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Abstract. The response of a structural system to white noise excitation (delta-

correlated) constitutes a Markov vector process whose transitional probability den-

sity function (TPDF) is governed by both the forward Fokker–Planck and backward

Kolmogorov equations. Numerical solution of these equations by finite element and

finite difference methods for dynamical systems of engineering interest has been

hindered by the problem of dimensionality. In this paper numerical solution of the

stationary and transient form of the Fokker–Planck (FP) equation corresponding to

two state nonlinear systems is obtained by standard sequential finite element method

(FEM) using C0 shape function and Crank–Nicholson time integration scheme. The

method is applied to Van-der-Pol and Duffing oscillators providing good agree-

ment between results obtained by it and exact results. An extension of the finite

difference discretization scheme developed by Spencer, Bergman and Wojtkiewicz

is also presented. This paper presents an extension of the finite difference method

for the solution of FP equation up to four dimensions. The difficulties associated

in extending these methods to higher dimensional systems are discussed.

Keywords. Fokker–Planck equation; finite element method; finite difference

method; random vibration; nonlinear stochastic dynamics.

1. Introduction

Response of nonlinear systems to random excitation has been the topic of investigation for

a number of years by many researchers. It is well known that the response of a nonlinear

dynamical system to random excitation having delta-correlation constitutes a Markov vector

process whose transition probability density function is governed by an appropriate Fokker–

Planck (FP) equation. To compute the response statistics the FP equation has to be solved

under certain boundary and singularity conditions. Unfortunately, for systems of engineering

interest, no closed form solution of FP equation is available. Exact solutions for the FP

equation are available only for a few linear system (Wang & Uhlenbeck 1945; Lin 1967; Soong

1994), scalar system (Caughey & Dienes 1962) and for some Multi-dimensional conservative
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systems (Caughey 1971; Wen 1976; Kunert 1991). The difficulty of solving the FP equation

has led to a number of approximate methods such as the equivalent linearization method

(Roberts & Spanos 1990), perturbation method (Crandall 1963), stochastic averaging method

(Khasminskill 1996), and various closure methods (Wojtkiewicz et al 1996; Wu & Lin 1984).

Monte-Carlo simulation (MCS) techniques can be applied in general to a large class of

nonlinear systems subjected to random excitation and its accuracy is, in principle, independent

of the type of nonlinearity. However, the method requires large computational resources,

especially for computing the tail probabilities of a distribution required in reliability studies

(Johnson et al 1997; Schueller et al 1993).

In recent years, the shift has been towards numerical methods of solution of the FP equation.

The numerical methods based on the Markov vector assumptions have been proposed for the

solution of the FP equation such as the finite element method by Langley (1985), Langtangeh

(1991), Spencer & Bergman (1993), Wojtkiewicz et al (1994) and Johnson et al (1997),

finite difference method by Johnson et al (1997) and Wojtkiewich et al (1994b), path integral

method by Naess & Johnson (1992) and the cell-mapping method by Sun & Hsu (1990, 1998).

All the numerical solution techniques developed for the FP equation so far are confined to a

phase-space vector dimension of order < 4. The numerical methods suffer from difficulties

of treating higher dimensional problems, requirement of large computer memory and loss of

accuracy of the probability density function (PDF) in the tail regions.

Many of the methods mentioned above have been restricted to the study of the stationary

solution of the FP equation. The transient solution however is also of importance, especially

in estimating the first passage failure probability, where failure or first excursion from the

safe domain may occur long before stationarity is achieved.

This paper presents the finite element method and higher order finite difference method for

transient and stationary solution of the FP equation for some nonlinear systems subjected to

parametric and external stochastic excitation. This paper also presents a higher order finite

difference scheme to solve the FP equation associated with a nonlinear system with four-

dimensional state vectors. The difficulties associated in extending the method to still further

higher dimensions are discussed.

2. Basic problem formulation

Many stochastic systems may be modelled with n-dimensional vector Itô stochastic differen-

tial equations (SDE) of the form,

dX/dt = m(X) + G(X)W(t), (1)

where X is an Rn valued stochastic process. m(X) and G(X) are the drift vector and the

diffusion matrix respectively. W(t) is an m-dimensional vector of uncorrelated white noise.

