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Mathematical modeling of many engineering and physics problem leads to extraordinary differential equations like Nonlinear,
Delayed, and Fractional Order. An effective method is required to analyze the mathematical model which provides solutions
conforming to physical reality. A Fractional Differential Equation (FDE), where the leading differential operator is Riemann-
Liouvelli (RL) type requires fractional order initial states which are sometimes hard to physically relate. Therefore, we must
be able to solve these extraordinary systems, in space, time, frequency, area, volume, with physical reality conserved. Extra
Ordinary Differential equation Systems and its solution, with Physical Principle, of action-reaction and equivalent mathematical
decomposition method, are obtained as an aid for Physicists and Engineers to tackle the process dynamics with ease. This reactions-
chain generates internal modes from zeroth mode reaction to first mode second mode and to infinite modes; instantaneously in
parallel time or space-scales; and the sum of all these modes gives entire system reaction. This modal reaction as explained by
physics theory exactly matches the principle of Adomian Decomposition Method (ADM). Fractional Differential Equation (FDE)
with Riemann-Liouvelli formulation linear and non-linear is solved as per ADM. In this formulation of FDE by RL method it
is found that there is no need to worry about the fractional initial states; instead one can use integer order initial states (the
conventional ones) to arrive at solution of FDE. This new finding too is highlighted in this paper-along with several other problems
to give physical insight to the solution of extraordinary differential equation systems. This way one gets insight to Physics of General
Differential Equation Systems-and its solution-by Physical Principle and equivalent mathematical decomposition method. This
facilitates ease in modeling.

1. Introduction

General physics law states that a system will react to external
stimulus and will have opposition to the changes; the process
is described by system dynamic equations.

Let there be general differential equation system de-
scribed as in

Dm
x u(x) + a1D

m−1
x u(x) + a2D

m−2
x u(x) + · · ·

+ am−1D
1
xu(x) + amu(x) + bk[u(x)]k

+ bk−1[u(x)]k−1 + · · · b0u(x) = G(x).

(1)

We can decompose this as Linear part

Lu(x) = G(x)− R(u)−N(u). (2)

The operator L represents a linear operator representing the
highest orders of change in the process parameter. L(u) =
dmu(x)/dxm = Dm

x u(x). This is easily invertible. This order
of change (m) could be one, two, or any positive integer or
even fractional (say half, one fourth). This order of change
could be with respect to time, space, space square (area) fre-
quency, or time square depending on the process description.
Where

R(u) = a1D
m−1
x u(x) + a2D

m−2
x u(x) + · · · + am−1D

1
xu(x)

(3)

is the remainder differential operator of order less than m.
This R could be of integer or fractional order. The rest of the
terms are put as (4) containing nonlinear as well as the linear
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terms, assuming (4) as analytic function N

N(u) = amu(x) + bk[u(x)]k + bk−1[u(x)]k−1 + · · · b0u(x).
(4)

The G(x) is sum of all external stimuli source/sink.
General physics law states that a system will react to

external stimulus and will have opposition to the changes,
by the system reaction terms defined by R and N defined in
the system description equation (1). These R and N generate
internal stimulus when excited by external source/sink as
to oppose the cause. The reactions are causal in nature.
If the external stimulus and the internal reactions to the
stimulus get balanced then the process parameter remains
static without any growth (accumulation) or decay (loss).
Else, the process parameter will have a solution as infinite (or
finite) decomposed modes, generated by the system itself to
oppose stimulus generated internally by the previous modes.

Adomian Decomposition Method (ADM), Computa-
tional method, yields analytical solution; it has certain
advantages over standard numerical techniques [1–7]. How-
ever, the ADM was discovered in mid-late eighties and
utilized to tackle non-linear problems of physics. ADM is free
from rounding off errors as it does not involve discretiza-
tion and does not require large computer memory. ADM
is qualitative rather than quantitative, analytic, requiring
neither linearization nor perturbation and continues with no
resort to discretization. ADM splitting gives equation into
linear (L) that is containing the highest order of change,
the remainder part (R) that has change rates less than (L),
and then the non-linear (N) part. Thereafter, inverting the
“highest order” derivative (L) in the linear operator on
both sides of the differential equation is the first step. The
second step is to identify the initial/boundary conditions and
terms involving the independent variables alone, as initial
approximation. Decomposing the unknown functions (N)
into series whose components are to be determined as ADM.
The decomposed parts of ADM method are related physically
to system reactions of various modes from zeroth mode to
infinity mode. The sum of all these modes is the solution
of Differential Equation (Nonlinear Linear Integer Order
or Fractional Order). Physically the zeroth mode reaction
comes from external stimulus plus the initial integer-order
states; which instantly generates the internal stimuli of
infinite modes, to oppose this first action (change), in an
opposite way, in time or space (at the origin). The exact
ADM mathematics generates these infinite modes reactions;
therefore ADM is close to physical reality. The ADM helps to
physically visualize the reaction of system by decomposing
the total gross reaction into all these infinite modes. If
the differential equation system with (L) is of Riemann-
Liouvelli type fractional operator, then classically one needs
the initial states as fractional order like uα(0),uα−1(0), and
so forth. These states are hard to visualize physically. With
this ADM, the RL formulation does not need these states
instead u(0), u̇(0), the integer-order states, give the solution,
being thus physically easily realizable. This new finding too is
highlighted in this paper, along with several other problems
to give physical insight to the solution of extraordinary

differential equation systems. By this way, one gets insight
to Physics of General Differential Equation Systems, and its
solution, by Physical Principle and equivalent mathematical
decomposition method. This provides ease in modeling
systems close to physical reality. The system transfer function
for analysis is delta function excitation (forcing function).
This gives solution to homogeneous set of system of
differential equations, called Green’s function. Response to
any other type of forcing function (say Heaviside’s Step,
Ramp or Sinusoidal function) is obtained by convoluting this
delta function’s response with (other) excitation function.
Therefore most of the examples are discussed with delta
function as forcing function; however the solution to any
other type of forcing function is similar. One example is thus
solved for mass-spring damper with (half) fractional-order
element with Heaviside’s step as input to demonstrate the
utility of these methods.

2. Physical Reasoning to Solve First-Order
System and Its Mode Decomposition

The application of ADM to simple ordinary differential
equation will give insight to the action reaction theory of
physics. Thus the ADM will try to explain the physical
behavior too. It will be therefore demonstrated that ADM
is actually translating the physics of the process, where any
change is opposed by the system itself.

Consider the first order differential equation

ẋ(t) + ax(t) = f (t) or in term of (1),

as D1
t x(t) + ax(t) = f (t)

(5)

with initial condition and forcing function (source) as x(0) =
0, f (t) = Kδ(t). Practically, let x(t) be instantaneous current
of RC circuit connected to battery by a switch. The voltage
excitation is a step function VBBh(t), where h(t) = 0; t < 0
and h(t) = 1; t ≥ 0 a Heaviside’s step function. The circuit
equation is

1

C

∫ t

0+
i(t)dt + Ri(t) = VBBh(t) or

1

RC

∫ t

0+
i(t)dt + i(t) = VBBh(t)

R
.

(6)

Differentiating (6), we get

d

dt
i(t) +

1

RC
i(t) = VBB

R
δ(t). (7)

Equation (6) is a voltage equation and (7) is current
equation, rewritten with compliance with (5). This basic
equation like (5) and (7) gives rate of change of current
(function) as related to external stimulus. The current
excitation is impulse excitation in (7). Have the initial current
in the system be zero i(0) = 0. This system has characteristic
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time constant RC seconds; meaning that current in system
changes e times in RC seconds. We shall consider response
at larger time scales than RC. In (5) this characteristic time
constant is (1/a). Here time scales and concept of time
constant is mentioned. This could be length scale, frequency-
scale time square, scale area volume, or any other scales
depending on the units of a in (5).

Initial time zero, at the switch closer instance, gives
impulse excitation of current, assuming that if the capac-
itance of the circuit was absent, at this initial instant
(capacitance comes into action at retarded time), then the

current in the resistance is i(t) = (VBB/R)
∫ t

0 δ(t)dt =
(VBB/R)D−1

t δ(t) = (VBB/R) a constant.
Here a point is mentioned that integration of the forcing

function comes because the inertial element capacitance
is present in the circuit and in (7). If the capacitor is
completely absent then the current reaction will be simple
(VBB/R) δ(t), meaning that the current would have vanished
instantaneously with the impulse and the current would be
then zero, that is, i(t) = 0 at t ≥ 0. This initial moment
current in resistor is VBB/R at t = 0; as initially uncharged
capacitor acts as short circuit impedance. The capacitor
presence is making the current linger for time greater than
zero. The circuit as natural reaction to any force will oppose
this flow of current that is the change in current from zero to
VBB/R is the capacitor action.

