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In this paper, our aim is to finding the solutions of the fractional kinetic equation related with the (p, q)-Mathieu-type series
through the procedure of Sumudu and Laplace transforms. )e outcomes of fractional kinetic equations in terms of the Mittag-
Leffler function are presented.

1. Introduction and Preliminaries

Fractional calculus (FC) can be a valuable mathematical
method for considering the integrals and derivatives in a
fractional order. )e fractional calculus has been evolved
and utilized in numerous engineering and analysis areas. In
several disparate sectors, along with applied research, ma-
terial science, mathematical physics, chemistry, and archi-
tecture, the theory of fractional differential equations and
their implementations has played a key role. )e complex
conditions program at a basic stem of differential equations,
which illustrates the amount of modification of a star’s
chemical composition with each configuration in terms of
generation and annihilation reaction levels. )e expansion
and sweeping statement of fractional kinetic equations re-
lated with different special functions were established (see
[1–11] for details). Nowadays, several scholars are devel-
oping a simplified structure of the fractional kinetic equation
involving the Mathieu-type series to make the dynamic state
extremely relevant and acceptable in a few astrophysical
problems.

)e first Mathieu series was explored by Mathieu in his
book Elasticity of Solid Bodies [12], which is represented as
an infinite series of the following form:

S(ϑ) �∑∞
ℓ�1

2ℓ

ℓ2 + ϑ2( )2, (ϑ> 0). (1)

An integral representation of (1) is defined as (see [13])

S(ϑ) �
1

ϑ
∫∞

0

x sin(ϑx)

ex − 1
dx. (2)

A few curiously special cases and their solutions deal
with integral representations, their another account with a
fractional image power characterized by Cerone and Lenard
([14], p. 2, Equation (16)), Milovanovic and Pogány ([15], p.
181):

Sμ(ϑ) �∑∞
ℓ�1

2ℓ

ℓ2 + ϑ2( )μ+1, (μ> 0, ϑ> 0). (3)

Inspired fundamentally by the works of Cerone and
Lenard [14] (see also [16]), Srivastava and Tomovski
established a generalized Mathieu series family in [17].

S(α,β)μ (ϑ, a) � S(α,β)μ ϑ, aℓ{ }∞ℓ�1( ) − ∑∞
ℓ�1

2a
β
ℓ

aαℓ + ϑ2( )μ,
(α, β, μ> 0, ϑ> 0),

(4)
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where it is tacitly presumed that the positive sequence a �
aℓ{ } � a1, a2, . . .{ } such that limℓ⟶∞aℓ �∞ and so, taken
that, perhaps, the (4) infinite series converges, which is to say
the preceding auxiliary series ∑∞ℓ�1(1/aα,μ− βℓ ) is convergent.

Within the continuation, in terms of the following power
series, Tomovski and Mehrez [18] introduced a more gen-
eralized form of the series (4):

S(α,β)μ,v (ϑ, a; z) � S(α,β)μ,v ϑ, aℓ{ }∞ℓ�1; z( ) �∑∞
ℓ�1

2a
β
ℓ(v)ℓ

aαℓ + ϑ2( )μ
zℓ

ℓ!
,

(α, β, ϑ, a, μ> 0, |z|≤ 1),
(5)

where

(v)ℓ �
1, (ℓ � 0; v ∈ C\ 0{ }),
v(v + 1) . . . (v + ℓ − 1), (v � ℓ ∈ N; v ∈ C).

{
(6)

Quite recently, Mehrez and Tomovski [19] found the
more conventional version of the so-called (p, q)-Mathieu
power series in the following version:

S
(α,β)
(μ,v,τ,ω)(ϑ, a;p, q; z) �∑∞

ℓ�1

2a
β
ℓ(v)ℓBp,q(τ + ℓ,ω − τ)zℓ

aαℓ + ϑ2( )μB(τ,ω − τ)ℓ!
,

ϑ, a, v, μ, τ,ω, α, β ∈ R+, |z|≤ 1( ),R(q)≥ 0,R(p)> 0,
(7)

where B(σ, ρ;p, q) is the (p, q)-extended beta function
provided by Choi et al. [20],

