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SOLUTION OF CERTAIN MATRIX EQUATIONS

JOHN JONES, JR.

Abstract. The main purpose of this paper is to obtain solu-

tions of matrix equations of the following types, AX— XB=C,

XDX+AX+XB+C=0, in which case X is an unknown n by n

matrix and A,B,C, D are n by n matrices having elements belonging

to the field C of complex numbers. Results obtained extend those

of W. E. Roth, J. E. Potter and others concerning the existence and

the representation of solutions X of the above equations.

1. Introduction. The main purpose of this paper is to obtain solutions

of matrix equations of the following types

in which X is an unknown n by n matrix having elements belonging to the

field C of complex numbers. The matrices A, B, C, D are n by n matrices

having elements belonging to C. The elements of all matrices and the

coefficients of all polynomials used throughout this paper will belong to

the field C and so the similarity of matrices will be valid under the rational

operations of C. Capital letters will denote matrices and / will be the n

by n identity matrix. The generalized inverse of a matrix as defined by

R. Penrose [1] will be denoted by |. We will make use of the notation

used by W. E. Roth [3], [4] throughout this paper.

Equations of the types (1.1), (1.2) are of considerable interest due to

their numerous applications in the areas of ordinary and partial differential

equations, difference equations, optimal control theory, structural analysis,

stability theory, filtering theory and elsewhere.

2. Solutions of equation (1.1). In this section solutions of (1.1) will be

obtained in terms of generalized inverses of certain matrices. Let the In

by In matrices R, R be denoted as in W. E. Roth [3] by
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(1.1)

(1.2) XDX + AX + XB + C = 0,

AX- XB = C,

(2.1)
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where A, B, C are given in (1.1). A sufficient, though not necessary con-

dition that the matrices R and R be similar is, of course, that A and B

have no common characteristic root. In this case the solution of (1.1) not

only exists, but is unique. fA(X)=\A—XI\,fB(X) = \B—lI\ are the charac-

teristic polynomials of A, B respectively. W. E. Roth [3] established the

following result.

Theorem 2.1 (Roth [3]). The necessary and sufficient condition that

equation (1.1), where A, B, C are square matrices of order n with elements

in C, have a solution X with elements in C, is that the matrices given in (2.1)

be similar.

We will next obtain the form of a solution X of (1.1) under the hypoth-

eses of Theorem 2.1 above. Let the following In by In matrices be denoted

m/^-CS). *«-(.*?). «-G.3-
where the n by n matrices U, M, M, N are polynomials in the matrices

A, B, C given in (1.1) and fA(X),fB(A) are the characteristic polynomials

of A, B respectively. We will show that the hypotheses of Theorem 2.1

above imply that there exists a solution A of (1.1) of the form

(2.3) X = N^M - MU* + N1NMW.

Theorem 2.2. If the matrices R, R of (2.1) are similar then equation

(1.1) has a solution X of the form (2.3) above.

Proof. From Theorem 2.1 above let A be a solution of (1.1), then we

have the following equation,

if A*)     0  x = /0     0 \

l o    fA(B)     \o MW'

Equation (2.4) implies that M+Al7=0. Similarly we have

I1 x)(* "M1 -x)

Iff -NX + M\    It x\ , „  // -x\
(2-5) = (o       o     ) = (o i)fMo   I )

(fB(A)     0  \ = lfB{A) 0\

\   0     fB{B)J     I  0 0/'
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Equation (2.5) implies that M—NX=0, and thus a solution X of (1.1)

must satisfy the pair of equations

(2.6) M + XU = 0,      M — NX = 0.

A necessary and sufficient condition for NX=M to have a solution is

that NNrM=M, and the general solution Xx is given by

(2.7) Xx = AtM + Y,. - N*NYlt      Yx arbitrary.

A necessary and sufficient condition for XU= — M to have a solution

is that MWU=M, and the general solution X2 is given by

(2.8) X2 = -MC/* + y2 - Y2UU\      Y2 arbitrary.

A necessary and sufficient condition for the pair of equations given in

(2.6) to have a common solution is that each equation individually have

a solution and —NM=MU. A common solution X is given by (2.3)

above. Thus a solution X=XX=X2 of (1.1) is of the form (2.3) where

Y2=N^M and YX=-MU\

We next establish other sufficient conditions that equation (1.1) has a

solution X with elements in C.

Theorem 2.3.   Let fx(X) be a polynomial of degree w^l in X with

coefficients in C such that

where V, N are polynomials in A, B, C and J7-1 exists. Then a solution X

of N— VX=0 is also a solution of (1.1).

Proof. As mentioned earlier a sufficient, though not necessary condi-

tion that the matrices R and R be similar is, of course, that A and B have

no common characteristic root. In this case a solution of (1.1) not only

exists, but is unique. But this is also necessary for the hypothesis here

implies that fx(B)=0, whence fx(X) is a multiple of the minimum poly-

nomial of B, and that V=fx(A) is nonsingular, whence fx(X) cannot

vanish for any characteristic root of A.

The matricesfx(R) and R commute which implies the following identities:

(2.10) AV=VA,      AN-VC-NB = 0.

Let Abe a solution of A— VX=0, then using (2.10) we have the following

equation

(2.11) 0 = A(N - VX) = VC + NB — A VX = V[C + XB - AX]

and since V~* exists by hypothesis, Ais a solution of (1.1).
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Theorem 2.4. Let fß{X) be a polynomial of degree n^l in X with

coefficients in C such that

wAere A, M are polynomials in A, B, C and M~x exists. Then a solution X

of N+XM=0 is also a solution of (1.1).

