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The problem on the solutions of homogeneous and nonhomogeneous generalized
linear vector equations in idempotent algebra is considered. For the study of
equations, an idempotent analog of matrix determinant is introduced and its
properties are investigated. In the case of irreducible matrix, existence condi-
tions are found and the general solutions of equations are obtained. The results
are extended to the case of arbitrary matrix. As a consequence the solutions of
homogeneous and nonhomogeneous inequalities are presented.

1. Introduction. For analysis of different technical, economical, and engineering systems the problems
are often occurred which require the solution of vector equations linear in a certain idempotent algebra [1–5].
As a basic object of idempotent algebra one usually regards a commutative semiring with an idempotent
summation, a zero, and a unity. At once many practical problems give rise to idempotent semiring, in which
any nonzero (in the sense of idempotent algebra) element has the inverse one by multiplication. Taking into
account a group property of multiplications, such a semiring are called sometimes idempotent semifield.

Note that in passing from idempotent semrings to semifields, the idempotent algebra takes up an important
common property with a usual linear algebra. In this case it is naturally expected that the solution of certain
problems of idempotent algebra can be obtained by a more simple way and in a more conventional form, in
particular, due to the applications of idempotent analogs of notions and results of usual algebra.

Consider, for example, the problem on the solution with respect to the unknown vector x the equation
A⊗x⊕b = x, where A is a certain matrix, b is a vector, ⊕ and ⊗ are the signs of operations of summation
and multiplication of algebra. Different approaches to the solution of this equation were happily developed in
the work [3–7] and the others. However many of these works consider a general case of idempotent semiring
and, therefore, the represented in them results have often too general theoretical nature and are not always
convenient for practical application. In a number of works it is mainly considered existence conditions of
solution of equations and only some its partial (for example, minimal) solution is suggested in explicit form.

In the present work a new method for the solution of linear equations in the case of idempotent semiring
with the inverse one by multiplication (a semifield) is suggested which can be used for obtaining the results
in compact form convenient for as their realization in the form of computational procedures as a formal
analysis. For the proof of certain assertions the approaches, developed in [1, 2, 4], are used.

In the work there is given first a short review of certain basic notions of idempotent algebra [2, 4, 5, 8],
involving the generalized linear vector spaces and the elements of matrix calculus, and a number of auxiliary
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results. Then a certain function, given on a set of square matrices, is determined which is regarded as a
certain idempotent analog of a determinant of matrix, and the properties of matrices, concerning to the
value of this function, are studied.

The function, mentioned above, is introduced in such a way that it is a (idempotent) polynomial of matrix
elements and can be used in studying linear equations, where possible, as a usual determinant in arithmetical
space. Such analog of determinant is more convenient tools for analysis of equations than another similar
constructions, well-known in the literature [2, 9].

Further, the equations A⊗x = x and A⊗x⊕b = x are considered which in idempotent algebra play the
role of homogeneous and nonhomogeneous equations in the sense that a general solution of nonhomogeneous
equation can be represented as a sum of its minimal partial solution and a general solution of homogeneous
equation [4].

In the case of the irreducible matrix A existence conditions and a general solution of homogeneous
and nonhomogeneous equations are obtained. The obtained results are used then for determining existence
conditions and constructing the general solutions of equations with decomposable matrix. Then the solutions
of the homogeneous A ⊗ x ≤ x and nonhomogeneous A ⊗ x ⊕ b ≤ x inequalities are obtained. Finally,
certain remarks concerning to the dimension of a space of solutions of equations and inequalities and also
the forms of representation of solutions themselves are given.

2. Idempotent algebra. Consider an extended set of real numbers Rε = R ∪ {ε}, where ε = −∞, on
which the operations of summation ⊕ and multiplication ⊗ are defined such that x⊕ y = max(x, y) and
x⊗ y = x+ y for any x, y from Rε.

The set Rε together with the mentioned above operations makes up an idempotent semifield, i.e. a
semiring with an idempotent summation, a zero, and a unity, in which for any nonzero element there exists
one inverse element by multiplication.

Note that together with the semiring Rε another semirings often occur which possess the same properties,
for example, a semiring with a pair of operations (min,+), given on the set R∪{+∞} and also the semiring
with the operations (max,×) and (min,×), given on R+. Taking into account that these semirings are
isomorphic Rε, the results, represented below, can be extended to the case of any of them.

It is clear that in the semiring Rε a zero is ε and a unity is the number 0. For any x ∈ R the inverse
element x−1, which is equal to −x in usual arithmetic, is determined. If x = ε, then we suppose that
x−1 = ε.

For any x, y ∈ R the degree xy , the value of which corresponds to the arithmetical product xy, is
introduced in the usual way.

The notion of degree is used below in the sense of idempotent algebra only. However, for the sake of
simplicity, for notation of relations the usual arithmetical operations will be used in place of an exponent of
power. For any numbers xi ∈ R, αi ≥ 0, i = 1, . . . ,m, the following inequality

xα1

1 ⊗ · · · ⊗ xαm
n ≤ (x1 ⊕ · · · ⊕ xm)α1+···+αm

is satisfied.
For α1 = · · · = αm = 1/m we have an idempotent analog of inequality for geometric and arithmetic

averages

(x1 ⊗ · · · ⊗ xm)1/m ≤ x1 ⊕ · · · ⊕ xm.

