = ¢) of Eq. (Al).
The first step of their procedure is to linearize the equation by evaluating

2
n+l/2 using either

the backward difference or the Crank-Nicolson scheme. Values for ¢n+1 are

n+1/2

the nonlinear coefficient as F(¢n) and to predict values of ¢
then computed in a similar.zmanner using F(¢ ) and the Crank-Nicolson scheme.
Gourlay and Morris (Ref. 53) have also proposed implicit predictor-corrector
techniques which can be applied to Eq. (Al). In the conservative case (F = 1),
their technique is to define é(¢) by the relation G(¢) = ¢é(¢) when such a
definition exists, and to evaluate é(¢n+1) using values for ¢n+1 computed by
an explicit predictor scheme. With G thereby known at the implicit time levei,
the equation can be treated as linear and corrected values of °n+1 are computed
by the Crank-Nicolson schere.

A technique 1is described here for deriving linear implicit difference

approximations for nonlinear differential equations. The technique is based
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on an expansion of nonlinear implicit terma about the solution at the known
time level, tn, and leads to a one-step, two-level scheme which, being linear
in unknown (implicit) quantities, can be solved efficiently without iteration.
Thia idea was applied by Richtmyer and Morton (Ref. 16, p. 203) to a scalar
nonlinear diffusion equation. Here, the technique is developad for problems
governed by £ nonlincar equations in £ dependent variables which are functions
of time and spacc coordinates. The technique will be described for the three-
dimensional, unsteady equations.

The solution domain i{s discretized by grid points having equal spacings
in the computational coordinates, Ayl, Ayz and Ay3 in the yl, y2 and y3
directions, respectively, and an arbitrary time step, 4t. The subscripts i, jJ,

k and superscript n are grid point indices associated with yl, y2, y3 and t,

respectively, and thus ¢2.j,k denotcs ¢(yi, yi. yi, t"). It is assumed that
the solution is known at the n level, t®, and is desired at the (n+l) level,
tn+1. At the risk of an occasional ambiguity, one or more of the subscripts
is frequently omitted, so that ¢n is equivalent to é?,j.k'

The numerical method employed is quite general and is formally derived for

systems of governing equations which have the following form:

OH(D Y31 = D(P) +5(P) (42)

where ¢ is a column vector coutaining £ dependent variables, H and S are

column vector functions of ¢, and :b is a column vector whose elements are
spatial differential operators which may be multidimensional. The generality
of Eq. (A2) allows the method to be developed concisely and permits various
extensions and modifications (e.g., noncartesian coordinate systems, turbulence
models) to be made more or less routinely, It should be emphasized, however,
that the Jacobian 3H/3¢ must usually be nomsingular if the ADI techniques as
applied to Eq. (A2) are to be valid. A necessary condition is that each
dependent variable appear in one or more of the governing equations as a time
derivative. An eiception would occur 1if for instance, a variable having no
time derivative also appeared in only one equation, so that this equation could
be decoupled from the iemaining equations and solved a posterjori by an alter-

nate method,
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The linearized difference npproximation is derived from the following
implicit time-difference replacement of Eq. (A2):

(H n+l -H" )/61 B[zw)nﬂ n+l]+(|_m[z(¢n)+sn] (A3)

n+l n+l

vhere, for example, H ). The form of D and the spatial differ-

= H($
encing are as yet unspecified. A parameter B(0 < g8 £ 1) has been introduced
80 as to permit a variable centering of the scheme in time. Equation (A3)
produces a backward difference formulation for 8 = 1 and a Crank-Nicolson
formulation for 8 = 1/2, '

The linearization is performed by a two-step process of expansion about

the known time level t" and subsequent approximation of the quantity

(3¢/3;)"A:, which arises from chain rule differentiation, by (¢n+1 - M. The
result is
M= 10+ on /0 g1 (4" -6M + o (an)? (hie)
s =g (as/06 )" ($" T -9 M +o(an)? (A4b)
n
D™ = D> +(a _‘b/d¢)(¢"+'-¢“)+o(m)2 (Ade)

The matrices 3H/3¢ and as/é¢ are standard Jacobians whose elements are defined,
for example, by (31/3¢) = 34 /3¢ . The operator elements of the matrix
afb/a¢ arc similarly orgcred i.e., (aIb/a¢) 3D /3¢r; however, the
intended meaning of the operator elements requircs sgme clarification. For

the qth row, the operation (32 /3¢) (¢n+1
(3/3t:b [¢(x,y,2,t)]} At is compuced and that all occurrences of (a¢,/ac)

arising from chain rule differcntiation are replaced by (¢“+l ¢ )/At.

