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Abstract: A solution procedure for the calculation of crack tip stress intensity factors arising at the edges

of an arbitrarily shaped crack lying on a surface of revolution is described. The cracks are subject to an

arbitrary axisymmetric stress field, devoid of torsion, and may be present in either an infinite space or two

elastically dissimilar bonded half-spaces, of which one may, as a special case, have vanishing elastic

constants. The technique employed is a one-dimensional integral equation approach, in which the kernel is

formed from rings of dislocation pairs, arranged to form ring `dipoles'. The equation is hypersingular but

may readily be inverted using powerful numerical quadratures, providing a computationally efficient

solution. Examples of the use of the technique are then described.

Keywords: crack problems, singular boundary integral equation, stress intensity factor

NOTATION

a ring radius

bi Burgers vector component in direction i

bij dipole intensity

Bi dislocation density

E complete elliptic integral, second kind

k elliptic modulus

Ki
j, Li

j, D
ij
kl influence functions

r, è, z cylindrical polar coordinates

x, î, t, s crack line coordinates

äij Kronecker delta

k Kolosov's constant � 3ÿ 4í
ì shear modulus

í Poisson's ratio

óij stress components

r normalized coordinates � r=a and (zÿz1)/a

respectively

1 INTRODUCTION

The idea of using the Bueckner [1] superposition theorem

to solve for crack tip stress intensity factors is well

established. First, the stresses arising along the line of the

crack, but in its absence are found, and then equal and

opposite equilibrating tractions are installed along the faces

of the crack, to render them stress free. The contributions

that these stresses make to the crack tip stress intensity are

then deduced and, from the Bueckner theorem, these must

be equal to the stress intensity developed by the original

loading. The entities used to induce the equilibrating stress

state are invariably some form of strain nucleus, whose

exact form depends on whether the problem is two or three

dimensional. The intention in the present paper is to present

a new form of the procedure, appropriate to axisymmetric

problems devoid of torsion. Although only restricted

geometries may be tackled, such as cracks present in an

infinite space or a half-space, the method is quite general,

insofar as any nominal stress field may be handled; the

technique is therefore particularly appropriate where the

crack exists in a steep stress gradient, such as adjacent to a

contact or elastic interface, and where the presence of far

boundaries has only a very weak influence on the solution,

e.g. when the crack is quite short by comparison with other

characteristic dimensions.

It is illuminating to begin to describe the method by

comparing it with the solution of plane crack problems by

the installation of dislocations, and the solution of flat,

arbitrarily shaped cracks by the eigenstrain procedure, as

shown in Fig. 1. In the case of plane cracks (Fig. 1a), the

solution used to provide the Green's function for the

equilibrating stress field is the straight edge dislocation.

There are many papers in the literature which apply this

approach, some dating back to the early 1970s (see, for

example, references [2] and [3]). A simple exposition of

the procedure was given by Nowell and Hills [4], which

might be consulted as an introduction. The first step in the

solution procedure is to establish the stress state induced by

a single dislocation, which takes the form
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Here, ì is the modulus of rigidity, k is Kolosov's constant

[� (3±4)í, where í is Poisson's ratio, in plane strain], and the

four functions Ki
j represent the influence of the far bound-

aries of the problem but are regular. The requirement that the

crack faces be traction free is then expressed by the equations

0 � ~ó xy(x)� ì

ð(1� k)

�
crack

1

xÿ î
� K x

x(x, î)

� �
Bx(î)

�
� K y

x (x, î)By(î)

�
dî

0 � ~ó yy(x)� ì

ð(1� k)

�
crack

K x
y(x, î)Bx(î)

�

�
"

1

xÿ î
� K y

y(x, î)

#
By(î)

)
dî

(2)

where ~ó iy(x) are the tractions arising in the crack's absence,

due to the far field loading, and the functions Bi(î)

represent dislocation densities, defined by

Bi(î) � @bi

@î
(3)

form the primary unknowns in the problem. In certain cases

the `cross terms' Kx
y and K y

x vanish, but in general two

coupled integral equations, with Cauchy kernels, must be

solved. Powerful numerical quadratures are available to

deal with this [3], and relatively few simultaneous algebraic

equations may be used to obtain a satisfactory solution.

Crack tip stress intensity factors may be found from the

values of the dislocation densities at the end points [4±6].

