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FOR ORDINARY DIFFERENTIAL INEQUALITIES^)
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ABSTRACT.  We solve affirmatively the open problem raised by Hallam
[3] and we apply this result to classical differential inequalities as well as to
get existence and uniqueness theorems for the terminal value problem for ordi-
nary differential equations.

Hallam in [3] points out that a comparison principle on terminal values
for ordinary differential inequalities stated by Mamedov [8] has wrong proof and,
in establishing a weaker form of it, raises the problem of proving Mamedov's
theorem in full generality. The aim of this paper is to answer affirmatively this
question. The comparison theorem proved here is exactly the analogue for ter-
minal values of the classical comparison theorem for initial values and therefore
it is even more general than Mamedov's statement.

This result is applied to improve some well-known propositions on differ-
ential inequalities for initial values as well as to prove some uniqueness and exis-
tence theorems for the terminal value problem for ordinary differential equations.
In particular, an analogue of the Peano-Kneser theorem is proved:   the set of
solutions of terminal value problems is connected under conditions like those of
Brauer [1] and Ladasand Lakshmikantham [6].

The author is grateful to T. G. Hallam for some useful comments on the
preprint.

1. The general terminal comparison theorem.  For b = +°° Theorem 1 be-
low solves the problem explained in the introduction of the paper, while for b <
+°° Theorem 1 improves Proposition A of Cafiero [2, p. 146] since no kind of
boundedness is assumed on co and the domain of cu is more general. The proof
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116 GIOVANNI VIDOSSICH

of Cafïero's result cannot be carried over in the case b = +°° since Cafiero's argu-
ment requires the solvability of the terminal value problem

u' = U5(t, u),      lim w(f) = "„,,
ttb

for arbitrary ¡<„eR,u being a suitable deformation of co, a fact which has no
guarantee in general since the continuity does not imply existence as shown by the
example co(f, u) = -e* • u for u >0 and ü(t, u) = 0foiu<Q,uM = l. Note that
Theorem 1 is the exact analogue for terminal values of the classical comparison
theorem for initial values: only the continuity is assumed on co, any hypothesis on
uniqueness and existence in the large for the Cauchy problem is completely avoided,
the domain of co is not assumed to be open in R2 nor of the form [a, b [ x R, and
D* is an arbitrary Dini derivative—in contrast to the assumptions of Hallam [3,
Theorem 3] and Mamedov [8, Theorem 1] which are less general.

Concerning the definition of maximal solution of a terminal value problem,
there are two possibilities. One is to use the "dual" of the definition of maxi-
mal solution for a Cauchy problem as it appears in Hartman [4] :

Definition 1.   The maximal solution in [a, b[ of the terminal value prob-
lem

u' = co(f, u),      lim «(f) = ux,
ttb

is a solution u in [a, b [ such that for every solution v defined in an interval
[a, b [ C [a, b [, we have v < « in [a, b [.

The other one is a stronger version used by Hallam [3] :
Definition 2. 77ze maximal solution in [a, b [ of the terminal value prob-

lem
u' = a>(t,u),      limu(t) = u„,

ttb

is a solution u in [a, b [ which is > any other solution in the same interval [a, b [.
Obviously, a maximal solution according to Definition 1 is also the maxi-

mal solution according to Definition 2.  For this reason, added to the fact that
we have to solve Hallam's problem and also by the feeling that the existence of
a maximal solution in the sense of Definition 2 is more probable than in the
sense of Definition 1 (as supported by the proofs of Brauer [1, Theorem 5] and
of Ladas and Lakshmikantham [6, Theorem 3.1]) we shall use the concept of
maximal solution according to Definition 2. A necessary and sufficient condition
for the existence of the maximal solution of the terminal values problems under
Carathéodory hypotheses is given by the corollary of Theorem 1 of Vidossich
[11], while a sufficient condition under different assumptions is given by
Theorem 1 of Hallam [3] (note that the proof of [3, Theorem 2] is incomplete
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TERMINAL COMPARISON PRINCIPLE 117

since the existence of rm, rM is not sufficiently certified).

Theorem 1. Let I be any right-open interval of R and a, «„ G R, b E
[a, +°°]. Let co: [a, b [ x I —* R and v: [a, b [ —► / be continuous, and let u
be the maximal solution on [a, b [ of the terminal value problem

u' = oj(t, u),      lim«(f) = «„,
río

according to Definition 2. //limft6 v(t) < ux and if at least one of the following
conditions holds,

(i) v is locally absolutely continuous on [a, b [ and v' > co(/, v) (a.e. on
[a, b[);or

(ii) there exists a fixed Dim derivative D* such that D*v(t) > u>(t, v(t)) for
all but a countable number of t E [a, b [;

then v<u in [a, b[.