[}

¢n) is understood to mean that

After linearization as in Eqs. (A4), Eq. (A3) becomes the following linear
implicit time-differenced scheme:
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(3H"70) "+ - ) 78t =D (M) +S" + B (3D /3y +3s"73B)pn+1-$") (AS)

Although W1

in Eq. (A3) introduces an error term of order At. A technique for maintaining

i8 linearized to second order in Eq. (A4), the division by At

formal second-order accuracy in the presence of nonlinear time derivatives 1is
discussed by McDonald and Briley (Ref. 7), however, a three-level scheme
results. Second-order temporal accuracy can also be obtained (for 8 = 1/2) by
a change in dependent variable to 5 Z H(¢), provided this is convenient, since
the nonlinear time derivative is then eliminated. The temporal accuracy
is independent of the spatial accuracy.

On examination, it can be seen that Eq. (AS) 1is linear in the quantity

ntl -'¢n) and that all other quantities are either known or evaluated at

(¢

the n level. Computationally, {t is convenient to solve Eq. (AS) for

(¢n+1 - ¢7) rather than ¢n+1. This both simplifies Eq. (AS) and reduces

roundoff errors, since it is presumably better to compute a small 0(At) change
in an 0(1) quantity than the quantity itself. To simplify the notation, a
new dependent variable ¢ defined by

! . ¢E¢_¢n (A6)

is introduced, and thus w“+1 = ¢n+1 - ¢n, and wn = 0. It is also convenient
to rewrite Eq. (A5) in the following simplified form:

(a+a12)¥"* = a1 [ (¢")+s"] (A7a)

wvhere the following symbols have been introduced to simplify the notation:
A= H" /0% ~Ba10sVag) (A7b)

L=-B(3 2D sp) (A7¢)

It 18 noted that .[(w) is a linear transformation and thus Z(0) = 0. Further-
more 1f .l’(¢) is linear, then .f(w) - -B.B(u;).
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Spatial differencing of Eq. (A7a) is accomplished simply by replacing
derivative operators such as a/ayi, 32/3y13y1 by corresponding finite
difference operators, Di' Di. Henceforth, it is assumed that 2 and £ have
been discretized in this manner, unless otherwise noted.

Before proceeding, some gencral observations seem appropriate. The
foregoing linearization technicue assumes only Taylor expandability, an assump-
tion already implicit in the use of a finite difference method, The governing
equations and boundary conditions are addressed directly as a system of coupled
nonlinear equations which collectively determine the solution. The approach
thus seems more natural than that of making ad hoc linearization and decoupling
approximations, as is often done in applying implicit schemes to coupled
and/or nonlinear partial differential equations. With the present approach,
it is not necessary to associate each governing equation and boundary condition
with a particular dependent variable and then to identify various 'nonlinear
coefficients" and "coupling terms" which must then be treated by lagging,
predictor~corrector techniques, or iteration. The Taylor expansion procedure
is analogous to that used in the generalized Newton~Raphson or quasi-
linearization methods for iterative solution of nonlinear systems by expansion
about a known current guess at the solution (e.g., Bellman & Kalaba, Ref. 54).
However, the concept of expanding about the previous time level apparently
had not been employed to produce a noniterative implicit time-dependent scheze
for coupled equations, wherein nonlinear terms are approximated to a level of
accuracy commensurate with that of the time differencing. The linearization
technique also permits the implicit treatment of coupled nonlinear boundary
conditions, such as stagnation pressure and enthalpy at subsonic inlet
boundaries, and in practice, this latter feature was found to be crucial to
the stability of the overall method (Ref. 17).
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APPENDIX B
Discretization of Model Equations

Herein we shall consider the system of model equations discussed in the

section on numerical experiments namely,

- B
Uy = Uy +Azuy+A5u+ Auw + AW +A, (B1)
where
A, =w, A, --02, Ag*a, Ay=-ale +sinwt),

Ag = weoswt(l-e V) + a?(e + sinwt) ,

and
Wy = Wy + Bzwy + Byw + B uw +B,u + B, (B2)
where
2
B, U, B, *-a, B, = a,

By * -adsinwt - ye"ay(Zy + Bsinwt),

Bg = wcosw! { yBye'uy + 8(l-e'ay)} + a®Ssinwt
- 2ye’ay { I-al2y +,lenwt)}

Since nonlinear terms wuy, uwy and uw appear in Eqs. (Bl) and (B2),

linearization is required. Two types of linearization procedures are described,

time linearization and Newton iteration (quasilinearization). The applicatién

of these methods within the Q-R operator framework is also demonstrated.
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Time Linearization

