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Abstract—In this research, an integro–differential equation which
describes the charged particle motion for certain configurations of
oscillating magnetic fields is considered. The homotopy perturbation
method (HPM) is used for solving this equation. HPM is an analytical
procedure for finding the solutions of problems which is based on
the constructing a homotopy with an imbedding parameter p that is
considered as a small parameter. The results of applying this procedure
to the integro-differential equation with time-periodic coefficients show
the high accuracy, simplicity and efficiency of this method.

1. INTRODUCTION

The integro-differential equation [23]

d2y

dt2
= −a(t)y(t) + b(t)

∫ t

0
cos(wps)y(s)ds + g(t), (1)

where a(t), b(t) and g(t) are given periodic functions of time may
be easily found in the charged particle dynamics for some field
configurations. Taking for instance the three mutually orthogonal
magnetic field components Bx = B1 sin(wpt), By = 0, Bz = B0, the
nonrelativistic equations of motion for a particle of mass m and charge
q in this field configuration are

m
d2x

dt2
= q

(
B0

dy

dt

)
, (2)
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m
d2y

dt2
= q(B1 sin(wpt)

dz

dt
− B0

dx

dt
, (3)

m
d2z

dt2
= q

(
−B1 sin(wpt)

dy

dt

)
. (4)

By integration of (2) and (4) and replacement of the time first
derivatives of z and x in (3) one has (1) with

a(t) = w2
c + w2

f sin2(wpt), b(t) = w2
fwp sin(wpt), (5)

g(t) = wf (sin(wpt))z′(0) + w2
cy(0) + wcx

′(0), (6)

where wc = qB0/m and wf = qB1/m. Making the additional
simplification that x′(0) = 0 and y(0) = 0, equation (1) is finally
written as

d2y

dt2
= −

(
w2

c + w2
f sin2(wpt)y + wf (sin(wpt)z′(0) + w2

fwp(sin(wpt)
)

∫ t

0
cos(wps)y(s)ds. (7)

In this study, we consider the equation (1) with the following initial
conditions

y(0) = α, y′(0) = β. (8)

The solution of this equation is presented by means of homptopy
perturbation method. The essential idea of this method is to introduce
a homotopy parameter, say p, which takes the values from 0 to 1.
When p = 0, the system of equations usually reduces to a sufficiently
simplified form, which normally admits a rather simple solution. As
p gradually increases to 1, the system goes through a sequence of
“deformation”, the solution of each of which is “close” to that at the
previous stage of “deformation”. Eventually at p = 1, the system takes
the original form of equation and the final stage of “deformation” gives
the desired solution. One of the most remarkable feature of the HPM
is that usually only few perturbation terms are sufficient to obtain a
reasonably accurate solution.

This paper is organized as follows: In Section 2, we describe the
homotopy perturbation method briefly and apply this technique to
equation (1). Section 3 contains the mathematical formulation of
the approach. A numerical evaluation is included in Section 4 to
demonstrate the validity and applicability of the method. Also a
conclusion is given in Section 5. Finally some references are given
at the end of this report.
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2. THE HOMOTOPY PERTURBATION METHOD