Of course, v is locally absolutely continuous means that each t0 E [a, b[
has a neighborhood Vsuch that v is absolutely continuous in KO [a, b[. This
condition is not equivalent in general to the absolute continuity of v in [a, b [ as
shown by the following example:   [a, b[= [0, +°°[ and v: R+ —► R+ defined
by

n-l
v(t) = Z Ki + O + n(n + l)(t - n)      (n < t < « + 1; « G N).

j=i
Proof of Theorem 1. Suppose there exists t0 E [a, b[ such that u(f0) >

u(t0), and argue for a contradiction.  Since the proof is somewhat involved, it
seems convenient to summarize the basic lines. The contradiction will be
achieved by showing the existence of a solution w of w' = co(f, w) in [a, b [
such that w(t0) > u(t0) and limf1.6 w(t) = ««,. First we will construct a solution
w of w' = co(t, w) in [a, t0] such that w(t0) E ]u(t0), v(t0)[. This could be
done simply by using the general convergence theorem for solutions of Cauchy
problems, Hartman [4, Chapter II, Theorem 3.2], if x' = cj(t, x) has uniqueness
of the Cauchy problem. But since we do not have such a uniqueness, we will
get the desired result by combining some ideas involved in the proof of the men-
tioned convergence theorem with the connectedness of the set of solutions of a
Cauchy problem. Then we will extend conveniently w to the right of t0 by us-
ing locally a differential inequalities technique. To achieve this goal, we need the
strict inequality D*v > cj(í, v) instead of D*v > co(t, v). Therefore cj will be
deformed in a suitable con with lim„ co„ = co. We note also we shall use
repeatedly the observation that if a solution x touches u for a time t, then x <
u in [a, t] —as it will be deduced from the maximality of u.

The first step to get a contradiction against v(t0) > u(t0), is to prove the
following statement:
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118 GIOVANNI VIDOSSICH

(1) There exists a solution w of w' = co(f, w) in [a, t0] such that u(t0) <
w(t0) < v(t0).

To this aim, let V = ] - °°, sup /[ and g: [a, f0] x V —*■ R defined by

co(f, x)       ifx>u(t),

C0(f, £7(0)     if* < «(f).

Obviously g is continuous and «' = g(t, u) in [a, f0]. Let Trip m2 be the mini-
mum and maximum of u on [a, f0], let e > 0 be such that m2 + 2e < sup /, let
M be the maximum of |g| on the compact set [a, t0] x [mx - 2e, m2 + 2e],
and let S G ] 0, f0 - a] be so small that 5M < e. Let A be the set of all f G
]a, f0] such that there exists a sequence (xn)n of solutions in [a, t] of jc' =
g(t, x) such that

u<jc„<7M2+2e   in [a, t]    and   u(t)<xn(t)   (tjGZ+),

and
Urn xn(t) = u(t).

n

We claim a + S G A.   Let us first establish the following statement.
(2) For every x0 G [u(a), u(a) + e], all solutions x of the Cauchy problem

x' = g(t, x), x(a) = x0 exist in [a, a + 5] and satisfy jc < m2 + 2e and more-
over, if x0 > u(a), u <x.

Choose jc0, and let x be any corresponding solution. Let D be the maximal
interval of existence of x. Define

n = sup{f ED n [a, a + Ô]|tt7j - 2e <x <7?72 + 2e in [a, t]}.

If t? < a + 8, then we have

\x(r¡)-x0\ < Jjg(s,x(s))|c/s < j^Mds < e,

and therefore

mx -2e<x0 - e< x(n) <x0 + e <m2 + 2e.

By the continuity of x, there is t?0 G ]rj, a + 5] such that

777, - 2e <x(f) < ?772 +2e       (T?<f<7?0),

and we have a contradiction against the definition of r¡. Therefore tj = a + S, so
that x exists on [a, a+ 5] and x <m2 + 2e. If u < x does not hold for xQ >
u(a), then there exists a f x E [a, a + S] such that «(f,) = x(i,) and « < x in
[a, ft [. Then the function y: [a, b[ —*■ R defined by

g(t,x)=-
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TERMINAL COMPARISON PRINCIPLE 119

!x(0   for / < t!,

u(t)   for t>tx,

is a solution of our terminal value problem (since y' = co(/, y) in [a, tx ] and
limftil y'(t) = u(tx,y(tx)) = limflíly'(/)), so that ^ < « by the maximality of
u. This yields a contradiction against u(a) < x(a). In conclusion, (2) holds.

Now we distinguish two cases:
Case 1. u is the maximal solution of the Cauchy problem

(3) x' = g(t, x),     x(a) = u(a),

in [a, a + 8]. Let x„ 0 be a sequence in ]u(a), u(a) + e[ converging to u(a).
By (2), there is a solution x„ in [a, a + 8] of the Cauchy problem

x'„=g(t,xn),     xn(a) = x„>0,

such that u < xn < m2 + 2e in [a, a + 8]. By Ascoli's theorem, there is a sub-
sequence (x„k)k converging uniformly in [a, a + 8] to a solution x of (3). Since
u is the maximal solution of (3), x < u.  Since x > u by « < x„fc, we have u =
x and hence with (x„fc)fc the condition for a + 8 G A is satisfied.

