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SUMMARY
It is shown that a certain tour of 49
cities, one in each of the 48 states
and Washington, D. C. has the shortest

road distance.
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Historical Note

The origin of this problem is somewhat obscure. It appears to
have been discussed informally among mathematicians at mathematics
meetings for many years. Surprisingly 1little in the way of results
has appeared in the mathematical literature [9]. It is likely that
the minimal distance tour problem was stimulated by the so—called
Hamiltonian Game [7] which 1s concerned with finding the number of
different tours possible over a specified network. The latter prob-
lem 1s credited by some as the origin of group theory and has some
connections with the famous Four Color Conjecture [8]. Merrill
Flood (Columbia University) should certainly be credited with stimu—
lating interest in this traveling salesman problem in many quarters.
As early as 1937, he tried to obtain near optimal solutions in ref-
erence to routing of school buses. Both Flood and A. W. Tucker
(Princeton University) recall that they heard about the problem
first in a seminar talk by Hassler Whitney at Princeton in 1934
(although Whitney, recently queried, does not seem to recall the
problem). The relations between the traveling salesman problem
and the transportation problem of linear programming appear to have
been first explored by M. Flood, J. Robinson, T. C. Koopmans, and
later by H. Kuhn and I. Heller [3,4].
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SOLUTION OF A LARGE SCALE TRAVELING
SALESMAN PROBLEM
by

G. Dantzig, R. Fulkerson
and
S. Johnson

1. Introduction. The traveling salesman problem might be described :

as follows: Find the shortest route for a salesman starting from

a given city, visiting each of a specified group of cities, and then
returning to the original point of departure. More generally, given
an n by n symmetric matrix D = (dij)’ where dij represents the
"distance" from 1 to J , arrange the points in a cyclic order in

such a way that the sum of the 4 between consecutive points is

iJ
minimal. Since there are only a finite number of possibilities (at
most Sﬁgllg) to consider, the problem is to devise a method of pick—
ing out the optimal arrangement which is reasonably efficient for
fairly large values of n . Although algorithms have been devised
for problems of similar nature, e.g., the optimal assignment problem
[2,5,6], 1ittle 1s known about the traveling salesman problem. We
do not claim that this note alters the situation very much; what we
shall do is outline a way of approaching thé problem that sometimes,
at least, enables one to find an optimal path and prove it so. 1In
particular, it will be shown that a certain arrangement of 49 cities,

one in each of the 48 states and Washington, D. C. 1is best, the d1J

used representing road distances as taken from a Rand McNally atlas.
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We attack the problem essentially by using a graphical
interpretation of the simplex algorithm, that is, we formulate a
related linear programming problem, or more precisely, a sequence
of programming problems. The linear programming approach to com—
binatorial problems is of course nothing new; 1ts most marked
success has perhaps been in the optimal assignment problem. There

the problem is, given an n by n matrix a , find a permutation

iJ

n .
* which achieves max > a . The underlying fact is that

P P 121 %1,p(1) © ying

the permutation matrices are the only extreme points of the convex

set (in ng—space) of doubly stochastic matrices, and consequently

one can state the problem in the programming form: Find

n
max %ﬁ ain1J , Where 1Zﬁxij Jgﬁx s x1J > 0. The difficulty

in using an analogous procedure for the traveling salesman problem
has been emphasized by work of H. Kuhn [ 4 ] and I. Heller [ 3 ].
The extreme hyperplanes of the convex spanned by those permutations
which are n—cycles (called fours from now on) are not only hard to
find, even for small n , but are so profuse in number that a
straight forward programming approach would not be feasible, even

if one knew them all. We try to get around this difficulty in two
ways. First of all, by utilizihg the fact that the distance matrix
1s symmetric, one can map the ne—space onto a lower dimensional
space in such a way that tours which differ only in direction of
traversal are identified; this seems to shorten the computation and
also appears to introduce some simplification, at least for small n,

into a characterization of the convex Tn of tours. Secondly, and
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most important, we try to find a convex C ZDTh which has the tours
as extreme points (and many others), but over which the minimum of
the linear form is assumed at a tour. For the particular 4S—ity
problem mentioned, and also for all the smaller problems we have
considered, such a convex C has been relatively easy to find by

hand computation.

