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Abstract

In this paper we deal with the problem of diffraction of electromagnetic waves by
a periodic nterface between two materials. This corresponds Lo a guasi-periodic
boundary value problem for Llelmholiz equation. We prove that solutions behave
analytically with respect to variations of the interface. The interest of this result
i3 both theoretical - the legitimacy of power serics expansions in the paramebers of
the problem has indecd been questioned-- and, perhaps more importantly, practical:
we have found that the solution can be compuied on the basis of Lhis observalion.
The simple algorithm that results from such boundary variations is described. To

establish the properiy of analyticity of the solution for the graling
folx) = 6f(x)

with respect to Lhe height 6 we present a holomerphic formulation of the problem
using surface polentials,. We show that the densities entering in the potential theo-
retic formulation are analytic with respeet to variations of the boundary, or, in other
words, that the integral operator that results from the transmission conditions at the
interface is invertible in a space of holomorphic functions of the variables (%, 6).
This permits us to conclude, in particular, that the partial desivatives of v with re-
spect to & at § = 0 satisfy certain boundary value problems for Helraholtz equation,

in regions with plane boundaries, which can be solved in closcd form.
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1 Introduction

In this paper we deal with the problem of diffraction of electromagnetic waves by
a periodic interface between two materials. This corresponds to a quasi-periodic
boundary value problem for Helmholtz equation. Our main theorem states that so-
lutions behave analytically with respect to variations of th.-;: interface. The interest
of this result is both theoretical -the legitimacy of power series expansions in the
parameters of the problem has indeed been questioned~ and, perhaps more impor-
tantly, practical: we have found that the solution can be computed on the basis
of this observation. The simple algorithm that results from such boundary varia-
tions will be briefly described in section 3. A detailed investigation of its interesting
numerical properties together with some necessary refinements will be presented
elsewhere. Here we concentrate on the theoretical aspects of our approach, which

we treat by varying the boundary into the complex domain.

Beginning with the famous study by Lord Rayleigh {10], the diffraction problem
we consider has been extensively studied in the literature (see [1,15,9) and the ref-
erences contained therein), Various methods based on Rayleigh expansions, ODE's
and integral equations have been proposed. OQur approach yields, in particulaz, a
power series representation for the solution about the flat interface, whick is rem-
iniscent of the work of Meecham [7]. Meecham used an iterated kernel to obtain
an expansion whose first term is a well known approximation due to Kirchoff. This
expansion does have a power—series like behavior (it is dominated by a geometric
series) but it is not a power series. Unlike ours, its n-th term is given by the iter-
ated integrals of a Neumann series which depend on the height of the grating in a
complicated fashion, and which have not been used to evaluate the solution numer-

ically. Meecham’s expansion was criticized by Uretsky [13], who conjectured that



the solution for the sinusoidal profile does nob continue analytically to the one for

the fiat interface, in clear disagreement with the results we present.

To establish the property of analyticity of the solution for the graling

fi{x) = éf(z)

with respect to the height & we present a holomorphie formulation of the probiem
using surface potentials. We show that the densities entering in the potential theo-
retic formulation are analytic with respect to variations of the boundary, or, in other
words, that the integral operator that resulls from the lransmission condilions at the
interface is invertible in a space of holomorphic functions of the variables (z,y,4).
Once the densities have been shown to be analytic, we proceed to generalize a result
of Millar [8], and show that for sufficiently small §, the function u(w,y,§) extends
ana.lyti'cal]y for (z,y) on a seb W = {y > yo}, yo < 0. This permits us to conclude
that the partial derivatives of u with respect to & at & = 0 salisfy certain boundary
value problems for Helmholtz equation, in regions with plane boundaries, which can

be solved in closed form.

2 Preliminaries

2.1 The Helmholtz equation

Consider an interface P between either two dielectrics or a dielectric and a perfect
conductor. In the rectangular coordinate system (z,y, z) the surface will be assumed
to be given by

y = f(=)
for a certain periodic function f. Let L denote the period of f, and assume the

regions ¥ and 2~ above and below the grating f arve filled with materials of di-
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electric constants e¥ and ¢ Tespectively. Alternatively, one can consider the case

in which the region Q7 is filled by a perfect conductor.
Assume the grating s illuminated by a monochromatic plane wave
B = Aeiem=iy (=it
[ = Belor—ifygl=iut)

-

Here, the complex amplitude vector A is perpendicular to the wave vector k =

(&, ~B,0), and B = E<L. The permeability of both dielectrics is assumed to be

equal to g, the permeability of vacuum,

The incident wave (:'f", ﬁ") will be diffracted by the grating. In the case of a

grating between lwo dielectrics, the total fields will be given by
Bor = i 4 e
e = [ Jrel (1)
in the region % and by
E‘efam - ﬁre_{r
fown . fjre )

in the region . In the case that O is filled by a dielectric and 27 is filled by a
perfect conductor, the electromagnetic field is given by (1) in 0, and it vanishes in
0.

Dropping the factor =™, the incident, diffracted and total fields satisly the time

harmonic Maxwell equations

fojr:iw;mﬁ , V*EZO,
Vxfi=—iwelf , V-H=0, (3)
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where ¢ = ¢¥ in the regions 2%, respectively. Furthermore, across Lhe interface the

total field satisfies
nx (B — E%*ny =0 , nx (H* — H*") =0 ony = f(a) , (1)
where n is the unit 116rma.1 vector to the interface.