Case 2. u is not the maximal solution of (3). By (2), all solutions of (3),
hence in particular the maximal solution uM, exist in [a, a + 8]. Since uM + u
and uM > u in [a, a + 8], we have «^(a + 5) > u(a + 8): for, otherwise the
function yx : [a, b [ —» R defined by

ÍuM(t)   for t<a+8,
u(t)      for t>a +5,

would be a solution of our terminal value problem, and so we would have yx <
u, which yields the contradiction uM < u.  By the Peano-Kneser theorem, the
values at a + 5 of all solutions of (3) form a connected set, hence an interval. There-
fore, because uM(a + 5) > u(a + 5), there is a sequence (xn)n of solutions of (3)
in [a, a + 8] such that xn(a + 5) > u(a + 8) for all n and lim„x„(a + 5) =
u(a + Ô). By (2), xn < m2 + 2e in [a, a + 8]. If x„ > u, then let s„ =
inf {/ G [a, a + 8] \ u < xn in [/, a + 5]} and define xn: [a, a + 8] —+R by

!«(/)     fori<s„,

xn(t)   for t>sn.

Obviously xn is a solution of (3) such that xn > u. Therefore with x* = xn or
x„ the condition for a + 8 E A is satisfied.

Thus a + 8EA. Define a = sup A and argue to show a EA and a = t0. Let
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120 GIOVANNI V1DOSSICH

f2 G ] a - ô, a] Ci A and let (x„)„ be the sequence associated to f2 by the condi-
tion f2 EA.  There is an tî0 such that xn(t2) G ]u(t2), u(t2) + e[ for n > n0.
Repeating the argument used to prove (2), we have that each xn can be extended
in / = [f2, f2 + S] n [a, t0] as a solution of jc' = g(t, x), which we shall still
denote by xn, and which satisfies there u<xn <m2 + 2e. Let ß be any point
of [f2, sup/]. By Ascoli's theorem, there is a subsequence (x„k)k of (*„)„
converging uniformly in [a, ß] to a solution 3c of x' = g(t, x). The following two
cases can occur:

Case I. x(ß) = u(ß). Then with (x„k)k the condition for ß E A is satisfied.
Case II. x(ß) > u(ß). Then there is a sequence (y„ 0)n in ] "03), 3c(j3)[

converging to u(ß). Let >>„ be a solution of the Cauchy problem

y'n=^,yn),    y„(ß)=ynfi>

and let /„ C [a, ß] its maximal interval of existence at the left of ß (hence, we
should have spoken of the terminal value problem). Once more, we distinguish
two cases:

Subcase 1. There exists T70 such that y„ > u in /„ for all 77 > n0. If there
is nx > n0 such that yn < 3c in /„ for all n>nx, then every yn, n > nx, is
bounded where it exists and moreover yn(In) Ç V:  therefore well-known facts
imply that /„ = [a, ß]. If such an tîj does not exist, then there is «fc —> °°
such that y„k touches x in some point:  let %k = sup{f G Ink\y„k(t) = x(t)}.
Then we define

x(t)        for f G [a, y ,

y„k(t)   fottE{%k,ß\,

and with (yn)n>nx or (zk)k we nave tne condition for ß EA.
Subcase 2. There exists 77fc —»■ <» such that y„k > u.  Then let ffc =

sup{f G I„k\y„k(t) = u(t)}. There are still two possibilities:  there exists k0

such that y„k < x in [fk, |3] for k > k0, or there exists k¡ —* °° such that y„k
touches 3c in [ffc, ß]. lfynk < x in [fk, j3]for k > k0, then defining

(u(t)       for f G [a, f^],
^(0 = {

(ynk(t)   foxtE[tk,ß],

we have the condition for ß E A.   If there exists k¡ —* °° such that y„k. touches

x in [ffc, /3], then let af = sup{f G [ffe, ß] \y„k.(t) = x(t)}. Defining

!3c(f)        for f G [a, oj,

7nÄ.(0   for f G [a,., 0],

we have the condition for ß E A.

**(')=•

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



TERMINAL COMPARISON PRINCIPLE 121

Therefore, ß G A.   For ß = a we have a G A.   If a < t0, then for ß = sup J
we would have a contradiction against a = sup A.  Therefore a = t0. By taking
« sufficiently large in the sequence characterizing /0 G A, we have the existence
of a solution w of x' = g(t, x) in [a, t0] such that u(t0) < w(t0) < v(t0) and u
< w in [a, t0]. Therefore w' = cj(/, w) in [a, t0] and (1) holds.