Therefore, the first (and the foremost) reaction comes
from the resistive element (without lag or lead). That is
i0 = i(0) + D−1

t [VBB δ(t)/R] = VBB/R, in the absence of
the capacitive element (initially short circuited); this is the
first reaction due to external force (and initial current if all
will be present in the circuit). This sudden change in charges
(Coulombs) cannot flow into capacitor, as the voltage across
it cannot change instantaneously. This constant action of
current gives rise to a rate of change of current in the
system (per unit time constant) and is (i0/RC) A/s. The
first reactionary constant current thus is opposed by internal
generated current as i1 = −D−1

t [i0/RC], which is in
opposition to this first reactionary current initial reaction,
therefore negative. This action reaction summed up to give
i(t) = i0 + ii, the total current. The internally generated
reactionary current gives a rate of change as (i1/RC) A/s,
which will generate opposition current to the cause i1, as
i2 = −D−1

t [i1/RC], which again is added to give total
reaction as i(t) = i0 + i1 + i2, as the total current. By
this way, infinite set of stimulus currents are generated as
chain reaction giving the total current as i(t) =

∑∞
n=0 i0,

where i0 is the reaction due to external stimulus (and initial
current if present in the circuit) and the rest are internally
generated modes, acting in opposition to the rate of change
in current.

The reaction i(t), for (7), can therefore be written as

i(t) =
[

i(0) + D−1
t

(

VBBδ(t)

R

)]

+
1

RC
(−1)nD−1

t

⎡

⎣

∞
∑

n=1

in−1

⎤

⎦.

(8)

Equation (8) is appearing as physical reasoning and as
infinite series as

i(t) = i0 −
1

RC
D−1

t [i0] +
1

RC
D−1

t [i1]

− 1

RC
D−1

t [i2] +
1

RC
D−1

t [i3] + · · · .
(9)

In recursion, we obtain

i0 = i(0) + D−1
t

[

VBBδ(t)

R

]

,

in = −
1

RC
D−1

t [in−1] n ≥ 1.

(10)

Applying (10), we obtain

i0 =
VBB

R
,

i1 = −
1

RC
D−1

t

[

VBB

R

]

= −VBB

R

t

RC
,

i2 = −
1

RC
D−1

t

[

−VBB

R

t

RC

]

= VBB

R

1

2!

(

t

RC

)2

,

i3 = −
1

RC
D−1

t

[

VBB

R

1

2!

(

t

RC

)3
]

= −VBB

R

1

3!

(

t

RC

)3

.

(11)

Giving the total reaction of the system (7) as

i(t) = VBB

R

(

1− t

RC
+

1

2!

(

t

RC

)2

− 1

3!

(

t

RC

)3

+ · · ·
)

= VBB

R
e−(t/RC).

(12)

The physical reasoning logic “opposite reaction to action”
gives Mode Decomposition, and addition of all these infinite
modes gives the entire system response. The observation
is that zeroth mode reaction is formed by the external
source/sink stimulus plus any initial condition. To oppose
that rate of change, an opposite internal reaction integral
action takes place. This internal action is the first-mode
reaction which causes a rate of change; again integral action
to this first mode, in opposition, makes the second-modal
reaction and so on to make sum of “converging” analytical
solution to the system’s differential equation.

3. Physical Reasoning to Solve Second-Order
System and Its Mode Decomposition

Consider a classical oscillator of integer-second order, mass
spring system represented as

mD2
t x(t) + kx(t) = f (t) (13)

with initial conditions and forcing function defined as x(0) =
0, ẋ(0) = 0, f (t) = δ(t). We can rewrite the equation as

D2
t x(t) = ẍ(t) = 1

m
f (t)− k

m
x(t). (14)
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The above equation gives insight to physical aspect of the
process. The RHS states the opposing action to a forcing
function, which is manifested as motion given by LHS of
(14). At the initial time, the displacement being zero with the
velocity implies that the displacement at just time t = 0+ is
due to the forcing function alone. This displacement action
is without any opposition.

This (zeroth mode) displacement call is x0 =
D−2

t (1/m) f (t). Due to the nature of this forcing function
as an impulse, the displacement (zeroth mode) takes the
form of x0 = (1/m)D−2

t δ(t) = (1/m) t. This displacement
action would be true, in the absence of any retarding or
opposing element say spring or friction. (In case of (14) it is
spring action.) In absence of any opposition, the constitutive
equation will be mẍ(t) = f (t), and for impulse force, the
displacement will be linear function of time x(t) = t/m, with
constant velocity ẋ(t) = (1/m).

The presence of spring makes the equation of motion
like: ẍ(t) = (1/m) f (t) − (k/m)x(t); the external excitation
is opposed by the spring action by opposite spring force and
is internally generated fi = −(k/m)xi−1. The primary and
the zeroth modes of displacement are due to external force
on the mass that is x0 = (1/m)D−2

t f (t) = (1/m)D−2
t δ(t) =

(1/m)t. This zeroth mode of displacement is solely due to
external excitation since the initial conditions are at rest.
This displacement is now opposed by spring. Due to this
opposing element, the displacement caused by external force,
the spring generates an opposing force (first mode, from
zeroth-order mode displacement), as f1 = −(k/m)x0, and
due to this new internal force, the displacement would be

x1 = D−2
t f1 = −

(

k

m

)

D−2
t x0

= −
(

k

m

)

D−2
t

((

1

m

)

t

)

= −
(

k

m2

)

(

t3

3!

)

,

(15)

this is the first-order mode reaction displacement. This
displacement again generates an internal force, inside the
spring as f2 = −(k/m)x1 = +(k2/m3)(t3/3!), and to this force
the displacement is second-order mode

x2 = D−2
t f2 = −

(

k

m

)

D−2
t x1

= −
(

k

m

)

D−2
t

(

−
(

k

m

)(

1

m

)

(

t3

3!

))

=
(

k2

m3

)(

t5

5!

)

, . . . .

(16)

In the absence of the spring, the opposing forces will be
zero. We can call this as displacement as sum of all the modal
displacements from zero to infinity modes, with zero modes
being the only reaction to the bare excitation (if any initial
displacement and velocity are present); all other modes are
opposing reactions taking place in the spring. The modes
can be tabulated as in Table 1, for unit mass and unit spring
stiffness system of equation as described previously.

The process block diagram is represented in Figure 1,
with k = 1 and m = 1.

Adding up all the modal displacements reactions, the
solution to (13) is obtained as infinite series:

x(t) = x0 + x1 + x2 + x3 + · · ·

= 1

m
t − k

m2

t3

3!
+

k2

m3

t5

5!
− k3

m4

t7

7!

= 1

m

[

t − k

m

t3

3!
+

k2

m2

t5

5!
− · · ·

]

.

(17)

Multiplying the above series by
√
k/m and dividing by the

same, we get

x(t) = 1√
km

⎡

⎣

√

k

m
t −

(

k

m

)3/2 t3

3!
+

(

k

m

)5/2 t5

5!
− · · ·

⎤

⎦

= 1√
km

sin

⎛

⎝

√

k

m
t

⎞

⎠.

(18)

This is oscillator with natural frequency ω =
√
k/m radians

per seconds.

4. Adomian Decomposition Fundamentals and
Adomian Polynomials

We symbolize the general differential equation as

Fu = G (19)

with F being General non-linear Ordinary Differential
Operator, this can also be Fractional Differential Operator
also of Riemann-Liouvelli (RL) or Caputo type. This opera-
tor can be decomposed as

Fu = Lu + Ru + Nu = G (20)

with L being the Highest Order Derivative (Integer or Frac-
tional Order) which is invertible, R the Linear differential
(remainder) operator of order less than that of L. This
can also be fractional differential linear operator, N the
Nonlinear Part which will be decomposed into infinite sum
of Adomian Polynomial. (This term can too be of linear or
constant if decomposition is still valid.) For decomposition
this needs to be analytic, G the source term.

The decomposed equation can be rewritten as

Lu = G− Ru−Nu. (21)

Applying invert operator on both sides, we get

u = Φ + L−1G− L−1[R(u)]− L−1[N(u)], (22)

where Φ is solution of the homogeneous equation Lu =
0; so that LΦ = 0. This comes from initial/boundary
conditions. The LHS of (19) physically is the reaction of
each component of physical system, with RHS of (19)
representing source/sink or forcing term. For example,
a mass spring and damper system have the constituent
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Table 1: Decomposing the action reaction of second-order mass-spring system.

Mode Force Displacement

0 f0 = (1/m) f (t) = (1/m)δ(t) x0 = D−2
t f0 = (1/m)t

Higher modes Higher modal internal forces Higher modal internal displacements

1 f1 = −(k/m)x0 = −(k/m2)t x1 = D−2
t f1 = −(k/m2)(t3/3!)

2 f2 = −(k/m)x1 = +(k2/m3)(t3/3!) x2 = D−2
t f2 = +(k2/m3)(t5/5!)