The periodicity of the interface together with the form of the incident wave imply
that the physical solutions & and H must be a quasi-periodic, i.e. E(a: + L,y) =
ol f(z,y) and H(z-+L,y) = sl [ (2, ). Furthermore, because the fields £, i are
independent of z, the system ol cquations (3),(4) can be reduced to pairs of equations
for a single unknown (sce [6]). Exphcitly, if i = (£, E, ;) and B = (Hy, dl,, 1,)

solve equations (3), then the pairs of voctor fields

(0,0, 2.}, (M. H,0) and
(Lz, By, 0), (0,0,11,)

are also solulions. Moreover, the components of the fields in the zy-plane can be

computed from the transverse components by using the relations

L O,
o= L OB 1 Ok

. E ] . i
w3y v Wity O

and
E, = __]_E}Hz P o= __l_r?f:h

3 e W - .
we dy Y awe B

Then, the o quasi-periodic Minction u{wx,y) equal to cither E, (Field Transverse

Electric, TE) or A, (Field Transverse Magnetic, TM), is easily scen to satisfy, m

either case, the Helmbholtz equation
Au+ (AE)Pu=0, nQF, (5)

where k% = w+/uoet. The boundary conditions {4} are then translated into Dirich-

let, Neumann, or transmission conditions for the unknown u in the following way:
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(1) Dielectric-Perfect Conductor interface: TE maode.
Here u = £7°/! and the boundary conditions become

u = =R on oy = f(z). (6)

(ii) Dielectric-Perfect Conductor interface: TM mode.

In this case u = {7/ and the condition is

0 0 e
-E}-E _ u%(ﬂ:am—iﬁy) , on Y == f{ﬂ;), (?]

(iii) Interface between two diclectrics: TH mode.

We lot wt = ET90 u~ = 27°" and the conditions at the interface become
wt - u” = =g oy gy = f(a),
dut  Bu” d  iazei
- _ e E 31 e -
— e = e [ o1y o= rl. ]
dn dn c:?n( Vs y = Jla) (8)

(iv) Interface belween two dielectrics: TM mode.

Hete ut and u~ are delined as in (iii) and the transmission conditions take

the form

wt oy o =B on oy = f(a),
ut 1 Bu” O, ingei
o PN L plaw=ify w= fl:
dn vi On 5?1{L ) o ony = fla), (9)

where
, € E\°
i=%=(5) (1)
2.2 The Rayleigh Expansion and the Radiation Condition

The Helrmholtz equation (3) ceupled with any one of the boundary conditions {6)-(9)

are not sufficient to determine the fields duc to the lack of conditions at y = oo.

[uba }



However, the physics of the problem imposes obvious conditions as y — oo, namely
that the diffracted field u remain bounded and that it should be representable as a

superposition of oulgoing waves.

To make this statement more precise, set

2 : iy
K = —E Cap=a+nk ol 4 (85 = ()7, (1)

o

H

where 4% is determined by S(87) > Qor g% > 0. Any quasi-periodic sotution of the
Helmboltz equation raust be a superposition of waves, as indicated by the [ollowing

elementary lemma.

Lemma 1 (Rayleigh Expansion)

Assume that

Lt st k(o %[{) , kT (a4 n.ff) (12)

for all integers n. Then any ¢ quasi-periodic solulion lo the Helmholtz equation in

the region QF is given, for y = yy = max f, by

[wa] [as)
4 _ + _I:'r'r,‘.r:»ﬂii+ + frep b ;i'
' = E AL Pivae 3" Ble By, (13)
Thiss w120 TL= — 3D

Analogously, any solition u™ to the Helmholt: equalion in Q7 is given, fory <y, =

min f, by
(as] Le]
u = Z .4;{;!Idna:--lﬁnﬂ + Z B:e:ana:—f-;ﬁn v (]4}
TEom — o0 ji il sl

The case &£ = £({a4-nK), which corresponds to physically anomalous hehavior first
observed by Wood [16,11], will not be considered here as we shall always assume

relation (12) to hold.

Now, the physical conditions lead us Lo the following definilion [9].



Definition 1 A solution u of {5) in QF is said to verify a radialion condiion ot
infinity if
AY =0 foralln , B =0 foralln. (15)

TL

3 A formula for the solution

Besides its theoretical interest, our investigation of the propertics of analyticity of
u is motivated by its application to the numerical computalion ol the solution.
In this section we describe the straightforward algorithm for the evaluation of the
solution that results from the variation of the bonndary. We start by considering
diffraction problems for gratings with variable “height”. The anaiytic dependence of
the diffracted field on the height of the grating allows us Lo expand it in a power scries
whose coefficients can be compuied by solving (recursively) diffraction problems for
a flat interface (i.e. “zero height”). The fact that these cocllicients can indeed be
computed in this manner is a consequence of, as well as a further motivation for

proving, the reselts in seclions 4-7.

Let us first consider the TE mode of polarization for the diflraction problem in
the case in which 2~ is filled by a perfect conductor, i.e. problem (5),(6). Let f(w)

be an L-periodic function and set
fola) = &f ().

Then if u(a,v,6), y > f5(), denotes the reflected ficld for the grating f5(x), we
have from (6)

uiz, 6f(2),6) = —~uilw, 0 f(x)) = —gron—iiile) (16)
In order to represent the solution as a power scries in & around § = 0, we shall

compute the successive {otal 5-derivatives of Lhe equation (16} and recursivety find

{



the partial 6-derivatives of u at y = 0, & = 0. From (16) we oblain

Lot (=) e SR O (10
mé—g;(:n,ﬂ,ﬂ)—-” - flz)"e *é(n_k}layn-—k Ll Ak (2,0,0). (17)

Once these boundary values are known, the [unction

ERALTIRA) (13)
is readily obtained using the fact that it is an @ quasi-periodic sotution of Helmholtz
equation in {y > 0} (consisting of outgoing waves). Thus, its partial y-derivatives
can be computed and we can proceed to evaluaie the succossive é-derivatives using
the relation (17). The problem for the grating f5 can therelore be handled by solving

diffraction problems in the upper half-plane, the solution of which is immediate (e.g.

the representation (13) is valid up to the boundary).