2. Preliminary notions. A (directed) tour for n points can be

thought of as a permutation matrix of order n which represents

an n—cycle. For example, for n=5, the matrix (1) below

0 1 0 0 O 01 0 0 O
0 0 0 1 0 1 0 0 0 O
(1) 0O 0 0 0 1 ; (2) 0 0 0 0 1
0O 01 0 O 0O 01 0O
|1 0 0 0 0| | 0 0 0 1 0 |

is a tour, since it represents the 5—cycle (12435), while the matrix

(2) above is not a tour since 1t represents the permutation (12)(354).

Now define a linear mapping from the nz—space of n by n matrices
! 1
X = (Xij) onto the 912211 —space of triangular arrays x = (xij)’
1 1
i> 3, by L(x ) = x where Xij = xij + xJi . Thus the images under

L of the two displayed matrices would be the arrays (or vectors)

(3) (4)
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respectively. Any image under L of a (directed) tour in the

n°—space will be called an undirected tour in the _____.n(g—l)

or briefly, a tour. This definition is meaningful since the two

—space,

(directed) tours (i.,, 1 .» 1) and (1n, i . 11) clearly

1’ =2’ n—-1’

have the same image under L . The reason we can consider tours

in the lower dimensional space is of course that we assume the form
to be minimized is symmetric, hence all information i1s embodied in
a triangular array of distances.

1
The image under L of the convex polyhedron C1 given by

1 ]

% xiJ = % xiJ =1, Xy = o, xiJ > 0 , is the convex polyhedron
C, defined by
1

) z_ixij=2,1o=1,...,n, (1> )

or J= o
(2.1)
xiJ 20 .

This will essentially be the starting polyhedron in the problems

to be discussed later. The equations in (2.1) can be pictured as

21—
31— 1532
a1t ue—%y3

s ise— ¥ 53— s>

g N v
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or, in terms of the map of points and the weighted links Jjolning

them, as sayling that the sum of the welghts on the segments emanating

]
from each point is 2. Now the extreme points of C1 are just the

permutation matrices which leave no integer fixed. Consequently,

since extreme points of C1 must be images under L of extreme
]

1
are triangular arrays consisting of O's, 1's, and 2's, that is to

points of C., , the only possibilities for extreme points of C1

say, maps (where line segments having O-weight are omitted) which
consist of line segments with weight 2 and "loops" or sub—tours
having weight 1 on each of the segments comprising them. For example,

for n =7, the point x represented by the graph

i1s a candidate for an extreme point of C1 , and is, in fact, an

extreme point. On the other hand, the point y represented by
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is not an extreme point, the reason being that it contalns a loop
with an even number of sides. In other words, a point is extreme
in C1 if and only if its graph has no link with non—-integral weight
and contains only odd loops. The rest of the proof of this statement
can be made clear by considering the examples. Suppose x = 1/2(u+v).
Then u and v must have O's and 2's where x does. But
u43 = 2 — u53, u54 = u53, and so u53 + u54 = 2u54 = 2, u54 = 1.
Consequently x = u = v. On the other hand, the point y for the
second example is the midpoint of the line segment Joining u, v € Cl’
where u,, =1 1/2, Uzp = 1/2, uyz =1 1/2, uy = 1/2, U c=Ugg=ugg=1,
and v, =1/2, Vip = 1 1/2,v43= 1/2, vy, =11/2, Vr5=Vg5=V76=1-
Thus one result of reducing the dimension of the space is that

tours are extreme points of C for odd n but are not extreme

1
points of C1 for even n. An even number of points is really no
obstacle, however, since if the elements of the array D = (diJ)’
i1 > J, satisfy the triangle inequality, simply count one of the points
twice. It is not difficult to show that the triangle inequality for
triangles having this point as a vertex implies that some optimal
tour goes from this point to "itself." Another way of avoiding the
difficulty i1s to impose upper bounds on the variables, xiJ < 1.
It is easy to see that the new convex defined admits all tours as
extreme points.