3 f3 = −(k/m)x2 = −(k3/m3)(t5/5!) x3 = D−2
t f3 = −(k3/m4)(t7/7!)

· · · · · · · · ·

f (t) D−2
t

D−2
t

D−2
t

1

−1

−1

x0

x1

x2

·
·
·

xn

x(t) = sin(t)

x(t)

∑tẋ(0)

x(0)

x(t) = t −
t3

3!
+
t5

5!
−

t7

7!
+ · · ·

Figure 1: Block diagram showing decomposition and solution of second-order differential equation.

equation asm(d2x/dt2)+c(dx/dt)+kx = f (t), the LHS of this
is reaction of each elements, and the sum of which balances
the RHS and the external force. In terms of (19) and (20), in
this physical system L = D2

t ,R = D1
t , and N(x) = x.

The solution to this is x(t) = Φ + (1/m)L−1 f −
(c/m)L−1R − (k/m)L−1N. In this example, the order of L is
two then Φ = u(0) + tu̇(0). Assuming the time dependent
differential equation system, the invert operator in this case

is L−1 f (t) ≡ D−2
t f (t) =

∫∫ t
0 f (t)dt dt. If the order of L is of

order one then

Φ = u(0), L−1 f (t) ≡ D−1
t f (t) =

∫ t

0
f (t)dt. (23)

For decomposition of the N(u) part in (4) define a “group-
ing” parameter [2] close to one as λ. The function u can be
expressed as

u(λ) =
∞
∑

n=0

λnun = u0 + λu1 + λ2u2 + · · · . (24)

Equation (24) is Maclurain series with respect to λ, with un’s
being coefficients of the Maclurain series around λ = 0 that

is un = u(n)(0)/n!. Then by N(u) in Maclurain series with
respect to λ, we obtain

N(u) =
∞
∑

n=0

λnAn, (25)

where

An =
1

n!

⎡

⎣

dn

dλn
N

⎛

⎝

∞
∑

k=0

λkuk

⎞

⎠

⎤

⎦

λ=0

. (26)

The parameter λ is just an identifier for collecting terms in a
suitable way such that un depends on u0,u1,u2, . . . un−1, and
later on, we will set λ = 1. Paremetrizing (22), we get

u = Φ + L−1G− λL−1[R(u)]− λL−1[N(u)]. (27)

Expanding with decomposition (27), we obtain

u =
∞
∑

n=0

λnun = Φ + L−1G− λL−1R

⎛

⎝

∞
∑

n=0

λnun

⎞

⎠

− λL−1
∞
∑

n=0

λnAn.

(28)
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Equating the coefficients of equal powers of λ in the
expression for n = 0, to get u0, then n = 1, to get u1 and
so on, in (28), we get

u0 = Φ + L−1G,

u1 = −L−1[R(u0)]− L−1(A0),

u2 = −L−1[R(u1)]− L−1(A1),

...

un = −L−1[R(un−1)]− L−1(An−1), n ≥ 1.

(29)

Finally φN (t) =
∑N−1

n=0 un(t) with N ≥ 1; exact solution
of (19) is u(t) = limN→∞φN (t). This method is applied in

various problems of physics [8–15]. The convergence of this
method is very well proved in [16–18].

In the described ADM method [1–7] expression (29)
contains Adomian polynomials An as recurring formula-
tions, where the invert operator is operational. The finding
of these An, from (26), is demonstrated here in this section.
Suppose that the non-linear part of (20), that is, N(u),
is represented as

∑∞
n=0 λ

nAn; that is, N(u(λ)) is assumed
to be analytic in λ. So we write Nu = N(u(λ)) =
∑∞

n=0 λ
nAn. The An’s are polynomial defined in such a way

that each An depends only on u0,u1,u2, . . . un. Thus, A0 =
A0(u0), A1 = A1(u0,u1), A2 = A2(u0,u1,u2), and so
forth. Therefore, one possible formulation is listed below
[2]:

A0 = A0(u0) = N(u(λ))λ=0

= N
(

u0 + λu1 + λ2u2 + · · ·
)

λ=0 = N(u0),

A1 = A1(u0,u1) =
(

∂N

∂u

)(

∂u

∂λ

)

λ=0
,

A2 = A2(u0,u1,u2)

= 1

2

[(

∂2N

∂u2

)

(

∂u

∂λ

)2

+

(

∂N

∂u

)

(

∂2u

∂λ2

)]

λ=0

,

A3 = A3(u0,u1,u2,u3)

= 1

6

[(

∂3N

∂u3

)

(

∂u

∂λ

)3

+3

(

∂2N

∂u2

)

(

∂u

∂λ

)

(

∂2u

∂λ2

)

+

(

∂N

∂u

)

(

∂3u

∂λ3

)]

λ=0

.

(30)

The An’s can be reformatted from (30) in the following form:

A0 = N(u0),

A1 = u1

(

d

du0

)

N(u0) = u1N
′(u0),

A2 = u2

(

d

du0

)

N(u0) +
u2

1

2!

(

d2

du2
0

)

N(u0)

= u2N
′(u0) +

1

2!
u2

1N
′′(u0),

A3 = u3

(

d

du0

)

N(u0) + u1u2

(

d2

du2
0

)

N(u0)

+
u3

1

3!

(

d3

du3
0

)

N(u0) = u3N
′(u0)

+ u1u2N
′′(u0) +

u3
1

3!
N ′′′(u0).

(31)

For the case where non-linear term is linear, that is to say
N(u) = u; then An = un, else

An = An(u0,u1,u2, . . . ,un) ∀ n = 0, 1, 2, 3 . . . . (32)

For example, if N(u) = u3, then Adomian Polynomials for
this nonlinearity are

A0 = u3
0,

A1 = 3u2
0u1,

A2 = 3u2
0u2 + 3u2

1u0,

A3 = u3
1 + 3u2

0u3 + 6u0u1u2, . . . .

(33)

The derivation of obtaining Adomian Polynomials comes
from Generalized Taylor’s series (Maclurain series) of several
variables from linear analysis. This is described as follows:

N(u) =
∞
∑

n=0

λnAn,

N
(

u0 + λu1 + λ2u2 + · · ·
)

= A0 + λA1 + λ2A2 + λ3A3 + · · · .

(34)

Put λ = 0, to get N(u0) = A0.
Differentiate once (34), with respect to λ, to get

d

dλ

[

N
(

u0 + λu1 + λ2u2 + · · ·
)]

= d

dλ

(

A0 + λA1 + λ2A2 + · · ·
)

.

(35)

Using partial derivative expansion on the LHS of (35) and
differentiating RHS of (35), we obtain the following:

∂N
(

u0 + λu1 + λ2u2 + · · ·
)

∂(u0 + λu1 + λ2u2 + · · · )

∂

∂λ

(

u0 + λu1 + λ2u2 + · · ·
)

= A1 + 2λA2 + 3λ2A3 + · · · .
(36)
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Put λ = 0 in the above (36) to get

A1 = u1
dN(u0)

du0
= u1N

′(u0). (37)

Differentiating once more (37) with respect to λ, we get

d

dλ

[

∂N(u0 + λu1 + · · · )

∂(u0 + λu1 + · · · )

∂

∂λ
(u0 + λu1 + · · · )

]

= d

dλ

(

A1 + 2λA2 + 3λ2A3 + · · ·
)

.

(38)

Using partial derivative expansion on the LHS of (38) and
differentiating RHS of (38), we obtain the following:

∂

∂λ
(u0 + λu1 + · · · )

d

dλ

[

∂N(u0 + λu1 + · · · )

∂(u0 + λu1 + · · · )

]

+
∂N(u0 + λu1 + · · · )

∂(u0 + λu1 + · · · )

d

dλ

∂

∂λ

× (u0 + λu1 + · · · ) = 2A2 + 3!λA3 + · · · .

(39)

Using partial derivative expansion on the LHS of (39) and
differentiating RHS of (39), we obtain the following:

(u1 + 2λu2 + · · · )
∂2N(u0 + λu1 + · · · )

∂(u0 + λu1 + · · · )2

∂

∂λ

× (u0 + λu1 + · · · ) +
∂N(u0 + λu1 + · · · )

∂(u0 + λu1 + · · · )

× (2u2 + 3λu3 + · · · ) = 2A2 + · · · .

(40)

Putting λ = 0 in the above expression (40), we obtain

u2
1

∂2N(u0)

∂u0
2

+ 2u2
∂N(u0)

∂u0
= 2A2. (41)

Implying that

A2 = u2
dN(u0)

du0
+
u2

1

2

d2N(u0)

du2
0

= u2N
′(u0) +

1

2
u2

1 N ′′(u0).

(42)

Continuing like this, we get set of the Adomian Polynomials
for the function N(u).

If the nonlinearity part is

N1

(

y
)

= y2 =
∞
∑

k=0

An, (43)

then the Adomian Polynomials are

A0 = y0
2,

A1 = 2y0y1,

A2 = y1
2 + 2y0y2,

A3 = 2y0y3 + 2y0y2 . . . .