For the case of a perfect conductor in T'M mode {Neumann boundary conditions)
equation (17) is replaced by

a (1o I ¢ | _ _ _
55 (E;—ﬁg) (3":0;0) = —— mn(—-a;:-?)l”“‘i(f’(;r:)f(m)ﬂ---l) _ (v_‘.:aﬁ}ﬂ--i'lj.{m)ﬂ)] L

1l

nel [ prf . Amk)=1y ek "
(f f-’bjf(“:){ } ) d _1_!? wy
2 TR TEST eapt \kgw ) =00

=0

ot (ir}n_k grektl 1 DRy
— Z (Tl — nli-')! "-Byr:b--k-i-l (I:]. ‘:-)5];) (.T! U,{)}; (19)

k==t
which follows upon differentiation of equation (7) n times with respect to 4. Anal-
ogous relations can be derived from (8) and (9) to treat the case of two dielectrics

(cf. (67), (68)).

As can be seen from formulas (17) and (19), the implementalion of a numerical
method based on variation of the boundary is extremely simple. A [uture paper will

address the convergence properties of the induced numerical scheme.
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4 The fundamental solution and its dependence
on the parameters of the problem

Tt is well known (see e.g. [12] Ch. 4) that a [undamental solulion for the two-

dimensional Helmoltz operator A + k* is given by
z .
by, y) = E;‘fé”{k[(a:,y{]])

where H{"(2) is the first Hankel function of order zero and [(x,y)| = va*+¢*
Thus [13,3], an @ quasi-periodic fundamental solution is obtained by the formula
()

z e_—z'rxﬂb{;;{ﬁﬂ(k!(m+”L?y)|}. (2[])

==

!

ACES.

This section is devoted to the study of the convergence properties of Lhe series (20).
The results that follow will be used in section 6 to deal with the operalors involved
in the integral formulation of the problem, when viewed as operalors belween spaces

of holomorphic functions.

Let us define a regular part of Gy as the series

Felo) =7 3 e EHP Bl 4 nLyy)) (21)
nE—-1,0,1

whose terms are well-defined for (z,y) € B = {{z,y) € €* : -, -7 < Rz) <

L4y, |S()] < -‘%, 1S ()] < -‘% } for somie small v > 0.

. ' o . .
Theorem 1 The series in (21) converges uniformly for (z,y, k) in compact subsels

of B x K where

K={keC Sk} 20, k#0and k5 Lo, V). (22)



In order to prove Theorem 1 we need the following lemma. Let s and g be
complex valued functions of bounded variation defined on the interval [0,1] C R
such that

s(t), w{t) — 0as £ — .
Wrile
s(8) = a(t) -+ H1)

pt) = elt)+d(0) (23)
where the real and imaginary parts of a, b, ¢ and d are monotone functions of ¢ and

R(a), S(a) 70 , R, S L0,
Rie), S(e)T0 , R(d),3(d) L 0. (24)

Lemma 2 Lel
ry = (nd =) + 5() (25)
T

with $(A) 2 0, A+ 2ni { €7), r € C and s defined as above. Then,
(i) there czists a constant (7 such that

N
ST e <O forall N 21

n=l

(1) If po = p(2) then lhe series

120

Y e (26)

n=1

CONVETYES.

(ii1) If s and p depend on an additional paremeter N € B and the converyence
in (24) is uniform for A € I C RP, then lhe convergener of the series (26} is

uniform for A€ 1.

10



Proof: Because of {24) we may assume, without loss of generality, that the real and

imaginary parts of a, b, ¢ and d lie in the interval [—£,Z]. We shall show that if

N
|z gAn=rit | < A for all ¥

n=1

and ¢, € Ror tey € [—3, 7] with ¢, =D monotonically, dhen

N
Y gilAn—ritmten) < 3 M max{l,]e®|) for all N. {27)

=1

Repeated application of this fact together with the decomposition {23) yield (i),

gince one has
‘}t:l"‘r(?:'

N
i An=r =
|§/;‘-°'{l }IS]__ﬂm'

=1

To establish (27) we nse Abel’s summation formula

J"v:_‘ N=1 n .}"
S ktin = 3 (D08 (e = fingr) +iin 3K (28)
n=1 naml a1 =1

and compute

IJN 2= L ("{ Arn=r)tyntben — z l‘nc'n
(=S n=)
N=l n i
—t ==
= L Z rj f,-. - EE“+I "F' 6EN E...' l‘\J
n=l j=i ge=

where ', = ¢/An-rHwm  The real and imaginary parts ol the Dp's are sums or

differences ol quantities of the form

N

1 le« (g(en) ~ glensr)) + glen) PP T5), (29)
n=1

3=1
where P(z) stands for the real or imaginary parts of =, and g(z) is either sin{S(z))
or cos{S(z)) i 2 is purely imaginary, and it equals ¢* if = is real. The absolute value

of {29) is less than
N=-1

S Miglen) = gleap)t + lyleadl M.

n=I|

bl



Since ¢, € R or ic, € [—£, %], the sequence {g(e.)} is monotone, and the last
quantity equals
M {(lg(er) — glew)] + lglen)l}-

This, in turn, is srualler than

3M maxfg(cn )|

and (27) follows. Statement (ii) follows from (i) and {28) by considering the decom-
position (23}. Finally, under the assumptions in (iil) the above argnment is easily

seen to be uniform in A. The proof of the lemma is now compiete.

Remark 1 ; The hypothesis on s and p in the previows lemma cannol be dropped.