3. Matrix algebra. For any matrices A,B ∈ R
m×n
ε , C ∈ R

n×l
ε and the number x ∈ Rε , the operations

of summation and multiplication of matrices and the multiplication of a matrix by a number are defined

{A⊕B}ij = {A}ij ⊕ {B}ij , {B ⊗ C}ij =

n⊕

k=1

{B}ik ⊗ {C}kj , {x⊗A}ij = x⊗ {A}ij.

The operations ⊕ and ⊗ have a monotonicity property, i.e. for any matrices A, B, C , and D of suitable
order the inequalities A ≤ C and B ≤ D imply that

A⊕B ≤ C ⊕D, A⊗B ≤ C ⊗D.

A square matrix is said to be diagonal if all of its nondiagonal elements are equal to ε and to be triangular
if all of its elements above (below) diagonal are equal to ε.

The matrix E , all elements of which are equal to ε, is called zero. The square matrix E = diag(0, . . . , 0)
is called unit.
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The matrix A− is said to be pseudoinverse for the matrix A if the following conditions (see also [1])

{A−}ij =

{
{A}−1

ji , iIf {A}ji > ε,

ε, otherwise

are satisfied.
The square matrix A is said to be decomposable if it can be represented in block-triangular form by

means of the interchange of rows together with the same interchange of columns and to be irreducible if not.
4. Linear vector space. For any two vectors a, b ∈ R

n
ε , a = (a1, . . . , an)T , b = (b1, . . . , bn)T and the

number x ∈ Rε there are defined the following operations

a ⊕ b = (a1 ⊕ b1, . . . , an ⊕ bn)T , x⊗ a = (x⊗ a1, . . . , x⊗ an)T .

A zero vector is the vector ε = (ε, . . . , ε)T .
A set of the vectors R

n
ε with the operations ⊕ and ⊗ is called a generalized linear vector space (or,

simply, a linear vector space) [1, 2].
Let a, b ∈ R

n. Then the inequality a ≤ b results in a− ≥ b−. Besides, it is easy to check that a = b if
and only if b− ⊗ a ⊕ a− ⊗ b = 0.

The vector b ∈ R
n
ε is said to be linearly dependent on the vectors a1, . . . ,am ∈ R

n
ε if it is of their linear

combination, i.e. b = x1 ⊗ a1 ⊕ · · · ⊕ xm ⊗ am, where x1, . . . xm ∈ Rε.
The zero vector ε depends linearly on any system of the vectors a1, . . . ,am.
Two systems of vectors a1, . . . ,am and b1, . . . , bk are said to be equivalent if either vector of one of

system depends linearly on the vectors of another system.
The system of vectors a1, . . . ,am is said to be linearly dependent if at least one of vectors of system

depends linearly on the rest of vectors and to be linearly independent if not.
Let a1, . . . ,am ∈ R

n
ε be certain nonzero vectors. Denote by A a matrix with the columns a1, . . . ,am.

We have (see also [2]) the following
Lemma 1. The vector b ∈ R

n depends linearly on the vectors a1, . . . ,am if and only if (A ⊗ (b− ⊗
A)−)− ⊗ b = 0.

Proof. A linear dependence of the vector b on a1, . . . ,am is equivalent to the existence of the solution
x ∈ R

m of the equation A⊗ x = b. As shown in [8], this equation has a solution if and only if (A⊗ (b− ⊗
A)−)− ⊗ b = 0.

We assume that the vector b has the coordinates equal to ε (the zero coordinates). Denote an index set
of the zero coordinates of the vector b by I.

Suppose, b′ is a vector, obtained from b by means of the deleting of all zero coordinates, A′ is a matrix,
obtained from A by means of the deleting of all rows with the index i ∈ I and the columns with the index
j , which is aij 6= ε at least for one of i ∈ I. If the set I is empty, then A′ = A and b′ = b.

Lemma 2. The vector b ∈ R
n
ε , b 6= ε depends linearly on the vectors a1, . . . ,am if and only if (A′ ⊗

(b′− ⊗A′)−)− ⊗ b′ = 0.
Proof. For any i ∈ I from the equation A⊗ x = b we have ai1 ⊗ x1 ⊕ · · · ⊕ ain ⊗ xn = ε. This implies

xj = ε if aij 6= ε.
Fix the values xj = ε for all indices j such that aij 6= ε at least for one of i ∈ I. From the system of

equations A⊗x = b it is possible to eliminate all equations, which correspond to the indices i ∈ I and also
all unknown xj = ε. Then we obtain the equation A′ ⊗ x′ = b′ with respect to the vector x′ , which is of
smaller dimension.

Since the vector b′ has no the zero coordinates, applying the equation of the previous lemma, we obtain
the required assertion.

Let A(i) be a matrix, obtained from A by means of the elimination of the column ai. Consider, as above,
the index set of the zero coordinates ai, and determine then the vector a′

i and the matrix A′
(i) for all

i = 1, . . . ,m. Then we have the following
Proposition 1. The system of vectors a1, . . . ,am is linearly independent if and only if (A′

(i) ⊗ (a′−
i ⊗

A′
(i))

−)− ⊗ a′
i 6= 0 for all i = 1, . . . ,m.