Homptopy perturbation method was first proposed by the Chinese
mathematician He [16–20]. This method has been employed to
solve a large variety of linear and nonlinear problems such as
fractional partial differential equations [32], the nonlinear Hirota-
Satsuma coupled KdV partial differential equation [12], nonlinear
boundary value problems [22], traveling wave solutions of nonlinear
wave equations [21], Nonlinear convective-radiative cooling equation,
nonlinear heat equation (porous media equation) and nonlinear heat
equation with cubic nonlinearity [13], the Newton-like iteration
methods for solving non-linear equations or improving the existing
iteration methods [9], evaluating the efficiency of straight fins with
temperature-dependent thermal conductivity and determining the
temperature distribution within the fin [26], the inverse parabolic
equations and computing an unknown time-dependent parameter [28],
finding improved approximate solutions to conservative truly nonlinear
oscillators [4], complicated integrals which cannot be expressed in
terms of elementary functions or analytical formulae [10] and etc.
The homotopy perturbation method is used in [14] to solve the
nonlinear Fredholm integral equations of the first kind. Author of [34]
applied this method to solve the system of Fredholm and Volterrs type
integral equations. The homotopy perturbation method is employed
to search for periodic solutions of Jacobi elliptic equations, which are
widely studied in connection with nonlinear waves [5]. Author of [3]
obtained an approximate analytic solution of the steady, laminar three-
dimensional flow for an incompressible fluid past a stretching sheet
using the homotopy perturbation method. It is worth pointing out
that the flow studied in his research is governed by a boundary value
problem consisting of a pair of non-linear differential equations. The
homotopy perturbation method is extended in [30] and is used to solve
a kind of nonlinear evolution with the help of symbolic computation
system Maple. This technique is applied in [6] to obtain approximate
solutions of Klein-Gordon and Sine-Gordon equations. Also an efficient
way of choosing the initial approximation is given by these authors.
The Blasius equation is solved in [1] using the homotopy perturbation
method. This method is used in [2] to solve functional integral
equations. Also comparison is made with an expansion method based
on the Lagrange interpolation formula. The homotopy perturbation
method is applied in [11] to solve pure strong nonlinear second-order
differential equation. Using this approach the approximate analytic
solution is obtained. Two types of differential equations are considered:
with strong cubic and quadratic nonlinearity. The solution of thin flow
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problem with a third grade fluid is found in [29] using the traditional
perturbation and the homotopy perturbation methods. Two solutions
are in complete agreement. But the traditional perturbation method
requires the presence of a small parameter which is not so with
the solution obtained using the homotopy perturbation method .
Authors of [24] solved the nonlinear matrix differential equations by
homotopy perturbation method . A dynamic system and Burgers
equation are taken as examples to illustrate its effectiveness and
convenience. A reliable algorithm based on an adoption of the standard
homotopy method is given in [15]. The homotopy perturbation
method is treated as an algorithm in a sequence of intervals for
finding accurate approximate solutions of linear and nonlinear system
of ordinary differential equations. Also the results compared with
the classical fourth order Runge-Kutta formula reveal that the new
method is a promising tool for nonlinear systems of ordinary differential
equations. He’s homotopy perturbation method employed in [33] to
solve the singular initial boundary value problems of Lane-Emden type
equations. As is said in [33] homotopy perturbation method provides
us with a freedom choice for construction of the homotopy. The
results show that construction of the homotopy for the perturbation
problem plays a significant role for the accuracy of the solution.
Theoretically, any exactness can be achieved by an appropriate choice
of the homotopy path and this is the verification of the flexibility of
the method. The homotopy perturbation method is proposed in [8]
to obtain approximate solutions of the time-dependent Emden-Fowler
equations. Also an algorithm based on homotopy perturbation method
is developed to overcome the difficulty of the singular point at t = 0 [8].
The analysis is accompanied by some linear and nonlinear singular
initial-value problems. Homotopy perturbation method combined with
averaging in [31] to solve Van der Pole oscillator with very strong
nonlinearity. The result shows that the approximation obtained by this
technique is valid uniformly even for very low parameters and is more
accurate than the straightforward expansion solution. The homotopy
perturbation method is applied in [7] to derive approximate solutions
of nonlinear population dynamics models. The nonlinear models
considered are the multispecies Lokta-Volterra equations. The results
are compared with fourth-order Runge-Kutta method. The homotopy
perturbation method is compared in [27] to some series solution of the
Lane-Emden equation. Also He’s homotopy perturbation technique
and Wazwaz’s two implementations of the Adomian method based on
either the introduction of a new differential operator that overcomes
the singularity of the Lane-Emden at the origin or the elimination
of the first-order derivative term of the original equations. It is also
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shown that Adomian’s decomposition technique can be introduced
as a perturbation approach which coincides with He’s homotopy
perturbation method.