Now let

7 = sup{/G [r0, b[\v>u in [r0, /]}.

By continuity and limitft v(t) < u„ we have

/■4x lim u(r) = lim u(t).

For every « G Z+ define co„: [r0, ?[ x / —* R by

«„(i, x) ■ co(/, x) + (n(f) - x)ln.

We have

«n(i. v(t)) < u(t, v(t))   and   u'(t) = w„(r, «(/))      (r0 < t < y).

We claim
(5)  For every n E Z+ there exists a solution un in [/0, 7[ of the Cauchy

problem

u'n = <¿n(t, un),      un(t0) = w(t0),

such that

u(t)<un(t)<v(t)      (t0<t<y).

To prove (5), fix « G Z+.  Let wn be a solution of the Cauchy problem

w'n " wn(f. w«).       WB('o) " ^o).

and Mn Ç [r0, 7[ its maximal interval of existence. Define

an = sup Mn    and   /„ = sup {/ G Mn | w„(s) < u(s) for all s G [/„, í]}.

In order to prove the equality /„ = an, assume tn <an. Then by continuity we
have wn(tn) = v(tn) and consequently

"«0». wn(fn)) = w«^«- ü(í„)) < w(/„, u(/„)).

The continuity of con( • , tv„( • )) and co( • , v( • )) implies the existence of an
interval /„ = [r„ - 8n, tn] Ç [t0, an [ such that

u„(t, wn(t)) < (4t, v(t))      (t E In)
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122 GIOVANNI VIDOSSICH

and hence

(6) w„(f) - wn(s) = jjc^fc, wn(%))di, < Çu(t 17(1))di      (s,tEIn;s< t).

If condition (i) of the hypothesis holds, we take /„ so small that t> is absolutely
continuous on /„. Then v(t) - v(s) = /£i/(£) d% for s, t EIn and so from (6)
and v' > co(f, v) we get wn(tn) - wn(tn - 8„) < v(t„) - v(tn - 8„), which implies
wn(tn - 5„) > i>(f„ - ô„), a contradiction. If (ii) holds, put

Vn(t) = v(tn-8n)+Ç        ««,»#))<**      (tEIn).

From (6) we have

wn(t)<Vn(t)      (fG/„).

By V'n(t) <D*v in all of /„ except a countable subset, we have D*(Vn - u) < 0
in all of /„ except a countable subset. Then Zygmund's lemma on Dini deriva-
tives (cf. Lakshmikantham and Leela [7, Lemma 1.2.1]) implies that Vn - v is
decreasing in /„. Thus from Vn(tn - 5„) - v(t„ - 5„) = 0 it follows that

Vn(t)<vit)       (tEI„)

from which we derive wn(tn) < Vn(tn) <; v(tn), a contradiction. Therefore f„ =
an. Now define

s„ = sup {f G Mn | u(s) < wn(s) for all s G [f0, f ]}.

If sn <an, then by continuity u(sn) = wn(sn) and so

(wn(t)   for t0<t<sn,
(7) vn(t) = I

{u(t)     forsn<t<y,

is a solution of x' = co„(f, jc) on [t0, y[ and« <vn <uon [t0,y[. Therefore
(5) holds for un = vn if s„ < an. Now assume sn = an. If a„ = 7, then (5)
holds for un = wn. If an < y, then limtta wn(t) exists since the boundedness
of wn in [f0, s„[ = [f0, a„[ implies that wn is Lipschitzean.   In view of the
maximality of Mn and limfîa  wn(t) G [u(an), v(an)] CI, wn must be defined
at an as a solution of x' = con(t, x). We claim u(an) = wn(an). If u(an) <
wn(an), then wn(an) is an interior point of/ since / is a right-open interval.
Therefore Peano's existence theorem is applicable to the Cauchy problem

x' = w„(f, x),     x(an) = wn(an),

and we contradict the maximality of Mn. Therefore u(an) = wn(a„). Then we
define the function vn as in (7), which is possible since sn = an in the present
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TERMINAL COMPARISON PRINCIPLE 123

assumptions, and so (5) holds for un = vn. In conclusion, (5) is true.
Now, let (ßk)k be a sequence in [i0, y[ converging to 7.   By (5),