Corollary 1. To construct a linearly independent subsystem equivalent to the system a1, . . . ,am, it is
sufficient to eliminate sequentially from this system each vector ai, i = 1, . . . ,m such that (A′′

(i) ⊗ (a′−
i ⊗

A′′
(i))

−)− ⊗ a′
i = 0, where the matrix A′′

(i) is composed only of the columns A′
(i), which are still not be

eliminated.
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5. Square matrices. Let A = (aij) ∈ R
n×n
ε be an arbitrary square matrix. It is clear that any such

matrix gives a certain (generalized) linear operator, acting in the linear space R
n
ε , i.e. endomorphism.

The integer nonnegative degree of the matrix A is determined from the relations A0 = E, Ak+l = Ak⊗Al

for any k, l = 1, 2, . . .
We introduce a certain (idempotent) analogs of a spur and a determinant of matrix. Taking into account

that further a spur and a determinant of matrix will be regarded only in the sense of their idempotent
analogs, we will save usual notions for these analogs.

A sum of diagonal elements of the matrix A is called a spur and is denoted by

trA =
n⊕

i=1

aii.

A product of elements of the matrix A of the form ai0i1 ⊗ · · · ⊗ aim−1im , where i0 = im, is called cyclic.
A sum of all cyclic products of the matrix A is called its determinant and is denoted by

detA =

n⊕

m=1

⊕

i0,...,im−1

ai0i1 ⊗ · · · ⊗ aim−1i0 =

n⊕

m=1

trAm.

Consider certain properties of matrices, concerning the value of their determinant.
Lemma 3. For any matrix A and the vector x = (x1, . . . , xn)T ∈ R

n the following assertions are valid:
1) if detA ≤ 0, then x− ⊗A⊗ x ≥ detA;
2) if detA > 0, then x− ⊗A⊗ x ≥ (detA)1/n.
Proof. We introduce the notion ϕ(x;A) = x− ⊗A⊗ x and consider

ϕ(x;A) =
n⊕

i=1

n⊕

j=1

x−1
i ⊗ aij ⊗ xj .

For any sequence of indices i0, . . . , im, where i0 = im, 1 ≤ m ≤ n, applying the inequality for arithmetical
and geometric average, we have

ϕ(x;A) ≥ (x−1
i0

⊗ ai0i1 ⊗ xi1 ) ⊕ · · · ⊕ (x−1
im−1

⊗ aim−1im ⊗ xim) ≥ (ai0i1 ⊗ · · · ⊗ aim−1im)1/m.

This implies the inequality ϕ(x;A) ≥ tr1/m(Am), which is valid for all m.
Then for detA ≤ 0 we obtain

ϕ(x;A) ≥ trA⊕ · · · ⊕ tr1/n(An) ≥ trA⊕ · · · ⊕ trAn = detA.

In the case when detA > 0 we have ϕ(x;A) ≥ (detA)1/n.
For any matrix A we define the matrices A+ and A× as

A+ = E ⊕A⊕ · · · ⊕An−1, A× = A⊗A+ = A⊕ · · · ⊕ An.

If detA = ε, then it is easily shown (see, for example, [4]) that Am = E for the certain m < n and,
therefore, Ak ≤ A+ for all k ≥ 0.

Lemma 4. If detA 6= ε, then for any integer k ≥ 0 the following assertions are valid:
1) if detA ≤ 0, then Ak ≤ (detA)(k+1)/n−1 ⊗A+;
2) if detA > 0, then Ak ≤ (detA)k ⊗A+.
Proof. We prove that the inequalities are satisfied for k < n.
Let k ≥ n. We shall show that the inequalities are valid for the corresponding elements ak

ij and a+
ij of

the matrices Ak and A+, respectively. Assuming that i0 = i and ik = j, we represent ak
ij as

ak
ij =

⊕

i1,...,ik−1

ai0i1 ⊗ · · · ⊗ aik−1ik
.

Consider the product S Sij = ai0i1 ⊗ · · · ⊗ aik−1ik
. If among the multipliers Sij there is the number ε,

then Sij = ε and we have Sij ≤ (detA)α ⊗ a+
ij for any α > 0.

Let Sij > ε. We regroup the multipliers of the product Sij in the following way. We combine first all
cyclic products, consisting of m = 1 multipliers. Let α1 ≥ 0 be the number of such products. From the rest
of them we choose cyclic products of m = 2 multipliers and denote the number of them by α2. We continue
then this procedure for all subsequent values of m ≤ n.
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Taking into account that the cyclic product of m multipliers is less than or equal to trAm, we have

Sij ≤
n⊗

i=1
αi>0

trαi(Ai) ⊗ S′
ij ≤ (detA)α1+···+αn ⊗ S′

ij ,

where S′
ij is a product without cycles, which consists of no more than n−1 multipliers. Obviously, S′

ij ≤ a+
ij

and, in addition, k−n+1 ≤ α1 +2α2 + · · ·+nαn ≤ k. This implies that (k−n+1)/n ≤ α1 + · · ·+αn ≤ k.
In this case if detA ≤ 0, then Sij = ai0i1 ⊗ · · · ⊗ aik−1ik

≤ (detA)(k+1)/n−1 ⊗ a+
ij for any set of indices

i1, . . . , ik−1 and, therefore, ak
ij ≤ (detA)(k+1)/n−1 ⊗ a+

ij .

If detA > 0, then Sij ≤ (detA)k ⊗ a+
ij , and, therefore, ak

ij ≤ (detA)k ⊗ a+
ij .