An alternative basis for solving plane crack problems was

proposed by Crouch [7], who derived analytical expressions

for stresses and displacements around a straight segment

carrying prescribed uniform displacement discontinuity. A

constant-gap boundary element formulation results.

The more complex case of a three-dimensional crack is

shown in Fig.1b. This can also be tackled using boundary

element approaches [8]. An eigenstrain procedure may also

be developed, which is an analogue of the scheme

described above. The kernel of the equations is formed

Fig. 1 Possible kinds of strain nucleus: (a) the edge dislocation

for plane problems; (b) the eigenstrain-type procedure

using infinitesimal dislocation loops, for general three-

dimensional problems; (c) the axisymmetric ring dipole;

(d) the dislocation dipole for plane problems
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from a solution for the stress state induced by insertion of a

thin strip of material (in the case of mode one loading),

over an infinitesimal dislocation loop. In principle, it is

possible to write down a two-dimensional integral equation

over the crack faces, S, expressing the traction-free

condition over the entire crack, which takes the form

0 � ~ó i(x)� ì

4ð(1ÿ í)

�
S

1

r3

"
(1ÿ 2í)äij � 2íä3 iä3 j

8<:
� 3í

rirj

r2

#
� Kij(x, y)

)
bj(y) dS

(4)

where äij is the Kronecker delta, r � xÿ y and again

Kij(x, y) represents the influence of the free boundaries. It

may be noted that the integral is nominally divergent, the

kernel being hypersingular. No general closed-form inver-

sion procedures are available, so that numerical procedures

must be applied [9, 10]. The crack may be divided into a

finite number of elements, within each of which infinitesi-

mal dislocation loops are distributed according to some

pre-determined function (the shape function). For example,

for a piecewise constant discretization the entire element

suffers a constant displacement, equivalent to the Burgers

vector of the constituent dislocation loops. The traction-

free condition is then enforced in an average sense, over the

faces of the crack. This procedure is efficient, compared

with the finite element technique, for cracks in simple

bodies, and it may, in principle, be employed for cracks

which are not flat, such as the tubular form shown in Fig.

1c. However, there are clearly disadvantages in using

eigenstrain elements pasted around the curved surface of

the crack, as no advantage is being taken of the inherent

symmetry of the problem. A new kernel is therefore

required, which exploits symmetry. This kernel may be

formed from rings in the form of self-annihilating pairs of

ring dislocations, which we have called ring dipoles.

Before introducing them for the axisymmetric problem, it

is worth revisiting the plane problem of Fig. 1a, and noting

that a different kernel which consists of two equal and

opposite dislocations an infinitesimal distance apart (Fig.

1d) may be employed. This is the plane form of a

dislocation dipole. The resulting integral equations are [5]

0 � ~ó xy(x)� ì

ð(1� k)

�
crack

1

(xÿ î)2
� Lx

x(x, î)

� �
bx(î)

�
� L y

x (x, î)by(î)

�
dî

0 � ~ó yy(x)� ì

ð(1� k)

�
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Lx
y(x, î)bx(î)� 1

(xÿ î)2

��

�L y
y(x, î)

�
by(î)

�
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(5)

The functions Li
j(x, î) represent the influence of any far

boundaries and are regular functions. This implies that they

contain no singularities, provided that the points î and x do

not lie on a free surface simultaneously.

The dipole influence function may be developed by

placing two equal and opposite dislocations an infinitesi-

mal distance, dî apart. Hence it may be readily shown that

the new kernels are simply the derivatives of those used in

equations (1) and (2):

Li
j(x, î) � @K i

j(x, î)

@î

The quantities bi(î), forming the primary unknowns, now

take on the role of dislocation dipole densities, and they

therefore have the same dimensions as the Burgers vector.

Quadratures for the numerical solution of equations such as

equation (5), containing a hypersingular term of the second

degree, have been developed by Kaya and Erdogan [11].

Solution of the crack plane problems addressed by this

method shows a small advantage over the distributed

dislocation approach, insofar as the truncated family of

algebraic equations used to represent the integral may be

reduced in size, for a given degree of accuracy required.

Now the axisymmetric formulation itself is considered.

2 FORMULATION

The general class of problems to be solved is shown in Fig.