3. SOLUTION OF THE INTEGRO-DIFFERENTIAL
EQUATION

To illustrate the basic ideas of the homotopy perturbation method, we
consider the following nonlinear differential equation :

A(y) − f(r) = 0, r ∈ Ω, (9)

with the boundary conditions

B(y,
∂y

∂n
) = 0, r ∈ Γ, (10)

where A is a general differential operator, B is a boundary operator,
f(r) is a known analytical function and Γ is the boundary of the domain
Ω. Generally speaking, the operator A can be divided into two parts
which are L and N , where L is linear, but N is nonlinear. Therefore
equation (9) can therefore be rewritten as follows:

L(y) + N(y) − f(r) = 0. (11)

By the homotopy perturbation technique, we construct a homotopy
v(r, p) : Ω × [0, 1] −→ R which satisfies:

H(v, p) = (1−p)[L(v)−L(y0)]+p[A(v)−f(r)] = 0, p ∈ [0, 1], r ∈ Ω,
(12)

where p ∈ [0, 1] is an embedding parameter and y0 is an initial
approximation of equation (9). Obviously, from these definition we
will have:

H(v, 0) = L(v) − L(y0) = 0, H(v, 1) = A(v) − f(r) = 0.

The changing process of p from zero to unity is just that of v(r, p) from
y0(r) to y(r). In topology, this is called deformation, and L(v)−L(y0)
and A(v) − f(r) are called homotopy. According to the HPM, we
can first use the embedding parameter p as a “small parameter”, and
assume that the solution of (12) can be written as a power series in p:

v = v0 + pv1 + p2v2 + · · · . (13)

Setting p = 1, results in the approximate solution of (9):

y = lim
p→1

v = v0 + v1 + v2 + · · · .
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In order to solve the equation (1) using HPM, we construct the
following homotopy:

H(v, p) =
d2v

dt2
− d2y0

dt2
+ p

d2y0

dt2

−p

[
−a(t)v(t) + b(t)

∫ t

0
cos(wps)v(s)ds + g(t)

]
= 0. (14)

Substituting (13) in (14) and equating the coefficients of like powers
of p, yield

p0 :
d2v0

dt2
− d2y0

dt2
= 0, (15)

p1 :
d2v1

dt2
+

d2y0

dt2
+a(t)v0(t)−b(t)

∫ t

0
cos(wps)v0(s)ds−g(t)=0, (16)

pn :
d2vn

dt2
+a(t)vn−1(t)−b(t)

∫ t

0
cos(wps)vn−1(s)ds=0, n ≥ 2. (17)

Then starting with an initial approximation y0 and solving the above
equations, we can identify vn for n = 1, 2, · · · and therefore we obtain
the n-th approximation of the exact solution as yn = v0 +v1 + · · ·+vn.

4. ILLUSTRATIVE TESTS

In this section, to illustrate the description above and to show the
efficiency of the mentioned method for solving equation (1), we include
some examples with known analytical solutions.

4.1 Test 1: Consider equation (1) with

wp = 2,

a(t) = cos(t), b(t) = sin
(

t

2

)
,

g(t) = cos(t) − t sin(t) + cos(t)(t sin(t) + cos(t))

− sin
(

t

2

) (
2
9

sin(3t) − t

6
cos(3t) +

t

2
cos(t)

)
,

and
α = 1, β = 0,

y(t) = t sin(t) + cos(t) is the exact solution of this equation. To apply
the homotopy perturbation method to this equation, based on the (15),
(16) and (17), we obtain

p0 :
d2v0

dt2
− d2y0

dt2
= 0, (18)
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p1 :
d2v1

dt2
+

d2y0

dt2
+ cos(t)v0 − sin

(
t

2

) ∫ t

0
cos(yps)v0(s)ds

− cos(t) + t sin(t)
− cos(t)(t sin(t) − cos(t))

+ sin
(

t

2

) (
2
9

sin(3t) − t

6
cos(3t) +

t

2
cos(t)

)
= 0, (19)

pn :
d2vn−1

dt2
+ cos(t)vn−1 − sin

(
t

2

) ∫ t

0
cos(wps)vn−1(s)ds = 0. (20)

We consider y0(t) = 1 as initial approximation of the exact
solution and regarding (18) we start with v0(t) = y0(t). Since v0(0) = α
and v′0(0) = β, and y = v0 + v1 + v2 + · · ·, we can set vn(0) = 0 and
v′n(0) = 0, (n ≥ 1) as initial conditions for equations (19) and (20).