The vector of white noise is fully defined by the first and second moments of its components

given by,

E[Wi(t)] = E[Wj (t)] = 0, E[Wi(t1)Wj (t2)] = 2Diδ(τ ),

E[Wi(t)Wj (t)] = 0 and τ = t2 − t1, (2)

where Di is the spectral density of the ith excitation and δ(τ ) is the Dirac delta function, E[]

denotes the expectation operation. The aforementioned system forms a Markov vector process

in Rn, the behaviour of which is completely determined by the transition probability density
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function p(X, t |X0). The transition probability density function is proportional to the proba-

bility of being in a differential element (X, X+dX) of the phase plane at time t , having started

at X0 at time zero and satisfies both the forward (FP) and the backward Kolmogorov equations.

The FP equation associated with equation (1) can be derived from the Itô form.

dX(t) = m(X)dt + G(X)dB(t), (3)

where B(t) is a vector Wiener process and m(X) is the Wong & Zakai (1965) corrected drift

vector.

The FP equation for the system is given by (Risken 1989),

∂p

∂t
= −

n
∑

i=1

∂ [mi(X)p]

∂xi

+
n

∑

i=1

n
∑

j=1

∂2
[

hij (X)p
]

∂xi∂xj

, (4)

where hij is the ij th element of the matrix H(x) = G(X)DGT (X) and p = p(X, t |X0) is the

transition probability density function of X(t) with normalization condition
∫

Rn

p(X, t |X0)dX = 1 (5)

subjected to the initial condition

lim
t→0

p(X, t |X0) = δ(X − X0). (6)

Additionally a zero flux condition is imposed at infinity, given by

p(Xi, t) → 0 as [Xi] → ±∞, i = 1, 2, . . . , n. (7)

3. Finite element approach

The first step in the numerical solution of an initial and boundary value problem is the spatial

discretization by which the transformation of a system of partial differential equations to a

system of ordinary differential equations is achieved. The weighted residual statement for the

problem given by (4) is integrated by parts to produce the weak form of the equations and

the shape functions are chosen, which are defined for a finite region of the domain only. In

this way, a set of linear equations is constructed in which the unknowns are the values of the

joint probability density function at a number of nodes in the domain. These equations are

then solved by standard matrix methods.

The solution to (4) using a standard Bubnov–Galerkin finite element formulation is as

follows. The relevant portion � of the phase space is divided into M(56) elements, each with

m(72) nodes spanning the domain �e as in figure 1 for a two-dimensional system.

The probability density function (PDF) within the eth element is interpolated according to

the scheme.

p̂(X, t |X0) =
m

∑

s=1

Ns(X)pe
s (X, t |X0), X ∈ �, (8)

where Ns(X), s = 1, 2 . . . , m, are the element shape functions, m denotes the number of

nodes in a single element and the pe
s are the values of the probability density function at the

nodes.
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Figure 1. Finite element mesh used for two-
dimensional system.

As (4) in the present form contains second-order terms, the shape functions chosen for PDF

must be at least C1 continuous. This is inconvenient as for an ideal finite element formulation

for calculating PDF at any point using linear interpolation between the nodes, functions which

have only C0 continuity are required. This problem can be overcome by integrating (4) by

parts to produce the weak form of the equation in which C0 continuity is sufficient.

Converting (4) into the weak form and choosing the shape functions such that the residuals

are orthogonal to the shape functions gives,

M
∑

e=1

∫

�e

[

∂p̂

∂t
Nr(X)dX +

n
∑

i=1

mi(X)p̂(X)
∂

∂xi

[Nr(X)]dX

−
n

∑

i=1

n
∑

j=1

∂

∂xi

[

Nr(X)
∂

∂xj

[hij (X)p̂(X)

]

dX

]

= 0 (9)