B(σ, ρ;p, q) �Bp,q(σ, ρ) � ∫1

0
xσ− 1(1 − x)ρ− 1e− (p/x)− (q/(1− x))dx,

(8)
when min R(σ),R(ρ){ }> 0; min R(p),R(q){ }≥ 0. )is
(p, q)-Mathieu-type series contains, as limited cases, dif-
ferent aspects of the Mathieu-type series:

(i) When p � q � 0, then the generalized Mathieu-type
power series is defined by

S
(α,β)
(μ,v,τ,ω)(ϑ, a; z) � S

(α,β)
(μ,v,τ,ω)(ϑ; a; 0, 0; z)

�∑∞
ℓ�1

2a
β
ℓ(v)ℓ(τ)ℓz

ℓ

aαℓ + ϑ2( )μ(ω)ℓℓ!,
ϑ, α, β, μ, a, v, τ,ω ∈ R+, |z|≤ 1( ).

(9)

(ii) By setting τ � ω in (9), we obtain ([21], Equation (5),
p. 974)

S
(α,β)
(μ,v)(ϑ, a; z) �∑∞

ℓ�1

2a
β
ℓ(v)ℓz

ℓ

aαk + ϑ2( )μℓ!,
ϑ, α, β, μ, v, a ∈ R+, |z|≤ 1( ).

(10)

Furthermore, in the special cases when v � z � 1, we get
the generalized Mathieu series (4).

2. Fractional Kinetic Equations

As of late, a startling interest has emerged in learning re-
garding the solution of fractional kinetic equations owing to
their importance in astronomy and scientific material sci-
ence. )e kinetic equations of fractional order have been
effectively utilized to decide certain physical wonders
overseeing dissemination in permeable media and response
and unwinding forms in complex frameworks. Subse-
quently, a large body of research into the application of these
equations has been spread by publishing.

Haubold andMathai [22] study the fractional differential
equation between reaction rate I � I(t), destruction rate
d � d(I), and production rate p � p(I) as follows:

d(I)

dt
� − d It( ) + p It( ), (11)

where It is the function represented by
It(t
∗) � I(t − t∗), t∗ > 0. Undermining the inhomogeneity

in the number I(t), (11) is given a special case as follows:

dIi

dt
� − ciIi(t), (12)

where the primary condition Ii(t � 0) � I0 is the number
of density of species i at time t � 0. Neglecting index i and
integrating, (12) becomes

I(t) − I0 � c0D
− 1
t I(t). (13)

We keep in mind that the standard fractional integral
operator is 0D

− 1
t .

In fact, the fractional sweep argument of the standard
kinetic equation (13) is defined by Haubold and Mathai [22]
inside the equation:

I(t) − I0 � c
ς
0D

− ς
t I(t), (14)

where 0D
− ς
t is the most common Riemann–Liouville (R–L)

fractional integral operator. More details of R–L in [23] are
defined as

0D
− ς
t f(x) �

1

Γ(ς) ∫
t

0
(t − u)ς− 1f(u)du, (x> 0,R(ς)> 0).

(15)
)e solution for (14), fractional equation, is given by (see

[22])

I(t) � I0 ∑∞
k�0

(− 1)k

Γ(ςk + 1)
(ct)ςk. (16)

Further, Saxena et al. [24, 25] explored the generalized
type solution of (14) in terms of a generalized Mittag-Leffler
function (see [26–28] for details),

Eς,ℓ(z) � ∑∞
k�0

zk

Γ(ςk + ℓ)
(ς, ℓ, z ∈ C;R(ς)> 0;R(ℓ) > 0),

(17)
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and the function Eς,ℓ is now called the two-parameter
Mittag-Leffler function (also known as the Wiman func-
tion).)e extension of (17) is called three-parameter Mittag-
Leffler function (or else Prabhakar’s function), and Garra
and Garrappa [29] introduced this in terms of a series
representation.

Eε
ς,ℓ(z) � ∑∞

k�0

(ε)k
(ςk + ℓ)k!

zk, (ς, ℓ, ε, z ∈ C,R(ς)> 0).