(44)

If the nonlinearity part is N2(y) = y3 =
∑∞

k=0 Bn then the
Adomian Polynomials are

B0 = y3
0 ,

B1 = 3y2
0 y1,

B2 = 3y2
0 y2 + 3y2

1 y0,

B3 = 3y2
0 y3 + 6y0y1y2 + y3

1 . . . .

(45)

For the linear term N0(y) = y =
∑∞

k=0 yn,A0 = y0 = x0 and
An = yn. For constant N(u), the Adomian polynomials are
N0(y) = K , A0 = N0(y0) = K , A1 = A2 = · · · = A∞ = 0.
The series solution

∑∞
n=0 un thus may have finite terms with

higher modes as zero, depending on N(u).

5. Generalization of Physical Law of
Nature vis-à-vis ADM

The physical description and then obtaining decomposed
solution match well with the ADM. From Sections 2, 3, and
4, we generalize the system of General Differential Equations
and give action-reaction laws to it so that one can obtain the
solution by decomposition into infinite (or finite) modes.

Let there be general differential equation system as

Dm
x u(x) + a1D

m−1
x u(x) + a2D

m−2
x u(x) + · · ·

+ amu(x) + bk[u(x)]k + bk−1[u(x)]k−1

+ · · · b0u(x) = G(x).

(46)

We can write (46) as

Lu(x) = G(x)− R(u)−N(u), (47)

where R(u) = a1Dm−1
x + a2Dm−2

x + · · · + am−1D1
x is the

remainder differential operator of order less than m. This

N(u) = amu(x) + bk[u(x)]k + bk−1[u(x)]k−1 + · · · b0u(x)
contains nonlinear as well as the linear terms. The G(x) is
sum of all external stimulus source/sink.

The L represents a linear operator representing the
highest orders of change in the process parameter. L(u) =
dmu(x)/dxm = Dm

x u(x), which is easily invertible. This order
of change (m) could be one, two, or any positive integer
or even fractional (say half, one fourth). This order of
change could be with respect to time, space, space square
(area) frequency, or time square, depending on the process
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description. Then with ADM we have

u(λ) = u0 + λu1 + λ2u2 + λ3u3 + · · · ,

u0 = Φ + L−1G,

N[u(λ)] = N
(

u0 + λu1 + λ2u2 + · · ·
)

= A0 + λA1 + λ2A2 + λ3A3 + · · · ,

A0 = N(u0),

u1 = −L−1R(u0)− L−1(A1),

A1 = u1N
′(u0),

u2 = −L−1R(u1)− L−1(A1),

A2 = u2N
′(u0) +

1

2
u2

1 N ′′(u0),

u3 = −L−1R(u2)− L−1(A2),

An−1 =
1

(n− 1)!

⎡

⎣

dn−1N
(

∑∞
k=0 λ

kuk
)

dλn−1

⎤

⎦

λ=0

,

un = −L−1R(un−1)− L−1(An−1),

u(x) =
∞
∑

n=0

un.

(48)

Equation (48) is exactly what was described in Sections 2 and
3 with physical principles of action reaction generating all
internal modes.

6. ADM Applied to First-Order
Linear Differential Equation and
Mode-Decomposition Solution

Comparing with ADM described by (29) and (48) and with
solution obtained by physical reasoning, to arrive at solution
of (5), (7) gives a similarity. Therefore, the ADM is close to
physical system behavior where the system reacts naturally
in opposite way to resist any change-this is physical law,
which is described by ADM, for solving system of differential
equations (48).

The initial reaction to the external disturbances and
the complete set of opposing reaction due to self-opposed
elements to the change, get summed up to get the overall
reaction yielding solution for (5) as set in (49) obtained vis-
à-vis (48)

x(t) = x(0) + x0 + x1 + x2 + x3 + · · · ,

x(t) = x(0) + D−1
t f (t) + aD−1

t f1(t) + aD−1
t f2(t) + · · · ,

x(t) = x(0) + D−1
t f (t) + a

∞
∑

n=1

(−1)n
(

D−1
t

)n
xn−1,

x0 = x(0) + D−1
t f (t),

x(t) = 1− at +
(at)2

2!
− (at)3

3!
+ · · · = exp(−at).

(49)

The xn’s are internal reaction to internal generated forces for
n > 0. The action reaction process described is represented in
Figure 2, with parameter a = K = 1, the D−1

t is antiderivative
operator of unity order is

D−1
t f (t) ≡

∫ t

0
f (t)dt. (50)

In the ADM, as described in (29) we can write the set of
modes (reactions) as

x0 = Φ + L−1G,

x1 = −L−1[R(x0)]− L−1(A0),

x2 = −L−1[R(x1)]− L−1(A1).

(51)

In the case of (5)L−1 = D−1
t , G = f (t) = Kδ(t), N(x) =

ax, is linear and x0 = A0, with Adomian Polynomials (29)
as: An = axn with no remainder term as R = 0. With this
decomposition, we get

x0 = Φ + L−1G = D−1
t Kδ(t) = K ,

A0 = ax0 = aK ,

x1 = −L−1[R(x0)]− L−1(A0) = −D−1
t [aK] = −Kat,

A1 = ax1 = −Ka2t,

x2 = −L−1[R(x1)]− L−1(A1) = −D−1
t

[

−Ka2t
]

= K
(at)2

2!
,

A2 = ax2 = Ka3 t
2

2!
,

x3 = −L−1[R(x2)]− L−1(A2) = −D−1
t

[

Ka3 t
2

2

]

= −K (at)3

3!
,

x(t) = K

[

1− at +
(at)2

2!
− (at)3

3!
+ · · ·

]

= Ke−at .

(52)

The infinite currents at instant (t → 0) are formed. The
first (or zeroth) reaction current is due to the initial state
of the circuit and solely due to external forcerepresented by
x0. Then recurring opposite reactions occur as set of internal
forces-due to opposing the changes, giving rise immediately
the first mode, second mode (and to infinity modes) of
currents; adding up giving the total current reaction as,
x(t) = x0 +

∑∞
n=1 xn. Therefore, the ADM method is related

to physical process of physics as to any “action” there is equal
and opposite “reaction”, may be external or internal to the
system. In other words, all system reacts in opposite way to
any change (external or internal).

7. ADM Applied to Second-Order
Linear Differential Equation System
and Mode Decomposition

The ADM method for (13) has L−1 = D−2
t , Φ = x(0) +

tẋ(0), G = (1/m) f (t) = (1/m) δ(t), N(x) = (k/m)x which
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x(0)

f (t)
D−1
t

D−1
t

D−1
t

1

−1

−1

x0

x1

x2

·
·
·

x(t) = exp(−t)

x(t)

∑

x(t) = 1− t +
t2

2!
−

t3

3!
+
t5

5!
+ · · ·

Figure 2: Block showing solution of first order differential equation by decomposition.

generates Adomian Polynomials (29) as A0 = (k/m)x0, and
An = (k/m)xn. Here in (13) the remainder part is R(x) = 0.
Using the ADM for (13), one gets the modal displacements
as described by physical reasoning also as

x0 = Φ + L−1G = D−2
t

1

m
δ(t) = 1

m
t,

A0 =
k

m
x0 =

k

m2
t,

x1=−L−1R(x)−L−1(A0)=−D−2
t

[

k

m2

]

=− k

m2

t3

3!
,

A1 =
k

m
x1 = −

k2

m3

t3

3!
,

x2=−L−1R(x)−L−1(A1)=−D−2
t

(

− t3

3!

)

= k2

m3

t5

5!
.

(53)

Giving the solution to (13) as

x(t) = x0 + x1 + x2 + x3 + · · ·

= 1

m
t − k

m2

t3

3!
+

k2

m3

t5

5!
− k3

m4

t7

7!
+ · · · + · · · ,

x(t) = 1

m

[

t − k

m

t3

3!
+

k2

m2

t5

5!
− · · ·

]

.

(54)

This too demonstrates the decomposition by ADM giving
the physical modes of reaction process, generated as infinite
series. Multiplying the above series by

√
k/m and dividing by

same we get

x(t) = 1√
km

⎡

⎣

√

k

m
t −

(

k

m

)3/2 t3

3!
+

(

k

m

)5/2 t5

5!
− · · ·

⎤

⎦

= 1√
km

sin

⎛

⎝

√

k

m
t

⎞

⎠.

(55)

This is oscillator with natural frequency ω =
√
k/m radians

per second; obtained earlier by physical law of action-
reaction process.

8. ADM for First-Order Linear Differential
Equation System with Half-Order Element
and Mode Decomposition

Consider a first-order differential equation with the presence
of a fractional (half) order element as

ẋ(t) + D1/2
t x(t) + x(t) = f (t) (56)

with initial conditions as x(0) = 0, f (t) = δ(t).