Substituting (8) in (9) and expanding gives,

M
∑

e=1

m
∑

s=1

[ṗe
s (X, t |X0)C

e
rs + pe

s (X, t |X0)K
e
rs] = 0, (10)

where

Ce
rs =

∫

�e

Nr(X)Ns(X)dX, (11)

and

Ke
rs =

∫

�e

[

n
∑

i=1

mi(X)Ns

∂

∂xi

[Nr ]dX −
n

∑

i=1

n
∑

j=1

∂

∂xi

[Nr ]
∂

∂xj

[hijNs]dX

]

. (12)

Globally assembling all elements, a set of n equations can be constructed, which in matrix

form is given by

CṗCṗCṗ + KpKpKp = 0, (13)



Solution of Fokker–Planck equation 449

with initial condition ppp(0) = ppp where ppp is a vector containing the values of the joint proba-

bility density function at the nodal points.

Having addressed the issue of spatial discretization, the next step is temporal discretization,

that is converting the system of first-order ODE’s to a set of linear algebraic equations.

So this equation is further discretized in time using the θ method giving the recurrence

relation,

[CCC − �t(1 − θ)KKK]ppp(t + �t) = [CCC + �tθKKK]ppp(t), (14)

where 0 ≤ θ ≤ 1 and �t is the time step. The Crank–Nicholson scheme is applied with

θ = 0·5 for stability which gives

[

CCC − �t

2
KKK

]

ppp(t + �t) =
[

CCC + �t

2
KKK

]

ppp(t). (15)

For the stationary solution of the FP equation the matrix equation (13) becomes a system of

n homogeneous linear equations,

KpKpKp = 0, (16)

where n is the number of nodal points in the computational mesh, KKK ∈ RnxRn and ppp ∈ Rn.

This system admits both a trivial solutionppp = 000 and a nontrivial solution through enforcement

of the normalization condition as given in (5).

The nontrivial solution is obtained by first fixing the PDF pppCCC at the node corresponding to

the origin as unity. This degree of freedom becomes constrained and is treated as an additional

boundary condition. The solution of (16) is reduced to the solution of a system of (n − 1)

non-homogeneous equations given by,

KKKrpppr = −fff r , (17)

where KKKr ∈ Rn−1xRn−1,pppr ∈ Rn−1 and fff r ∈ Rn−1. The reduced matrix KKKr is obtained

by removing the cth row and column from the original matrix KKK and reduced nodal density

vector pppr is obtained from the original nodal density vector ppp by removing the cth compo-

nent. The vector fff r is the cth column of KKK after removing the cth component. The solution

of the stationary FP equation is obtained by enforcing the normalization condition given

in (5).

4. Two-dimensional stationary system

To illustrate the performance and abilities of the FEM-based numerical procedure two spe-

cific cases of the Van-der-Pol oscillator driven by Gaussian white noise are considered as

examples.

Ẍ + 2ξ [X(t)2 − 1]Ẋ(t) + X(t) = W(t), (18)

with

E[W(t)] = 0, E[W(t)W(t + τ)] = 2Dδ(τ ). (19)
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Figure 2. Four-node bilinear finite element.

For the first case ξ = 0·1 and D = 0·1 which represents an intermediate case between linear

and distinctly nonlinear behaviour while for the second example ξ = 1·0 and D = 0·1 in

which nonlinear behaviour is strongly dominant.

The grid size is taken as [−5, 5]×[−5, 5] which is divided into 100 elements per dimension

each having 2n-nodes where n is the dimensionality. In this case n = 2. We can use any C0

continuity shape functions like the isoparametric or Lagrangian shape functions. Here, for

the two-dimensional problem, the shape functions chosen are the Lagrangian interpolation

shape functions for bilinear 4-node element (figure 2) given by,

N1 = r − r2

r1 − r2

.
s − s4

s1 − s4

, N2 = r − r1

r2 − r1

.
s − s3

s2 − s3

,

N3 = r − r4

r3 − r4

.
s − s2

s3 − s2

, N4 = r − r3

r4 − r3

.
s − s1

s4 − s1

, (20)

The results for stationary distribution for the first case are presented in the three-dimensional

view of the joint PDF in figure 3a while figure 3b gives its contour plot.