(18)
For the effectiveness and significance of the fractional

kinetic equations in specific astronomy issues, the authors
establish a modern and encourage generalized form of the
fractional kinetic equation pertaining to the (p, q)-Mathieu-
type power series utilizing the strategy of Laplace transform.
Furthermore, the findings obtained here are very capable of
generating a large range of established and (presumably)
novel outcomes.

3. Solution of Generalized Fractional
Kinetic Equations

In this section, we obtain a fractional kinetic equation
pertaining to the (p, q)-Mathieu-type power series using the
Laplace transforms technique.

We recall the Laplace transform of f(x) as defined by
Sneddon [30]:

F(s) � L f(x); s{ } � ∫∞
0
e− sxf(x)dx, (R(s)> 0).

(19)

Theorem 1. If c, ς, d> 0; d≠ c; a, ϑ, α, β, v,
μ, τ,ω ∈ R+,R(p)> 0,R(q)≥ 0, |ct|≤ 1, then the equation
solution,

I(t) − I0S
(α,β)
(μ,v,τ,ω)(ϑ, a;p, q; ct) � − d

ς
0D

− ς
t I(t), (20)

holds the formula

I(t) � I0∑∞
ℓ�1

2a
β
ℓ(v)ℓBp,q(τ + ℓ,ω − τ)(ct)ℓ

aαℓ + ϑ2( )μB(τ,ω − τ)
Eς,ℓ+1 − d

ςtς( ).
(21)

Proof. )e Laplace transform of the R–L fractional integral
operator given by the authors in [23] is as follows:

L 0D
− ς
t f(t); s{ } � s− ςI(s), (22)

where in (19), I(s) is defined. )en, using the Laplace
transform on both sides of the (20) and using (7) and (22)
order, we get

L[f(t); s] � I0L S
(α,β)
(μ,v,τ,ω)(ϑ, a;p, q; ct); s[ ] − dςL 0D

− ς
t f(t); s[ ],

I(s) � I0 ∫∞
0
e− st∑∞

ℓ�1

2a
β
ℓ(v)ℓBp,q(τ + ℓ,ω − τ)(ct)ℓ

aαℓ + ϑ2( )μB(τ,ω − τ)ℓ!
dt − dςs− ςI(s),

(23)

I(s) + dςs− ςI(s) � I0∑∞
ℓ�1

2a
β
ℓ(v)ℓBp,q(τ + ℓ,ω − τ)(c)ℓ

aαℓ + ϑ2( )μB(τ,ω − τ)ℓ!
∫∞
0
e− sttℓdt. (24)

Under these conditions, calculating the integral in (24)
term by term and using L tℓ; s{ } � s− (ℓ+1)Γ(ℓ + 1), we have

I(s) 1 +
d

s
( )ς{ } � I0∑∞

ℓ�1

2a
β
ℓ(v)ℓBp,q(τ + ℓ,ω − τ)(c)ℓ

aαℓ + ϑ2( )μB(τ,ω − τ)ℓ!

Γ(ℓ + 1)

s(ℓ+1)
.

(25)
Using (1 + (d/S)ς)− 1 geometric series expansion for

d< |s|, we have

I(s) � I0∑∞
ℓ�1

2a
β
ℓ(v)ℓBp,q(τ + ℓ,ω − τ)(c)ℓ

aαℓ + ϑ2( )μB(τ,ω − τ)s(ℓ+1)
∑∞
m�0

(1)m
m!

−
d

S
( )ς[ ]m.