Another obvious set of relations that tours satisfy, in addition

to those already mentioned, is the following: Partition the set

I= r1, 2, ceey hE of points into two complementary subsets I1 and 12

<
H
“
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where each contains at least two elements. Let 2&}2 denote the

sum of the weights of all line segments Jjoining points of Il with

points of 12. For any tour, z&,2 must be an even integer, hence
all tours lie in the half—spaces

(2.2) 2&}2 > 2

The only reason for supposing Il and 12 contain two or more points
is that if Il’ say, 1s a point, we already have the condlitions

( recall (2.1) ), z&,2 = 2, Now for any such partitioning, let
Zﬁ denote the sum of the weights of all links connecting the n,y
points of I,. Define Zé similarly. Then (2.2) is equivalent to
either of the conditions

(2.3) Zy <y =1,

(2-4) zesne—l ’

by virtue of (2.1). This follows by observing, for example, that
22, + 2 = 2n. , since if one adds up the equations of (2.1)
1 “1,2 1
which refer to points of Il’ the segments in Zﬁ are counted twice,
those in Z& > only once. Thus the set of all inequalities of type
2

(2.2) is equivalent to the set of all inequalities of type (2.3),
where I, runs over all subsets of n, points with 1 <ny < g .

Note that upper bounds X4 & 1 are a special case of (2.2).
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It turns out, for n < 5, that relations of type (2.1) and

(2.2) suffice to characterize Tn . Thus T5 can be described as

the convex in 10-space defined by the 5 equations of (2.1) and the

20 inequalities O ¢ xiJ < 1, whereas Té , the convex of directed
tours, has the irredundant characterization [3],
1

(a) 2 x, . = > X,, =1 (one equation omitted to avoid redundancy)
Ty 571
1
() %44 >0
1
(c) X4 =0

(a) xiJ + x.
1 1 t 1]

+ X + X — X

! v - . Cnr
1J Ji rs st — Xtp £ 1 for distinct (1!3’?!53t)

(e) x

(£) 2x, +ex, —x_,*x_ X < 2 for distinct (1,§,r,s)

JJiirJrsiJ

a system of 224 hyperplanes in 25-space. This makes it appear that
the situation has been simplified somewhat by the mapping L , at
least for n { 5. We have not attempted any detailed analysis of

Tn for n > 5 since we have seldom, in working problems, been
forced to go outside relations of types (2.1) and (2.2). It is true,

of course, that these relations do not define Tn for n > 5. For

example, for n = 6, the "fractional" point

1/2 ]
12 1/

1l 0 0

0 1 0o 1/2
0 0 1 12 1/2
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is an extreme point of the convex defined by (2.1) and (2.2). It
can be shown that for n = 6, this is the only other kind of extreme

point 1in addition to the tours.

3., The method. The title of this section is perhaps pretentious,

as we don't have a method in any precise sense. What we do is this:
Pick a tour x which looks good, and consider 1t as an extreme

point of C use the simplex algorithm to move to an adjacent

1 3
extreme point e in C1 which gives a smaller value of the func-—
tional; either e 1s a tour, in which case start again with this
new tour, or there exists a hyperplane separating e from the convex
of tours; 1in the latter case cut down C1 by one such hyperplane
that passes through x , obtaining a new convex C2 with x as an

extreme point. Starting with x again, repeat the process until

A A
a tour x and a convex Cm:D Tn are obtained over which x gives
*

15%1y°
The difficulties one might get into this way are manifest. 1t

a minimum of Z d

may be that a fractional extreme point is arrived at for which it
is hard to find a separating hyperplane, or the process may be too
tedious to be practical.** In rebuttal, we can only say that the
problems we have attempted have yielded rather quickly. For the 49—

city problem (which was actually solved as a 42—city problem), we

Patching up the definition of C in this way has been called
the "finger in the dike®™ method (E. W. Paxson).

Not to mention that an infinite number of steps might be required
unless one 1s adding extreme hyperplanes of T
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were lucky in guessing an optimal tour to begin with and the number
of relations we required in addition to those defining Cl was 25.
For other problems we have solved m was quite small also.

