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Abstract: The aim of this research article is to develop a three-step optimal iterative technique using 

Hermite interpolation for the solution of nonlinear algebraic and transcendental equation arises in chemical 

engineering models. In this connection, we proposed an optimal three-step eight-order technique without derivative 

and, has a high efficiency index. The convergence analysis of the proposed method is also discussed. For this 

demonstration, we apply the new technique to certain nonlinear problems in chemical engineering, such as, the 

conversion in a chemical reactor, a chemical equilibrium problem, azeotropic point of a binary solution and 

Continuous Stirred Tank Reactor (CSTR). And the study of dynamics is also used to demonstrate the performance 

of the presented scheme. It’s observed from the Comparison tables and dynamics, the proposed technique is more 

efficient compared to other existing methods. 

Keywords: nonlinear equations, root-finding iterative methods, chemical engineering models, optimal order 

of convergence, basin of attraction. 

使用新的三步无导数优化方法求解化学工程模型及其动力学 

摘要：本研究文章的目的是开发一种使用埃尔米特插值的三步最优迭代技术，用于求解

化学工程模型中出现的非线性代数和超越方程。在此方面，我们提出了一种最优的三步八阶

技术，无需导数，具有很高的效率指标。还讨论了所提出方法的收敛性分析。在本次演示中

，我们将新技术应用于化学工程中的某些非线性问题，例如化学反应器中的转化、化学平衡

问题、二元溶液的共沸点和连续搅拌釜反应器(CSTR)。并且动力学研究也用于证明所提出方

案的性能。从比较表和动力学观察，与其他现有方法相比，所提出的技术更有效。 

关键词：非线性方程，寻根迭代法，化学工程模型，收敛的最佳顺序，吸引盆地。 

1. Introduction
Determining the solution of  , when  is 

nonlinear, is of high concern in both applied and real-

life models. In this article, the proposed method will be 
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tested by models in chemical engineering, i.e., 

conversion in a chemical reactor, a chemical 

equilibrium problem, azeotropic point of a binary 

solution and Continuous Stirred Tank Reactor (CSTR). 

In this regard, the Newton Raphson technique for 

solving such equations already exists  

        
     

      
           (1) 

Equation 1 is one of the most well-known and 

renowned iterative approaches for finding solutions to 

nonlinear equation is the Newton Raphson method [1]. 

However, Newton’s method has a quadratic 

convergence and requires two function evaluations, 

i.e.,             , if          then, the said method 

fails to converge. The methods involve derivative 

required more computing cost compared to methods 

with derivative requirements. Nowadays scholars more 

intend to derivative free methods. 

Steffensen developed a derivative-free iterative 

method [2]–[4]. 

                             
     

        
        (2) 

where         
           

     
  it maintains the same 

convergence order and efficiency index as Newton’s 

method. For an optimal convergence order       [2], 

where   functional evaluations per iteration. 

A three-step technique of eighth order of 

convergence with four-function evaluation was 

proposed in [5]. It is denoted by “SM”, i.e., 

 

              
     

        
                           

               
     

             
     

     
 
     

     
  

                                 

                   
     

        

 

   
     

     
 
     

     
 
                   

  

 

 
 
 
 

  
 
     

     
 
 

           
 

                         
     

     
 
 

 
     

     

  
     

     
 
 

 
     

     
 

     

      

 
 
 
 

     

 
 
 
 
 
 
 

 
 
 
 
 
 

  (3)

 The Chebyshev-Halley type derivative free method 

for numerical solution of nonlinear equations of eighth 

order was presented in [6]. It required four-function 

evaluation and solved some real-life problems in 

different fields denoted by “AKKB”. 
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An eighth-order derivative free iterative method for 

the solution of nonlinear equations based on 

Steffensen-King’s type methods was presented in [7]. It 

required four-function evaluation per iteration, denoted 

by “KBK”.  
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An optimal eighth-order derivative free method was 

proposed in [8] based on the Steffensen-type method 

and they also study the dynamic behavior of the 

proposed method for demonstration; it is denoted by 

JLM. 
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Many scholars proposed iterative methods for 

various orders of convergence and efficiency indexes, 

and test these iterative methods in application problems 

of various fields, i.e., medical science: blood rheology, 

non-Newtonian mechanics, fluid dynamics, population 

dynamics, and neurophysiology, chemical engineering: 

conversion in a chemical reactor, a chemical 

equilibrium problem, azeotropic point of a binary 

solution and Continuous Stirred Tank Reactor (CSTR), 

physics, civil engineering, etc. [9]–[27]. 