(un\ |f  ß ])„ is an equicontinuous and equibounded sequence for all k. There-
fore by Ascoli's theorem there is a subsequence (uk x n)n of (un)n converging
uniformly on [r0, ßx] such that kx „ < kln+x for all n, there is a subsequence
("*2,n\ of ("*i ,„)* converging uniformly on [/„, j32] such that k2n <k2n + x
for all n, and so on for / = 3,. . ., °°. Then (ukf¡ n)n is a subsequence of («„)„
converging uniformly on compact intervals of [f0, 7 [ to a function w0. By this
and lim„ co„ = co uniformly on bounded subsets of [a, b[ x I, it is easy to
deduce from Riemann's convergence theorem and from

ukn „(0 = w(/0) +/f ("„(s. uknJ-s)) ±u(s> "*„,„(')))*»

that

w0(0 = iv(r0) + f   co(s, w0(s))c/s      (r0 < t < ^)

for all 1 G Z+. Therefore w0 = co(/, w0) in [r0, 7[. From (5) and (4) it follows
that

limw0(i) = lim «(f).
ft-y rt-y

If 7 = b, then the function w: [a, b [ —* R defined by

w(t)     for f G [a, t0],

w0(/)    foríG [t0, b[,

is a solution of our terminal value problem and therefore iv<« by the maximality
of u.  This contradicts vv"(f0) > w(/0).  If 7 < b, then we define iv: [a, b [ —* R
by .

U(î)     for r G [a, r0],

w(t) =    w0(f)    for / G [í0, 7[,

(U(r)      fortE[y,b[,

and we have the same contradiction.   Q.ED.

2. Applications to classical differential inequalities. The following result
improves the well-known comparison theorem for initial values since (a, u„) is
assumed to be only in the closure of the domain of co. Note that Theorem 2
works with the concept of maximal solution of a Cauchy problem "dual" to that
of Definition 2.

Theorem 2.  Let a <b and u„ be real numbers, I CRa right-open inter-

w\t) =
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124 GIOVANNI VIDOSSICH

val and co: ]a, b] x I —► R continuous.  Let v: ]a, b] —* I be continuous and
u the maximal solution of

u' = co(r, «),      lim u(t) = u„.
tla

If limf Xa v(t) < u„ and either v is absolutely continuous on compact intervals of
]a, b] and

v' < co(/, v)     (a.e. in ]a, b]),

or D*v < co(r, v) in ]a, b] except a countable subset, D* being any fixed Dim
derivative, then v < u in ]a, b].

Proof.  Define g: [1 ¡(b - a), +°° [ x / —► R by

g(t,x) = -(Ut2)u(a + Ut,x).

Obviously if x' = co(i, x) then x(t) = x(a + lit), t> l/(b - a), is a solution of
y' = g(t, y), while if y' = g(t, y) then x(t) = y(l/(t - a)), b > t > a, is a solution
of x' = co(f, x).  Therefore U is the maximal solution of the terminal value prob-
lem

y' = g(t, y),      lim XO = "<»•
ftoo

The function v(t) = v(a + lit) is absolutely continuous on compact intervals
when v is, since i^->a + 1/r is Lipschitz on compact intervals (being continuously
differentiable). Therefore we are in position to apply Theorem 1 to U, v and g
in order to get v < U in [l/(b - a), +°°[. Therefore v < u in ]a, b].   Q.ED.

The following result improves Lakshmikantham and Leela [7, Theorem
1.2.1] since the inequalities D*v > u(t, v) is not assumed everywhere and since
D* is an arbitrary Dini derivative.

Theorem 3.  Let IÇ R be a right-open interval and co: [a, b] x I —»• R
continuous such that the Cauchy problem

x' = co(/, x),     x(/0) = h0,

has at most one solution at the left oftQ for all (t0, u0). If v: [a, b] —*■ I is
absolutely continuous and

v' > co(f, v)      (a.e. in [a, b] ),

or v is continuous and D*v > cj(t, v) for all but a countable number of t, D* be-
ing any fixed Dini derivative, then

u' = co(r, u)   in [a, b]    and   u(a) < v(a)

implies u <v in [a, b].
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TERMINAL COMPARISON PRINCIPLE 125

Proof. Let A = {t E [a, b] \u < v in [a, t]} and ß = sup A. lfß<b,
then u(ß) = v(ß) by continuity and the hypotheses. Since x' = co(f, x), x(ß) =
u(ß) has a unique solution at the left of ß, u is the maximal solution of the ter-
minal value problem

x' = co(t, x),      lim x(t) = u(ß)
ttß

(note that any solution of this terminal value problem satisfies x'(ß) = u(ß, u(ß))
since limft(3;c'(0 = oj(j3, u(ß))). Therefore, by Theorem 1, v < u in [a, ß[, which
is impossible since u(a) < v(a). Therefore ß = b.  If u(b) = v(b), then by the
same argument we get a contradiction against u(a) < v(a). Thus b EA.    Q.E.D.

3.  Applications to uniqueness of the terminal value problem for ordinary
differential equations.  In this section we use Theorem 1 to get some result
about uniqueness of solutions of the terminal value problem.  In our approach to
uniqueness there is implicit a new comparison viewpoint which has been explored
in Vidossich [10].