The nonlinear terms uw and wuy are linearized by the method described in
Appendix A to yleld

(wu, ™B . (BU"" + (- B)u ) +Bun "M Bw

(B3)
(uw)mﬁ - Bw"y™ 4 Buw 4 (1-28)w"" (B4)
where g = 1/2 corresponds to a Crank-Nicolson scheme and 8 = 1 to a fully
implicit method. .
Substituting Eqs, -(B3) and (B4) into (B1) we obtain
-1
QR
nsl_ n . n+l - n
(W -u")zAt e [,Bu +(1-B)u ]
[Bwn N+ +ﬁUn nH o (I-ZB)unw"]
As[ Bwnfl "’“‘B)Wn] +A + Bun n+| Bwnuyn
which, with some rearrangement, reduces to
{ [_B -Ayz(Asw")] -R} L Ay o{u + AU +A6}w""
i 2 (1-283) n (1-B) n
- _ + (B5)
Q[)‘ﬁ+Ay(A3 3 A5w)+ B Riu .

where
A= At/Ay?

and Q and R are evaluated at the ath time level.
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Similarly, Eq. (B2) reduces to

{ .

{O[m - Ayz(asu")] -R}w""I - Ay2Q w;‘ +8,w" + 8 | u™
(1-28) (1-8)
—_— 2 n e n
J[XB A(3+ 2 asu)] 3 Rlw (B6)
(1-8) B
+ Ay%Q ﬁﬁ asu" + —B’- -u“w;‘

Equations (B5) and (B6) are solved as a coupled (2 x 2 block) system for un+1

and wn+1.

Newton Iteration

Alternatively one can linearize about a previous {teration instead of the

previous time level, to yield for the nonlinear tern (wuy)n+B for example,

(wuy)mﬁ . [ B + Bu-B)w" ] el +[ zuy* + B(I-B)uyn]w

B7
[“ B)2" " _Bzw*uy*] (87)

Substituting Eq. (B7) in Eq. (Bl) the quasilinear approximation becomes

R (Q°'R
(™' -u"/at - Ty-a—)[ﬁ"" + (1-B)u"]

+ Ag[(BW" + (1= BIWMBU™ + (Bu*+(1- BYu) Bu™!
+(1-8) 2w - Btw* + AG[BW"” + (I-B)w"]
+ A +[ﬁu +0-Bu)] Bu™ - [Buy + (1-Brul] B

1
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vhich after some manipulation reduces to

| .
{O v Ayz(As(Bw*+ (I-B)w"))] - R} u™!

- by {a,(Bu*+ (1-B)u™) + A  + (But +U -BuM}w™

(1-8) 4 n (28)

-{O[—:‘E + Ay? “-:) (As(l-B)w")] + —— R?tU

B

(-8

3 Aswn - B'Asu*w*— (Buy“ + (I-,B)u;)w’}

A
+ AyZQ{TT +

Here Q and R are assumed to be evaluated at (n+3). A similar expression

can be obtained for Eq. (B2), viz.,

{o[ 7% - By?(B,(Bu" - (18] - R}w™

- 8y%Q {85(Bw* +(-BIw") +8; +(BwS] +(l-,8)w;')} THAL
(B9)

-fo[ 55 + ov° %ﬁ’(as(n-ﬁ)u“)] + L8 g}yr

(1-B)

+Ay20{fﬂl t—3

Beu" - Bgu"w"- (Buyt + (1-Bw,) '}

’ ’ * *
Equations (B8) and (B9) are solved as a coupled system for u and w , the

latest iterants. The coefficients and the Q and R operators are updated, and

the system of equations is solved again., The process is continued until con-
vergence is attained. The process involves :

1. updating the coefficients AZ - A, and B, - B

7 2" 5
2, updating the O and R operators,
3. solving the resulting 2 x 2 block systen,

4. repeating steps 1-3 until convergence is attained.
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[ Note that Eqs. (B5), (B6), (B8) and (B9) can easily be transformed to increment
form. However, the results in this report were obtained for the form of the

equations given above.
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TABLE 1. - OPERATOR COEFFICIENTS FOR STANDARD
OPERATOR COMPACT IMPLICIT SCHEME

0
»

6 - Spy +2p)4 - P)Pu

» Ql = 60 + |6Pl’| - lGPl-' - 4Pl'|P!0l

L0
[ ]

6 + Spy = 2P - PP}y

rl " ql (l- —-32—-,)]_.') + qlc(l - ‘—|2' Pl) + q,’(l + _'é—Pl*') + hzq"C).'