Corollary 2. If detA ≤ 0, then the following relations are satisfied

A+ = E ⊕A×, A+ ⊗A+ = A+.

Proof. Taking into account that Ak ≤ A+ for all k ≥ n, we obtain the first relation E⊕A× = A+⊕An =
A+. The second relation is verified similarly.

From the relation A+ = E ⊕ A× it follows that A× ≤ A+, in which case the corresponding elements
a+

ij and a×ij of these matrices coincide except for, perhaps, diagonal elements, which satisfy the conditions

a+
ii = 0 and a×ii ≤ 0.

Denote by a+
i and a×

i the columns with the index i of the matrices A+ and A× and by am
ii the

diagonal elements of the matrix Am. Below, a determinant properties are used for obtaining the analog of
the assertion established in the works [2–4].

Proposition 2. If detA = 0, then the matrices A+ and A× have common like columns, which coincide,
and in this case the relation a+

i = a×
i is satisfied if and only if am

ii = 0 for a certain m = 1, . . . , n.
Proof. If detA = 0, then the nondiagonal elements of the matrices A+ and A× coincide. In addition,

the relation detA = 0 is equivalent to that trAm = 0 for a certain m = 1, . . . , n. The latter occurs only
if am

ii = 0 for the certain index i. Taking into account that in this case a×ii = 0, we have a×ii = a+
ii = 0, i.e.

a+
i = a×

i .
For any matrix A such that detA = 0, denote by A∗ the matrix of the same order, the columns of which

satisfy the condition a∗
i = a+

i if a+
i = a×

i and a∗
i = ε if a+

i 6= a×
i , i = 1, . . . , n. If detA 6= 0, we put

A∗ = E .
6. Homogeneous and nonhomogeneous linear equations. Let A ∈ R

n×n
ε be a certain given matrix,

x ∈ R
n
ε be an unknown vector. We shall say that a homogeneous equation with respect to x is the equation

A⊗ x = x. (1)

Let b ∈ R
n
ε be a certain given vector. We shall say that a nonhomogeneous equation with respect to x

is the equation

A⊗ x ⊕ b = x. (2)

The solution x = ε of equations (1) and (2) is called trivial.
The solution x0 of equation is said to be minimal if for any solution x of this equation the following

relation x0 ≤ x is satisfied.
All the solutions of homogeneous equation make up a linear space.
Proposition 3. If detA = 0, then the solution of homogeneous equation (1) is the vector x = A∗ ⊗ v

for any v ∈ R
n
ε .

Proof. Let detA = 0. Then the matrices A+ and A× have the common columns a+
i = a×

i . Since
A× = A⊗A+, we have A⊗a+

i = a×
i = a+

i , i.e. a+
i satisfies equation (1). Taking into account that all such

columns, and only they, are nonzero columns of the matrix A∗, we conclude that any vector x = A∗ ⊗ v,
where v is a vector, is a solution of (1).

7. Irreducible matrices. We shall seek existence conditions of solution and a general solution of equa-
tions (1) and (2) under the assumption that the matrix A is irreducible. We prove first certain auxiliary
assertions.

Proposition 4. If A is an irreducible matrix, then any nontrivial solution x of equations (1) and (2)
has no zero coordinates.

Proof. Let x be a nontrivial solution of equation (1) (equation (2) is considered similarly). We shall show
that all coordinates of the vector x are nonzero.
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Assume that there is one coordinate xi = ε while xj > ε for all j 6= i. From the relation ai1 ⊗ x1 ⊕
· · · ⊕ ain ⊗ xn = ε it follows that aij = ε if j 6= i. In this case, by inverting the rows 1 and i and then the
columns with the same indices, it is possible to reduce the matrix A to triangular form, what is in contrast
to the condition of indecomposability.

The assumption that the vector x has any number l < n of zero coordinates is considered similarly.
Proposition 5. Homogeneous equation (1) with the irreducible matrix A has a nontrivial solution if and

only if detA = 0.
Proof. A sufficiency of the condition detA = 0 results from Proposition 3.
We verify a necessity, using the same reasonings as those in the work [1]. Let x be a nontrivial solution

of equation. We shall show that detA = 0. Consider any sequence of indices i0, . . . , im such that im = i0,
1 ≤ m ≤ n. Equation (1) yields the inequalities

ai0i1 ⊗ xi1 ≤ xi0 , ai1i2 ⊗ xi2 ≤ xi1 , . . . aim−1im ⊗ xim ≤ xim−1
.

Multiplying the left- and right-hand sides of these inequalities and reducing by the quantity xi1 ⊗ · · · ⊗
xim 6= ε, we arrive at the inequality ai0i1 ⊗ · · · ⊗ aim−1im ≤ 0.

Taking into account an arbitrary choice of the indices i0, . . . , im, for all m = 1, . . . , n we have trAm ≤ 0.
Therefore, detA = trA⊕ · · · ⊕ trAn ≤ 0.

In addition, from (1) it follows that for any index i there exists the index j such that aij ⊗xj = xi. Take
the arbitrary index i0 , and determine sequentially the indices i1, i2, . . . such that the following relations

ai0i1 ⊗ xi1 = xi0 , ai1i2 ⊗ xi2 = xi1 , . . . ,

are satisfied down the first repetition of indices. From the obtained sequence of indices we choose the
subsequence il, il+1, . . . , il+m, where il = il+m, l ≥ 0, 1 ≤ m ≤ n.