In the remainder of this section, we will give a description

of the solution of the following ll—city problem

where
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23|13/10/10
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32|22/17/1411119
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If one selects as a starting point the (non—optimal) tour
(1, 6,5, 7,8, 9, 4, 3, 2, 10, 11), then the basis B for the

programming problem defined by (2.1) is

__\134547‘6‘1»01_1_‘
1 1!
11 <

11 3

1 4

11 5
B = 11 o
11 7

1 8

1 q

11 10

L llJII
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The first thing to be done in the simplex algorithm is to compute
the vector 7T satisfying 7B = d, where d 1s the vector of

distances corresponding to the tour,
d = (<161,<165,...,<i11 l) = (27,11,11,11,13,11,5,5,9,11,10).
3 ’ 2

This 1s easily done because of the near triangular nature of the

set of equations. Let T be unknown for the moment. Then

1

T = 27 -7

v5 = =16 + LBy | Ty = 23 -7

T, = 27 — T, Ty = -18 + LY

Tg = 16 + M o= 27T-m

Ty = 29 — ) Tyq = 16 + T

Ty = -18 + LS 2#1 - 16 = 10 ,

hence T, = 13. A quicker way 1s to note to begin with that

21rl=d6Jl—d6'5+d7j5—d87+- . -+d11,1 3

and then compute the other components.

The next step is to compare w, + m, with d1 If w4, < diJ’

1 J h 173
the tour i1s optimal. If not, find(i,J)fbr which v1+wj —-d1J > 0"

*
A good general rule is to choose Ty + vJ -— dij = max.
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and introduce the vector P in the basis. In the example,

i3
Tio * vg - d10,9 = 30 — 12 = 18, and so we bring in P10,9' To do

this, we need to represent P as a linear combination of the

10,9
column vectors of B. Again this is simply done. The vector P10 9
2

has 1 1in components 9 and 10 , zeros elsewhere, and hence
satisfies the equation

P + P - P

10,9 ~F9,8*Pg 7 =Py 5+ Fg 5 =Fg 1+ P31 —F1y,10=0-

Finally, multiply this equation by €, add the result to the vector
equation

{0\
/-2\

\ /
2/

/

[
=1

|

Pgy + P65 + P75 + P87 + P98 + P94 + P43 + P32 + PlO;fP1L10+P11;

and find the largest value of © consistent with the inequalites of
(2.1), Xy g > 0. Here © =1, and we have the new solution to the

programming problem,

,\) . .

+ P, +P__ +P + P + 2P
oY 43 32 10,2 10,9 11,1

e \ I L]
\ <

2P65 + 2P87 + P

This is not a tour; it consists of the 5-loop (9,4,3,2,10), the
isolated segments with weights 2 , (65), (87), (11,1), and hence
violates 4 of the relations (2.2). Select one of these relations
and add it to the original problem, say

%11,1 £ 15
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or in the programming form of equations in non-negative variables,

X9, v Y1, =1 V31,129

'
thus obtaining a new programming problem in which a basis B cor—
responding to the tour has, in addition to the column vectors of

B, the additional vector P Note that these vectors now have

th

10,9°
component being zero for all except Pll 1

2
th

12 components, the 12
which has a 1 1in the 12 position corresponding to the added
equation. Also the tour is a degenerate solution to the new problem,
Since x10,9 = 0,

This discussion can be summed up in the following map:
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where the number beside each city 1is the value of the corresponding
component ~of T, those on the segments are the distances diJ' The
dotted segment (10,9) represents the vector P10,9 to be brought
into the basis and the numbers in boxes give its representation in
terms of the basis. Note that to get the representation, insist
that the numbers on the links emanating from any city add to zero.
Consequently there are only two possibilities to consider; either
the loop (10,9,%,3,2) or (10,9,8,7,5,6,1,11), the first of which
must be discarded since it has an odd number of sides. The bar

across (11,1) indicates that the variable x has an upper bound

11,1
in the next programming problem.
The rest of the analysis of this example will be presented as

a sequence of maps.
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II

7 1s computed around the loop (9,4%4,3,2,10), then out from 9 to 8,
7,5,6,1, from 10 to 11. Tios the component of 7 corresponding
to the added relation, is determined from T4 + T, — dll,l = — 712,
Tip = = 18. To prove optimality of a tour by the simplex method,
one must have these additional components of T negatilve (sﬁch as
T, in this case). Since Tio + vl(= 27) > d10,1(= 11), we intro—
duce (10,1) into the basis. Note that in its representation, the
coefficient of Pll 1 must be zero, since the representation has
2
§!
to balance on the added relation and P,; , 1s the only column in
2

