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Direct Geometrico-Static
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This paper studies the direct geometrico-static problem (DGP) of underconstrained
cable-driven parallel robots (CDPRs) with three cables. The task consists in determining
the end-effector pose and the cable tensile forces when the cable lengths are assigned.
The problem is challenging, because kinematics and statics are coupled, and they must
be tackled simultaneously. An effective elimination procedure is proposed and a least-
degree univariate polynomial free of spurious factors is obtained in the ideal governing
the problem. This is proven to admit 156 solutions in the complex field. Several
approaches for the efficient computation of the complete solution set are presented,
including an eigenproblem formulation and homotopy continuation.
[DOI: 10.1115/1.4024293]

1 Introduction

CDPRs employ cables in place of rigid-body extensible legs in
order to control the pose of the end-effector. CDPRs strengthen
classic advantages characterizing closed-chain architectures ver-
sus serial ones, like reduced moving masses and inertias, a larger
payload to robot weight ratio, high dynamic performances, etc.,
while providing peculiar advantages, such as a larger workspace,
reduced manufacturing and maintenance costs, ease of assembly
and disassembly, high transportability, and superior modularity
and reconfigurability.

It is known that a CDPR intended to control the total number f
of degrees of freedom (dofs) of the end-effector, i.e., a fully con-
strained robot, should have at least fþ 1 cables [1]. Indeed, since
cables may exert only tensile axial forces, a redundancy of control
actions is necessary in order to guarantee that no cable becomes
slack [2–5]. However, the number of cables may be reduced if the
end-effector is linked to a constraining mechanism [6,7] or it is
submitted to an external force of convenient magnitude and direc-
tion that steadily acts upon it. One example of the latter case is
provided by crane-type manipulators [8,9], in which gravity plays
the role of an additional virtual cable. A rich literature exists for
fully constrained robots, whose features have been studied under
several viewpoints, including workspace analysis [10–17], stiff-
ness [18,19], cable interference [20,21], optimal design [22,23],
etc. Conversely, underconstrained CDPRs have received little
attention in the literature [24–30]. They are equipped with a num-
ber of cables n smaller than f, thus allowing only n freedoms of
the end-effector to be controlled. The use of CDPRs with a limited
number of cables is justified in several applications (such as, for
instance, measurement, rescue, service or rehabilitation operations
[31–35]), in which the task to be performed requires a limited
number of controlled freedoms or a limitation of dexterity is ac-
ceptable in order to decrease complexity, cost, set-up time, likeli-
hood of cable interference, etc. Furthermore, a fully constrained
CDPR may operate, in appreciable parts of its geometric

workspace, as an underconstrained robot, namely, when a full
restraint of the end-effector may not be achieved because it would
require a negative tension in one or more cables [36–38]. The above
considerations motivate a careful study of underconstrained CDPRs.

A major challenge in the kinetostatic analysis of undercon-
strained CDPRs consists in the intrinsic coupling between kine-
matics and statics. Indeed, when a fully constrained CDPR
operates in the portion of its workspace in which the required set
of output wrenches is guaranteed to be applicable with purely ten-
sile cable forces, the pose of the end-effector is determined, in a
purely geometrical way, by assigning cable lengths. Conversely,
for an underconstrained CDPR, when the actuators are locked and
the cable lengths are assigned, the end-effector is still movable, so
that the actual configuration is determined by the applied forces.
Accordingly, loop-closure and mechanical-equilibrium equations
must be simultaneously solved and displacement analyses
become, more properly speaking, geometrico-static problems
[36,37]. These are significantly more complex than displacement
analyses of rigid-link fully constrained manipulators and their so-
lution is a major pending challenge in current kinematics [39].

By taking advantage of the methodology presented in Refs.
[36,37], this paper studies the DGP of the 3-3 CDPR, namely, a
robot in which a fixed base and a mobile platform are connected
to each other by 3 cables (the inverse problem of the 3-3 CDPR is
tackled in Ref. [40], whereas the CDPRs suspended by 4 and 5
cables are studied in Refs. [41–43]). The notation 3-3 denotes the
number of distinct cable exit points on the base and distinct cable
anchor points on the platform. Cables are treated as inextensible
and massless, and the platform is acted upon by a constant force,
e.g., gravity. The aim of the DGP is to determine the platform
pose and the cable tensile forces, when the cable lengths are
assigned. This problem is known to be especially difficult [39]
and, as yet, only limited results have been presented. Jiang and
Kumar [29] reported that the complexity of the involved equations
overwhelmed their computer-algebra software. In this paper, suc-
cessful problem-solving procedures are presented. The following
issues, which are classic challenges in robot analysis [44], are spe-
cifically dealt with:

(1) determination of the number of solutions in the (zero-
dimensional) algebraic variety defined by the problem poly-
nomial equations;

(2) reduction of the problem to a single equation in one
unknown (constructive proof of the previous issue);

1A preliminary version of this paper was presented at the 2011 IEEE International
Conference on Robotics and Automation, Shanghai, China, 2011.
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(3) numerical computation of the solution set;
(4) identification of a specific geometry providing the maximal

number of distinct real-valued solutions.