For the second case the stationary joint PDF, contour plot and marginal PDF of displacement

obtained by this method are shown in figures 4a, b and c respectively. Agreement between

the FEM results and the analytical results is very good even for very low probability levels,

which would be adequate for most extreme value analysis. In figure 4c the analytical solution

is given by the full line and the FE solutions are given by the symbol •.

Figure 3. (a) Joint PDF. (b) Contour plot.
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Figure 4. (a) Joint PDF. (b) Contour plot.
(c) Marginal PDF of displacement, — exact
result, • • •• FEM results.

5. Two-dimensional transient solution

As a second example, a hardening Duffing oscillator subjected to external and parametric

white noise in the following form,

Ẍ + 2ξẊ + [W1(t) − 1]X + γX3 = W2(t), (21)

is considered, where ξ, γ are constants and W1(t), W2(t) are independent zero mean Gaussian

white noise processes with

E[W1(t)W1(t + τ)] = 2D11δ(τ ),

E[W2(t)W2(t + τ)] = 2D22δ(τ ). (22)

The corresponding FP equation is given by

∂p

∂t
= ∂[(2ξX2 − X1 + γX3

1)p]

∂X2

− X2

∂p

∂X1

+ (D11X
2
1 + D22)

∂2p

∂X2
2

, (23)

where X1 = X and X2 = Ẋ.
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The values of the parameters chosen are ξ = 0·2, γ = 0·1, D11 = 0·08, D22 = 0·4 with a

bivariate Gaussian initial distribution with zero mean and variance of 0·5 in both dimensions.

This system is particularly interesting since it has a bimodal stationary density function for

small multiplicative excitation and is thus non–Gaussian. The grid size is again chosen as

[−5, 5] × [−5, 5], which is divided into 100 elements per direction. The time step �t of

ππ/1000 proves sufficient for good accuracy and a final time 10π is observed long enough for

convergence to stationary conditions. For the case with no parametric excitation (D11 = 0) the

joint PDF of this system is given in figure 5 at several instants of time, while figure 6. Presents

marginal PDF of displacement and velocity at steady state. In figure 6, the exact solution is

given by the full line and the FE solutions are given by this symbol • • •. The solution for the

stationary PDF in this case is given by Caughey (1971) and Caughey & Dienes (1962)

p(XXX) = C exp

[

X2
1

2
− X2

2

2
− γX4

1

4

]

, (24)

where C is the normalization constant. The accuracy of these finite element solutions is

satisfactory, especially near the origin. The solution in the “tail” is less accurate than near the

peaks.

Figure 7 gives the stationary joint PDF with small level of parametric excitation D11 = 0·08

for t = 31·42 s. In both the presence and absence of parametric excitation, the joint PDFs

are bimodal. In the absence of parametric excitation the peaks are well separated, while in its

presence the peaks merge.

6. Solution by the finite difference method

The FE solution of the FP equation is very accurate near the origin. However, the accuracy

of the solutions near the tail regions is of the order of 10−4, while it may be necessary

that the probabilities have to be determined to an accuracy of order of 10−8 or higher for

reliability studies. In the interest of improving the accuracy of the computational solution of

the FP equation, particularly in the tails of the response distribution, as well as to simplify

the methodology to some extent, higher order finite difference approximations have been

developed by Wojtkiewicz et al (1994) for two-dimensional systems.

In this paper, higher order discretization schemes using finite difference methods are pro-

posed to solve the FP equation up to the four dimension with a view to improve the accuracy

of the probabilities in the tail region. The results reported here demonstrate that certain higher

order schemes are capable of producing highly accurate solutions of the FP equations in the

tail region of probability. This scheme involves the manipulation of Taylor’s expansion of

the density function about uniformly distributed nodal points in a n-dimensional mesh. The

higher order scheme gives more accurate solution on a given mesh, allows for use of fewer

mesh points and row population of the coefficient matrix is linear in the dimension of prob-

lem rather than exponential which leads to saving in memory and improvement of efficiency

for a given mesh.