the basis with a non-zero component in the added relation. The

resulting solution x vilolates x32 < 1, and we add this condition.
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Here, after putting (84) in the basis, the solution consists
of the loops (1,2,3,4,8,9,10,11) and (5,6,7), so we impose the con—
dition xgg + Xgp + X75 < 2, a relation of form (2.3) with I, =
{5,6,7? . The imposition of this condition is indicated by the

dotted loop on the map.
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VI

T was computed as follows: T =6 1/2 (from the triangle

1

- 11-9+11
2

(1,2,10)), the other components by branching out from 1 , i.e.,

1, 10, 9, 4, 8, 7, 5; also 10, 11; 10, 2; and 1, 6. Having Te and
w7 givgs T > hence Ty and of course LEPY, w13, w15 can be
solved for, e.g., 13 =Ty =g + Tg . On putting (5,4) in the basis,
we move to the new tour (1,2,3,..., 10,11). Note that the equation
(54) — (75) + (87) — (84) = O would be valid except for the last
components of the vectors, which correspond to the condition

x75 + x76 + x65 < 2. Having arrived at this point, one could start
afresh with the new tour. It seems better in practice to keep most

of the conditions previously generated. Accordingly, we drop the
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link (61), add the 1link (54%), and keep all the conditions.
Recall from the simplex procedure also that since 74'+W5-—d54 =6

and © = 1, the new tour is 6 units shorter than the old tour.

VII

At this stage, the only candidate for admission to the basis
1s (62), for which Tg + Tp, — dgy = 1 . As we shall see in the
next section, this implies that the tour (1,2,...,11) is within
1 unit of the minimum tour.
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VIII T

For the first time one of the components of 7T corresponding
to an added relation is of wrong sign, v15 =1 ., Thus, the unit
vector U15 is to be brought into the basis. The boXed numbers

symbolize the equation

- (P ) + P, - P

0,9~ Fro0,0 * Fgp = Fyg * Fy5 — F

75 = Fsu ¥ Fay = ©

98 = U15

and we have U15 expressed as a linear combination of vectors in

the basis. Observe that © = O since X10,2 = 0 . Dropping Plo’z

from the basis and removing the restriction x98 <1 gives the
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following map, which proves optimality of the tour (1,2,...,11).

IX

4., An estimation procedure. In any linear programming problem with

bounded variables, a crude estimate of how much a basic solution
differs from an optimal solution can be obtained as follows: Let

n
the programming problem be to minimize 2 CyXy subject to
i=1

x;P; =Q, 0 x, ¢ry, and suppose Xy, J=1,...,m, 1is a

n

i=1
basic solution. Define ¥ by vPJ = 'cJ and write 61 = wPi —-cy .
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For any x satisfying 2 xiPi =Q ,
i=1
( ) n m m
4.1 ™ =Y x,7P, = > X,TP > Xx,c ,
1=1 171 j=1 JJ j= J7J

T RO .
.2 > x,c, = x, TP, — ¥ x,6
s R R T T
shows that
(4.3) 2 > >
4.3). x,c, = X,c, — x,0
= R = W s T
Thus, setting Xy = o 1ir 61 <0, Xy =Ty otherwise, one gets
(4.4) z 2 3
4.y X,8, > 2 X,0, — r,D
1= 11 = T 5,>0 1 1

This estimate 1s usually not good enough to be of much value, but

in the latter stages of solving a problem, when the 61 > 0 are
small, both in number and magnitude, 1t is sometimes.useful. The
inequality can be sharpened somewhat by maximizing = xiﬁi subject

5, >0
to the restrictions on x . Often it i1s possible t& do this by in-

spection when most of the bi are negative.
‘For the traveling salesman problem the variables xiJ

corresponding to weights on the segments must be either O or 1 if
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x 1s a tour. Hence if a number E has been determined in one of
the ways described, so that Z dijiij S_min z dijxij +E, it follows
from (4.3) that any tour which has weight 1 on an (1i,j) 1link for which
(Wpij - dij) < —=E can not be minimal. For example, consider map VII
of the preceding section, where, as was pointed out, E = 1. Since
vPiJ - diJ < =1 for all links except those shown on the map, an
optimal tour can utilize no other links with positive weights. At
this point one can proceed combinatorially. Indeed, it is easy to
gee that only one tour can be traced using the lines of the map,
namely, (1,2,...,11). Hence, it is optimal and uniquely so.