With respect to the preliminary conference presentation in Ref.
[45], the current version of the paper presents the following
enhancements: many algebraic-geometry concepts (concerning
Groebner-basis properties, elimination ideals, dialytic elimination,
etc.) are presented with more detail, in order to ease reading by a
nonspecialized audience; the numerical computation of the solu-
tion set is improved, by enhancing the homotopy-continuation
algorithms, and by discussing alternative eigenvalue techniques;
the problem of the identification of a geometry providing the max-
imal number of distinct real-valued solutions is addressed. The pa-
per is structured as follows. Section 2 describes the geometrico-
static model of the robot. Section 3 presents the problem-solving
procedures. Section 4 deals with equilibrium configurations in
which some cables may be slack. Section 5 summarizes the main
achievements of the paper.

In all numerical examples presented in the text, measurements
are expressed in SI units.

2 Geometrico-Static Model

A mobile platform is connected to a fixed base by 3 cables (Fig.
1). The ith cable (i¼ 1,…, 3) exits from the fixed base at point Ai,
and it is connected to the mobile platform at point Bi. The cable
length is qi, with qi > 0. Oxyz is a Cartesian coordinate frame that
is fixed to the base, with i, j and k being unit vectors along the
coordinate axes. Gx0y0z0 is a Cartesian frame that is attached to the
end-effector. Without loss of generality, O is chosen to coincide
with A1. The platform pose is described by X ¼ ½xT ; UT �T , where
x ¼ ½x; y; z�T is the position vector of G in the fixed frame, and U
is the array grouping the variables parameterizing the platform
orientation with respect to Oxyz. If Rodrigues parameters [46] are
adopted, i.e., U ¼ ½e1; e2; e3�T , the rotation matrix R between the
mobile and the fixed frame is given by

R Uð Þ ¼ I3 þ 2
~Uþ ~U ~U

1þ e2
1 þ e2

2 þ e2
3

(1)

where ~U denotes the skew-symmetric matrix that is associated
with the operator U�. For the sake of brevity, the following sym-
bols are also introduced:

ai ¼ Ai � O; ri ¼ Bi � G ¼ R Uð Þb0i;
si ¼ Bi � Ai ¼ xþ ri � ai

where b0i is the position vector of Bi in Gx0y0z0. Vector components
along the coordinate axes are denoted by right subscripts reporting
the axis names.

The platform is acted upon by a constant force, e.g., gravity,
which is assumed to be oriented as k and applied at G, without
loss of generality. This force may be described by a zero-pitch
wrench QLe, where Q is the intensity of the force and Le is the
normalized Plücker vector of the force line of action. The normal-
ized Plücker vector of the line associated with the ith cable is
Li=qi, where, in axis coordinates, Li ¼ � si; pi � si½ � and pi is any
vector from an arbitrarily chosen reference point P (called for brev-
ity moment pole) to the cable line. Accordingly, the wrench exerted
by the ith cable on the platform is si=qið ÞLi, with si being a posi-
tive scalar representing the intensity of the cable tensile force.

When all cables of the robot are in tension, the set C of geomet-
rical constraints imposed on the platform comprises three relations
in X, i.e.

jjsijj2 ¼ jjxþ R Uð Þb0i � aijj2 ¼ q2
i ; i ¼ 1;…; 3 (2)

By subtracting the first relation from both the second and the
third one, and by clearing the denominator 1þ e2

1 þ e2
2 þ e2

3, the
following equations are obtained:

q1 :¼ H200x2 þ H020y2 þ H002z2 þ H100x

þ H010yþ H001zþ H000 ¼ 0 (3a)

q2 :¼ I100xþ I010yþ I001zþ I000 ¼ 0 (3b)

q3 :¼ K100xþ K010yþ K001zþ K000 ¼ 0 (3c)

where all coefficients Hkmn, Ikmn, and Kkmn are quadratic functions
of e1, e2, and e3. q1, q2, and q3 have degree 4, 3, and 3 in X,
respectively.