Proof. Similarly as in the proof of Theorem 2.3 above, a sufficient,

though not necessary, condition that the matrices R and R be similar is,

of course, that A and B have no common characteristic root. In this case

a solution of (1.1) not only exists, but is unique. But this is also necessary

for the hypothesis here implies that fß(A) = 0, whence fß(X) is a multiple

of the minimum polynomial of A and that M=fß(B) is nonsingular,

whence fß{X) cannot vanish for any characteristic root of B.

The matrices of fß(R) and R commute which implies the following

identities:

(2.13) BM = MB,      AN+CM-NB = 0.

Let Abe a solution of N+XM=0, then using (2.13) we have the following

equation

(2 14)   0 = -(^ + XM)B = -NB - XMB = -CM - AN - XMB
= -CM + AXM - XBM = (-C + AX - XB)M

and since M~x exists by hypothesis Zis a solution of (1.1).

3. Solutions of equation (1.2). For numerous applications of solutions

of (1.2) see J. E. Potter [2]. The purpose of this section is to extend some

of the results of J. E. Potter [2] and W. E. Roth [4].

Let R,fy(R) be the following In by In matrices formed from the matrices

A, B, C, D of (1.2),

where fy(%) is any polynomial of degree n^.1 in X having coefficients in C.

U, V, M,Nare polynomials in A, B, C, D. For the case D = /the following

result was established.

Theorem 3.1 (W. E. Roth [4]). If fy(X) is a polynomial of degree

ygn with coefficients in C such that fy(R) is given by (3.1) and is of rank

n and if M is nonsingular, then X such that (X, I)fy(R)=(0, 0) is a solution

of (1.2) with elements in C and X1=—M1(X+B)M—A is likewise a

solution.

We next establish the following extension of Theorem 3.1 above.
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Theorem 3.2. Let fy(l) be any polynomial of degree n^l in X with

coefficients belonging to C such that R, fy(R) are given by (3.1). Then a

solution of (X, I)fy(R) = (0, 0) with U^1 or Af-1 existing, or a solution of

fy(R)(-x)=(o) with Af-1 or N^1 existing is also a solution of (1.2).

Proof. We will first show that if a solution of {X, I)fy(R) = (0, 0)

exists with C/_1 or M_1 existing then such a solution is also a solution of

(1.2) . Let such a solution X exist. Now the matrices R,fy(R) commute so

we have the following matrix identities:

DV + UB = BU - MC,      UD + MA = DN - BM,
(3.2)V   '    AV + VB = CU - NC,       CM + VD= -NA + AN.

Making use of (3.2) and the above solution X we have

0 = -(IM + N)C

= -XUB - XMC + XUB - NC

= -X(UB + MC) + XUB - NC

= -X{BU - DV) + XUB - NC

(3.3) - -XBU - XDXU + XUB - NC
-  -XDXU - AXU - XBU + AXU + XUB - NC

= -XDXU - AXU - XBU - AV - VB - NC

= -XDXU - XBU - AXU - CU

= - {XDX + AX+ XB+ C)U.

U~* exists by hypothesis and (3.3) implies that X is a solution of (1.2).

Next let M-1 exist, then using (3.2) we have

0 = (XM + N)A

= - VD + XMA + NA + VD

- XUD + XMA + NA + VD

= X(DN - BM) + NA+VD
(3.4)v   ' = XDN - AXM - XBM + AXM + NA - XUD

= -XDXM - AXM - XBM + NA - AN + VD

= -XDXM - AXM - XBM - CM

= - (XDX + AX+ XB + C)M.

Equation (3.4) implies that A' is a solution of (1.2).

Next let Ibea solution of/70R)(_^)=(S) with Ar_1 or M_1 existing.
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Making use of (3.2) we have

0 = D(V — NX)

= (BU - UB - MC) - (UD + MA + BM)X

= (BMX - MXB - MC) - (MXD + MA + BM)X

- -M'XDX + AX + XB + C)

which implies that Iis a solution of (1.2). Similarly we have

0 - -A(V- NX)

= (-CU + NC + VB) + (CM + VD + NA)X

= -CMX + NC+ VB+ CMX + NXDX + NAX

(3.6)        = —AV + CU + NXDX + NAX
= VB + NC + NXDX + NAX

= NXB + NC + NXDX + NAX

= N(XDX + AX+ XB+ C).

Equation (3.6) implies that Iis a solution of (1.2).

We next establish other sufficient conditions for the existence of solu-

tions of (1.2).

Theorem 3.3. Let R, fx(R) be given as in (3.1) where M~x exists and

V=VUtU, VU^NM-1. Then X=-NM~1 is a solution of (1.2).

Proof. Now — N= —NM~1M=XM and so XM= —N has a solution.

Also XU=-NM~1U=-VUW=-V. Therefore (I, I)fx(R) = (0, 0) has
a solution and since M-1 exists by Theorem 3.2,1= —NM^1 is a solution

of (1.2).

Theorem 3.4. Let R,fa(R) be given as in (3.1) where M"1 exists and

V=NN*V, U=MNtVhold. Then X=M~1U is a solution of (1.2).

Proof. V=NNfV is a necessary and sufficient condition that NX=V

have a solution. Also

U = MM-W■= MX

and

AI = NM-W - NM-^MN^V) = NN^V = V.

Therefore fCL(R)(-Ix) = (o)> has a solution and since M~x exists, by Theorem

3.2, X=M~W is a solution of (1.2).
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