Thus, it may be that even in problems which turn out to be
difficult to solve completely by sequential programming, a suffi-
ciently close estimate can be obtained to reduce the problem to

one in which the only candidates for optimal tours are readlly

enumerated.

5. A 49—city problem. In order to try the method on a large problem,

the following set of 49 cities, one 1in each state and the District

of Columbia, was selected:

1. Manchester, New Hampshire 8. Chicago, Illinois

2. Montpelier, Vermont 9. Milwaukee, Wisconsin

3. Detroit, Michigan 10. Minneapolis, Minnesota
4, Cleveland, Ohio 11. Pierre, South Dakota
5. Charleston, West Virginila 12. Bismarck, North Dakota
6. Loulsville, Kentucky 13. Helena, Montana

7. Indianapolis, Indiana 14, Seattle, Washington
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15. Portland, Oregon A 29. Dallas, Texas
16. Boise, Idaho 30. Little Rock, Arkansas
17. Salt Lake City, Utah 31. Memphis, Tennessee
18. Carson City, Nevada 32. Jackson, Mississippi
19. Los Angeles, California 33. New Orleans, Louisiana
20. Phoenix, Arizona 34, Birmingham, Alabama
21. Santa Fe, New Mexico 35. Atlanta, Georgia
22. Denver, Colorado 36. Jacksonville, Florida
23. Cheyenne, Wyoming 37. Columbia, South Carolina
24. Omaha, Nebraska 38. Raleigh, North Carolina
25. DesMoines, Iowa 39. Richmond, Virginia
26. Kansas City, Missouri 40, Washington, D. C.
27. Topeka, Kansas 41. Boston, Massachusetts
28. Oklahoma City, Oklahoma 42, Portland, Maine

A. Baltimore, Maryland

B. Wilmington, Delaware

C. Philadelphia, Pennsylvania

D. Newark, New Jersey

E. New York, New York

F. Hartford, Connecticut

G. Providence, Rhode Island

The reason for picking this particular set was that most of the
road distances between them were easy to get from a Rand McNally

atlas. The array on page 27, which is part)of the original one pre—
: v

dgy =11
pared by Bernice Brown, gives d,, = ——fem——— | i, =1,2,...,42 ,

1J 17

* |

This particular transformation was chosen to make the d1J
of the original table less than 256 which would permit a
compact storage of the distance table in binary representation.
(No use was made of this, however.)
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1
where d is the road distance in miles between 1 and J . The

1J

d have been rounded to the nearest integer. Certainly such a

1j
linear transformation does not alter the ordering of the tours, al-
though, of course, the rounding may to some extent.

We will show that the tour (see map X)

77 =
Ty = (1,2, ..., 42)

is minimal for the subset of numbered cities. The Jjustification for
omitting the lettered cities from the formal analysis is that in
driving from 40 to 41, one goes through A, B, ..., G successively.*
The proof that ‘T; is minimal is contained essentially in
map XI. To make the correspondence between X1 and its programming
problem clear, we will write down explicitly a set of 67 relations
in non-negative variables which define a convex C :>T42 and over
which 7, affords a minimum of the functional 2 d,,x,,

We distinguish the following subsets of the 42 cities:

*

It is important to note that this tour is optimal for the table
of road distances. J. D. Williams has pointed out that there are
shorter airline distance tours through these same citiles.
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Table of Road Distances between Cities
in Adjusted Units ™
I
2%
3 3|45
MBINE
£ 150/M4| 21 151N
G 611622112417 * The figures in the table are mileages
TIEEeOlb]Tg 6 between two specified cities, less 11
3 (69160} 15120,26171 10 divided by 17, and rounded to the
q 1621bb 20) 253V 22) 5] S

nearest integer.
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I, =1{1, 2, 41, 42}
I, = c( I, ) (complement)
I; = (3,4,..., 9

-» 9, 29, 30, ..., 42;

<

I, = c(13)

I; =14, 2,

I = C(IS)

I, =1{11,12, ..., 23}
Ig = c(17)

I, = {13, 14, ..., 23}
Ig= c(19)