LR VIR UTRENU

ot = o (e gppa) + a1+ ay) + o (14 Fp ) 40,

where

Py = hby
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P TABLE II. - OPERATOR COEFFICIENTS FOR GENERALIZED
e ‘ OPERATOR COMPACT IMPLICIT SCHEME 0OCI-G2
a = 6+[p,-3]re) + [0, ]re}
T c 2 3
aj » 60 +[10p,Je, + [, ]e] + () pa]me)
2
q) -6 +[pl+3]RC] + [p|+p2]Rc] + [p"]Rcf
where
p,* 3, P, =0, Py -max[-rr',-rrz]
. e (v T e, T TP v, Ty e 15 -2p,+ (a’z-l)pz-3(rj,l+a’2) + 7,
0 0,20 - o] 2p,-0,20
— 7 =
! %a,zuo “Tju~Tp) 020 z (2p,- 0'2)2/8 2p,~0, <0
(r)=7y0) CJ-t
o %p +3+ _‘L—L—:o-rl,,- = 20, * 31, = 1), +10+ 2hy (L)
J-1
] -1 - €)1
Py '-5-[!4‘1']”] L 'rrs-ps-'rr'+'rr.4-2‘t‘l.|(2'0'h——-bj )pz
-1
with h sufficiently small éo that
lObj-b,.,--bj,l >0 ond hc],,/bw<2 for =2, Jand c]sO
vhere
* T’_l - b"l/bj ) T,ﬂ L bj’l/b] and RC‘ - hb]
- ’ r], rg, r} given in .'I‘ABLE‘ 1
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TABLE I1i. - OPERATOR COEFFICIENTS FOR GENERALIZED
OPERATOR COMPACT IMPLICIT SCHEME OCI-Gl

q,"vc"’ - Qo'vct" + Q",C.* + Qa""c.‘ + Q;,.Cn’

C - .0
Q5 =60 ,Qp = Qg =6

Q‘: = 16(p*+p7)

¢ -
-_QL-Q.:(P° . )
9 " 70 "%\12" 150 " 75
[ -
o..9.1_+oc(i_.f_-3_’_’:)
Q 75 *%\7z "T50 " s

Q, =min(p ,pu,)

L
6

*

c - cc + - -
Q, " w, =20, -—=(-20/p +0Q,p -1Q p")

+ - LY -a" - + ¢
Q) =Q; + 6.(o|p 207p 20|p)

Q. =0

s = {uy + 530707 000" + 05t ]} /04 ptrp®

[o]
L
[

c c
05 p/p’
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where

TABLE III. - CONTINUED

wy * min(/“:; v/""q)

wy O

TRl (Ol")2

c
c

Q
pe = (@2 - —I%— (o, P - 20,7p" - 20/p*)

Fy "

1278

5 _ 2
2408 [%Qlc - 0:( g * llgof’ " |3(’)0P’)]

! - - 1 -
Ta0 (O:pc-olp -0t /[pF - w5 tpt +o7)]

+4(p*+p~+ 250, - Qg
| c - -
'-8"[('20l pc + Q:’p_‘ = NnQ~p7)

2P
v (0,f° - 207 p" - 20p")]

with h sufficiently small so that

3

iOb, - bj" - bj‘l > 0

., rg. r'; cocfficients are given in TABLE I
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TABLE IV. - OPERATOR COEFFICIENTS FOR EL-MISTIKAWY WERLE
EXPONENTIAL BOX SCHEME

ry = prexp(-p7) / [l-exp(-p‘)]
. p’/[l-exp(-p’)]

r‘c = =l )

af * (1-7[)/(2p7)

a) = (rf -1 /(2p%)

QT . ql- + QF

where

- | |
Pr et ) s P e+ ppa)

and

Py = hby
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TABLE V. - COMPARISON OF CONVERGENCE RATES FOR

CONSTANT COEFFICIENT PRCBLEM

Scheme Jmax Rc Max error Rate
10 .100 -.576 E-07
3.99
0CI-Gl1 20 .050 ~.363 E-08
3.99
40 .025 ~.229 E-09
10 .100 -.105 E-06
. 3.93
0CI-G2 20 .050 -.687 E-08
3.91
40 .025 -.438 E-09
10 .100 .101 E-03 2.01
CBS-COL 20 .050 .251 E-04 2.00
40 .025 .629 E-05
10 .100 -.163 E-07 3.97
QBS-COL 20 .050 -.104 E-08 3.99
40 .025 -.656 E-10
10 .100 ~.296 E-05 3.97
CBS-GAL 20 .050 -.189 E-06 3.99
40 .025 -.119 E-07
73
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TABLE VI, - COMPARISON OF SPATIAL ERRORS FOR
CONSTANT COEFFICIENT PROBLEM