The physical explanation as done in Sections 2 and 3
gives: the following solution:

x(t) = x(0) + D−1
t f (t)

+
∞
∑

n=1

(−1)n
(

D−1
t + D−1/2

t

)n
fn−1(t),

f0 = x(0) + D−1
t f (t).

(57)

For this system, the R = D1/2
t , L = D1

t and nonlinear part is
N(x) = x; (is linear in nature) thus as per (29) An = xn.
This demonstration also shows the fact that, if fractional
order component is of lesser order than the leading order
component (in this case is integer order of value one); then
the initial condition is not dependent on the definition of
the fractional derivative. Here the initial states are always of
integer order in nature.
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x(0)

f (t)
D−1
t 1

−1

−1

x0

x1

x2

·
·
·

x(t)

∑

(D−1
t + D−1/2

t )

(D−1
t + D−1/2

t )

Figure 3: Block showing solution of first order differential equation by decomposition in presence of fractional half order term.

CRO

R

VBB

C

Figure 4: The RC circuit (a first order differential equation), with
semi-infinite cable as fractional half order element.

The application of ADM method gives the components
as, represented in Figure 3,

x0 = Φ + L−1G = x(0) + D−1
t f (t) = D−1

t δ(t) = 1,

A0 = x0 = 1,

x1 = −L−1[R(x0)]− L−1[A0] = −D−1
t

[

D1/2
t (1)

]

−D−1
t [1] = − t1/2

Γ(1.5)
− t,

A1 = x1,

x2 = −L[R(x1)]− L−1[A1] = −D−1
t

[

D1/2(x1)
]

−D−1
t [x1] = t +

t3/2

Γ(2.5)
+

2

3

t3/2

Γ(1.5)
+
t2

2
.

(58)

The physics of this process may be viewed as, RC circuit
reacting to an impulse current reaction in the presence of a
semi-infinite RC cable (CRO Probe) connected to a shunt
to measure the current. The semi-infinite cable acts as half
order element [19] and the first-order circuit reaction thus
will be modified by the presence of this half-order element.
Refer Figure 4.

9. ADM for Second-Order System with
Half-Order Element and Its Physics

9.1. Forcing Function as Delta Function. Solution of second-
order differential equation with presence of half order
element [19, 20] is considered in

ẍ(t)+0D
1/2
t x(t) + x(t) = f (t). (59)

With the initial condition as x(0) = 0, ẋ(0) = 0, f (t) = δ(t).
Rearranging the above equation (59), we rewrite (double
integrating both sides) as

x(t) = x(0) + tẋ(0) + D−2 f (t)−D−2x(t)−D−3/2x(t).
(60)

The physical reasoning generates

x0 = D−2
t δ(t) = t,

x1 = −
(

D−3/2
t + D−2

t

)

x0 = −
(

t5/2

Γ(7/2)
+

t3

Γ(4)

)

,

x2 = −
(

D−3/2
t + D−2

t

)

x1 =
(

t4

Γ(5)
+ 2

t9/2

Γ(11/2)
+

t5

Γ(6)

)

.

(61)

The modal displacements are generated after the application
of external forcing function is depicted in the Table 2. The
block diagram of the process is shown in Figure 5.
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x(0)

f (t)
D−2
t 1

−1

−1

x0

x1

x2

·
·
·

x(t)

∑

tẋ(0)

(D−3/2
t + D−2

t )

(D−3/2
t + D−2

t )

x(t) = t −
t2.5

Γ(3.5)
−

t3

Γ(4)
+

t4

Γ(5)
+ 2

t4.5

Γ(5.5)
+

t5

Γ(6)
+ · · ·

Figure 5: Block diagram showing solution of by decomposition of a second-order differential equation in presence of fractional-order term.

Table 2: Modal force and displacements for second-order system
with fractional order damping.

Mode Force Displacement

0 δ(t) t

1 −t − t5/2

Γ(3.5)
− t3

Γ(4)

2
t5/2

Γ(3.5)
+

t3

Γ(4)

t4

Γ(5)
+ 2

t9/2

Γ(5.5)
+

t5

Γ(6)

3 − t4

Γ(5)
−2

t9/2

Γ(5.5)
− t5

Γ(6)
− t11/2

Γ(6.5)
− t6

Γ(7)
− t13/2

Γ(7.5)
− t7

Γ(8)

· · · · · · · · ·

The ADM method generates the modes as follows:

x0 = Φ + L−1G = D−2
t δ(t),

A0 = x0,

x1 = −L−1R(x0)− L−1A0 = −
(

D−3/2
t + D−2

t

)

x0

= −
(

t5/2

Γ(7/2)
+

t3

Γ(4)

)

,

Ai = x1 = −
(

t5/2

Γ(7/2)
+

t3

Γ(4)

)

,

x2 = −L−1R(x1)− L−1A1 = −
(

D−3/2
t + D−2

t

)

x1

=
(

t4

Γ(5)
+ 2

t9/2

Γ(11/2)
+

t5

Γ(6)

)

.

(62)

9.2. Forcing Function as Step Function. Consider a fractional
oscillator described by as follows:

D2
t x(t) +

c

m
D1/2

t x(t) +
k

m
x(t) = 1

m
f (t). (63)

The system is initially stationary (i.e., x(0) = 0 and
D1

t [x(t)]t=0 = ẋ(0) = 0 are initial conditions). Let this
stationary fractional oscillator be subjected to an excitation
function f (t) = Fh(t), where h(t) is Heaviside’s unit step
function and F is a constant. By application of ADM (29)
(30) and with the help of Figure 3 we obtain the reactionary
displacement modes as in the following:

x0(t) = 1

m
D−2

t f (t) = Ft2

2m
,

x1(t) = − c

m
D−3/2

t x0(t)− k

m
D−2

t x0(t)

= − cF

m2

t7/2

Γ(9/2)
− kF

m2

t4

Γ(5)
,

x2(t) = − c

m
D−3/2

t x1(t)− k

m
D−2

t x1(t)

= c2F

m3

t5

Γ(6)
+

2kcF

m3

t11/2

Γ(13/2)
+
k2F

m3

t6

Γ(7)
,

x3(t) = − c

m
D−3/2

t x2(t)− k

m
D−2

t x2(t),

x3(t) = − c3F

m4

t13/2

Γ(15/2)
− 3kc2F

m4

t7

Γ(8)

− 3k2cF

m4

t15/2

Γ(17/2)
− k3F

m4

t8

Γ(9)
.

(64)
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The total solution is sum of all these component modes to
infinity as series in the

x(t) = x0(t) + x1(t) + x2(t) + x3(t) + · · · + · · · ,

x(t) = F

m

∞
∑

r=0

(−1)r

r!

(

k

m

)r

t2(r+1)

×
∞
∑

j=0

(−c
m

) j
(

j + r
)

!t3 j/2

j!Γ
((

3 j/2
)

+ 2r + 3
) ,

x(t) = F

m

∞
∑

r=0

(−1)r

r!

(

k

m

)r

t2(r+1)

×E(r)
(3/2),(r/2)+3

(−c
m

t3/2

)

,

(65)

where Eα,β(x) is two parameter Mittag-Leffler function

[19, 21–23], and E
(r)
α,β(x) is the derivative of Mittag-Leffler

function, [19, 21–23] defined as follows:

E
(r)
α,β(x) = dr

dxr
Eα,β(x) =

∞
∑

j=0

(

j + r
)

!x j

j!Γ
(

αj + αr + β
)

(r = 0, 1, 2, 3 . . .).

(66)

9.3. Explanation of Physical Action Reaction Process vis-à-
vis ADM. The fundamentals of mode decomposition as
explained above in case of second-order differential equa-
tion, in the presence of fractional order component, may be
explained in slightly elaborated way as follows with a mass
spring fractional viscous system as

d2

dt2
x(t) + a

d1/2

dt1/2
x(t) + bx(t) = f (t), (67)

where a is the constant of half-order property and b is the
spring stiffness constant for spring. The above equation of
motion is for unit mass attached to an ideal spring with half
order visco-elastic element [19].

The initial conditions are: x(0) = 0, ẋ(0) = 0, f (t) =
δ(t), for delta function input case. The above equation (67)
can be rewritten in terms of external force and opposing
internal forces as:

d2

dt2
x(t) = f (t)− a

d1/2

dt1/2
x(t)− bx(t). (68)

Decomposing the above by modal decomposition, we get
the zero order mode as first reaction (immediate) that is:
x0 = D−2

t f (t). This zero order displacement is the reaction
without the presence of the spring or any other opposing
elements. Due to this zero order, displacement there will be

opposing forces appear as f11 = −aD1/2
t x0 and f12 = −bx0.