For example, the series

e

]' iry

. - Ll
with ry, = nr + LJ-]IE does nol converge,

FIL]
We now turn to the prool of the theorem.,

Proof of Theorem 1: The prool is based on Lemma 2 and the lollowing

asymptotic lormula (see [14];p. 197):

9NE . . 2l
9= () w0 (r0(t) womm w0

Tz

We shall only prove thal the part of the series in (21) wiibh n 2 2 converges
uniformly for (@, y, &) in compact subsels of 8 x K, since the parl with n < —2 15

handled in a similar way. Turthermore, by {30) it suflices to show Lhat the series

{:,_i{kﬂn—um LY

converges uniformly, where p, = ((x + nL}* +5°)3.

12



Define

and notice that p(t), as well as p(¢)'* are well defined in B for t € {0,3] {provided

v is small enough).

Now, the funclions

f fy?
s(e,y kt) = kp(t) — Mo+ =) = - :
S () = M !'r) (z+ 52+ 3207 +(z+2)

ane
1

pl g by b)) = s
\/.f:p(i)

are smooth functions of ¢ and vanish for £ == 0. ln particular, they are funclions of

bounded variation. Furthermore, wo have
[
kpn — ands =0k - o) 4 k- s(~)
T

and the condition & # do, tells us thai A == (&~ o) ¢ 272, Thevelore Temma 2

can be applied, and the theorem follows. .

[t is well known [9] that a fundamental solution of (3) is given by
e il
o 8 “_ fopa
21

¢
H= e n

|3ﬂ.
To end this section we show that this fundamental solution is equal lo &) (see

also {3]).

Theorem 2 Let {(nf,0) £ (2,y) € R* (n € Z) and lel k& K. Then,

i W it Wl
Golw y) = — e 3t
|‘ ( & } ng n___z‘,_co lt?.“ ( }

The series in (31] converges uniformly in compact scls bul it cannot be termwise

differentiated with respect to y at ¥ = 0.

13



Proof: First assume that ${k) > 0. Then, by (30), il k= a -4

1
b o
2 ﬁ:{kpu—--?-] 140 (_}—)
?rkpn \kﬂu

= ¢ [(kpa)

fl

1M (kpy)

where | f(kp,)] < 1 for 0 < 2 < L provided |y] is sufficiently large. 1t follows that

|Gz, )| — 0 as y — Foo uniformly for x € [0, L]. (32}

Let 5 0 and consider
Filw,y) = e™Gila, y)

which is a periodic function of 2. Its n-th Fourier coefliciont is then given by

l i o Lo
tn(y) = T ﬁ :.“-”w"'Gk[::?:,jr;]r:_mfm:'!3:.-
e

Since (), 14 a lundamental solution of (3) it lollows Lhat a, satisfies
t e | 1 5 3
“'n. -|.- er:ra?l e '—Tc (-y) ('3’])

where 6(+) is the Dirac measurc. lu particular using (32), we conclude

b oiPny .f [T
v bale if y >0,
an(y) = { @ u= By g y <0

i b

for some constants @ and «;. Now equation (33) can only be satisfied if

1 _ ¢

LT
therehy completing the proof for the case S(&) > 0.

Since £ ¢ Z we can apply Lemma 2 to conclude thal the series in the right hand

side of (31) converges uniformly on compact subsets of {$ €7, y € R,

[4



k0, ¥(k) >0, k # Le,) and is therefore a contintous {unction of (z,y, k). Since
we know that for S(k) > 0 the equality in (31) holds, and since (¢ i3 also continuous
in k, it follows thal the equality remains valid for (k) = 0 (away [rom the “Wood

anomalies”, k = %o, ).

5 Uniqueness results

Several uniquencss results for the problem of diffraction by & periodic grating are
known, but the list of such resulls is still, regrettably, incornplete {15}, Uniqueness
for the TE case of polarization when one of the malerials is perfectly conducting
was proved in [1,2], while the result for the TM mode (% @ R) can he found iu [2].
This last paper also contains a proof of uniquencss for the diffracted field belween

two dielectrics, in TE mode with &* € R.

Tn this section we present an additional elementary unigueness resuit, We shall
show that equation (5) with condition (8) or {$) admits a wnique solubion verifying
the radiation condition {15), provided the imaginary parl of one of the dielectric
constants is positive. We will Lreat both the T and TM modes simualtaneously,

and for this we write (8) and (9) as the single pair of conditions

wt —u= = Fz) , on y= f(2),

dut . T _
— (o= = {{m = n 3
o = s on g = f@), (31)
where
e _ ¢ Ry
Pyom g™ Ry = (o) . (35)
l‘}” ) ':J.:j{'u:}
and
o= 1 for TE polarizalion, o
07 5 for TM polarization. (36)
n



We shall [urther write

b= kY so that &7 = ko, (3?)

and assume Lhal

. o E . .
k is real and vy has posilive imaginary part. (38)
2

Since »¢ has a positive imaginary part, it is clear that Lhe expansion (14) for u~

contains only evanescent modes. In other words, if
UF e {n: gt >0

then U™ s emply.

We will need the following two lemmas (see also [1,2]), the first of which results

from a simple calculation.