(26)
Taking inverse Laplace transform on both sides of (26)

and using L
− 1 s− ς; t{ } � (tς− 1/Γ(ς)) for R(ς)> 0, we obtain

I(t) � I0∑∞
ℓ�1

2a
β
ℓ(v)ℓBp,q(τ + ℓ,ω − τ)(ct)ℓ

aαℓ + ϑ2( )μB(τ,ω − τ)

· ∑∞
m�0

(− 1)m
(dt)mς

Γ(mς + ℓ + 1)

 .
(27)

Interpreting the result in (27) in the view of (17), the
necessary result is (21). □

Corollary 1. If c, d, ς> 0; d≠ c; a, ϑ, α, β, μ, τ,
v,ω ∈ R+, |ct|≤ 1, then equation

I(t) − I0S
(α,β)
(μ,v,τ,ω)(ϑ, a; ct) � − d

ς
0D

− ς
t I(t), (28)

has the solution
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I(t) � I0∑∞
ℓ�1

2a
β
ℓ(v)ℓ(τ)ℓ(ct)

ℓ

aαℓ + ϑ2( )μ(ω)ℓ Eς,ℓ+1 − d
ςtς( ). (29)

Corollary 2. If c, d, ς> 0; c≠ d; ϑ, a, α, β, μ, v ∈ R+, |ct|≤ 1,
then equation

I(t) − I0S
(α,β)
(μ,v)(ϑ, a; ct) � − d

ς
0D

− ς
t I(t), (30)

has the solution

I(t) � I0∑∞
ℓ�1

2a
β
ℓ(v)ℓ(ct)

ℓ

aαℓ + ϑ2( )μ Eς,ℓ+1 − d
ςtς( ). (31)

Theorem 2. If d, η, ς> 0; ϑ, α, β, μ, v, τ,ω, a ∈ R+,R(p)>
0,R(q)≥ 0, |ηt|≤ 1, then equation

I(t) − I0S
(α,β)
(μ,v,τ,ω) ϑ, a;p, q; ηtς( ) � − ∑n

k�1

n

k
( )d− ςk0D− ςk

t
 I(t),

(32)
has the solution

I(t) � I0∑∞
ℓ�1

2a
β
ℓ(v)ℓBp,q(τ + ℓ,ω − τ)Γ(ℓς + 1) ηtς( )ℓ

aαℓ + ϑ2( )μB(τ,ω − τ)ℓ!
Enς,ℓς+1 − d

ςtς( ).
(33)

Proof. Now, using the Laplace transform on both sides of
(32) and using (7) and (22) lead to

L[I(t); s] � I0L S
(α,β)
(μ,v,τ,ω) ϑ, a;p, q; ηtς( ); s[ ]

− L ∑n
k�1

n

k
( )d− ςk0D− ςk

t

 I(t); s , (34)

which upon solving for I(s) yields

I(s) � I0∑∞
ℓ�1

2a
β
ℓ(v)ℓBp,q(τ + ℓ,ω − τ)(η)ℓ

aαℓ + ϑ2( )μB(τ,ω − τ)ℓ!

Γ(ℓς + 1)

s(ℓς+1)

· 1 +
d

s
( )ς{ }− n.

(35)
Employing the binomial formula (1 − x)− δ � ∑∞k�0

((δ)k/k!)x
k, which converges for |x|< 1, we have

I(s) � I0∑∞
ℓ�1

2a
β
ℓ(v)ℓBp,q(τ + ℓ,ω − τ)Γ(ℓς + 1)(η)ℓ

aαℓ + ϑ2( )μB(τ,ω − τ)ℓ!s(ℓς+1)

·∑∞
k�0

(n)k
k!

− dς

sς
( )k .

(36)
Taking inverse Laplace transform on both sides of (36),

we obtain

I(t) � I0∑∞
ℓ�1

2a
β
ℓ(v)ℓBp,q(τ + ℓ,ω − τ)Γ(ℓς + 1) ηtς( )ℓ

aαℓ + ϑ2( )μB(τ,ω − τ)ℓ!

× ∑∞
k�0

(− 1)k
(n)k (dt)

ς( )k
Γ(ςk + ℓς + 1)

 .
(37)

Interpreting the result (37) in the view of (18), we get the
necessary result (33). □

Corollary 3. If d, ς, η> 0; a, ϑ, α, β, μ, v, τ,ω ∈ R+, |ηt|≤ 1,
then equation

I(t) − I0S
(α,β)
(μ,v,τ,ω) ϑ, a; ηtς( ) � − ∑n

k�1

n

k
( )d− ςk0D− ςk

t
 I(t),

(38)
is given by

I(t) � I0∑∞
ℓ�1

2a
β
ℓ(v)ℓ(τ)ℓΓ(ℓς + 1) ηtς( )ℓ

aαℓ + ϑ2( )μ(ω)ℓℓ! Enς,ℓς+1 − d
ςtς( ).
(39)