 

2. Proposed Method 
Recently, a non-optimal eighth-order method with 

five-function evaluation (three functions and two first 

derivative) was proposed in [28], i.e., 

 

               
     

      
                                                

               
     

      

       

                     
      

                  
     

      
                                              

 
 

 
 

           (7) 

In Equation 7, we have two derivatives 

       and       . In connection of the derivative free 

method, we must replace these with derivatives 

                taken from equations (5) and (6).  

We approximate        using available data. Since 

we have four values                       
approximate   by its Hermite’s interpolating 

polynomial   of degree 3 at the nodes       and use 

the approximation         
     in the third step of 

the iterative scheme (7)  

Hermite’s interpolating polynomial of third degree 

has the form 

                        
  

       
                                                            (8) 

and its derivative is  

  
                         

         (9) 

The unknown coefficients will be determined using 

available data from the conditions:            
                        

          . 
Putting     into equation (8) and equation (9), we 

get         and         . The coefficients    and 

   are obtained from the system of two linear equations 



238 

 

formed using the remaining two conditions   
          in equation (8), and we obtain 
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By putting the values of                (9), we 

get 
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We replace        and        in equation (7), finally 

we obtain 
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According to [2] Equation (13) is an optimal, 

eighth-order derivative free method. 

 

3. Convergence Analysis 
Theorem: Let       be a simple zero of a 

sufficiently differentiable function              in 

an open interval   , which contains    as an initial 

approximation of  . Then, the method (13) is of the 

eighth order and includes only four function 

evaluations per full iteration, and no derivatives used. 

Proof: The Taylor’s series expansion of the function 

      can be written as: 
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For simplicity, we assume that 
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Thus, we have 
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Furthermore, we have 
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From equations (16) and (18) 
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From equations (19) and (21), we have  
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Step 2: 
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Finally, we obtain 

Step 3:          
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4. Numerical Experiment  
The following problems are taken from the 

literature and tested by the proposed method. 

Example 1 (conversion in a chemical reactor): See 

in [14], [29], [30], the following nonlinear equation is 

to be solved: 

      
 

   
      

        

        
               (29) 

As an initial solution, we selected        . 

 
Table 1 Numerical results for Example 1 for the first four iterations and their absolute function values at         (Developed by the 

authors)

Methods Iteration 1st Iteration 2nd Iteration 3rd Iteration 4th Iteration 

Proposed 8th    
       

             
             

             
              

             

               

             

                

SM 8th    
       

             

             

             

              

             

               

             
                

AKKB 8th    
       

             
             

             
             

             
             

             
             

KBK 8th    
       

             
             

             
              

             
               

             
                

JLM 8th    
       

             
             

             
              

             
               

             
                

 
Table 2 Numerical results for Example 1, error fixed at   

        (Developed by the authors) 

Methods                  
Proposed 8th                 
SM 8th                 
AKKB 8th                 
KBK 8th                 

JLM 8th                 

 

Example 2 (a chemical equilibrium problem) [13], 

[24], [26]: 

       
                      

                                                                    (30)

 
Table 3 Numerical results for Example 2 for the first four iterations and their absolute function values at         (Developed by the 

authors)

Methods Iteration 1st Iteration 2nd Iteration 3rd Iteration 4th Iteration 

Proposed 8th    
       

             
             

             
              

             
               

             
                

SM 8th    
       

             
             

             
              

             
               

             
                

AKKB 8th    
       

             
             

             
              

             
               

             
                

KBK 8th    
       

             
             

             
              

             
               

             
                

JLM 8th    
       

             
             

             
              

             
               

             
                

 
Table 4 Numerical results for Example 2, error fixed at   

        (Developed by the authors) 
Methods                  

Proposed 8th                 

SM 8th                 

AKKB 8th                 

KBK 8th                 

JLM 8th                 

 

Example 3 (azeotropic point of a binary solution) 

[14], [29], [31]: 

       
               

           
        (31) 

where   and   are coefficients in the Van Laar 

equation, which describes phase equilibria of liquid 

solutions. Consider for this problem that           

and          . The root of this equation is   
            . As an initial solution, we selected 

       
 

Table 5 Numerical results for Example 3 for the first four iterations and their absolute function values at      (Developed by the authors)

Methods Iteration 1st Iteration 2nd Iteration 3rd Iteration 4th Iteration 

Proposed 8th    
       

             

             

             
              

             
               

             
                

SM 8th    
       

             
             

             
              

             
               

             
                

AKKB 8th    
       

             
             

             
              

            
              

             
                

KBK 8th    
       

             

             

             

             

             

              

             

               

JLM 8th    
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Table 6 Numerical results for Example 3, error fixed at   

        (Developed by the authors) 
Methods                  
Proposed 8th               

SM 8th               

AKKB 8th    5          

KBK 8th    6          

JLM 8th              

 