Multiplying the relations, corresponding to the subsequence, and reducing by xil
⊗ · · · ⊗ xil+m

6= ε, we
have ailil+1

⊗ · · · ⊗ ail+m−1il+m
= 0. This implies that detA ≥ trAm ≥ 0. Since at a time the inequality

detA ≤ 0 is satisfied, we conclude that detA = 0.
Now we find a general solution of homogeneous equation. We have the following
Lemma 5. Suppose, x is a general solution of homogeneous equation (1) with the irreducible matrix A.

Then the following assertions are valid:
1) if detA = 0, then x = A∗ ⊗ v for all v ∈ R

n
ε ;

2) if detA 6= 0, then we have the trivial solution x = ε only.
Proof. Obviously, x = ε is a solution of homogeneous equation (1). In this case if detA 6= 0, then from

Proposition 5 it follows that another solutions is lacking.
Put detA = 0. Note that in this case A+⊗A+ = A+ and the matrices A+ and A× have common columns.

For the sake of simplicity, we assume that the first m columns of these matrices coincide. Represent the
matrices A+, A× and A∗ and the vector x in block form:

A+ =

(
B C
D F

)
, A× =

(
B C
D G

)
, A∗ =

(
B E
D E

)
, x =

(
x1

x2

)
,

where B is of order m×m, F and G is of order (n−m)×(n−m), the vectors x1 and x2 are of dimensions
m and n−m, respectively, and E denotes zero matrices of the corresponding order.

We establishes certain relations for blocks. it is easy to see that F ≥ G, in which case detF = trF = 0
and detG = trG < 0. In addition, the relation

A+ ⊗A+ =

(
B2 ⊕ C ⊗D B ⊗ C ⊕ C ⊗ F

D ⊗B ⊕ F ⊗D D ⊗ C ⊕ F 2

)
=

(
B C
D F

)
= A+

implies, in particular, the inequalities D ≥ F ⊗D ≥ G⊗D and B ≥ C ⊗D.
We assume that x is a nontrivial solution of equation (1). In this case x is a solution of the homogeneous

equation A× ⊗ x = x. Now we write the last equation in the form

x1 = B ⊗ x1 ⊕ C ⊗ x2,

x2 = D ⊗ x1 ⊕G⊗ x2.

Taking into account the inequalities, obtained above, by means of iterations for any integer k ≥ 1 from
the second equation we obtain x2 = D ⊗ x1 ⊕Gk ⊗ x2.
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Since detG < 0, by Lemma 4 we have Gk ≤ (detG)(k+1)/(n−m)−1 ⊗ G+. Now for any vector x ∈ R
n,

the number k can always be chosen such that the following condition

D ⊗ x1 ≥ (detG)(k+1)/(n−m)−1 ⊗G+ ⊗ x2 ≥ Gk ⊗ x2

is satisfied. This implies that the second equation has actually the form x2 = D ⊗ x1.
We substitute x2 = D⊗ x1 in the first equation. Taking into account that B ≥ C ⊗D, we arrive at the

equation x1 = B ⊗ x1. Thus, we have

x =

(
x1

x2

)
=

(
B E
D E

)
⊗
(

x1

x2

)
= A∗ ⊗ x.

This means that any nontrivial solution of equation (1) has the form x = A∗ ⊗ v, where v is a certain
vector. It remains to verify that x = A∗⊗v is a solution of (1) for any vector v. The latter was established
in Proposition 3.

We proceed to the study of nonhomogeneous equation.
Lemma 6. Nonhomogeneous equation (2) with the irreducible matrix A has a solution if and only if at

least one of the following conditions holds:
1) detA ≤ 0;
2) b = ε.
In this case x = A+ ⊗ b is a minimal partial solution of (2).
Proof. Suppose, detA ≤ 0. Then by iterations with applying Lemma 4, equation (2) can be reduced to

the form An ⊗ x ⊕ A+ ⊗ b = x. This implies, in particular, inequality x ≥ A+ ⊗ b. By direct substitution
we obtain that the vector x = A+ ⊗ b is a solution of equation (2) and in virtue of previous inequality it is
its minimal solution.

Suppose, detA > 0. We shall show that equation (2) under this condition has no the nontrivial solutions.
Really, in virtue of Lemma 3 for any x ∈ R

n we have x− ⊗ (A ⊗ x ⊕ b) ≥ x− ⊗ A ⊗ x ≥ (detA)1/n > 0,
which gives A⊗ x ⊕ b 6= x.

This implies that the solution x = ε exists if and only if b = ε.
To prove the following lemma we apply the approach, suggested in [4].
Lemma 7. A general solution of nonhomogeneous equation (2) with the irreducible matrix A has the

form x = u⊕v, where u is a minimal partial solution of equation (2), v is a general solution of equation (1).
Proof. We assume that u is any solution of equation (2) and v is any solution of equation (1). Then

x = u ⊕ v is also a solution of (2) since

A⊗ x ⊕ b = A⊗ (u ⊕ v) ⊕ b = (A⊗ u ⊕ b) ⊕ (A⊗ v) = u ⊕ v = x.

Suppose, x is an arbitrary solution of equation (2). We shall show that it can be represented in the form
x = u ⊕ v, where u is a minimal solution of (2) and v is a certain solution of (1). Note first that equation
(1) under the condition detA 6= 0 has a trivial solution only and, therefore, x = u ⊕ v, where u = x,
v = ε.