Giving rise to first order displacements as

x11=−D−2
t f11= −aD−3/2

t x0, x12= −D−2
t f12 = −bD−2

t x0.
(69)

The overall first modal displacement is: x1 = x11 + x12. From
this, the reaction force for second modes is generated as

CRO

VBB

CL

Figure 6: The oscillator circuit (a second-order differential equa-
tion), with semi-infinite cable CRO-probe acting as half order
element.

f21 = −aD1/2
t x1 and f22 = −bx1. Giving rise to second modal

displacement as

x21=−D−2
t f11=−aD−3/2

t x1, x22=−D−2
t f22=−bD−2

t x1.
(70)

Similarly, we can carry on for infinity as this self-similar
pattern of reactions generated within the system to external
stimulus. The observation is that the half order element adds
second force to the ideal spring restoring force as obtained in
case of pure second-order pure oscillator (13).

The practical way of explaining the fractional order
behavior is by considering a LC-oscillator and then trying to
measure the oscillation by CRO probe, which is semi-infinite
cable (with losses) acting as half order element [19]. The
constant a of the half order element (67) is depending on the
distributed loss parameter that is per unit series resistance
and per unit shunt capacitance.

The constitutive equation for the circuit is (Figure 6)
described in

1

C

∫ t

0
i(t)dt + L

d

dt
i(t) + a

d−1/2

dt−1/2
i(t) = VBBh(t),

i(t)

C
+ L

d2

dt2
i(t) + a

d1/2

dt1/2
i(t) = VBBδ(t).

(71)

This is a demonstration of the oscillator with fractional order
element, shown in Figure 6. Practically in circuit experiments
it is observed that a purely oscillating circuit when connected
by shunt to a long CRO-probe, goes to damped oscillations-
removal of probe again giving the oscillations. Use of a very
short probe to CRO gives oscillation. This is due to the fact
that long CRO probe may act as lossy transmission line,
behaving as half-order damping element.

10. Application of Decomposition Method in RL
Formulated Partial Fractional Differential
Equations Linear Diffusion Wave Equation
and Solution to Impulse Forcing Function

Diffusion of arbitrary order is studied in detail in [24–26]; an
attempt is made to obtain series solution with ADM and the
physical explanation of several modes generating a reaction.
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This problem example elaborates that the time evolution of
process parameter takes place without the forcing function
present, G = 0; only the effect is due to initial value (in this
case is Dirac’s delta function as process parameter present
at spaceorigin). The fractional time rate of change of the
process variable is related to the spatial double derivative of
the same as expressed in (72). In (72) the formulation of
fractional derivative is of Riemann-Liouvelli (RL) scheme.

Let us consider the problem of fractional time diffusion
as

∂α

∂tα
u(x, t) = ∂2

∂x2
u(x, t). (72)

With 1 < α < 2 and have the initial condition as u(x, 0+) =
δ(x) and ut(x, 0+) = 0. The integer order the highest in the
fractional order in case of (72) is m = 2.

Converting the (72) into Caputo derivative formulation
[21–23], we obtain

C[ ∂α

∂tα
u(x, t)

]

+
t−α

Γ(1− α)
u(x, 0) +

t1−α

Γ(2− α)
u̇(x, 0)

= ∂2

∂x2
u(x, t).

(73)

Observation here states that the (72) RL derivative of
fractional order when changed to Caputo formulation (73)
gives rise to extra source/sink terms of the inverse power
function of the independent variables in the constituent
equation. In (73) after applying the definition of Caputo
derivative [21–23] in the fractional operator we get

D
−(2−α)
t

[

∂2

∂t2
u(x, t)

]

= ∂2

∂x2
u(x, t)

− t−α

Γ(1− α)
u(x, 0)− t1−α

Γ(2− α)
u̇(x, 0).

(74)

Inverting (74), we get

[

∂2

∂t2
u(x, t)

]

= D
(2−α)
t

[

∂2

∂x2
u(x, t)

]

− u(x, 0)

Γ(1− α)
D

(2−α)
t [t−α]

− u̇(x, 0)

Γ(2− α)
D

(2−α)
t

[

t1−α].

(75)

Applying fractional derivative of the power functions in RHS
of (75), we get

[

∂2

∂t2
u(x, t)

]

= D
(2−α)
t

[

∂2

∂x2
u(x, t)

]

− u(x, 0)

Γ(1− α)

×
[

Γ(−α + 1)t−α−2+α

Γ(−α + 1− 2 + α)

]

− u̇(x, 0)

Γ(2− α)

×
[

Γ(1− α + 1)t1−α−2+α

Γ(1− α + 1− 2 + α)

]

.

(76)

Simplifying (76), we have
[

∂2

∂t2
u(x, t)

]

= D
(2−α)
t

[

∂2

∂x2
u(x, t)

]

− u(x, 0)

[

t−2α

Γ(−1)

]

− u̇(x, 0)

[

t−1

Γ(0)

]

.

(77)

The last two terms of (77) gives zero; since reciprocal Gamma
function is zero at values zero and negative integer points
giving the modified diffusion equation as

[

∂2

∂t2
u(x, t)

]

= D
(2−α)
t

[

∂2

∂x2
u(x, t)

]

. (78)

Taking the (space) Fourier Transform of (78), we get

∂2

∂t2
u(k, t) = −k2D

(2−α)
t u(k, t). (79)

With transformed initial condition as u(k, 0) = (1/
√

2π); and
ut(k, 0) = 0, where u(k, t) = (1/

√
2π)

∫ +∞
−∞ eikxu(x, t)dx, k ∈

R is the spatial Fourier Transform definition. The parameter
k is “wave-vector”. The system of equations (78) has been
transformed to (79) so we solve for u(k, t) and write with
ADM (29) the solution as

u(k, t) = Φ + L−1G− L−1R(u)− L−1N(u),

u(k, t) = Φ + L−1
[

D2−α
t u(k, t)

]

,

u(k, t) = u(k, 0) + tut(k, 0)− k2D−2
t

[

D2−α
t u(k, t)

]

= u(k, 0)− k2D−2
t

[

D2−α
t u(k, t)

]

.

(80)

In (80) the L−1D−2
t , G = R = 0, N(u) = u(k, t), is the linear.

Therefore, u0 = Φ = u0(k, 0) and for n ≥ 1; un =
−L−1D2−α

t un−1; Following the ADM, (29) we get u(k, t) =
∑∞

n=0 un(k, t), where the components are listed in

u0 =
1√
2π

,

A0 = u0,

u1=−L−1D2−α
t [A0]−k2D−2

t

[

D2−α
t u0

]

=− k2

√
2π

(

tα

Γ(α+1)

)

,

A1 = u1,

u2 = −k2D−2
t

[

D2−α
t u1

]

= k4

√
2π

(

t2α

Γ(2α + 1)

)

,

A2 = u2,

u3 = −k2D−2
t

[

D2−α
t u2

]

= − k6

√
2π

(

t3α

Γ(3α + 1)

)

,

· · · .
(81)

u(k, t) = 1√
2π

[

1− k2tα

Γ(α+1)
+

k4t2α

Γ(2α+1)
− k6t3α

Γ(3α+1)
+ · · ·

]

.

(82)
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Therefore,

u(k, t) = 1√
2π

∞
∑

n=0

(

k2
)n
tnα

Γ(nα + 1)
= 1√

2π
Eα

(

−k2tα
)

. (83)

Equation (83) is series solution of (79) in space-Fourier
Transformed system, in terms of Mittag-Leffler function.
Here, is one parameter Mittag-Leffler function Eα(−k2tα).
Taking the Inverse Fourier Transform of (83), we get solution
to (72) with impulse excitation as

u(x, t) = 1

2
t−α/2Mα/2

(|x|
tα/2

)

; for −∞ <x<+∞, t≥0,

(84)

where Inverse Fourier transform is: u (x, t) = (1/√
2π)

∫ +∞
−∞ e−ikxu(k, t)dk, x ∈ R.

The Mα/2 is special case of Wright function [21] defined as in

Mγ(|z|)=
∞
∑

n=0

(−|z|)n

n!Γ
(

−nγ+
{

1− γ
}) , where 0 < γ < 1,

Mα/2

( |x|
tα/2

)

=
∞
∑

n=0

(

−|x|/ tα/2
)n

n!Γ[−(nα/2) + (1− (α/2))]
,

where 0 <
α

2
< 1.

(85)

11. Generalization of Fractional-Order
Leading Terms in Differential Equations
Formulated with Riemann-Liouvelli
and Caputo Definitions and Use of
Integer-Order Initial/Boundary
Conditions with Decomposition Method

In this section merger of the two classical definitions of
Fractional Derivatives with decomposition, the technique
is demonstrated; where only integer order initial/boundary
conditions will be employed to get to the modal solutions in
decomposition method. This generalization and unification
is important as to eliminate the need of much difficult
fractional order initial states required classically by RL
formulation of FDE.