By solving the above equations and getting v1, . . . , v6, we calculate
yn for n = 1, . . . 6. Numerical results obtained by these approximations
are summarized in Table 1 and Figure 1.

Table 1. The norms ‖y − yn‖1, ‖y − yn‖2 and ‖y − yn‖∞ for
n = 1, 2, 3, 4, 5, 6 in example 1.

n ‖y − yn‖1 ‖y − yn‖2 ‖y − yn‖∞
1 0.00650855446568 0.01047363533934 0.02951608243029

2 1.355066399737036e-4 2.520126891825864e-4 8.507913309692073e-4

3 1.619208174116484e-6 3.362259352853569e-6 1.291966580742192e-5

4 1.255797313339171e-8 2.851022461480738e-8 1.212590543894969e-7

5 6.832408580405466e-11 1.672143477073295e-10 7.733280680049799e-10

6 1.753953346649812e-13 6.826965141905116e-13 3.382183422218077e-12

4.2 Test 2: As the second example, consider equation (1) with

wp = 1,

a(t) = − sin(t), b(t) = sin(t),

g(t) =
1
9
e−

t
3 − sin(t)

(
e−

t
3 + t

)

− sin(t)
(
− 3

10
cos(t)e−

t
3 +

9
10

e−
t
3 sin(t)+cos(t)+t sin(t)− 7

10

)
,

and
α = 1, β =

2
3
.
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Figure 1. (a) the exact solution and the error function y−yn for (b1)
n = 1, (b2) n = 2, (b3) n = 3, (b4) n = 4, (b5) n = 5 and (b6) n = 6
in example 1.

y(t) = e−
t
3 + t is the exact solution of this problem.

If we want to solve this equation by means of homotopy
perturbation method, using (15), (16) and (17), we obtain

p0 :
d2v0

dt2
− d2y0

dt2
= 0, (21)

p1 :
d2v1

dt2
+

d2y0

dt2
− sin(t)v0 − sin(t)

∫ t

0
cos(yps)v0(s)ds
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−1
9
e−

t
3 + sin(t)(e−

t
3 + t)

+ sin(t)
(
− 3

10
cos(t)e−

t
3 +

9
10

e−
t
3 sin(t)+cos(t)+t sin(t)− 7

10

)
= 0, (22)

pn :
d2vn−1

dt2
− sin(t)vn−1 − sin(t)

∫ t

0
cos(wps)vn−1(s)ds = 0. (23)

Considering y0(t) = 1 + 2
3 t and regarding (21), we start with v0(t) =

y0(t). Since v0(0) = α and v′0(0) = β, and y = v0 +v1 +v2 + · · ·, we can
set vn(0) = 0 and v′n(0) = 0, (n ≥ 1) as initial conditions for equations
(22) and (23).

By getting v1, . . . , v6, we obtain y1, . . . , y6 as approximations of the
exact solution. The error norms ‖y − yn‖1, ‖y − yn‖2 and ‖y − yn‖∞
for n = 1, . . . , 6 are shown in Table 2. Also the exact solution and the
error function y(t) − yn(t) for n = 1, . . . , 6 are plotted in Figure 2.