Corollary 4. If d, ς, η> 0; a, ϑ, α, β, μ, v ∈ R+, |ηt|≤ 1, then
equation

I(t) − I0S
(α,β)
(μ,v) ϑ, a; ηtς( ) � − ∑n

k�1

n

k
( )d− ςk0D− ςk

t
 I(t),

(40)
gives a solution

I(t) � I0∑∞
ℓ�1

2a
β
ℓ(v)ℓΓ(ℓς + 1) ηtς( )ℓ

aαℓ + ϑ2( )μℓ! Enς,ℓς+1 − d
ςtς( ). (41)

Theorem 3. If ς, d> 0; a, ϑ, α, β, v, μ,ω, τ ∈ R+,
R(p)> 0,R(q)≥ 0, |t|≤ 1, then the solution of the equation

I(t) − I0S
(α,β)
(μ,v,τ,ω) ϑ, a;p, q; dςtς( ) � − dς0D− ς

t I(t), (42)

holds the formula

I(t) � I0∑∞
ℓ�1

2a
β
ℓ(v)ℓBp,q(τ + ℓ,ω − τ)Γ(ςℓ + 1)(dt)ℓ

aαℓ + ϑ2( )μB(τ,ω − τ)ℓ!
Eς,ςℓ+1 − d

ςtς( ).
(43)

Proof. )e thorough proof of )eorem 3 is similar to that of
)eorem 1, so we omit the details. □

Corollary 5. If ς, d> 0; a, ϑ, α, β, v, μ,ω, τ ∈ R+, |t|≤ 1, then
equation

I(t) − I0S
(α,β)
(μ,v,τ,ω) ϑ, a;dςtς( ) � − dς0D− ς

t I(t), (44)

has the solution
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I(t) � I0∑∞
ℓ�1

2a
β
ℓ(v)ℓ(τ)ℓΓ(ςℓ + 1)(dt)ℓ

aαℓ + ϑ2( )μ(ω)ℓℓ! Eς,ςℓ+1 − d
ςtς( ).
(45)

Corollary 6. If d, ς> 0; α, β, μ, v, ϑ, a ∈ R+, |t|≤ 1, then
equation

I(t) − I0S
(α,β)
(μ,v) ϑ, a; dςtς( ) � − dς0D− ς

t I(t), (46)

has the solution

I(t) � I0∑∞
ℓ�1

2a
β
ℓ(v)ℓΓ(ςℓ + 1)(dt)ℓ

aαℓ + ϑ2( )μℓ! Eς,ςℓ+1 − d
ςtς( ). (47)

4. Examples

Details of theMathieu-type series and their implementations
can be contained in the monographs by different authors
[21, 31]. )e integral transform, named the Sumudu
Transform, promotes the method of fathoming differential
and integral equations inside time. It turns out that the
Sumudu transform has exceptional and useful properties
and that it is important in knowing the issues of research and
regulation of the management of active situations. Here, we
use the concept of the Sumudu transform given byWatugala
[32] as follows:

G(ω) � S[f(z);ω] � ∫∞
0
e− zf(ωz)dz; ω ∈ − ε1, ε2( ),

(48)

where the exponentially bound function class in the T is as
follows:

T � f(z) ∃M, ε1, ε2 > 0, |f(z)|
∣∣∣∣ <Me |z|/εj( ), t ∈ (− 1)j ×[0,∞]{ }.

(49)
In addition, the Sumudu transform given in (48) can be

calculated directly from the Fourier integral. )e Sumudu
transformation tends to be the theoretical dual transfor-
mation of Laplace. It is interesting to equate the Sumudu
transform (48) with the well-known Laplace transform (see,
for example, [33]):

F(p) � L[f(z)] � ∫∞
0
e− pzf(z)dz, R(p)> 0. (50)

Equation (15) can be described in the following form by
using the Sumudu transformation theorem [34–36]:

S 0D
− ς
z f(z){ } � S

zς− 1

Γ(ς){ } ·S f(z){ } � uςG(u). (51)

It is simple to see that the function f(z) � zδ by using
the Sumudu transform is given as

S[f(z)] � ∫∞
0
e− z(yz)δdz � uδΓ(1 + δ), (R(δ)> − 1).