11.1. Decomposition of Caputo Derivative in Fractional Dif-
ferential Equations. Let the linear part of the equation Lu +
Ru+Nu = G be of Caputo Fractional Derivative represented
as L = CDα

t , which is composed of integer order derivative
of function followed by fractional integration. That is if an
integer m is just greater than fraction α > 0; that is (m− 1) <

α < m, then; Caputo operator is: CDα
t ≡ D

−(m−α)
t Dm

t . [19, 21–
23]. This gives the differential equation system as

D
−(m−α)
t Dm

t (u) = G− R(u)−N(u). (86)

Inverting this, we get

Dm
t (u) = D

(m−α)
t G−D

(m−α)
t R(u)−D

(m−α)
t N(u). (87)

The solution is

u(t) = Φ + L−1Dm−α
t G− L−1Dm−α

t R(u)− L−1Dm−α
t N(u),

(88)

where L−1 = D−mt ; we have used complementation property
that is DmD−m = I .

The Φ is solution to integer order. Homogeneous
condition of Dm

t u(t) = 0 is the same as in the case of
integer order general differential equation solution described
previously. Due to this fact, researchers like to formulate with
Caputo derivative [27–30].

11.2. Riemann-Liouvelli (RL) Derivative and Its Decom-
position for Solving Fractional Differential Equation with
Integer Order Initial Condition. The RL derivative operator

is Dα
t ≡ Dm

t D
−(m−α)
t . That is, the function is first fractionally

integrated and then differentiated by integer order, which
is just greater than the fractional order. [19, 21–23]. In
this solution, the homogeneous equation formed by RL
operator requires fractional initial states; [19, 21–23] though
sometimes difficult to interpret physically. However, one can
relate these fractional initial states to physical quantities
provided the laws of physics are known [19] (As Ohm’s
Law, Stress-Strain relations and flow-pressure relations etc.)
Here in this paper, it is demonstrated that decomposing
fractional derivative with RL definition by transforming to
Caputo expression first, then applying decomposition rules,
one can solve the fractional differential equations with RL
formulations and with integer order initial states.

Generally, the Caputo and RL definitions of fractional
derivatives are not equal, but are equated by initial conditions
as [21–23]

[

Dα
t f (t)

]

RL =
CDα

t f (t) +
m−1
∑

k=0

tk−α

Γ(k − α + 1)
f (k)(0+),

where (m−1)<α< m, m ∈ N, t >0.

(89)

Let the linear part L be of RL derivative type. Then the
formulation with definition of RL derivative [19, 21–23]

gives the system as: Dm
t D

−(m−α)
t (u) = G − R(u) − N(u). In

the expression with RL, we change to Caputo and relate with
RL-Caputo relation [21–23] and get

CDα
t (u) = G− R(u)−N(u)−

m−1
∑

k=0

tk−α

Γ(k − α + 1)
u(k)(0+).

(90)

Here the RL differential equation is changed to Caputo
formulation. This is equivalent to original differential equa-
tion, but with extra power series term with integer order
initial conditions appearing as extra source/sink term. Let us
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follow the decomposition method, as obtained for Caputo
formulation in Section 11.1, thereby giving the solution
as

u(t) = Φ + L−1Dm−α
t G− L−1Dm−α

t R(u)− L−1Dm−α
t N(u)

− L−1

⎧

⎨

⎩

Dm−α
t

m−1
∑

k=0

tk−α

Γ(k − α + 1)
u(k)(0+)

⎫

⎬

⎭

.

(91)

Let us examine the bracketed term of the RHS of the source
sink term.

Dm−α
t

m−1
∑

k=0

tk−α

Γ(k − α + 1)
u(k)(0+)

= u(k)(0+)
m−1
∑

k=0

Γ(k−α + 1)tk−α−m+α

Γ(k − α + 1)Γ(k−α+1−m+α)

= u(k)(0+)
m−1
∑

k=0

tk−m

Γ(k −m + 1)
.

(92)

The expression above contains reciprocal of Gamma func-
tion at negative integer points and zero point, the values
of which are zero. The reciprocal of Gamma functions
Γ(−(m− 1)),Γ(−(m− 2)), . . . ,Γ(0) are zeros. This reciprocal
Gamma function is multiplied by powers of t at t → 0+ =
ε; as ε−m, ε1−m, ε2−m, . . . ε−1. Therefore, at t → 0+, the
inverted source/sink extra term be collapsed to zero, that is,

Dm−α
t

∑m−1
k=0 (tk−α/Γ(k − α + 1))u(k)(0+) = 0.

The fractional differentiation of a power function is
given by Dµtλ = Γ(λ + 1)tλ−µ/ Γ(λ + 1 − µ), Euler’s rule of
generalized differ-integration [19, 21–23], where µ ∈ R+,
with λ > −1 Let us take monomial of type say xn, with n
as integer. We differentiate this with integer order m such
that (m − n) = 1, 2, 3, . . .. Then in the integer order calculus
Dm

x x
n
=0. Say a square function x2 differentiated thrice, four

times, and so on will give zero. Same is the observation for

D
(m−α)
t tk−α, returns zero since differential order (fractional)

minus the power order that is (m− α)− (k − α) = m− k, is
m, (m−1), (m−2), . . . , 1, for k = 0, 1, 2, 3, . . . (m−1). This is
new observation not used elsewhere earlier in RL fractional
calculus context. This new observation and its application
is now useful for solving FDE with RL formulation by
decomposition technique where the extra source sink term
appearing in FDE (changing from RL to Caputo) collapses to
zero thus giving ease and uniformity in the two definitions of
fractional calculus.

The above argument suggests that with RL derivative
formulations too one can have solution in ADM approach to
solve fractional differential equation, with the help of integer
order initial/boundary condition.

Therefore, the solution of General Fractional Order Dif-
ferential Equation where the leading terms are of Fractional
Derivative of Caputo or RL type is

u(t) = Φ + L−1Dm−α
t G− L−1Dm−α

t R(u)

− L−1Dm−α
t N(u),

(93)

where Φ comes from integer order initial/boundary condi-
tions. This unifies the two definitions of Caputo/RL to solve
FDE with only integer order initial states.

12. Application of Decomposition Method in
RL Formulated Fractional Differential
Equations (Nonlinear) and Its Solution

So far, we considered linear systems and reasoned out physi-
cally the decomposition and the action-reaction concepts to
solve the differential equation systems, by ADM. The non-
linear part N(u) in the earlier cases were linear in nature
and thus the Adomian Polynomials for each mode were
same (An = un) for n ≥ 1, for obtaining the subsequent
parallel modes and thereby the solution. The non-linear part
is described giving different Adomian Polynomials for the
different modes to get solution of non-linear systems.

Consider RL formulated Fractional differential equation
with non-linearity as in

dαy

dtα
=

(

1− y
)4

, with 0 < α < 1, y(0+) = 0. (94)

The nearest integer in this case is, for the fractional order, α.
The invert operator, L−1 = D−1

t and Φ = C = 0 the solution
is thus; as in (72)–(78) is

y(t) =
∞
∑

n=0

yn = Φ + L−1D1−α
t

∞
∑

n=0

An = D−1
t

⎡

⎣D1−α
∞
∑

k=0

An

⎤

⎦.

(95)

The source/sink term that appears in the RL to Caputo
change in (94) is −(t−α/Γ(1 − α))y(0+). Taking Dm−α

t of this
source/sink term gives

− y(0+)Γ(−α + 1)t−α−m+α

Γ(1− α)Γ(−α + 1−m + α)
= − y(0+)t−1

Γ(0)
= 0, (96)

therefore, the decomposed solution of (94) is (96).
The non-linearity N(y) = (1− y)4 =

∑∞
n=0 An, and to

find the Adomian Polynomials following are the steps (29)
and (30).

The iterations are listed in

y0 = 0, A0 =
(

1− y0

)4 = 1,

y1(t) = D−1
t D1−α

t [A0] = D−1
t D1−α

t (1) = tα

Γ(α + 1)
,

A1 = y1N
′(y0

)

,

N ′(y0

)

= d

dy0

(

1− y0

)4 = −4
(

1− y0

)3 = −4,

A1 = y1(−4) = − 4tα

Γ(α + 1)
.

(97)
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From this, we obtain the next term of solution as

y2(t) = D−1
t D1−α

t [A1] = D−1
t D1−α

t

[ −4tα

Γ(α + 1)

]

= −4t2α

Γ(2α + 1)
.

(98)

Next step is to obtain A2 as

A2 = y2N
′(y0

)

+
y2

1

2!
N ′′(y0

)

,

N ′′(y0

)

= d2

dy2
0

(

1− y0

)4 = 12
(

1− y0

)2 = 12,

N ′(y0

)

= −4,

A2 =
(

−4t2α

Γ(2α + 1)

)

(−4) +
12

2

(

tα

Γ(α + 1)

)2

,

= 6Γ(2α + 1)− 16[Γ(α + 1)]2

Γ(2α + 1)[Γ(α + 1)]2 t2α.