I, = {13, 14, 15, 16, 1T}
I,, = {24, 25, 26, 27}

Except for two inequalities which we will discuss in a moment, the

programming problem may now be written as (recall the notation of

p2): I Xy =2 (1, =1, ..., 42), X110 &1 Xy 3 <1,

b or',j=.:lo

X761 X9 g <1l Xp 01 <1, Xy 93 K1 X5 9 <1, Xp0 39 <

Xo3 00 S 1, Xpg oy <1,

IA

1,

X33, 30 X35,34 < 1)

X27,26

*37,36

<

<

1,

X29,28 £ 1» X33 30 £

1,

—28—

1,

1, 2,022 I3 22 25622

27,8 2 2 29’10 22, Ly <h X, <3. ‘The remaining two

relations (66 and 67) are perhaps most easlly described verbally.

The first says that x14,15 minus the sum of all other xiJ on

segments out of 15, 16, 19, except for X18,15° *18,16° *17,16’ *19,18’

and x

second that X a.iniJ < 42, where

(1,3) 1s a 1link between I

5

833 00 = 2, 85 25 = 0,
and I6 except that a1Q9=a29’28=1, also a13=0

a

20,19’ which do not appear in the sum, 1s not posltive; the
E

13

= 0 if
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if either 1 or J 4is one of 10, 21, 25, 26, 27, 28 except that

if (1,3) + (26,25) appears as a 1ink of map XI (i.e., PiJ is in the

basis), then a;4 =1, and ay4 =1 for all other 3,4 not deter—

*
mined above. These two lnequalities are satisfied by all tours.
For example, if a tour were to violate the first one, it must have

successively x = 1, x18,l6 = 1, Dbut also

15,14 = 4 %1815
x19 18 © 1, a contradiction. The argument that each tour satisfiles
>

the second inequality is similar but somewhat more involved, and
we omit 1t. These relations were imposed to cut out fractional
extreme points which satisfied all the conditions (2.1) and (2.2).

We assert that w7 , as given in XI, satisfies v?ij = dij for

P, , in the basis, 7P not -in the basis, and

13 13 £y 13
v43, csey F67 are appropriately positive or negative (positive if

for P

the corresponding added inequality has been written in the form

7z 3y 4%y 4 >r , negative if T a FIES r), with this exception:

13%1
Tsp = 1/2. (The variable in this case has an upper bound of 1 and
was introduced to take care of the restraint X,y o < 1.) This

>

proves, since E = 1/2 and all the d are integers, that T;

iJ
is minimal. The length of ’To is 699 units, or 12,345 miles except

for rounding errors.

It can be shown by introducing all links for which

TP > —1/2 that 7; is the unique minimum. There are only

13~ Y1
7 such links in addition to those shown in XI, and consequently all

*We are indebted to I. Glicksberg for pointing out relations of
this kind to us.
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possible tying tours were enumerated without too much trouble. None

of them proved to be as good as ’To

6. Concluding remark. It is clear that we have left unanswered

practically any question one might pose of a theoretical nature
concerning the traveling salesman problem; however, we hope that
the feasibllity of attacking problems involving a moderate number
of points has been successfully demonstrated, and that perhaps some

of the ldeas can be used in problems of similar nature.
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added relations are plctured graphically above except for the last two, 66 and 67.

’eompare 7P25,9 with 4

g (27 25) 1s contained within the loop representing the condition 2&2 < 3.

GEOMETRICAL FROOF OF OPTIMAL TOUR THROUGH 49 CITIES
(7 cities omitted between 40 and 41)

e o5 e

K

Hote In comparing TP, iy with dy 130 remember that’ components Qf P 13 corresponding to the added relations must be cohsidered. The‘“
A loop drawn about a subset of points corresponds
to a relation of the kind Eﬁ < nl—l, an arc separating a set of points from its complement corresponds to E&

2 2. For example, to
2 = 21, observe that the segment (25,9) crosses two arcs, i.e.

5.9 has a 1 in components 60 and 61; it has

-a zero in components 66 and 67 since x25 9 does not appear in those relations, and of course, has zeros elsewhere, except for com—

ponents 25 and 9. Hence ng ,9 = 725 9+W60+v61 = 7.5+10.5+2.5+0.5 = 21 ¢ d25’9 One more example: 27,25 27 25+v62, since
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