Lemma 3 Assume v is @ solution lo (5) verifying the radiation conditions as in

Definition 1. Then, if 1> ya, we heve

———

(jgff?ﬁ(u;,fj-%(a;,f)dz: - M"’{m‘f}%(ﬁ,ﬂd:ﬂ) =

Secirt B | BE (39)

Lemma 4 Let 1t = u® be a solution to (5) salisfying {15) and (3]) with Iy = Fr =

0. Then BF =0 fornc UF

Proof: Trom (5) we have

--—2:&?:2‘1?((}014"}3)f [u™ [fdz =

a-niyl<t)
/ (wtAut — wt Xut)de + ] (Cottl™ Au~ — Core™ Au~)dz.
arn{ly|<i} <}

10



Because of the boundary conditions in (34), integration by parts shows that this

equality now yields, for [ large enough,

_9-L2 2 -2 —
2%k S(Cord) L BN
L _au"' u+ _au —_—
+ = + .m___ L
[fn o~ } [f (Cou Cou™ Ey Yo »

As | — oo, the last integral drops out, since u~ decays to zero. By the previous

lemma, the first integral equals 2¢L 3, cp+ 87 | BY |?, so that, as | ~» co we obtain

—2%RS(Cor?) / lw Pde=2%L S 8| B P.
nellt
Since B is positive for n € U*, we conclude that B} = 0 for n € UT as claimed.

Finally we establish the following uniqueness result.

Theorem 3 Let u* be a solution of (5) (with X((k~)*) > 0) satisfying the radiation

conditions and the transmission conditions (84) with Fy = Fy =0. Thenu =0,

Proof: We first show that u= = 0, From Lemma 4 and the fact that S8, > 0 we
know that u* and a_;;_ tend to zero exponentially as y — £oo. Then, integration

by parts in O and O yield, respectively,

—out
T w8 + |2 _ + |2
/;,:;( ey do =k j;ﬁ lut |* dedy .[04- | Vut |* dzdy, (40)

and

an
Using the boundary conditions on y = f(z), we see that the left hand sides in (40)

—Ou~ o - i
cofy%)u Sdo=Co [ |Vu [ dady~ Coksd [ |u” [Fdady. (41

and {41) coincide, so that we have

k2L+|u+ |2dxdy-—£1+|'{7'u+|2da:dy =

C /Q |V fdedy — Cok? fﬂ | Pdedy. (42)

17



The imaginary part of the right hand side in (42} equals
— (k) jﬂ |4 [Fdedy if Ca=1

and

1 . | 1
S‘(;g)jﬂ_PVu [? dzdy if Co=.

U

Since the left hand side in (42} is real and the imaginary part of  is positive, we
conclude, in any case, that #~ is constant. Since u~ decays to zero as § — —o0, we
see that
u” =0. : (43)
Finally, it follows from (43) and the boundary conditions in (34) that
+

u+=%=ﬂony=f(m]

and therefore, u* =0,

6 Complex analytic formulation via surface po-
tentials '

In this section, we establish that the operator that results from the potential theo-
retic formulation of the diffraction problem is compact in a space of analytic func-
tions. This will be used in the next section to show that, given an L-periodic and
analytic interface f(z), the solution u(w,y,8) corresponding to the grating éf(z)

can be extended holomorphically to complex values of (z,y, §).

In subsection 6.1 we study the kernels entering the integral equations. In 6.2
we show that the logarithmic branch point in the kernels is not an obstacle for 2
holemorphic formulation of the problem. This complex analytic setup fogether with

the main compactness result are presented in subsection 6.3. For the sake of brevity,
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we will deal only with the case of two dielectric materials, since the simpler case of

a dielectric and a perfect conductor can be treated in a similar way.

6.1 Integral equations

We seek a solution u* in the form

u+($1915) = ‘S&I—(P)'l“D;—(HJs
w38 = S50+ 5 D5) (14

where the operators S§ and Df are defined by

Sz = [, Cisl(m,) - Q@) do(Q)

and _
DEne) =, gactsl(e9) = Q@) (@)
Here,
Ps={(z,6f(z)) 1 0L <L}
and |

n5(Q) = unit normal to Ps at @ directed towards 27,

that is, if Q = (2, 6f(z"),

l LF
?'?.S(Q] = (1 i (6f"{$!)}2)1“(_6f {$ :]11]

Notice that, by Theorem 2, u® as defined by (44) salisfy the radiation condi-
tions (15). The factor of z- in (44) was introduced to produce a cancellation in

formula (51) below.
From (20) and (53) it follows that the fundamental solution (7 is given by
.
Gi(z,y) = —5-leg(kl{z,y)l) + Su(z,9)
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where S, is continuous together with its gradient for 6 < = < L. Therefore, the
transmission conditions (34) and the well known jump relations for the logarithmic

potentials imply

1
(51— As)gle) = Fs(z), 0w < L, (45)
where . .
=D — Df) L (S5 — 8H) )
- Go+1( ¢ & C +1\Y§ § 46
A ( -5'0+17:5 0111{0‘3& - R?) ’ )
no_ n(a’)
(=) = ( (') )
and
i 1 —Cyeiles—hE(z)) 5
5(2) = Tl ( 1.1_‘}';;[;%?}}!;&}3  eilom=51(=) ) (47)

In (46) the operators SF, DF, RE and 7; are defined by

SEW(w) = [ Geslo — ,8(/(e) = FEM + (1GNP u() e’ (48)

DHae) = [ [ - - S @9)

- G {a- o8 f(e) - f{m’)})]n[z') do'

REWE) = [ [-67(0) 75 — o, 5(7() — £) (50
G .+ 3 A i {1 +(t5ff(3;-"})2)1/2 5 e

and

T = [ [rere St e e - ) o
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+ 8@+ N I 2 5(5() - )

1
T+ GFEP

BZ(G;F s Gki‘) i 4
- S a0 - SN

n{a’) da’.
Regarding the form of these operators, we shall now prove

Theorem 4 Let &, € R. Then there exist v > 0, € > 0 and v > 0 such that the
kernels k(zx,x',6) of the operators in (48)-(51) have the form

n(x z’,6) = Z e~ og |z — o' + nL|B(z,2’ —nL,8) + C(z,2',6) {52)

=1

for (z,2",8) € €N {S(x) = 0} N {S(a) = 0} N {I(8) = 0} where B(z,',8) is on
analytic function in {|S(z)| < €, |Hz")| < €, [ — 8| < v} and C(z,2',8) is an
analytic function in €. Here we have put € = {{9(z)] < ¢, |9(«')| < ¢, 16 — &ol <
v, =y < Rley< L+, -y<R(@eN<L+v}.

