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Abstract

We present a new method for the numerical solution
of the Hamilton Jacobi Bellman PDE that arises in an
infinite time optimal control problem. The method can
be of higher order to reduce ”the curse of dimensional-
ity”. It proceeds in two stages. First the HJB PDE is
solved in a neighborhod of the origin using the power
series method of Al’brecht. From a boundary point of
this neighborhood, an extremal trajectory is computed
backward in time using the Pontryagin Maximum Prin-
ciple. Then ordinary differential equations are devel-
oped for the higher partial derivatives of the solution
along the extremal. These are solved yielding a power
series for the approximate solution in a neighborhood
of the extremal. This is repeated for other extremals
and these approximate solutions are fitted together by
transferring them to a rectangular grid using splines.

Key words: Infinite horizon optimal control, Numer-
ical soluton of Hamilton Jacobi Bellman PDE.

1 Introduction

The Hamilton Jacobi Bellman (HJB) Partial Differ-
ential Equation and related equations such as Hamil-
ton Jacobi Isaacs (HJI) equation arise in many control
problems. Perhaps the simplest is the infinite horizon
optimal control problem of minimizing the cost

∫ ∞

t
l(x, u) dt (1.1)

subject to the dynamics

ẋ = f(x, u) (1.2)

and initial condition

x(t) = x0. (1.3)

The state vector x is an n dimensional column vec-
tor, the control u is an m dimensional column vector
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and the dynamics f(x, u) and Lagrangian l(x, u) are
assumed to be sufficiently smooth.

If the minimum exists and is a smooth function π(x0)
of the initial condition then it satisfies the HJB PDE

min
u

{
∂π

∂x
(x)f(x, u) + l(x, u)

}
= 0 (1.4)

and the optimal control κ(x) satisfies

κ(x) = arg min
u

{
∂π

∂x
(x)f(x, u) + l(x, u)

}
= 0 (1.5)

These are conveniently expressed in terms of the Hamil-
tonian

H(p, x, u) = pf(x, u) + l(x, u) (1.6)

where the argument p is an n dimensional row vector.
The HJB PDE becomes

0 = min
u

H(
∂π

∂x
(x), x, u) (1.7)

κ(x) = arg min
u

H(
∂π

∂x
(x), x, u) (1.8)

If the minimum exists but is not a smooth function
then the HJB PDE must be interpreted in the viscosity
sense, see [2], [3] and [4] for details.

If the Hamiltonian H(p, x, u) is strictly convex in u for
all p, x then (1.4, 1.5) become

∂π

∂x
(x)f(x,κ(x)) + l(x,κ(x)) = 0 (1.9)

and

∂π

∂x
(x)

∂f

∂u
(x,κ(x)) +

∂l

∂u
(x,κ(x)) = 0 (1.10)

In the nonlinear case even if a smooth solution exists,
the solution of the HJB PDE is quite difficult. A stan-
dard approach is to discretize the optimal control prob-
lem (1.1, 1.2) in space and time and solve the corre-
sponding nonlinear program, see [10] and the appendix
by Falcone in [2]. Other methods for solving the HJB
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PDE are similar to those for conservation laws [12] and
marching methods [14]. All these methods suffer from
the ”curse of dimensionality”, the computation grows
exponentially in the dimensions n, m of the state and
control x, u. There are problems of academic interest
where n ≤ 2 and m = 1, but in most real world prob-
lems n is at least 6 and m is at least 3. Since the num-
ber of dimensions is so substantial, one needs a method
that uses only a few discretizations in each dimension, a
higher order method. But the solutions of HJB PDEs
have discontinuities and hence higher order methods
may fail. We propose a higher order approach that lo-
cally approximates the solution by a smooth solution
and then pieces these solutions together in appropri-
ate fashion by computing in characteristic directions
to mitigate the effect of discontinuities. The local re-
gions are chosen to be large so as to mitigate the curse
of dimensionality.

2 Al’brecht’s Method: Power Series Expansion
Around Zero

Al’brecht [1] solved the HJB PDE locally around zero
by expanding the problem in a power series,

f(x, u) = Ax + Bu + f [2](x, u)
+f [3](x, u) + . . . (2.11)

l(x, u) =
1
2

(x′Qx + 2x′Su + u′Ru)

+l[3](x, u) + l[4](x, u) + . . . (2.12)

π(x) =
1
2
x′Px + π[3](x)

+π[4](x) + . . . (2.13)
κ(x) = Kx + κ[2](x) + κ[3](x) + . . . (2.14)

where ·[d] denotes a homogeneous polynomial of degree
d. He plugged these into the HJB PDE (1.9, 1.10) and
equated terms of like degree to obtain a sequence of
algebraic equations for the unknowns.

The first level is the pair of equations obtained by col-
lecting the quadratic terms of (1.9) and the linear terms
of (1.10). We denote the dth level as the pair of equa-
tions garnered from the [d + 1]th degree terms of (1.9)
and the dth degree terms of (1.10).