Scheme Jmax Re Max error Comment
CBS-CAL1 40 2 -.158 E+01 Oscillatory
QBS-COL 40 2 -.484 E-03 Oscillatory
0CI-Gl 40 2 -.162 E-01 Mornotone
0CI-G2 40 2 -.863 E-02 Monotone
cBs-caL! 20 4 -.145 E+01 Oscillatory
QBS~-COL 20 4 .612 E-01 Oscillatory
0CI-G1 20 4 ~-.586 E-01 Monotone
0CI-G2 20 4 -.127 E-01 Monotone
CBS~-GAL 10 8 -.136 E+01 Oscillatory
QBS-COL 10 8 .288 E+02 Oscillatory
0C1-Gl1 10 8 -.561 E-01 Monotone
OCI-G2 10 8 -.425 E-02 Monotone

1Col]ocation at x=0 used.
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TABLE VII. - SOLUTION PROFILES FOR CONSTANT
COEFFICIENT PROBLEM - Rc = 10

Y poyem

X Exact Solution Computed Solution

(qBS-COL) (cs-caL)! (0CI-G2)
0.0 | O. 0. 0. 0.
0.1 .999955 E+00 +.374802 E+00 .118628 E+01 .997532 E+00
0.2 .959999 E+00 .304662 E+01 .965301 E+00 »999994 E+00
0.3 .100000 E+01 .311375 E-01 .100646 E+01 2999999 E+00
0.4 .100000 E+01 .251958 E+01 .998796 E+00 .100000 E+01
0.5 .100000 E+01 .476597 E+00 .100022 E+01 .100000 E+01
0.6 .100000 E+01 .215299 E+01 .999958 E+00 .100000 E+01
0.7 .100000 E+01 .778851 E+00 .100001 E+01 .100000 E+01
0.8 .100000 E+01 .189431 E+01 .99999% E+00 .100000 E+01
0.9 .100000 E+01 .107440 E+01 .100000 E+01 .100000 E+01
1.0 .100000 E+01 .100000 E+01 .100000 E+01 .100000 E+01
1I-:xact derivative at x = 0 set.

75




-9~ S

_— - e s Ty 0 a2 mhand A i AN
e (
anet
bt
'.
: TABLE VIII. -~ COMPARISON OF RUNNING TIMES FOR
3 BURGERS EQUATION - v = 1/16
-
. Scheme Jmax Max error Running time1
N (sec)
: 50 .336 E-02 .016
B Allen 100 .828 E-03 .028
: Exponential
- 150 .367 E-03 .043
50 .260 E-03 .032
“ CBS-CAL 100 .155 E-04 .042
: 150 .297 E-05 .053
50 404 E-04 .078
QBS~COL 100 -.346 E-05 .118
150 ~=.679 E-06 .157
50 .242 E-03 .025
0CI-G1 100 .150 E-04 .044
150 .298 E-05 . .064
50 ~-.696 E~-04 ,016
. 0CI-G2 100 -.656 E-05 .031
- 150 -.148 E-05 044
ﬁ_ 1CPU'time on CHC 7600 - excludes input/output.
5
vl
1
l;
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TABLE IX. - COMPARISON OF SPATIAL ERRORS FOR

BURGERS EQUATION =~ v = 1/24

Scﬁeme Jmax Rc max Max error Comment
Allen 25 2.4 .182 E~01 Monotone
E1-Mistikawy 25 2.4 -.213 E-01 Monotone
Werle
CBS-GAL 25 2.4 .242 E-02 Oscillations
QBS-COL 25 2.4 .243 E-02 Oscillations
0CI-Gl 25 2.4 .438 E~-02 Monotone
0CI-G2 25 2.4 .872 E-03 Monotone
Allen 50 1.2 -.814 E~-02 Monotone
El-Histikawy 50 1.2 ~.758 E-02 Monotone
Werle
CBS-~GAL 50 1.2 -.800 E-03 Monotone
QBS-COL 50 1.2 .392 E-03 Monotone
0CI-Gl 50 1.2 .123 E-02 Monotone
0CI-G2 50 1.2 -.279 E-03 Monotone
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Figure 1. - Cross flow velocity profiles as a function of time.
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