2a. They are various kinds of cracks of revolution, which

will be assumed to be subjected to a general remote set of

forces, axisymmetric in nature and devoid of torsion. The

first step in the solution of these problems is to determine

kernel functions corresponding to the dislocation dipoles

needed. It is most convenient to develop these in a

cylindrical coordinate set, and the three quantities needed

are shown in Fig. 2b. They are as follows:

1. The dipole bzz is formed from two prismatic dislocation

loops, having a Burgers vector component �bz, posi-

tioned a small radial distance, dî apart, on the same

z � constant plane. It may be noted that the constituent

dislocations are of the conventional Volterra type, with a

constant Burgers vector at all points around the crack

front. Dipoles of this kind alone would suffice for solving

for the stress intensitities arising at the edges of flat

annular cracks undergoing opening mode loading only.

2. The dipole brr is formed from two ring dislocations

having a radial Burgers vector component �br, posi-

tioned a small axial distance dî apart, on the same

r � constant surface. This dipole is needed to study

opening mode loading of cylindrical cracks.

3. The shear-type dipole brz (�bzr) is formed in one of two

ways: either from two dislocations of Burgers vector

S05199 # IMechE 2000 JOURNAL OF STRAIN ANALYSIS VOL 35 NO 5

SOLUTION OF AXISYMMETRIC CRACK PROBLEMS USING DISTRIBUTED DISLOCATION RING DIPOLES 375



component br positioned a small distance dî apart on a

z � constant surface, or from two dislocations of

Burgers vector component bz positioned a small dis-

tance dî apart on an r � constant surface.

The state of stress induced by each of these entities has

been found for three configurations, namely an infinite

space, a half-space or two elastically dissimilar bonded

half-spaces. It is not the intention of the present paper to

derive these expressions here, for which the paper by

Korsunsky [12] should be consulted. It is merely noted that

the state of stress induced at point (r, z) by a dipole

positioned at point (a; z9), as depicted in Fig. 3, may be

written in the form

ó zz(r, z)

ó rr(r, z)

ó rz(r, z)

8>>><>>>:
9>>>=>>>; �

2ì

ð(k� 1)
bzz(a; z9)

Dzz
zz

Dzz
rr

Dzz
rz

26664
37775

8>>><>>>:

�brr(a; z9)

Drr
zz

Drr
rr

Drr
rz

26664
37775� brz(a; z9)

Drz
zz

Drz
rr

Drz
rz

26664
37775
9>>>=>>>;

(6)

The functions D
ij
kl are recorded in Appendix 1, for the case

of a dipole present in an infinite space. It will be noted that

the functions quoted there allude to a further family of

functions Jmnp which are known as modified Lipschitz±

Hankel integrals. These contain combinations of Bessel

functions, but with the arguments encountered they may be

reduced to combinations of the complete elliptic integrals

K and E.

From work on the plane dipole, the functions D
ij
kl are

expected to contain a singular term of the second degree. It

is important that this is abstracted to permit precise

evaluation of the integral equations which will result. This

may be done by employing a Taylor series expansion about

the source point. The functions D
ij
kl may then be decom-

posed into a singular part D
� ij
kl and a second set of terms

D9ij
kl, which are either bounded or more weakly singular:

D
ij
kl � D

� ij
kl � D9ij

kl (7)

It should be noted that terms D9ij
kl are present even in an

infinite medium, and for the case of a half-space also

include the influence of the free surface. This contrasts

with the plane problem, where bounded terms are present

only if there are nearby free surfaces. Explicitly, the

singular terms are

D
� zz
zz �

1

a2

2 cos (2ø)ÿ cos (4ø)

d2

�

ÿ cosø [2 cos (2ø)ÿ cos (4ø)]

2d

�

Fig. 2 (a) General form of axisymmetric crack which might be solved by the procedure; (b) the three kinds of ring

dipole needed
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� zz
rr �

1
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d2

�
ÿ cosø [cos (4ø)� 4 sin2øÿ 2(kÿ 1)]

2d

�

D
� zz
rz �

1

a2
ÿ 2 sinø cos (3ø)

d2
� sinø cos (4ø)

2d

� �

D
� rr
zz �

1

a2

cos (4ø)

d2
ÿ cosø cos (4ø)