Al’brecht’s Algebraic Equations

First Level:

0 = A′P + PA + Q −
(PB + S)R−1(PB + S)′ (2.15)

K = −R−1(PB + S)′ (2.16)

The quadratic terms of the HJB PDE reduce to the

familiar Riccati equation (2.15) and the linear optimal
feedback (2.16).

We assume A, B is stabilizable and Q, A is detectable
then the Riccati equation has a unique positive definite
solution P and the linear feedback locally exponentially
stabilizes the closed loop system. Moreover the opti-
mal quadratic cost is a local Lyapunov function for the
closed loop system.

The dth Level

Suppose we have solved through the d− 1th level. It is
convenient to incorporate this solution into the dynam-
ics and the cost. Let κk](x) = Kx + κ[2](x) + κ[3](x) +
. . . + κ[k](x) and define

f̄(x, u) = f(x,κd−1](x) + u) (2.17)
l̄(x, u) = l(x,κd−1](x) + u) (2.18)

These have power series expansions through terms of
degree d and d + 1 of the form

f̄(x, u) = (A + BK)x + Bu + f̄ [2](x, u) + . . . f̄ [d](x, u) + . . .

l̄(x, u) =
1
2

(x′Qx + 2x′SKx + x′K ′RKx)

+x′Su + u′Ru +
l̄[3](x, u) + . . . + l̄[d+1](x, u) + . . .

We plug these into the HJB PDE (1.9, 1.10) and find
that they are satisfied through the d−1 level and don’t
involve u. Since u = κ[d](x) + . . ., the d level equations
are

0 =
∂π[d+1]

∂x
(x)(A + BK)x (2.19)

+
d−1∑

i=2

∂π[d+2−i]

∂x
(x)f̄ [i](x, 0) + x′PBu

+l̄[d+1](x, 0) + x′Su +
1
2
x′K ′Ru

and

0 =
∂π[d+1]

∂x
(x)B +

d∑

i=2

∂π[d+2−i]

∂x

∂f̄ [i]

∂u
(x, 0)

+
∂ l̄[d+1]

∂u
(x, 0) + u′R (2.20)

Because of (2.16), u drops out of the first equation
which becomes

0 =
∂π[d+1]

∂x
(x)(A + BK)x (2.21)

+
d−1∑

i=2

∂π[d+2−i]

∂x
(x)f̄ [i](x, 0)

+l̄[d+1](x, 0).
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After this has been solved for π[d+1](x), we can solve
the second for κ[d](x),

κ[d](x) = −R−1

(
∂π[d+1]

∂x
(x)B (2.22)

+
d∑

i=2

∂π[d+2−i]

∂x

∂f̄ [i]

∂u
(x, 0) +

∂ l̄[d+1]

∂u
(x, 0)

)

These equations admit a unique solution up to the
smoothness of f and l since A + BK has all its eigen-
values in the left half plane. If f and l are real analytic,
the power series converges to the solution of the HJB
PDE locally around x = 0 [11], [9]. The higher degree
equations are linear, of Sylvester type, and hence are
easily solvable. There is a MATLAB package to solve
them to arbitrary degree [8].

The weakness of the Al’brecht approach is that the
power series frequently does not converge quickly on a
large neighborhood of 0. Increasing the degree d does
not necessarily lead to a larger region where the power
series accurately approximates the true solution. This
is a familiar problem with polynomial approximations
to functions based on Taylor series.

We take an alternative approach. Recall that the true
optimal cost is a Lyapunov function for the dynamics
under the true optimal feedback. Following Al’brecht
we have an approximation of these. We compute the
time derivative of the approximate cost following the
true dynamics using the approximate feedback to de-
termine a sublevel set of the approximate cost on which
it is an acceptable Lyapunov function and the approx-
imate feedback is stabilizing. We emphasize the stabi-
lizing property of the control law rather than its opti-
mality because usually optimality is only a tool to find
a stabilizing feedback. Typically the goal is to find
a control law to stabilize the system and the optimal
control problem is formulated as a way of finding one.

Let πd+1] and κd] denote the approximate cost and
feedback to degrees d+1 and d respectively. We assume
l(x, u) ≥ 0. We find the largest sublevel set

πd+1](x) ≤ c (2.23)

such that

∂πd+1]

∂x
(x)f(x,κd](x)) ≤ −(1 − ε)l(x,κ[d](x)) (2.24)

The parameter ε controls the rate of exponential sta-
bility of the closed loop system.

3 Power Series Expansions Along the Optimal
Trajectories

We specialize to problems with dynamics that is affine
in u and with a Lagrangian that is quadratic in u,

f(x, u) = g0(x) + g1(x)u (3.25)
l(x, u) = l0(x) + l1(x)u + u′l2(x)u (3.26)

where l2(x) is an invertible m × m matrix for all x.

Assume that we have solved the HJB PDE locally
around 0 and have choosen a sublevel set of value c
subject to the condition (2.23, 2.24). We generate an
optimal trajectory emanating from the level set and
construct a moving power series solution along the tra-
jectory.