(99)

From above (99) we obtain

y3(t) = D−1
t D1−α

t [A2] = 6Γ(2α + 1)− 16[Γ(α + 1)]2

Γ(3α + 1)[Γ(α + 1)]2 t3α.

(100)

The series form solution to (94) is

y(t) = 1

Γ(α + 1)
tα − 4

Γ(2α + 1)
t2α

+
6Γ(2α + 1)− 16[Γ(α + 1)]2

Γ(3α + 1)[Γ(α + 1)]2 t3α + · · · .
(101)

13. Application of Decomposition Method in
RL Formulated Partial Fractional
Differential Equations Nonlinear
Diffusion-Wave Equation and Solution

Consider the Non-Linear equation (102), formulated by RL
fractional differential operator

∂α

∂tα
u(x, t) = γ2 ∂2

∂x2
u(x, t)− c2u(x, t) + σ[u(x, t)]3 (102)

with 1 < α ≤ 2 and u(x, 0) = ε cos kx, and the first time
derivative ut(x, 0) = 0 as initial condition.

The argument about vanishing extra source/sink term
while RL is changed to Caputo formulation in this case is the
same as in the previous problem (72)–(78).

In this case, m = 2, that is integer number just greater
than α in the order of fractional derivative of (102). The non-
linear part is N(u) = c2u − σu3 =

∑∞
n=0 An, and we simplify

the (102) in easier notation as Dα
t u = γ2uxx−c2u+σu3; where

uxx ≡ (∂2/∂x2)u(x, t). From (72)–(78) we write the solution
of (102) as

u(x, t) = Φ + γ2D−2
t D2−α

t [uxx]−D−2
t D2−α

t N(u),

u(x, t) = u(x, 0) + tut(x, 0) + γ2D−2
t D2−α

t [uxx]

−D−2
t D2−α

t

∞
∑

n=0

An.

(103)

The iteration follows as shown in steps

u0 = Φ = u(x, 0) = ε cos kx,

A0 = c2u0 − σu3
0 = c2ε cos kx − σε3cos3kx,

u1 = γ2D−2
t D2−α

t u0(xx) −D−2
t D2−α

t A0,

u0(xx) =
∂2u0

∂x2
= −εk2 cos kx,

D−2
t u0(xx) =

∫∫ t

0
u0(xx)dt dt = −

εk2t2

2
cos kx,

D−2
t A0 =

∫∫ t

0
A0dt dt =

t2c2

2
ε cos kx − σε3t2

2
cos3kx,

u1 = −
γ2εk2 cos kx

Γ(α + 1)
tα −

(

c2ε cos kx − σε3cos3kx
)

Γ(α + 1)
tα,

A1 = u1

(

c2 − 3σu2
0

)

,

u2 = γ2D−2
t D2−α

t u1(xx) −D−2
t D2−α

t A1,

u1(xx) =
∂2u1

∂x2
,

u2 =
εγ4k4 cos kx

Γ(2α + 1)
t2α −

[

γ2

Γ(2α + 1)

]

×
[

−c2εk2 cos kx+
3k2σε3

4
cos kx+

9k2σε3

4
cos3kx

]

× t2α +
c2εγ2k2 cos kx

Γ(2α + 1)
t2α

+
c2
(

c2ε cos kx − σε3cos3kx
)

Γ(2α + 1)
t2α

− 3σε3γ2k2cos3kx

Γ(2α + 1)
t2α

− 3σε2cos2kx
(

c2ε cos kx − σε3cos3kx
)

Γ(2α + 1)
t2α.

(104)

Therefore, the approximate (three term) solution to (102) is

u(x, t) ≈ u0 + u1 + u2 =
∑2

n=0 un.
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14. Decomposition Method for Generalized
Equation of Motion

Consider the equation of motion (105) a non-linear one;
where two bodies of mass m1 and m2 collide and the
variable x(t) denotes indentation with respect to time [20].
The contact force is Hertz force given by f = Kxn. For
spherical particles, this index of non-linearity is n = 3/2.
The parameter K is depending on the contact properties of
material

m1m2

2(m1 + m2)

d2x

dt2
+ K(n + 1)xn = 0. (105)

We consider the (105) in simple way as

d2x

dt2
= −ax3/2, where n = 3

2
, a = 5(m1 + m2)K

m1m2

(106)

with x(0) = 0 and D1
t [x(t)]t=0 = ẋ(0) = u as the initial

conditions. The (106) has G = 0, R = 0, L−1 = D−2
t ,

N(x) = ax3/2. The ADM for (106) gives set as

Φ = x(0) + tẋ(0) = ut,

x0 = Φ + L−1G = ut,

A0 = N(x0) = ax0
3/2 = au3/2t3/2,

x1 = −L−1R(x0)− L−1(A0)

= −D−2
t

[

au3/2t3/2
]

= − 4

35
au3/2t7/2,

A1 = x1N
′(x0) = 3

2
ax0

1/2x1 = −
12

70
a2u2t4,

x2 = −L−1R(x1)− L−1(A1)

= −D−2
t

[

−12

70
a2u2t4

]

= 12

210
a2u2t6

(107)

and so on.
The solution, with decomposed modes of displacements

as series, to (105) and (106) is

x(t) = ut − 4au3/2

35
t7/2 +

12a2u2

210
t6 + · · · . (108)

For completion sake let n = 0, in, (105) and (106). This
makes N(x0) = a = A0, and N ′(x) = 0, therefore A1 = 0 =
A2 = · · · = A∞.

Here, x0 = Φ + L−1G = ut and x1 = −L−1A0 =
−D−2

t (a) = −(1/2)at2, with higher modes all zero that is
x2 = x3 = · · · = x∞ = 0. The solution is just sum of zeroth
and first mode of reaction that is x(t) = ut − (1/2)at2; these
are Newton’s familiar laws of motion.

For, n = 1 (105) becomes oscillatory system (mass
spring) described earlier.

15. Decomposition Method for Delayed
Differential Equation System

In this concluding section, application of mode decomposi-
tion in delay differential equation is demonstrated. A delayed
differential equation system is

L(u) + R(u) + N(u) = G + f
(

x,u(x),u
(

g(x)
))

. (109)

Consider a nonlinear delayed differential equation system as

dy

dx
= 1− 2y2

(

x

2

)

(110)

with y(0) = 0, as initial condition.
Here in (110) G = 1, R = 0, L−1 = D−1

x ,N(y) =
2y2(x/2). Applying ADM, we get the set as mentioned in

y0(x) = Φ + L−1G = D−1
x [1] = x,

y0

(

x

2

)

= x

2
,

A0 = N
(

y0

)

= 2y2
0

(

x

2

)

= −2

(

x

2

)2

= −1

2
x2,

y1(x) = −L−1(A0) = −D−1
x

(

x2

2

)

= −x3

6
,

y1

(

x

2

)

= − (x/2)3

6
,

N ′(y0

)

= 4y0

(

x

2

)

, N ′′(y0

)

= 4,

A1 = y1N
′(y0

)

= y1

(

x

2

)

4y0

(

x

2

)

= − (x/2)3

6
× 4

(

x

2

)

= − x4

24
,

y2(x) = −L−1(A1) = −D−1
x

(

− x4

24

)

= x5

120
,

y2

(

x

2

)

= (x/2)5

120
,

A2 = y2N
′(y0

)

+
1

2!
y2

1N
′′(y0

)

= y2

(

x

2

)

× 4y0

(

x

2

)

+
1

2
y2

1

(

x

2

)

× 4 = x6

720
,

y3(x) = −L−1(A2) = −D−1
x (A2) = x7

5040
.

(111)

The solution to (110) is

y(x) = x − x3

6
+

x5

120
− x7

5040
+ · · · = sin x. (112)

This is exact solution to (110) as the RHS of (110) is

1− 2y2

(

x

2

)

= 1− 2 sin2
(

x

2

)

= cos x = d(sin x)

dx
(113)
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16. Conclusions

The Decomposition Method of Mathematics of Linear
Analysis, as demonstrated, is a generalization of the physical
law of nature. That is, the process reacts in opposite
way to thwart any changes in the process variable. The
Decomposition Method as explained for physical systems
gives insight into microscale reactions, to the external
or internal stimulus-as to oppose the changes, thereby
generating infinite (or finite) modes of reactions, the sum
of which gives the total system behavior. In the fractional
differential equation (FDE) by RL method, it is found
that there is no need to worry about the fractional initial
states; instead, one can use integer order initial states (the
conventional ones) to arrive at solution of FDE. This new
finding too is highlighted in this paper along with several
other problems to give physical insight to the solution of
extraordinary differential equation systems. This way one
gets insight to Physics of General Differential Equation
Systems and its solution by Physical Principle and equivalent
mathematical decomposition method. This facilitates ease in
modeling to get approximate analytic behavior of General
Dynamic System involving Extra Ordinary Differential Equa-
tions.
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