2d

� �

D
� rr
rr �

1

a2
ÿ 2 cos (2ø)� cos (4ø)

d2

8>><>>:
�

cosø [2 cos (2ø)� cos (4ø)ÿ (k� 3)]

ÿ2 sinø sin (2ø)

2d

9>>=>>;
D
� rr
rz �

1

a2
ÿ sin (2ø)� sin (4ø)

d2

�
� sinø[2 cos (2ø)� cos (4ø)]

2d

�

D
� rz
zz �

1

a2

2 sinø cos (3ø)

d2

�
ÿ sinø [2 cos (2ø)� cos (4ø)]

2d

�

D
� rz
rr �

1

a2
ÿ sin (2ø)� sin (4ø)

d2

�
ÿ sinø[ÿ2 cos (2ø)ÿ cos (4ø)� (kÿ 1)]

2d

�

D
� rz
rz �

1

a2

cos (4ø)

d2
ÿ cosø cos (4ø)

2d

� �
(8)

where ø and d are defined in Fig. 3, and these are normally

subtracted from the full expression to facilitate numerical

quadrature.

Before proceeding to employ these quantities, some of

their characteristics will be listed. The first is that, by

making the radius of the dipole very large and the

observation point approach the ring, the solution for the

corresponding plane dipole may, in each case, be recovered.

It may be concluded that the more weakly singular terms

present in the ring solutions are present by virtue of the

finite curvature of the ring. Secondly, in problems where

the crack is inclined at an angle to the centre-line (Fig. 2a),

it is necessary to employ a local axis set, oriented parallel

to the crack, so that new kernels may be established,

relating the traction components of stress to the opening

and shear mode dipoles. This may be achieved by noting

that both the state of stress and the dipoles themselves

transform as second-order tensors, so that the matrix of

kernels itself transforms as a fourth-order tensor (Appendix

2).

3 ANNULAR CRACK

The simplest problem which may be tackled by this

procedure is that of an annular crack, of mean radius rc and

width 2L, subjected to arbitrary remote tension and radial

shearing stress (~ó zz(r), ~ó rz(r)). The problem is shown in

Fig. 4, and it is noted, first, that the presence of opening

mode ring dipoles induces no shearing tractions in the

plane of the ring, as Dzz
rz(a; r, 0) � 0 and, similarly,

shearing mode dipoles induce no opening mode stress as

Drz
zz(a; r, 0) � 0, from equations (8). The problem is

therefore reduced to two uncoupled singular integral equa-

tions of the form

0 � ~ó ir(r)� 2ì

ð(k� 1)

� rc�L

rcÿL

bi(a)Diz
iz(a; r, 0) da,

rc ÿ L < ar < rc � L, i � r, z (9)

where the kernels are given by

Diz
iz(a; r, 0) � 2E

a2(1� r)(1ÿ r)2
(10)

where E is the complete elliptic integral of the second kind

given by

E �
�ð=2

0

�������������������������
1ÿ k2 sin2ö

p
dö (11)

with the elliptic modulus

Fig. 3 Notation needed to establish the state of stress near a

dipole
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k � 2
���
r
p

1� r �
2
�����
ar
p

a� r
(12)

Only the case of a crack subjected to opening mode

loading will be treated here, as the shearing case gives rise

to very similar equations. The first step in the solution of

the above equation is to abstract the singular term, using

equations (7), and noting that ø � 0, and d � rÿ 1, so

that

Dzz
zz(a; r, 0) � 1

a2(rÿ 1)2
ÿ 1

2a2(rÿ 1)

� �
� D9zz

zz(a; r, 0) (13)

where D9zz
zz is a bounded function, given by

D9zz
zz(a; r, 0) �ÿ 2E

a2(1� r)(1ÿ r)2

ÿ 1

a2(rÿ 1)2
ÿ 1

2a2(rÿ 1)

� �
(14)

The integral equation may also be put in standard normal-

ized form by the substitutions

s � aÿ rc

L
, t � r ÿ rc

L
(15)

so that, with t ÿ s � (r ÿ a)=L � a(rÿ 1)=L, then

ÿðL(k� 1)

2ì
~ó1zz �

��1

ÿ1

Bzz(s) ds

(t ÿ s)2
ÿ 1

2

��1

ÿ1

Bzz(s) ds

(s� rc=L)(t ÿ s)

�
��1

ÿ1

Bzz(s)D9zz
zz(t; s) ds (16)

The regular kernel now reads

D9zz
zz(t; s) �ÿ 2(s� rc=L)E

(t ÿ s)(s� t � 2rc=L)

ÿ 1

(t ÿ s)2
ÿ 1

2(s� rc=L)(t ÿ s)

� �
(17)

and the modulus k of the complete elliptic integral E is

given by

k(t; s) � 2

�����������������������������������������
(t � rc=L)(s� rc=L)

p
s� t � 2rc=L

(18)

The singular integral equation (16) contains a hypersingular

term of the second degree, a Cauchy term and bounded

terms.