From a point x0 on the level set πd+1](x) = c, we nu-
merically compute backward in time the optimal tra-
jectory ξ(t) that satisfies ξ(0) = x0. This trajectory
and its corresponding optimal control µ(t) and costate
p(t) satisfy the Pontryagin Maximum Principle

ξ̇ =
∂H

∂p
(p, ξ, µ) (3.27)

ṗ = −∂H

∂x
(p, ξ, µ) (3.28)

µ = arg min
u

H(p, ξ, u) (3.29)

with the terminal conditions

ξ(0) = x0 (3.30)

p(0) =
∂π

∂x
(x0)

Since π is not known exactly we replace the latter by

p(0) =
∂πd+1]

∂x
(x0) (3.31)

We introduce some notation. Let α = (α1, . . . ,αn) be
a multi-index of nonnegative integers and |α| =

∑
i αi.

Let β = (β1, . . . ,βn). We say β ≤ α if βi ≤ αi, i =
1, . . . , n and β < α if β ≤ α and for at least one i,
βi < αi. Let 0 = (0, . . . , 0).

Define the differential operator

Dα = (
∂

∂x1
)α1 . . . (

∂

∂xn
)αn ,

the multifactorial

α! = α1! . . .αn!,

the monomial
xα = xα1

1 . . . xαn
n ,

and the coefficient

C(α,β) =
(

α1

β1

)
. . .

(
αn

βn

)
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where β ≤ α.

We derive a system of ordinary differential equations
for

Dαπ(ξ(t)), Dακ(ξ(t))

for t ≤ 0. We already know that if α is the ith unit
vector

D0π(ξ(t)) = π(ξ(t)) = π(x0) +
∫ 0

t
l(ξ(τ), µ(τ)) dτ

D0κ(ξ(t)) = µ(t)

Dαπ(ξ(t)) =
∂π

∂xi
(ξ(t)) = p(t).

Assume that we have derived ODEs for Dβπ(ξ(t)) and
algebraic equations for Dβκ(ξ(t)) for β < α. We apply
Dα to (1.9) to obtain

0 =
∂

∂x
(Dαπ(x))f(x,κ(x)) (3.32)

+
∑

0<β≤α

C(α,β)(Dα−β ∂π

∂x
(x))Dβf(x,κ(x))

+Dαl(x,κ(x)).

This yields an ODE for Dαπ(ξ(t)) because

d

dt
Dαπ(ξ(t)) =

(
∂

∂x
Dαπ(ξ(t))

)
f(ξ(t),κ(ξ(t)))

(3.33)

We apply Dα to (1.10) to obtain

0 =
∑

0≤β≤α

C(α,β)(Dα−β ∂π

∂x
(x))Dβg1(x)

+Dαl1(x) + (Dακ(x))′l2(x)
∑

0<β≤α

C(α,β)(Dα−βκ(x))′Dβl2(x) (3.34)

Notice that this equation (3.34) only contains Dακ(x)
in one term multiplied by an invetible matrix so we
can express Dακ(x) as a function of Dβκ(x) for β < α
and Dγπ(x). Notice also that the right side of the
ODE (3.32) depends on terms of the form Dγπ(ξ(t))
for γ > α so the system is not triangular, we cannot
solve term by term. The right side also depends on
terms containing Dβκ(ξ(t)) for β ≤ α but these cause
no problem because of (3.34).

We fix a level d and solve the above for all |α| ≤ d
assuming that Dαπ(ξ(t)) = 0 for |α| > d to close the
system of equations. The result is a system of cou-
pled ODEs which cannot be solved term by term as
in Al’brecht’s method. They are solved backward in

Figure 1: Solutions around the characteristic curves gen-
erated by the optimal trajectories from the level
set πd+1](x) ≤ c

time from t = 0 with final conditions coming from the
Al’brecht solution,

Dαπ(ξ(0)) = Dαπd+1](x0) (3.35)
Dακ(ξ(0)) = Dακd](x0) (3.36)

Although we cannot solve these ODE term by term as
with Al’brecht method, they are explicit equations for
the derivatives as opposed to the implicit linear equa-
tions (2.21).

In this way we obtain the approximations

π(x) ≈
∑

|α|≤d

1
α!

Dαπ(ξ(t))(x − ξ(t))α (3.37)

κ(x) ≈
∑

|α|≤d

1
α!

Dακ(ξ(t))(x − ξ(t))α (3.38)

where x is close to ξ(t). If fi(ξ(τ),κ(ξ(τ))) &= 0, τ ≤ 0
then we can choose t such that ξi(t) = xi.

The process is repeated at other points on the level set
πd+1](x) = c and the solutions fitted together to obtain
the desired approximation to π and κ. See Fig. 1.

The boundaries between adjacent approximations are
found by equating the values of π because the lower
approximation is the optimal one. There is the prob-
lem of how to store the approximate solutions and their
regions of validity. We propose transferring the approx-
imate solutions to a rectangular grid of x space using
splines of degree d similar to the method of Prager [13].
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In most applications d = 1 or d = 3 so one would use
piecewise linear approximations or cubic splines. The
data would be transferred to the grid using a variation
on the fast marching methods of Sethian [14].

4 Conclusion

We have sketched a numerical procedure for solving in-
finite horizon optimal control problems. The MATLAB
code exists to solve the first stage of the procedure [8]
and we are developing code for the second stage.
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