Suppose, detA = 0. We assume that u = A+⊗b is a minimal solution of (2). By inequality x ≥ A+⊗b =
u the vector v′ can always be found such that x = u ⊕ v′.

Since A⊗x = A⊗ (u⊕ v′) = A⊗A+ ⊗ b⊕A⊗ v′, by (2) we have x = A⊗x⊕ b = A+ ⊗ b⊕A⊗ v′. It
follows that for the vector v = A ⊗ v′ the relation x = u ⊕ v remains true. This relation occurs for each
vector v = Am ⊗ v′ for all integer m ≥ 0 and, therefore, for the vectors A+ ⊗ v′ and A× ⊗ v′.

Take the vector v′ with the coordinates v′i = xi if ui < xi and v′i = ε if ui = xi, i = 1, . . . , n. We have
x = u ⊕ v′ and, in addition, v′ ≤ v for any vector v such that x = u ⊕ v. Whence it follows that the
inequality v′ ≤ A ⊗ v′ and, therefore, the inequality A+ ⊗ v′ ≤ A× ⊗ v′ are satisfied. Since the opposite
inequality A+ ⊗ v′ ≥ A× ⊗ v′, is always satisfied, we conclude that A+ ⊗ v′ = A× ⊗ v′.

it remains to put v = A+ ⊗ v′. Then x = u ⊕ v is a solution of equation (2), in which case A ⊗ v =
A× ⊗ v′ = v, i.e. the vector v is a solution of (1).

By Lemmas 5 and 7 we have the following
Theorem 1. Suppose, the solution of nonhomogeneous equation (2) with the irreducible matrix A exists,

x is a general solution of (2).
Then the following assertions hold:
1) if detA < 0, then we have a unique solution x = A+ ⊗ b;
2) if detA = 0, then x = A+ ⊗ b ⊕A∗ ⊗ v for all v ∈ R

n
ε ;

3) if detA > 0, then we have the trivial solution x = ε only.
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It is easy to verify that for A = E this theorem is also valid.
8. Decomposable matrices. We assume now that the matrix A is decomposable. By the interchange

of rows together with the same interchange of columns it can be represented in block-triangular normal form

A =




A1 E . . . E
A21 A2 E
...

...
. . .

As1 As2 . . . As


 , (3)

where Ai is either irreducible, either zero ni × ni-matrix, Aij is an arbitrary ni × nj -matrix for all j < i,
i = 1, . . . , s, under the condition n1 + · · ·+ns = n, and E denotes zero matrices of the corresponding order.

We shall say that the family of rows (columns) of the matrix A, which correspond to each diagonal block
Ai is a horizontal (vertical) series of matrix.

We assume that the matrix A is reduced to normal form (3). Note that then detA = detA1⊕· · ·⊕detAs.
Denote by I0 a set of the indices i such that the relation detAi = 0 is satisfied and by I1 a set of indices

such that detAi > 0.
We assume first that I1 = ∅. The matrix A can be represented in the form A = T ⊕ D, where T is a

block strictly triangular matrix and D is a block-diagonal matrix,

T =




E . . . . . . E
A21

. . .
...

...
. . .

. . .
...

As1 . . . As,s−1 E



, D =




A1 E
. . .

E As


 .

Determine the following auxiliary matrices:

D+ = diag(A+
1 , . . . , A

+
s ), C = D+ ⊗ T, D∗ = diag(A∗

1, . . . , A
∗
s).

We have Cs = E and, therefore, C+ = E ⊕ C ⊕ · · · ⊕ Cs−1. Note that the matrix C+ has a lower
block-triangular form with the blocks C+

i and C+
ij . The order of these blocks coincides with the order of

the corresponding blocks Ai and Aij of the matrix A.
If I1 6= ∅, then we consider the matrix Ā, which is obtained from A by means of the interchange of all

blocks of its vertical rows i ∈ I1 by zero matrices. Denote the diagonal blocks of the matrix Ā by Āi and
the subdiagonal blocks by Āij .

Represent the matrix Ā in the form Ā = T̄ ⊕ D̄, where T̄ is a block strictly triangular matrix and D̄ is
a block-diagonal matrix, and put

D̄+ = diag(Ā+
1 , . . . , Ā

+
s ), C̄ = D̄+ ⊗ T̄ , D̄∗ = diag(D̄∗

1 , . . . , D̄
∗
s),

where D̄∗
j = E if the conditions j ∈ I0 and C̄+

ij 6= E are satisfied at least for one of i ∈ I1, and D̄∗
j = Ā∗

j = A∗

otherwise.
Consider equations (1) and (2). For each i = 1, . . . , s , denote by xi and bi the vectors of order ni,

which are made up by the coordinates of the vectors x and b, corresponding to the horizontal row i of the
matrix A.