The numerical treatment of integral equations with

hypersingular kernels of the second degree has been

reviewed by Monegato [13] and treated by Kaya and

Erdogan [11] and Korsunsky [14]. Without dwelling on

details, the basic approaches to the solution of hypersingu-

lar equations are mentioned.

The first involves representation of the unknown func-

tion by a truncated series of fundamental functions, such as

Jacobi polynomials. In many crack problems, because of

the behaviour of the unknown function at the ends of the

interval, these often reduce to Chebyshev polynomials,

which can be treated numerically very effectively, using

trigonometric representations. This discretization approach

results in a linear algebraic system for the unknown

coefficients of the series, with the system matrix populated

by quadratures of known functions.

The second method utilizes interpolative Gaussian quad-

ratures. In this formulation, the integrals are expressed as

sums over a number of nodal points with certain weights.

Both the coordinates of these points and the weights are

determined by the behaviour of the unknown function and

are once again often related to Chebyshev polynomials

[15].

Fig. 4 A flat annular crack in an infinite medium, subject to uniform remote axial tension
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The second method usually proves to be more accurate

and efficient and is easier to implement, although a greater

number of terms is required to achieve given accuracy.

Figure 5 displays results for the stress intensity factor

arising at the inner edge of a circular annulus. The results

obtained are in good agreement (better than 1 per cent)

with the calculations by Clemens and Ang [16].

4 CYLINDRICAL CRACK

Now the cylindrical crack shown in Fig. 6 is considered. It

is assumed that the crack is subjected to a remote radial

tension ~ó zz(z). This will clearly require dipoles brr to be

distributed, but these, in turn, reduce shear stresses órz(z),

and so dipoles of the brz type will also be required. The

integral equations expressing the traction-free requirement

in both the radial and axial directions are

ÿ ð(k� 1)

2ì
~ó rr(z)

�
��L

ÿL

[Brr(z9)Drr
rr(a; 1, î)� Brz(z9)Drz

rr(a; 1, î)] dz9,

ÿ L , z ,�L (19)

0 �
��L

ÿL

[Brr(z9)Drr
rz(a; 1, î)� Brz(z9)Drz

rz(a; 1, î)] dz9,

ÿ L , z ,�L (20)

where the kernels are given explicitly in Appendix 1, with

ø � �ð=2, r � 1 and d � (zÿ z9)=a � î. The singular

parts of the kernels may be written explicitly from

equations (8) and are

D
� rr
rr (a; 1, î) � 1

a2d2
, D

� rz
rr (a; 1, î) � 0

D
� rz
rz (a; 1, î) � ÿ 1

a2d 2
, D

� rr
rz (a; 1, î) � 0

(21)

It should be noted that the regular part of the kernel in the

above expressions may include a weak logarithmic singu-

larity. The stress intensity factors arising at the ends of the

crack, subjected to internal pressure, are shown in Fig. 7.

5 HALF-SPACE PROBLEMS

It was stated at the outset that the method described above

could be employed to solve the problem of axisymmetric

cracks in half-spaces, providing that the relevant kernels

are employed, which ensure that the surface remains

traction-free. These kernels have been found [12,17], but

no examples have been included here. The kernels are

complex, but contain nothing more complicated than an

elliptic integral, or even the slightly more general case of

bonded elastically dissimilar half-spaces.

Fig. 5 Stress intensity factors for the crack shown in Fig. 4
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6 DISCUSSION

The main purpose of this paper is to present a general

formulation for axisymmetric crack problems, and to

include sufficient detail of the kernel functions involved to

enable the reader to construct solutions for a wide range of

geometries. Therefore here only a limited set of results for

the two problems are presented and introduced as vehicles

to illustrate the principles.