Theorem 4. Let X be a Banach space, A C X, a E R, b E [a, +°°], /:
[a, b [ x A —*■ X bounded on bounded sets and co: [a, b[ x [0,ß[ —► R con-
tinuous.  If

(i) (f(t, x) -f(t, y), x -y)_ > co(f, ||x -yU\x -y\\ for all t, x, y; and
(ii) u' = cj(t, u), \imtib u(t) = 0 has u = 0 as maximal solution;

then for every x„,EX the terminal value problem

x' = f(t, x),      lim x(t) = Je»,
ttb

has at most one weak solution which is bounded on compact sets.

Recall that weak solution of x' = f(t, x) means a function x: [a, b[ —*■ X
such that for every f we have

dh(xit))ldt = h(f(t, x(t)))      (h G X*).

Of course, when X = R" the weak solutions coincide with the strong solutions
(since then h runs in particular in the set of canonical projections R" —> R).

Moreover, recall that (*,•)_ denotes the generalized inner product on a
Banach space X:

(x,y)_= inf {h(x)\hEJ(y)}

where /: X —* 2X* is the duality map:

J(x) = {hEX*\ \\h\\ = llxll. h(x) = IWI2}.
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When X is a Hubert space, like R" for example, then (•,*)_ coincides with the
inner product.

Proof of Theorem 4.   Let x, y be two weak solutions, bounded on
compact sets, of our terminal value problem.   Put z = x - y.    Since / is
bounded on bounded sets, ||z( • )|| is Lipschitz, hence absolutely continuous,
on compact intervals^1)   Therefore by Kato [5, Lemma 1.31, the function
v(t) = \\z(t)\\2 satisfies a.e. the condition

v'(t) = 2(f(t, x(t)) -f(t, y(t)), x(t) -y(t))_

> 2co(i, ||2(0ll)llz(0ll - 2<4t, yfiWïT.
It is easily seen that if« > 0 is the maximal solution ofu' = co(r, u), limtU)u(t) = 0,
then u2 is the maximal solution of

W = g(t, w),     lim w(t) = 0,
tib

where g(t, w) = 2co(f, \fw~yjw, w > 0. Therefore from Theorem 1 we have v <
0 in [a, b [, i.e. x = y.   Q.ED.

Corollary 1.   Let f, co be as in Theorem 4. If at least one of the fol-
lowing conditions:

(i)*   \(f(t,x)-f(t,y),x-y)_\<u(t, ||x-^||)||x-7ll;or
0)**  \\f(t, x) -f(t, y)\\ < co(r, ||x - y\\);

holds, and if u' = -co(f, u), limftft u(t) = 0 has « = 0 as maximal solution, then
for every x„EX there is at most one weak solution of x' = /(/, x), lim/t/,x(/)
= x„ which is bounded on bounded sets.

Proof.  The conclusion of the theorem for hypothesis (i)* is a direct con-
sequence of Theorem 4 since (i)* implies

(/('. x) - f(t, y),x-y)_> -co(i, ||x - >>||)||x - y\\,

while (i)** is a special case of (i)* since | (x, y)_\ < ||x|| \\y\\.   Q.ED.
The interest of the following corollary lies in its providing a possible choice

for the comparison term co in the two preceding results:  the co of Corollary 1
can be decreasing in the second variable, while the co of Theorem 4 can be in-
creasing in the second variable.

Corollary 2.  Let I ç R and let co: [a, b [ x I —» R be continuous with
co(r, • ) increasing for every t.   Then the terminal value problem

u' = co(f, «),     lim u(t) = M«,,
t\b

(!) For every t, s there is h e X* such that ||ft|| = 1 and ft(z(f) - z(s)) = llz(f) - r(s)||.
Therefore from the mean value theorem applied to A » 2 we have ||z(r) — z(s)|| = l/i(z(f)) —
/i(z(i))| < If - slsupçlfci/tt, x(t)) - h(f(t¡, *(£))! < I* - *lsuptl|/-(Ç. *({)) - /■«, x«))ll.
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has at most one solution for every uM E R.

Proof.  Since (cj(f, u) - u(t, v))(u - v) > 0 and the inner product of R
coincides with the ordinary product, we have only to apply Theorem 4 with / =
w and with the new co = 0.   Q.ED.

4. Applications to the existence of solutions of terminal value problems
for ordinary differential equations. The aim of this section is to deduce from
Theorem 1 some existence theorems for terminal value problems. We are interested
also in showing that the set of solutions is connected. To this aim we shall define
the analogue for terminal values of the well-known Tonnelli approximants for the
initial value problem.

Theorem 5. Let f: [a, +°°[ xR"^R" and w: [a, +°°[ xR+ —>-Rbe
continuous such that

(fit, x)\x) > uit, IMDIMI      (all t, x).

If for every e > 0 there is he E L\QC([a, +«[) such that ^°ehe < +°° and

\\f(t,x)\\<he(t)     (t>a;\\x\\<e),

and if for every u„ E R+ there is a maximal solution in [a, +°°[ of

u' = w(f, u),      lim u(t) = ux,
ftoo

then for every x„E X there is a solution on [a, +°°[ of the terminal value prob-
lem

x'=f(t,x),      \imx(f) = xai,
ft«"

and the set of solutions is connected and compact for the topology of uniform
convergence on [a, +°°[.