6.1 Implementation of finite difference method for spatial discretization

Through use of the Taylor expansion of the PDF about a selected point on a uniform mesh as

displayed in figure 8, we can derive finite difference stencils of varying orders of accuracy.
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Figure 5. Snapshots of the joint PDF and contour plots of Duffing oscillator without parametric
excitation (D11 = 0). t = 1·257 s (a), 3·141 s (b) and 30·47 s (c).
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Figure 6. Marginal PDF of displacement (a), and of velocity (b) of Duffing oscillator without para-
metric excitation (D11 = 0) at steady state, — exact result, • • •• FEM results.

Figure 7. Stationary joint PDF and contour plots of Duffing oscillator with parametric excitation
(D11 = 0·08).

Figure 8. Finite difference discretization
scheme for two-dimensional system.
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Let pi,j denote the PDF at a discrete location relative to a candidate point as shown in

figure 8 and given by

pi,j = p(X + i�X, Y + j�Y). (25)

The PDF p1,0 = p(X + �X,Y ) and p−1,0 = p(X − �X,Y ). These can be expressed in a

Taylor series as

p1,0 = p0,0 + p′�
0,0X + 1

2
p′′

0,0(�X)2 + 0(�X3), (26)

p−1,0 = p0,0 − p′�
0,0X + 1

2
p′′

0,0(�X)2 + 0(�X3). (27)

Solving for the derivative terms at the candidate point gives

p′
0,0 = ∂p(X, Y )

∂X
= p1,0 − p−1,0

2�X
+ 0(�X3), (28)

p′′
0,0 = ∂2p(X, Y )

∂X2
= p1,0 − 2p0,0 + p−1,0

(�X)2
+ 0(�X3). (29)

By using higher order Taylor series expansions and more of the neighbouring nodal points,

higher order accuracy schemes can be derived. Second-, fourth-, sixth-, eight- and tenth-order

schemes have been investigated; the tenth-order stencil, for example is given by (Wojtkiewicz

et al 1994),

∂pi,j

∂X
= 2100αX

1 − 600αX
2 + 150αX

3 − 25αX
4 + 2αX

5

2520�X
,

where αX
k = pk,0 − p−k,0,

∂pi,j

∂Y
= 2100αY

1 − 600αY
2 + 150αY

3 − 25αY
4 + 2αY

5

2520�Y
,

where αY
k = p0,k − p0,−k , and

∂2pi,j

∂Y 2
= 42000

∑

1 −6000
∑

2 +1000
∑

3 −125
∑

4 +8
∑

5 −36883
∑

0

25200(�Y)2
,

(30)

where
∑

k = p0,k + p0,−k .

By substituting these into the FP equation, one equation in the nodal TPDF value may be

formulated for each of the n nodes, resulting in a set of n discrete equations,

ṗpp + KpKpKp = 000. (31)

For the stationary problem setting ṗpp = 000, we get the homogeneous equation KpKpKp = 000.

The direct solution of the stationary problem is difficult as the system admits both a trivial

solution ppp = 000 and a nontrivial solution through enforcement of the normalization condition.

It requires special handling, since iterative solutions tend to stagnate due to the indefiniteness

in the coefficient matrix. An additional boundary condition can be applied making the degree

of freedom at the origin constrained.
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6.2 Finite difference solution of duffing oscillator

These higher order finite difference schemes are applied to the random vibration of a Duffing

oscillator given by,

Ẍ + 2ξωnẊ + ω2
nγX + ω2

nβX3 = W(t), (32)

where W(t) is the Gaussian white noise with a spectral density of 1/π . Using the state space

approach with X1 = X and X2 = Ẋ, we get
(

Ẋ1

Ẋ2

)

=
[

X2

−2ωnξX2 − ω2
nγX1 + βX3

1

]

+
[

0 0

0 π−0·5
] {

0

W(t)

}

, (33)

with the corresponding stationary FP equation given by

−X2

∂p

∂X1

+ ∂

∂X2

(2ξX2 + γX1 + βX3
1)p + ∂2p

∂X2
2

= 0. (34)