The annular crack under remote uniform far-field

tension has been treated before [13] and, for all the

geometries treated, an accuracy of three significant figures

was obtained by a reduction of the integral equation to 20

simultaneous linear algebraic equations, even when the

centre-line radius of the crack was only 2 per cent greater

than the inner radius, which is the most taxing case. Results

were within 1 per cent of those given in reference [13].

Results for the buried cylindrical crack are shown in Fig.

7. These were obtained for several values of Poisson's ratio.

It may be noted that the stress intensity factors found

depend on this elastic constant, in contrast with the

corresponding plane problem.

7 CONCLUSION

A method for the solution of cracks of axisymmetric shape

present in simple geometries, such as an infinite space or

bonded half-spaces, has been described. It is based on an

integral equations formulation, using pairs of Somigliana

ring dislocations, arranged so as to form dipoles, as the

kernel. This process leads to the formulation of tractable

integral equations, whose dominant term is hypersingular to

the second degree. These may be reduced by recently

developed methods to families of linear algebraic equations,

whose ready inversion means that solution of the underlying

Fig. 6 A cylindrical crack in an infinite medium, subject to uniform remote radial tension

Fig. 7 Stress intensity factors for the crack shown in Fig. 6
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problem is computationally very efficient. This is particu-

larly so in the case of the half-space types of problem, as

boundary conditions on the free surface are incorporated

into the kernels and are therefore automatically satisfied.
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APPENDIX 1

Influence functions for ring dipoles in an infinite

medium

The influence functions D
ij
kl below give the stress compo-

nents ókl at point r, z due to the ring dipoles bij of unit

intensity. The ring dipoles of radius a are centred at r � 0,

z � z9, and lie in an infinite elastic medium with the

modulus of rigidity ì and Kolosov's constant k � (3±4)í,

where í is Poisson's ratio. The dimensionless coordinates

are introduced by

r � r

a
, î � zÿ z9

a

Dzz
zz(a; r, î) � ð

a2
[ÿJ002(r, î)ÿ îJ003(r, î)]

Dzz
rr(a; r, î) � ð

a2
ÿJ002(r, î)� îJ003(r, î)ÿ î

r
J012(r, î)

�

� kÿ 1

2r
J011(r, î)

�

Dzz
rz(a; r, î) � ð

a2
[ÿîJ013(r, î)]

Drr
zz (a; r, î) � ð

a2
[ÿJ002(r, î)� îJ003(r, î)]

Drr
rr(a; r, î) � ð

a2

�
3J002(r, î)ÿ îJ003(r, î)

� î

r
J012(r, î)ÿ 3� k

2r
J011(r, î)

�

Drr
rz(a; r, î) � ð

a2
[ÿ2J012(r, î)� îJ013(r, î)]

Drz
zz(a; r, î) � ð

a2
[ÿîJ103(r, î)]

Drz
rr(a; r, î) � ð

a2

�
ÿ 2J102(r, î)� îJ103(r, î)

ÿ î

r
J112(r, î)� k� 1

2r
J111(r, î)

�

Drz
rz(a; r, î) � ð

a2
[J112(r, î)ÿ îJ113(r, î)]

(22)

The quantities Jmnp are the Lipschitz±Hankel integrals.
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APPENDIX 2

Influence function transformation rules

Introduce a local system of coordinates associated with the

ring, which is rotated an angle è counterclockwise with

respect to the global system (r, z), i.e. define

x � r cos è� (zÿ z9) sin è (23)

y � ÿr sinè� (zÿ z9) cos è (24)

Consider the family of ring dipoles of geometry defined in

the previous section. Let the dipoles be combined so as to

produce displacement discontinuity components in the

local frame associated with elemental surfaces defined by

unit normals along the x and y axes. In order to evaluate

the stresses generated by these fundamental ring dipoles in

the local coordinate system, tensor transformation rules

must be applied.

The influence functions D̂mn
pq due to a dipole ring b̂mn of

unit intensity, which is defined with respect to the local

coordinate system, give the expressions for the stresses ó̂ pq

in this system. These influence functions are calculated

using

D̂mn
pq � D

ij
klaimajnakpalq (25)

where the summation convention applies for repeated

indices, and aim are the components of the rotation tensor

A � cos è sin è
ÿ sin è cos è

� �
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