Proof. We shall look at [a, + °°] as a compact topological space.
Let X be the Banach space of all continuous functions [a, + °°] —♦• R"
with the sup norm || • IL. Define the operators T, Tm: X —* X, m E Z+, by

Tx(t) = x„-f~f(s,x(s))ds,

x„    for f > a + m,

Ja + m ra + m
í+,/m/(S'Jf(S))CÍS+J     4.      4.1,       AS.*(Ï))*t+l/m J a + m + l/m

for f < a + m.

The integral /"/(s, x(s)) ds is convergent, and hence T is well defined, as it fol-

Tmxit) =
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lows by considering h^x^^.  Let e = 1 + supfl<f< + 0O u(t) where u is the maxi-
mal solution on [a, +°°[ of

u' = cj(f, u),      lim u(t) = IIjcJI + 1.
ffoo

Let F be the closed ball in X of center 0 and radius e.  Using he it is easily seen
that Tm(B) is an equicontinuous set, included at +°°. Therefore, by Ascoli's
theorem applied to X, Tm(B) is a relatively compact set in X for all 777.  Obviously
Tm is continuous and hence Tm\B is a compact operator F —* X for all m.  Us-
ing he it is easily seen that limm Tm = T uniformly in F.  Therefore also T\B is
a compact operator B —*■ X.  Obviously the solutions jc of the terminal value
problem

x' = f(t, x),      lim x(t) = x„,
(1) fi-

are characterized by the condition jc = Tx, i.e. the set of solutions of (1) coin-
cides with the set F(T) of fixed points of T. If jc G F(T), then by

J-||jc(f)ll2 = 2(jc'(0Ijc(0) = 2(/(f, x)\x)>2(4t, IWOIDIWOII

and by the fact u2 is the maximal solution in [a, +°°[ of the terminal value
problem

W = git, w),      lim w(t) = (\\xj\ + l)2,
ft 00

with g(t, w) = 2w(f, y/wjs/w (u > 0 in view of the domain of co) it follows from
Theorem l(ii) applied to ||x( • )||2, u2 and g that

(2) IWOII < u(t)      (a<t< +00).

Therefore F(T) is contained in the interior of F.  Considering the intervals
[a + m -1/m, a + m], [a + m - 2/m, a + m - 1/m], etc., from the definition
of Tm it is easily seen that I' - Tm, I the identity map of X, is a bijection X —►
X.  This implies that (/ - Fm)|s is a homeomorphism into F —► X (since I -Tm
is a proper map, hence closed) and that there is jcm = Fjcm for every m.   Let

<om(f, x) = co(f + lIm, jc)   and   um(t) = u(t + 1/m).

If x' = o)(f, x), then xm(t) = x{t + 1/m) is a solution of jc^ = um{t, xm), and if
x'm = wm(f, xm) then jc(f) = xm{t - 1/ttt) is a solution of x' = co(f, x). There-
fore um is the maximal solution of

um " "m^- um)'        lim "m(0 = ll*-H + *•
ft 00

Since limit„«(0 = Hx^M + 1, there is f0 > a such that
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llxJK «,„(/)      (t>t0;mEZ+).
Let m0 be so large that a + m0> t0. Repeating the argument used to establish
(2), from

J- ||xm(0ll2 > 2com(f, l|xm(/)||)||xm(r)ll      (a < t < m + a),

and
||xm(a + m)|| < um(a + m)      (m > m0),

we can deduce from Theorem 1(h), applied to ||xm( • )||2, um and gm(t, x) =
2com(r, \/x~)^/x in [a, a + m [:

\\xm(t)\\ < um(t) = u(t + Urn)      (a<t<a+m;m> m0).

Thus xmEB for all m.  Then F(T) =£ 0 as it follows easily from the uniform
convergence of (Tm)m to T in B and the compactness of T(B). Moreover, since
F(T) n dB = 0 as seen above, Theorem 1.1 of Vidossich [9] applied to / - T
and I - Tm shows that F(T) is a compact connected subset of X.    Q.ED.

Repeating the argument in the proof of Corollary 1 to Theorem 4 we have
the following result.

Corollary 1. Let f: [a, +°°[ x R" —> R" and co: [a, +°°[ x R+ —*
R+ be continuous such that

\(f(t, x)x)\ < co(r, 11x11)11x11   or   \\f(t, x)\\ < co(r, ||x||).