Equation (37) has an exact analytical solution given by Lin (Crandall 1963),

p(X1, X2) = C exp

{

−2ξωn

(

0·5X2
2 + 1

2
ω2

nX
2
1γ + 1

4
ω2

nβX4
1

)}

, (35)

where C is chosen to satisfy the normalization condition. For the case ωn = 1, γ = 1, ξ = 0·5
and β = 0·1. The various order finite difference schemes are used to compute the marginal

PDF of the response. The results obtained are compared with exact analytical solutions and

with FEM results in table 1. The stationary PDF with the maximum absolute nodal error in

the joint PDF and the marginal PDFs are given in table 2.

It is observed that the error levels decrease with increasing stencil order. The relative error

in tail probabilities is less compared to that near the origin. It is also seen that higher order

finite-difference schemes produce accurate solutions even in the tail portions. The second-

order finite difference scheme gives a solution which is as accurate as the FEM solution. The

tenth-order finite difference scheme gives a very low error level of 0·032% at a probability

value of 10−8.

Table 1. Probability density functions of response X1 for a Duffing oscillator..

Response FEM Second-order finite diff. Tenth-order finite diff. Exact result [9]

0·0000 0·4762 0·4764 0·4760 0·4757
0·1500 0·4709 0·4708 0·4705 0·4703
0·3000 0·4550 0·4551 0·4545 0·4543
0·4500 0·4285 0·4286 0·4278 0·4277
0·6000 0·3919 0·3918 0·3911 0·3910
0·7500 0·3462 0·3460 0·3453 0·3452
0·9000 0·2932 0·2930 0·2924 0·2923
1·0500 0·2361 0·2360 0·2356 0·2355
1·2000 0·1789 0·1789 0·1788 0·1787
1·3500 0·1259 0·1261 0·1262 0·1263
1·5000 0·0811 0·0818 0·0820 0·0820
1·6500 0·0471 0·0481 0·0483 0·0483
1·8000 0·0242 0·0253 0·0254 0·0254
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Table 2. Finite difference approximation error in joint PDF and marginal PDF of Duffing oscillator.

Maximum absolute Max. absolute error in Max. absolute error in
Method error in JPDF x1 marginal density x2 marginal density

Second-order finite difference 1·541 × 10−3 2·864 × 10−3 2·434 × 10−3

Fourth-order finite difference 3·452 × 10−5 7·887 × 10−5 2·157 × 10−5

Sixth-order finite difference 2·618 × 10−6 6·681 × 10−6 4·444 × 10−7

Eight-order finite difference 3·378 × 10−7 8·428 × 10−7 1·424 × 10−8

Tenth-order finite difference 5·516 × 10−8 1·127 × 10−8 8·498 × 10−10

Finite element 3·602 × 10−4 8·751 × 10−4 3·551 × 10−4

7. Scheme for four-dimensional problems

The FP equation has been numerically solved for systems with two and three states using both

FEM and finite difference techniques. The extension of these solution algorithms to systems

with more than three states is conceptually straightforward, but the task of calculating the joint

probability density function of the state space Markov Vector process solving the nonlinear

stochastic differential equation is a formidable problem. So far only a few solutions have been

reported for four-dimensional problems. However, the accuracy of the obtained numerical

solution in the tail regions of the PDFs are somewhat uncertain. Several issues are involved in

designing an effective solution algorithm for such problems. These problems can be broadly

categorized as:

i) Spatial and temporal discretization of the FP equation.

ii) Large size of system equations.

A system of coupled linear oscillators constituting a four-dimensional linear system is taken

as an example. This system provides a benchmark to verify the accuracy of the algorithm. For

transformation of the partial differential equation to a set of first-order differential equations

a higher order discretization scheme using finite difference method has been applied. The

scheme involves the manipulation of the Taylor series expansion of the PDF about uniformly

distributed nodal point in a n = 4 dimensional mesh as shown in figure 9.

Figure 9 shows the mesh points for the discretization scheme for the finite difference method

for a four-dimensional phase space on a computational mesh of 354 nodes, that is, 35 nodes

per dimension of extent.