We consider first homogeneous equation (1).
Lemma 8. Suppose, x is a general solution of homogeneous equation (1) with the matrix A, represented

in form (3). Then the following assertions are valid:
1) if detA < 0, then we have the trivial solution x = ε only;
2) if detA = 0, then x = C+ ⊗D∗ ⊗ v for all v ∈ R

n
ε ;

3) if detA > 0, then x = C̄+ ⊗ D̄∗ ⊗ v for all v ∈ R
n
ε , in which case we have only the trivial solution

x = ε if I0 = ∅.
Proof. Equation (1) can be represented as a system of equations, which correspond to the horizontal series

i = 1, . . . , s:

Ai1 ⊗ x1 ⊕ · · · ⊕Ai,i−1 ⊗ xi−1 ⊕Ai ⊗ xi = xi. (4)

If detA = detA1 ⊕ · · · ⊕As ≤ 0, then by Theorem 1 the solution xi of each equation exists and all the
vectors xi can be sequentially determined from the following equations

x1 = A∗
1 ⊗ v1, xi = A+

i ⊗ (Ai1 ⊗ x1 ⊕ · · · ⊕Ai,i−1 ⊗ xi−1) ⊕A∗
i ⊗ vi, i > 1,

where vi is any vector of dimension ni, i = 1, . . . , s.
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Assuming that v = (vT
1 , . . . ,v

T
s )T , these equations can be represented in the form of one equation

x = C ⊗ x ⊕D∗ ⊗ v,

the solution of which by means of iterations gives x = Cs ⊗x⊕C+ ⊗D∗ ⊗v = C+ ⊗D∗ ⊗ v. In particular,
for detA < 0 we have D∗ = E and, therefore, x = ε.

Suppose, detA > 0. Consider equation (4) for any series i ∈ I1. By Theorem 1 if the solution xi of such
equation exists, then xi = ε.

We assume that xi = ε for all i ∈ I1. The solution of equation (1) under this condition is not changed
if we assume that all elements of vertical series i ∈ I1 of the matrix A are equal to ε. Then for each
i = 1, . . . , s equations (4) take the form

Āi1 ⊗ x1 ⊕ · · · ⊕ Āi,i−1 ⊗ xi−1 ⊕ Āi ⊗ xi = xi.

Taking into account that det Ā ≤ 0 and that Ā∗
i = A∗

i for all i = 1, . . . , s, a general solution of this
system of equations is x = C̄+ ⊗D∗ ⊗ v for all v ∈ R

n
ε .

For the obtained solution to be satisfied the condition xi = ε for all i ∈ I1 , it is necessary that for each
such i the following relation

C̄+
i1 ⊗A∗

1 ⊗ v1 ⊕ · · · ⊕ C̄+
is ⊗A∗

s ⊗ vs = ε

is satisfied for any v ∈ R
n
ε .

Since A∗
j = E for each j 6∈ I0, we conclude that for the above relations to be satisfied it is necessary and

sufficient that A∗
j ⊗ vj = ε for the indices j ∈ I0 such that C̄+

ij 6= E at least for one of i ∈ I1. The latter
occurs in the case of a formal change of all such matrices A∗

j to zero. Since this is equivalent to the passage

from D∗ to D̄∗, we obtain a general solution of equation (1) in the form x = C̄+ ⊗ D̄∗ ⊗ v for all v ∈ R
n
ε .

It remains to note that x = ε if I0 = ∅.
In the case of nonhomogeneous equation we have the following
Lemma 9. Nonhomogeneous equation (2) with the matrix A in form (3) has a solution if and only if, at

least, one of conditions hold:
1) detA ≤ 0;
2) bi = ε for all i ∈ I1 and bj = ε for each j 6∈ I1 such that Ā+

ij 6= E at least for one of i ∈ I1.

In this case x = Ā+ ⊗ b is a minimal partial solution of (2).
Proof. If detA ≤ 0, then like the proof of Lemma 6 we can show that the solution of equation (2) exists,

in which case a minimal solution is the vector x = A+ ⊗ b = Ā+ ⊗ b.
Suppose, detA > 0. Represent equation (2) in the form of the system of equations, which correspond to

the series i = 1, . . . , s,

Ai1 ⊗ x1 ⊕ · · · ⊕Ai,i−1 ⊗ xi−1 ⊕Ai ⊗ xi ⊕ bi = xi. (5)

Obviously, for each i ∈ I1 there is a uniquely possible solution of equation (5), namely xi = ε, existence
condition of which is bi = ε. Then, like the proof of Lemma 5, it is possible to change the matrix A to Ā.

Since det Ā ≤ 0, a minimal solution of equation (2) with the matrix Ā is x = Ā+ ⊗ b. In this case for
each i = 1, . . . , s we have the vector

xi = Ā+
i1 ⊗ b1 ⊕ · · · ⊕ Ā+

i,i−1 ⊗ bi−1 ⊕ Ā+
i ⊗ bi,

which has to satisfy the condition xi = ε if i ∈ I1. This is equivalent to bj = ε for each j 6∈ I1 such that

Ā+
ij 6= E , at least, for one of i ∈ I1.
Like the proof of Lemma 7 we obtain the following result.
Lemma 10. A general solution of nonhomogeneous equation (2) with the matrix A, represented in form

(3), has the form x = u⊕ v, where u is a minimal partial solution of nonhomogeneous equation (2), v is a
general solution of homogeneous equation (1).