Proof: We first recall the formula (see e.g. [14]:pp.40,60,64,73)
H{N(z) = Jo(2) + iYa(2) (53)

where Jp and Y are the Bessel functions

o (=12
z) = -
) mzﬂ (m!)? )
and
7 Yo(2) = 2(0 + log( f— ))do(z) — 2 Z — ) l-l— +...+ —).
= m=1

Thus, In particular, we can write

HY(2) = hi{2?) + ha(2) log(2) = ha(2%) + (70 + 2%hs(2%)) log(2)
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for some entire functions hy, hy and hs.

Then, from (20),(21), we obtain

Gz —z' , y—y) =Rz -2y -y (54)

1
E e"'““LH{(,n(k!(x — 2’ +nl,y- y!)ﬂ

u:-l»- “‘-‘2

= Rz —o',y— J)+ Z ™ Ry (K* 03) + ha(K*p}) log(kpn))

n**—l

where p, = {(z — ' +nL)? + (y — y"*)2 Thus, if we set

i —iaT y
a(z ~a’,y — ¢') Bile—ay—y)+7( D e Lhy(k*p2)

] -
+ 20 e ha (K pl) log(k) )
n=-]
then (54) becomes
I

d " 17 1) y
Gilz~a'y—y) = ale—a\y-y)+7 S el (g o (k2 p2)ha (k2 p2)) log(pn)

re==1

D
1 .
= alz -y —y)+7 S ey + (K7 p2)ha(kPp2)) ¢

n=-1

( 10g|:z:~:t:?+nL|+ log(i—l—( ’+nL)})

Using Theorem 1, we see that the function e and its derivatives evaluated at y =
Sf(z), ¥y = 6f(z') are analytic in the set £. Therefore, it now suffices to show that
the kernels of the operators in (48}-(51) with Gpx(z — 2’,y — y’) replaced by

1

Wic(z =2 , y—v)= D e (v + ((5*)p})hal(k%)*p2)) tog(pn)

n=—1

22



1

S ey + (kY2 ho((84)2A2)) (log e —  +

n=—1

1 y—y 2)
+ tlogl+ (Lo (55)

are of the form (52).
Upon replacing y by 6f(z) and ¢’ by 6f(z’) in (55), we immediately obtain the

desired result for the kernels of the single layer potentials 8§ provided v, ¢ and 5

are sufficiently small. In order to handle the remaining kernels, we first set

= sl 2
Ny = (f(a)bg; ~ )
=g 8
NB ._..(f(:t.‘ )63‘?} 5?})

and observe that the functions
Ni(log(pa))
and
Ni(log(pn))
evaluated at (y,y') = (6f(2), 6f(2")) are analytic in (z,2', 6). Thus, the parts of the
. kernels in DF and R that arise from the term 7 log(p,) in (55) are analytic; the

corresponding part in the expression for 75 cancels out. (The factor -(-;'*; in (44) was

introduced precisely to produce this last cancellation).

Finally we must consider the terms of the form
puhs((K5) 7) log(pn) (56)
n (55). Since
Ni(7 ha(#752) Tog(pn) ) = M ( o3 ) a6 log(n) +
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b N (hel(8022) ) o) + Ak (642N (log(on))
(57

it follows that the kernels defining DF are of the form (52). The corresponding

result, for the kernels in R¥ follows analogously.

Finally, applying the operator A to (57), it is easily checked that the terms in
the kernel for 7; arising from (56) are also of the form (52). All contributions have

now been considered and the theorem follows.

6.2 Continuation of logarithmic integrals

Here we establish that integrals with kernels of the type (52) define complex ana-
lytic functions of the spatial variable 2 and the height parameter §. A closely related
observation was used by Millar [8] in his study of the validity of the Rayleigh hy-
pothesis.

Lemma 5 Let p(z’,6) be an a gquasi-periodic function of @' which is complex ane-
Wytic in U X V where d = {2’ € C : |9{e')| < ¢} and ¥ is o complez neighborhood
of 6 = b8y. Let B(w,a',8) be analytic in U x U x V. Then; the function

L :
F(z,8) = fu {log |t — 2'|B(z,3',6) + e~ *C log |+ — 2’ + L|B(z,2' — L, §)
+ e%llog |a — 2’ — L|B(z,2' + L,8)In(2’, 6) dz’
defined for © € R, can be extended to a complex analytic function on U x V. Fur-

thermore, if C; ={ -y <SRN <L+, 9| <7} with0<y<eand C CV

is compact, then

sup |F(z,8)| € & sup [n(2,8)| <k sup |n(z,8)[. (58)
Cr1xCa CixCa {IS(zHL 7% Ca

for some constent « > (.



Proof: By a change of variables we get

2L
F{z,6) = f log |z = 2'|B(z, 2/, 8)n(z',8) d'. (59)

Then, deﬁnin.g
=
N(z,&',8) = f Blz, o', 8)y(', 6) da’ |

integration by parts in (59) yields

F(a,6) = log(2L — 2)N(2,2L,6) — log(z + L)N(z,~L,8)  (60)
2L 1 ; ;
[ (e 6) e

Clearly, the right hand side of (60) can be extended to a complex analytic function
in & x V thereby showing that F' can be extended to U x V, and that it satisfies
(58).