Let pi,j,k,l denote the PDF at a discrete location relative to a candidate point as shown in

figure 9 and given by,

pi,j,k,l = p(x + i�x, y + j�y, z + k�z, w + l�w). (36)

The PDF values are p1,0,0,0 = p(x +�x, y, z, w) and p−1,0,0,0 = p(x −�x, y, z, w). These

can be expressed in a Taylor series as,

p1,0,0,0 = p0,0,0,0 + p′
0,0,0,0�X + 1

2
p′′

0,0,0,0(�X)2 + O(�X3), (37)

p−1,0,0,0 = p0,0,0,0 − p′
0,0,0,0�X + 1

2
p′′

0,0,0,0(�X)2 + O(�X3). (38)
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Figure 9. Finite difference
scheme for spatial discretization
for a four-dimensional system.

Solving for the derivative terms at the candidate point gives

p′
0,0,0,0 = ∂p(X, Y, Z, W)

∂X

= p1,0,0,0 − p−1,0,0,0

2�X
+ O(�X3), (39)

p′′
0,0,0,0 = ∂2p(X, Y, Z, W)

∂X2

= p1,0,0,0 − 2p0,0,0,0 + p−1,0,0,0

�X2
+ O(�X3). (40)

We can derive finite difference stencils of varying order of accuracy by taking more neigh-

bouring nodal points. By substituting these into the FP equation, one equation in the nodal

TPDF may be formulated for each of the n-nodes, resulting in a set of n-discrete finite dif-

ference equation.

We consider the 2-degree-of-freedom system shown in figure 10 as an example to illustrate

the method.

Figure 10. Four-dimensional linear
system.
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The equations of motion of the system in state space form is given by

Ẋ =











0 1 0 0

−(k1 + k2) −c1 k2 0

0 0 0 1

k2 0 −(k2 + k3) −c2











X +











0 0

0
√

2D1

0 0

0
√

2D1











W(t), (41)

where W(t) is a Gaussian vector white noise process with

E[W(t)] = 0,

E[W(t1)W(t2)] =:

[

2D1 0

0 2D2

]

δ(τ ),

with τ = t2 − t1. (42)

The FP equation for this system is given by

∂p

∂t
= D1

∂2p

∂x2
2

+ D2

∂2p

∂x2
4

− x2

∂

∂x1

(p) − x4

∂

∂x3

(p) + (k1 + k2)x1

∂

∂x2

(p)

+ c1x2

∂

∂x2

(p) − k2x3

∂

∂x2

(p) − k2x1

∂

∂x4

(p) + (k2 + k3)x3

∂

∂x4

(p)

+ c2x2

∂

∂x4

(p) + (c1 + c2)p. (43)

For the system parameters k1 = k2 = k3 = 1, c1 = c2 = 0·3 and D1 = D2 = 0·3
the problem is discretized using higher order finite difference scheme on a computational

mesh of 354 nodes with range of [−4, 4] × [−4, 4] × [−4, 4] × [−4, 4]. The initial con-

ditions assumed are zero means for all the states and a four-dimensional Gaussian dis-

tribution with variance of σ 2
i = 0·5. A time step of 0·005 was used in the numerical

integration.

The probability density function obtained by the finite difference scheme by taking a section

corresponding to t = 40·5 s for all the four states is denoted in figure 11 by the symbol •
along with the closed form solution which is shown by the continuous line. The figure shows

very good agreement between the two results.

8. Conclusions

In this paper the stationary and transient PDF of nonlinear dynamical oscillators sub-

jected to random excitation have been obtained by FEM and high-order finite difference

methods by the solution of the FP equations. Higher order finite difference methods are

very accurate in predicting the joint PDFs for two-dimensional problems even at the low

probability levels (≤ 10−6) in the tail regions of the PDF. Stationary solutions obtained

by these spatial discretization methods to four-dimensional linear problems are also very

accurate.



460 Pankaj Kumar and S Narayanan

Figure 11. Cross sections of the density function of the linear system through the origin at t = 40·5 s;
— exact, • • •• finite difference method results.
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