If for every e > 0 there is h£ G L¡oc([a, +°°[) such that ¡¿°°he < +°°and

||/(i,x)||<«e(0 (f >«; ||*|| <e),

and if for every u„ E R+ there is a maximal solution in [a, +<*>[ of

W = ~co(t, u),      lim u(t) = M»,,
ftoo

then for every x„ E R" there is a solution on [a, +<*>[ of the terminal value prob-
lem

x' = f(t, x),     lim x(t) = x«,,
fto°

and the set of solutions is connected and compact for the topology of uniform
convergence on [a, +°°[.

If co(r, • ) is increasing, then there are cases in which we do not need the
hypothesis concerning heEL1([a, +°°[), as shown in the proof of the following re-
sult. The following corollary completes Theorem 5 of Brauer [1] since it shows
the connectedness of the set of solutions.
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Corollary 2.  Let f: [a, +°°[ x R" —» R" and cj: [a, +°°[ x R+ —*■ R+
be continuous such that \\f(t, x)\\ < co(f, ||jc||). //co(f, • ) is increasing for all t
and if the Cauchy problem

u' = u>(t,u),     u(t0) = u0,

has a solution which is bounded in [t0,+°°[ for all f0 and uQ, then for every
*„ G R" there is a„ E [a, +°°[ such that the terminal value problem

x' = f(t, x),     lim x(t) = x„,
ftoo

has solutions in [«„, +°°[ and their set is compact and connected for the topology
of uniform convergence on [ax, +<»[.

Proof. Fix x„ G R" and e > 2||jcJ|. Let r: R" -> {jc G R"| ||jc|| < e}
be the orthogonal projection and define fe: [a, +°°[ x R" —► R", ge: [a, +<*>[
x R —»• R by

feit, x) = f(t, r(x)),

co(t, e)   if u > e,
ge(t, u) =    cj(f, u)   if 0 < u < e,

w(f, 0)   if u < 0.

Obviously fe, g£ are continuous, ge(t, • ) is increasing,

(1) ll/e(f. x)|l <ge(t, \\x\\),      \ge(t, u)\ < uit, \u\),

and fe(t, x) = f(t, jc) for ||jc|| < e. By the hypotheses of the corollary there
exists a bounded solution ue of the Cauchy problem u'e = co(f, Me), ue(a) = e.
Since u£> e and «e is increasing (by u£ > 0), since fa co(s, u£(s)) ds = u£(t) - e
and since oj(f, ■ ) is increasing, it is easily seen that the function h£ = w( •, ue( • ))
has the following properties:

J+ oo

||/(i,x)||<A,(/)   and   ||/e(f,x)||<Ae(f)   (all f ; ||x|| < e),

||ge(f,u)||</7e(f) (aür;|u|<e).

Let ae E [a, +«>[ be such that fîh£ < e/2. By (1), Theorem 5 of Brauer [1]
ensures that each terminal value problem

(2) x' = f(t, x),     lim x(t) = x«,,
ffoo

(3) y'=fe(t,y),    Um y(t) = x„,
ftoo
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(4) * = -ge(t,u),     Hm m(í) = llXooll,
ftoo

has some solution in [ae, +°°[. We claim that the solution x, y, u satisfy respec-
tively

(5) llx(-)H<e,      ILvOIKe.      l«(-)l<e,

in [ae, +oo[. We prove only the first inequality in (5), since the others have sim-
ilar proof.  Let

a = inî{t E [a, +°°[ | ||x( • )||< e in [/, +oo[}.

If a > ae, then by continuity we have ||x(a)|| = e and hence

e = ||x(a)|| =||Xoo - f+0°/(s, x(s))c/s||< Hxooll + f+~ ||/(s, x(s))\\ds
Ja Ja

< \\xj\ + f+°° he(s) ds     (by ||x(s)|| < e for s > a)
J Of

<e.

Therefore a = ae, and the first inequality in (5) does hold. From (5) it follows:
(i) the set of solutions of (2) in [a£, +°°[ coincides with the set of solu-

tions of (3) in [ae, +°°[; and
(ii) there exists a maximal solution of (4) in [ae, +°°[.

While (i) is clear from the definition of fe, (ii) follows from the corollary to
Theorem 1 of Vidossich [11]. Now we apply the above Corollary 1 of Theorem
5 to fe, ge (note that u > 0 since u is decreasing by u' = -ge(t, u) < 0, and
hence we may restrict ge to [ae, +°°[ x R+ in order to apply Corollary 1) and
we have that the set of solutions of (3), hence of (2), is connected and compact
for the topology of uniform convergence on [ae, +°°[.   Q.ED.

5.  Final remarks. (1) The argument used in the proof of Corollary 2 of
Theorem 5 shows how to eliminate the hypotheses concerning uniqueness of
Cauchy problem from Theorem 1 of Hallam [3] when co(r, • ) is increasing.

(2) The results of §4 can also be proved in a Banach space under a com-
pactness assumption on /; but this was avoided for simplicity. We only note that
in this way we can complete the existence theorem of Ladas and Lakshmikantham
[6] by showing the connectedness of the set of solutions.
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