Remark 2 Using a triangular contour fo integrate by parts the last term in (60}

one obtains the formule

2L I ' %
F(z,8) = ]_ log|s — /| B(z, @', )n(u, ) da’ + fargle -+ L) fH B(e,', O)n(a', ) de’

2L
+ :ia.rg{:v—ZL}f

kH

| 2L
Bz, o', 6)y(’, 6} dz’ F in f B(z, o', 8)n(a’, 6) da’. (61)
T
The sign in the last integral is negative if ¥(z) > 0 and it is positive if S(x) < 0.
6.3 Continuity and Compactness

In order to discuss the analyticity properties of ut, we need to consider several
operators related to Az In this section we define these operators and establish the

basic compactness result.
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Definition 2 We define the Banech spaces H, and J,;(8;) (S € R) by

H, = fglri= ( 253 ) : ¢ is & quasi-periodic;

analytic for |3(z)| < ¥ and continuous for |$(z)| £ v }

and
Teu(bo) = {g(z,6)= ( 7z, ) ) : 9(-, §) is & quasi-periodic,
’ (z, 6)
_analytic for |¥(z)| < v, |6 — &l < € and
continuous for [S(z)| < v, [§ —&| e}
with norms

I-llx=sup ||, |ll7= sup |
[P (Hon(=) <) (16-e] <)

Further, for o function g(z,8) we define the operators

(A5,9)(2,8) = (Ang(- 6))(z)

and

(Kg)(z,8) = (Asg(-, 8))(z)-

Lemma 6 Fiz 8 € R. Then, there ezist v > 0, ¢ > 0 such that:

(i) The operator As, maps H, into ilself, continuously in the norm || - ||n.

(i) The operators A, and K map J.,(6s) into itself, continuously in the norm

-1l

Proof: Since G+ is @ quasi-periodic, it is clear that so are the functions Ag g

for ¢ € H, and ;l;;g and Kg for g € J.,(&}. Thus, it suffices to prove that, for some
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7 > 0 and for —y < R(z) < L + ¥, As¢ I8 analytic for |3{z)| < » and continuous
for |¥(z)| £ v, and that As,g, Kg are analytic for |3(z)] < v, |6 — fo] < ¢ and

continuous for |S(z)| < v, |6 — &| < ¢. But this is an immediate consequence of

Theorem 4 and Lemma 5.

Finally we establish the compactness of .A;,.
Theorem 5 The operator Ag, is compact in H,.

Proof: First notice that from (46), (52} and (60) we can write

2L -L
(As)o(z) = logoL | [ Bla,2,&)g(a')de’ ~logle+L| [ B(a, o', bo)o(s') do

2L o ¥
v [, oz [ et dsa + [ 0o, dolg(e) o

(z —a')

where g(z) = ( E(m) ) and B and ¢ are matrix-valued.

!-'
Mlg)(a) = [ Clo, Bo)g(e)de’ | Ay = Mgy = s,
and let {g.} be a bounded sequence in H,,

”5’n||'H S M R 2 L

Since the functions A, g.{z) are & quasi-periodic, it suffices to show that there exists
a subsequence {gn,} such that Aggn,(z) converges uniformly for 0 £ R(z) < I,
(@)l < v.

Since {g.} is a bounded sequence of holomorphic functions, there exists a sub-

sequence {gy, } such that

{¢a,} — g  uniformly on compact subsets
of D= {I9(a)l <},
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Clearly,

Sup |ﬁ2(9nk _g)l < const. sup |§n;. "'gE —+0 3
_ﬁ x'€lD, L]

since [0, L] < D.
Thus, it suffices to prove that

sup |Al{gnh R S‘)t — 0.
0ER(2}E L, |B(z)|<w

But this follows readily from the formula (see remark 2)

r

9L,
Alg)(z) = f . log | — z'|B(z,2', )g(a") de’ + ia;*g(a: + L) -/L B(z,x',6)g(=") dz’

—_—r [

2L aL
+ iarg(z — 2L]f£ B(z,z',8)g(z) dx’q:irrfx Bz, 6,)g(z") dz’ .
7 Analyticity of the solution

In this section we shall use the results of sections 5 and 6 to prove that for any given
6o € R there exists a number A > 0 such that the solution u*(z,y,6) is analytic for
|6 — 8a] < A, & € Rand |y — & f(x)] < A. We shall assume throughout that the
diffraction problem {5), {15), (34) admits a unique solution (see section 5). Under
this hypothesis, the result of analyticity up to the boundary will be a consequence
of the Cauchy-Kowaleski Theorem and the invertibility in J..(bs) of the operator
K defined in (63). Furthermore, we shall show that u®(z,y,8) is analytic in its
variables away from the interface. These facts provide the theoretical foundations

for the calculations in section 3. We first show
Theorem 6 Let &g € R. Then, the operator %I — Ag, 1s wnvertible in H,.

Proof: Since Aj, is compact (Theorem 5), it suffices to show that if ¢ € H, and

(5T~ Awlolz) =0 (64)
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ww)
equation (64) holds for real = then g = 0 for ¢ € R. Being g analytic, it follows that

then g{z) = ( () ) = 0. A standard argument {see e.g. [4] p. 101) shows that if

g = 0 as desired.

Next, we use the previous result to establish the invertibility of the operators

%I—-;‘.E; and -%I——:'C ‘
Theorem 7 The operator 1T — A;, is invertible in J.,(&)-

Proof: Let C denote the operator

(Co)ar8) = (T — Aw) "9, 6))(2)

We first show that if g € J.,(6o) then Cg € J.,..{6o). By Theorem 6, for each fixed
8, Cg(,8) € H,.Thus, to prove that Cg € J,.(f), it suffices to show that Cg(z,}

is analytic for each fixed @ and that Cg is continuous in (z, §).