Table 2. The norms ‖y − yn‖1, ‖y − yn‖2 and ‖y − yn‖∞ for
n = 1, 2, 3, 4, 5, 6 in example 2.

n ‖y − yn‖1 ‖y − yn‖2 ‖y − yn‖∞
1 4.789222307474183e-4 8.630464536533206e-4 0.00283817766336

2 5.768824461825676e-6 1.251027817714512e-5 5.102588734891278e-5

3 3.842183276690636e-8 9.525955825552416e-8 4.509285905229810e-7

4 1.622949042535507e-10 4.469333429047334e-10 2.371561169667302e-9

5 4.901130716282932e-13 1.435270009440732e-12 8.267164730568766e-12

6 4.329208149576017e-13 2.440936203513114e-13 7.326272469112508e-13

4.3 Test 3: In this example, consider equation (1) with

wp = 3,

a(t) = 1, b(t) = sin(t) + cos(t),
g(t) = −t3 + t2 − 11t + 4 − (sin(t) + cos(t))(

− t3

3
sin(3t) − t2

3
cos(3t) − 13

27
cos(3t) − 13

9
t sin(3t)

+
t2

3
sin(3t) +

16
27

sin(3t) +
2
9
t cos(3t) +

13
27

)
,
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Figure 2. (a) the exact solution and the error function y−yn for (b1)
n = 1, (b2) n = 2, (b3) n = 3, (b4) n = 4, (b5) n = 5 and (b6) n = 6
in example 2.

and
α = 2, β = −5.

The exact solution of this problem is as follows

y(t) = −t3 + t2 − 5t + 2.

In order to solve this equation by means of homotopy perturbation
method, according to (15), (16) and (17), we have:
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p0 :
d2v0

dt2
− d2y0

dt2
= 0, (24)

p1 :
d2v1

dt2
+

d2y0

dt2
+ v0

−(sin(t) + cos(t))

[∫ t

0
cos(yps)v0(s)ds +

t3

3
sin(3t)

+
t2

3
cos(3t) +

13
27

cos(3t) +
13
9

t sin(3t) − t2

3
sin(3t)

− 16
27

sin(3t)− 2
9
t cos(3t)− 13

27

]
+t3−t2+11t−4=0, (25)

pn :
d2vn−1

dt2
+vn−1−(sin(t)+cos(t))

∫ t

0
cos(wps)vn−1(s)ds = 0. (26)

We assume y0(t) = −5t + 2 and set v0(t) = y0(t). As previous
examples, we solve the above equations with vn(0) = 0 and v′n(0) = 0,
(n ≥ 1) as initial conditions and obtain yn = v1 + . . . + vn for
n = 1, . . . , 6. Some numerical results are reported in Table 3 and
Figure 3.

Table 3. The norms ‖y − yn‖1, ‖y − yn‖2 and ‖y − yn‖∞ for
n = 1, 2, 3, 4, 5, 6 in example 3.

n ‖y − yn‖1 ‖y − yn‖2 ‖y − yn‖∞
1 0.00753096458776 0.01165936443656 0.03061486265224

2 2.250303410711253e-4 4.265740431721630e-4 0.00149387389473

3 3.538054580471699e-6 7.678046394512791e-6 3.153239256392659e-5

4 3.480633346875790e-8 8.370424822549234e-8 3.854118226926664e-7

5 2.357215862005179e-10 16.162208867876271e-10 3.106503419956410e-9

6 1.168981793242157e-12 3.279510650660257e-12 1.783048708681179e-11
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Figure 3. (a) the exact solution and the error function y−yn for (b1)
n = 1, (b2) n = 2, (b3) n = 3, (b4) n = 4, (b5) n = 5 and (b6) n = 6
in example 3.

5. CONCLUSION

This article deals with the numerical solution of an integro–
differential equation with time-periodic coefficients using He’s
homotopy perturbation method. This technique was tested on some
examples and were seen to produce satisfactory results. The reliability
of the method and the reduction in the size of computational domain
give this method a wider applicability. Furthermore this technique,
in contrast to the traditional perturbation methods, does not require
a small parameter and the approximations obtained by the proposed
method are uniformly valid not only for small parameters, but also for
very large parameters. The numerical results obtained in this research
are indistinguishable due to the fact that this approach justifies its
efficiency and presents quite promising results and provides a high
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degree of accuracy only with few iterations, without any need to
restrictive assumptions. The use of the technique presented in this
paper to solve some other models including the problems described in
[35–45] can be an interesting investigation.
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