By Lemma 8 and 10 it is easy to prove the following
Theorem 2. Suppose, the solution of nonhomogeneous equation (2) with the matrix A, represented in

form (3), exists, x is a general solution of (2).
Then the following assertions are valid:
1) if detA < 0, then we have a unique solution x = A+ ⊗ b;
2) if detA = 0, then x = A+ ⊗ b ⊕ C+ ⊗D∗ ⊗ v for all v ∈ R

n
ε ;

3) if detA > 0, then x = Ā+ ⊗ b⊕ C̄+ ⊗ D̄∗ ⊗ v for all v ∈ R
n
ε , in which case we have a unique solution

x = Ā+ ⊗ b if I0 = ∅.
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9. Homogeneous and nonhomogeneous linear inequalities. The inequality of the form

A⊗ x ≤ x (6)

with respect to the unknown vector x is called homogeneous and the inequality of the form

A⊗ x ⊕ b ≤ x (7)

is called nonhomogeneous.
We shall show how the obtained results can be applied to solve inequalities (6) and (7). We assume first

that the matrix A is irreducible.
Lemma 11. Suppose, x is a general solution of homogeneous inequality (6) with the irreducible matrix

A. Then the following assertions are true:
1) if detA < 0, then x = A+ ⊗ u for all u ∈ R

n
ε ;

2) if detA = 0, then x = A+ ⊗ u ⊕ A∗ ⊗ v for all u,v ∈ R
n
ε ;

3) if detA > 0, then we have the trivial solution x = ε only.
Proof. The set of solutions of inequality (6) coincides with the set of solutions x of the equation A⊗x⊕u =

x with respect to two unknown x and u for all possible values of u. Applying Lemma 6 and Theorem 1,
we obtain the required result.

The validity of the following assertion is verified similarly.
Lemma 12. Nonhomogeneous inequality (7) with the irreducible matrix A has a solution if and only if

it is valid at least one of conditions:
1) detA ≤ 0;
2) b = ε.
In this case x = A+ ⊗ b is minimal solution (7).
Theorem 3. Suppose, a solution of nonhomogeneous inequality (7) with the irreducible matrix A exists,

x is a general solution of (7).
Then the following assertions are valid:
1) if detA < 0, then x = A+ ⊗ b ⊕A+ ⊗ u for all u ∈ R

n
ε ;

2) if detA = 0, then x = A+ ⊗ (b ⊕ u) ⊕A∗ ⊗ v for all u,v ∈ R
n
ε ;

3) if detA > 0, then we have the trivial solution x = ε only.
We assume now that A is a decomposable matrix. By Lemma 9 and Theorem 2, as in the case of irreducible

matrix, we can obtain the following results.
Lemma 13. Suppose, x is a general solution of homogeneous inequality (6) with the matrix A, repre-

sented in form (3). Then it is valid the following assertions:
1) if detA < 0, then x = A+ ⊗ u for all u ∈ R

n
ε ;

2) if detA = 0, then x = A+ ⊗ u ⊕ C+ ⊗D∗ ⊗ v for all u,v ∈ R
n
ε ;

3) if detA > 0, then x = Ā+ ⊗u⊕ C̄+ ⊗ D̄∗ ⊗ v for all u,v ∈ R
n
ε , in which case x = Ā+ ⊗u if I0 = ∅.

Lemma 14. Nonhomogeneous inequality (7) with the matrix A in form (3) has a solution if and only if
it is valid, at least, one of conditions:

1) detA ≤ 0;
2) bi = ε for all i ∈ I1 and bj = ε for each j 6∈ I1 such that Ā+

ij 6= E , at least, for one of i ∈ I1.

In this case x = Ā+ ⊗ b is a minimal solution of (7).
Theorem 4. Suppose, the solution of nonhomogeneous inequality (7) with the matrix A, represented in

form (3), exists, x is a general solution of (7).
Then the following assertions are valid:
1) if detA < 0, then x = A+ ⊗ b ⊕A+ ⊗ u for all u ∈ R

n
ε ;

2) if detA = 0, then x = A+ ⊗ (b ⊕ u) ⊕ C+ ⊗D∗ ⊗ v for all u,v ∈ R
n
ε ;

3) if detA > 0, then x = Ā+⊗(b⊕u)⊕C̄+⊗D̄∗⊗v for all u,v ∈ R
n
ε , in which case x = Ā+⊗b⊕Ā+⊗u

if I0 = ∅.
10. Improvement of dimension of a space of solutions. Note that in the previous divisions general

solutions of equations and inequalities in the space R
n
ε were represented, for sake of simplicity, by means of

endomorphisms of the same space.
For example, a general solution of homogeneous equation with the irreducible matrix A has the form

x = A∗ ⊗ v for all v ∈ R
n
ε , i.e. makes up the subspace of the vectors x = v1 ⊗ a∗

1 ⊕ · · · ⊕ vn ⊗ a∗
n, where

a∗
i are the columns of the matrix A∗, i = 1, . . . , n. However among the vectors a∗

1, . . . ,a
∗
n can be linearly

dependent and, therefore, the subspace, mentioned above, has a dimension, smaller than n.
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We assume that ã∗
1, . . . , ã

∗
k is a linearly independence subsystem of vectors, which is equivalent to the

system a∗
1, . . . ,a

∗
n, k ≤ n. Such a subsystem can be constructed, applying, for example, the procedure,

which is based on the result of Proposition 1 and its corollary.
Denote by Ã∗ a matrix with the columns ã∗

1, . . . , ã
∗
k. Then a general solution of homogeneous equation

can be represented in the form x = Ã∗ ⊗ ṽ for all ṽ ∈ R
k
ε .

Similarly we can specify the form of representation of general solution of all above-considered equations
and inequalities.

The author wishes to thank prof I. V. Romanovskii for useful advices and remarks.
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