Let £ = (3T — Ag)™", let (2, 6,) — (2,6) and set ga(z) = g{w,8n). Since g is

continuous, we have
Ga(z) = g(z, 6) uniformly in [¥(z)| < v
Thus, by Theorem 6,

|Lgnlzn) — Lg{z]]

(A

1Cgn(e) = Lalan)] + 1£o(za) — L3(2)
< NLllgn — gllw + |£9(za) — Lg(a)]
and the continuity of Cg in (z,§) follows.
Next notice that, since g € 7, ,(80), for each § fixed the function g, = +{g(-,é+

k) — g(-,6)) converges uniformly in |¥(z)] < v as h — 0 as seen from Cauchy’s
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Theorem (in the variable &) and the quasi-periodicity of g. Thus, Lg;, converges

uniformly in |S{(z)| < v and therefore Cg(z, ") is analytic for fixed =.

Now, since £ is continuous in H,, we have

sup [(Ca)(z,8)| £ ||£]| sup sup |g(z,8)
¥ <, |6~bol<e 16— bo]<e [3(Hy

and it follows that C is continuous in the norm | - | 7.

Finally, it is clear that
1 — 1 T~
(37— A )C =C(5T — Aw) =T

and therefore the theorem is proved.

Theorem 8 The operator 2T — K is invertible in T (80), for all sufficiently small

e> 0.
Proof: Set
el — — 1 —
C= Z[(EI ~ Ag) (K — A, )]“(E«T“ As) ™
n=0

Clearly, it suffices to show that

I — Az, [l7 < const. e (65)
for then
1 -1

gince

k= G- B)T - (T - ALK - T

But (65) follows immediately from Theorem 4 and Lemma 3.
Finally, we give the analyticity results for the solution of the diffraction problem.
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Theorem 9 et u* be the solution of (5),(34) satisfying (15}, Then

(i) If 8 € R and yo > Symax|f| (yo < —Somax|f]), there exists & = €o(b0, Vo)
such that u*(z,y,8) (v (z,y,6)) is analytic in (2,y,68) for |8 — b| < & and

ly — 3ol < €0

(ii) The functions u*(z,6f(z),6) and a“a(ﬂ“m”(x §f(z),8) are analytic.

Proof: Statement (i} follows from (44) and Theorem 8. The fact that u*(z,8{z), 6)
is analytic is a consequence of (44), Theorem 4, Lemma 5 and Theorem 8. To show
that ﬂﬁ%ﬁﬂ(m’ 6f(x),6) is analytic in (x, 6) we first notice that it suffices to prove
that the normal derivative of the logarithmic double layer potential is analytic. Us-
ing Green's formula we can transform the singularity in the double layer potential
into a singularity in a two-dimensional integral involving the second derivatives of
the density (see [5] pp. 256-260). The y-derivative of this area integral is easily seen

to reduce to a line integral whose analyticity is a direct consequence of Lemma 5.

Since u®(z, 6f(x), 6) is analytic it follows that so is the normal derivative.

Theorem 10 Fiz § € R. Then there exists ¢ > 0 such that vt(z,y,6) and

w™(z,y,8) are analytic for |6 — &o| < €1, |y — daf(2)| < er.

Proof: Consider the Cauchy Problem for the Helmholtz equation
Uy Vyy + (Y0 =0, v =1(z,y,0)

with data o(z, §/(z),6) = u* (=, 6 (), §) and £ (z, 67(2),6) = ey (@ 64(2), 8)

on the two-dimensional surface
S:y—6f(z)=
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The desired conclusion for u* will follow from past (ii) of Theorem 9 and the Cauchy-
Kowaleski Theorem, once we show that S is non-characteristic for 2 zw + = E.‘y But

the normal vector to 5 is in the direction
N =(-8f(z),1,~f(=))
and the symbol of the operator is

P(Ehiﬂa{»‘») = 53 +‘£§ 1

so that

P(N) = 148(f(z))" #0
which implies that .S is nowhere characteristic.

The proof for u~ is analogous.

Corollary 1 There ezists ¢ > 0 such that for all (z,y) € R?
(z,y,6 Eu (z,y)6 (66)
where the series converges for |8| < e. The functions u= satisfy Helmoltz equation
AuE + (F)Yud =0in {(z,y) : £y> 0}

and the condition of radiation at infinity tegether with transmission conditions on

{y = 0} given (recursively) by

PESRNC. P - ol

7 n o (n — FG)]( ay,,_k = E:?y""‘ } (6?)

and

o L o 2 ! pre— YR LA
St = Oy =~ (ian(—iB) L) = (~iB) e (63)
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n=1 ¢pren—k—1 ~k =
A W . SR
+ Z (n—Fk~— I)E(amyn—-k 1 Gua y.n—k—‘l:l

=0

n-1 n—k anwku}i- an—

- Z(n_ )!(ayn~k+l n—k+l}

Proof: Formula (66) follows from Theorems 9 and 10. On the other hand, since

vi{e 1}__1“513“5:
S T nl 86 |s=0

it is clear that u¥ satisfy the corresponding Helmholtz equation. Finally, the con-

ditions (67) and (68) are obtained by differentiating with respect to & the equalities
u"}‘(m’ &_f(a;)jg) —_—y” a: 5f( 6‘) — larmtﬂﬁ.f(??)

and

5O (0, 81(@0 ) — O, 8180 + (-, 811 )

Co o‘u (ﬂ: 6f($) (iaﬁf(m)+!:ﬂ)ﬁ£ammmﬂ(ml

This last step is justified by Theorem 10.
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