(52)
)e interested readers should search [37–41] for more

subtle elements almost transforming the Sumudu and its
properties as opposed to the Laplace transform.

Because of the significance of the abovementioned ob-
servation, in this section, we evaluate the solutions of
generalized fractional kinetic equations by applying the
Sumudu transform using the same analytical method as in
)eorems 1, 2, and 3, presented in examples 1, 2, and 3.

Example 1. If c, d, ς, δ > 0; d≠ c; a, ϑ, α, β, v, μ, τ,
ω ∈ R+,R(p)> 0,R(q)≥ 0, |ct|≤ 1, then the solution of the
equation

I(t) − I0t
δ− 1S

(α,β)
(μ,v,τ,ω) ϑ, a;p, q; ctς( ) � − dς0D− ς

t I(t),

(53)
holds the formula

I(t) � I0t
δ− 2∑∞

ℓ�1

2a
β
ℓ(v)ℓBp,q(τ + ℓ,ω − τ) ctς( )ℓ
aαℓ + ϑ2( )μB(τ,ω − τ)

Eς,ςℓ+δ− 1 − d
ςtς( ).
(54)

Example 2. If d, η, ς> 0; ϑ, α, β, μ, v, τ,ω, a ∈ R+,R(p)>
0,R(q)≥ 0, |ηt|≤ 1, then equation

I(t) − I0t
δ− 1S

(α,β)
(μ,v,τ,ω) ϑ, a;p, q; ηtς( ) � − ∑n

k�1

n

k
( )d− ςk0D− ςk

t
 I(t),

(55)
has the solution

I(t) � I0t
δ− 2∑∞

ℓ�1

2a
β
ℓ(v)ℓBp,q(τ + ℓ,ω − τ)Γ(ℓς + 1) ηtς( )ℓ

aαℓ + ϑ2( )μB(τ,ω − τ)ℓ!

· Enς,ℓς+δ− 1 − d
ςtς( ).

(56)

Example 3. If ς, d> 0, a, ϑ, α, β, v, μ,ω, τ ∈ R+,R(p)>
0,R(q)≥ 0, |t|≤ 1, then the solution of the equation

I(t) − I0t
δ− 1S

(α,β)
(μ,v,τ,ω) ϑ, a;p, q; dςtς( ) � − dς0D− ς

t I(t),

(57)
holds the formula

I(t) � I0t
δ− 2∑∞

ℓ�1

2a
β
ℓ(v)ℓBp,q(τ + ℓ,ω − τ)Γ(ςℓ + 1)(dt)ℓ

aαℓ + ϑ2( )μB(τ,ω − τ)ℓ!

· Eς,ςℓ+δ− 1 − d
ςtς( ).

(58)
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5. Concluding Remarks

It is not troublesome to get a few who encourage closely
fractional kinetic equations and their solutions as those
displayed here by )eorem 1, 2, and 3 and its Corollaries. It
is popular to support that a variety of other special cases of
our results can also be obtained as shown in Section 4, if we
take p � q � 0, τ � ω, and v � z � 1, and we can obtain nine
different findings. We leave those to the interested reader as
an exercise. Moreover, if we set p � q � 0 and τ � ω in our
main results, then we arrive at [4]. In this article, we con-
sidered the traditional kinetic equation as a recent fractional
generalization and proposed their solutions. Besides, in view
of near connections of the (p, q)-Mathieu-type series and
(p, q)-Mittag-Leffler with other special functions, it does not
seem difficult to construct different known and unused
fractional kinetic equations. Hence, the examined which
comes about in this paper would, at once, grant numerous
outcomes about including assorted special functions hap-
pening within the issues of astronomy, scientific mathe-
matical science, and engineering.
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