Example 4 (Continuous Stirred Tank Reactor 

(CSTR)) [32]:  

       
                            

                         (32)

 
Table 7 Numerical results for Example 4 for the first four iterations and their absolute function values at         (Developed by the 

authors)

Methods Iteration 1st Iteration 2nd Iteration 3rd Iteration 4th Iteration 

Proposed 8th    
       

             

             

             
              

             
               

             
                

SM 8th    
       

             
            

             
            

             
            

             
            

AKKB 8th    
       

             
             

             
            

             
             

             
             

KBK 8th    
       

             

             

             

              

             

               

             

                

JLM 8th    
       

             

             

             

              

             

               

             

                

 
Table 8 Numerical results for Example 4, error fixed at   

        (Developed by the authors) 

Methods                  

Proposed 8th                 

SM 8th                 
AKKB 8th                 

KBK 8th                 

JLM 8th                 

 

5. Dynamics Study of the Methods 

For investigating the stability of the proposed 

method at various initial guess we use the dynamical 

system, i.e., basin of attraction. If an algorithm fails to 

converge or converges to a different solution, it is 

considered inferior to the others. The main difficulty 

with this form of comparison is that the starting point is 

just one among an infinite number of possibilities. To 

combat this, the concept of a basin of attraction was 

developed. If a function contains n different zeroes 

(roots), the plane is split into n basins in an ideal case, 

and every basin has a different color. The basin of 

attraction method was initially discussed in [33]. 

Newton’s approach was contrasted to Halley’s, 

Popovski’s, and Laguerre’s third-order methods. This is 

preferable to comparing method by executing various 

non-linear functions with a certain initial value. Many 

articles have been published in the recent decade that 

use the concept of basin of attraction to compare the 

efficacy of various techniques. 

 

6. Basin of Attraction for Proposed 

Algorithms 
All basins are plotted with MATLAB R2018b 

within the range                 with a 

density of                points. To terminate 

iterations, an error threshold of         or a 

maximum count of     iterations is chosen. Each point 

in   is then picked as the starting condition for the 

algorithms. If the sequence generated by the iterative 

algorithm converges to a root   
  to the function       

with the specified tolerance and iterations count   
   , we decide to give the starting point a distinct 

color (not black) depending on the root it converged to. 

If the iterative algorithm starting with     transcends 

100 iteration count before converging to any root    or 

converges to some other value, say  , with specified 

tolerance               , we conclude that the 

starting point has diverged and a black is assigned to it. 

The number of iterations is depicted for each point 

in another basin with a reference of a color bar 

alongside. 
S. No. Functions        Roots                
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6.1. Basin of Attraction of the Proposed Eighth-

Order Methods 

The left figure shows roots while right figure shows 

the number of iterations at each initial point of       
obtained by the proposed eighth-order method.  
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Fig. 1 Basin of attraction of       (Developed by 

authors) 

  

 

Fig. 2 Basin of attraction of        (Developed by 

authors)  

 

Fig. 3 Basin of attraction of        (Developed by 

authors)  

 

Fig. 4 Basin of attraction of        (Developed by 

authors)  

 

Fig. 5 Basin of attraction of        (Developed by 

authors)  

 

Fig. 6 Basin of attraction of        (Developed by 

authors)  

 
Table 9 Comparison table (Developed by the authors) 

Method Kong-ied [28] 

Method 

Proposed 

Method 

Rate of convergence 8th 8th 

Total function evaluations 

per iteration 

5 4 

Efficiency Index 1.515716567 1.681792831 

Optimality  Non-optimal Optimal 

 

7. Conclusion 
In this article, the main attention was focused upon 

to derive an optimal derivative free method of eight 

order with a three-step formula for finding the roots of 

non-linear equations in chemical engineering. Various 

application problems have been tested by the proposed 

method and compared with other available counterpart 

methods in the literature of the same order. For the 

analysis of the stability and consistency of the proposed 

method, the basin of attraction for various problems 

has been found to be suitable using the proposed 

method. It was observed from the comparison tables 

and basin of attraction in previous pages that the 

proposed eighth -order method is accurate, consistent, 
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and their stability is robust compared to their 

counterpart methods available in the literature in all 

application problems. Therefore, the proposed method 

is one of the better alternate methods for the solution of 

nonlinear algebraic and transcendental equations. The 

implementation of the proposed method is all nonlinear 

algebraic and transcendental equations arise in various 

fields. In the future, we will propose a 16
th
-order 

optimal derivative free method. Matlab, Mathematica 

2021, and Maple 2021 software were used to obtain the 

results of various application problems and basin of 

attraction.  
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