As only three geometrical restraints are enforced, the platform
preserves three dofs, with its pose being determined by static equi-
librium. This may be written as [36,37]

L1 L2 L3 Le½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
M

s1=q1ð Þ
s2=q2ð Þ
s3=q3ð Þ

Q

2
664

3
775 ¼ 0 (4)

with si � 0, i¼ 1,…, 3. After clearing denominators, the polyno-
mials involved in Eq. (4) have degree 3 in X, degree 1 in s and
total degree 4 in Y, where s ¼ s1; s2; s3½ �T and Y ¼ XT ; sT

� �T
.

When solving the DGP, cable lengths are assigned. Accord-
ingly, Eqs. (3) and (4) form a system S of nine polynomial rela-
tions comprising nine variables, i.e., X and s. These relations are
coupled, and they must be solved simultaneously. By counting
solutions at infinity, the number of isolated roots (including multi-
plicities) is equal to the minimal multihomogeneous Bezout num-
ber of S [47,48]. This number is usually an indicator of the
complexity of the problem to be solved. By searching all possible
multihomogenizations of S [49], the minimal Bezout number
emerges by partitioning Y as fx; y; zg; fe1; e2; e3g; fs1; s2; s3g½ �,
and it is equal to 4800. This number is very high.

Following [36,37], the problem may be simplified by eliminat-
ing cable tensions from the set of unknowns. Indeed, Eq. (4) holds
only if

rankðMÞ � 3 (5)

namely, if L1;L2;L3, and Le are linearly dependent. This is a
purely geometrical condition, since M is a 6� 4 matrix that onlyFig. 1 Model of a cable-driven parallel robot with 3 cables
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depends on the platform pose. By setting all 4� 4 minors of M
equal to zero, a set of 15 scalar relations that do not contain cable
tensions may be obtained.2

If O is chosen as the moment pole, Li and Le may be respec-
tively expressed, in axis coordinates, as � si; ai � si½ � and
k; x� k½ �, so that M becomes

MðOÞ ¼ �s1 �s2 �s3 k

0 �a2 � s2 �a3 � s3 x� k

� �
(6)

The equations3

p1 :¼ det M1236ðOÞ ¼ 0 (7a)

p2 :¼ det M1235ðOÞ ¼ 0 (7b)

p3 :¼ det M1234ðOÞ ¼ 0 (7c)

comprise the lowest-degree polynomials in X among all minors of
M(O). They are of degree 4 in U and degree 2 in x, thus being of total
degree 6 in X. All other minors have degree ranging from 7 to 9 in X.

An additional sextic relation in X emerges by setting
det Mj456ðOÞ ¼ 0 for j¼ 1,…, 3, so that

s1 det M456;234ðOÞ
� �

¼ 0 (8)

and thus, since s1 6¼ 0 when q1 > 0

p4 :¼ det M456;234ðOÞ ¼ 0 (9)

Equation (9) is, indeed, of degree 4 in U, degree 2 in x and, thus,
total degree 6 in X. Additional linearly independent sextic equa-
tions in X may be derived as follows.

Let M be written by choosing a generic point P as the moment
pole, i.e.

MðPÞ ¼ � � � �si � � � k

� � � � Bi � Pð Þ � si � � � G� Pð Þ � k

� �
(10)

When P � Bi and P � Ai, i¼ 1,…, 3, the moment vector in the
ith column vanishes, so that setting det Mj456ðBiÞ ¼ 0 and
det Mj456ðAiÞ ¼ 0 for j¼ 1,…, 3 yields, respectively

si det M456;km4ðBiÞ
� �

¼ 0 (11)

and

si det M456;km4ðAiÞ
� �

¼ 0 (12)

with k;m 2 f1; 2; 3g � fig. Since si 6¼ 0 for any i, the following
equations

p5 :¼ det M456;234ðB1Þ ¼ 0 (13a)

p6 :¼ det M456;134ðB2Þ ¼ 0 (13b)

p7 :¼ det M456;134ðA2Þ ¼ 0 (13c)

p8 :¼ det M456;124ðB3Þ ¼ 0 (13d)

p9 :¼ det M456;124ðA3Þ ¼ 0 (13e)

are accordingly obtained.

Analogously, by defining an additional convenient point G0

such that G� G0 ¼ k, and by setting P � G and P � G0, one also
obtains

p10 :¼ det M456;123ðGÞ ¼ 0 (14a)

p11 :¼ det M456;123ðG0Þ ¼ 0 (14b)

All polynomials pj, j¼ 5,…, 11, have degree 4 in U,
degree 2 in x, and total degree 6 in X. No other linearly in-
dependent sextic in X may be obtained from the minors of
M by varying the moment pole. Polynomials p1,…, p11 (which
contain six variables) are linearly independent, but still depend-
ent in a nonlinear way.

3 Problem-Solving Algorithms

Solving the DGP of the 3-3 CDPR requires solving, simultane-
ously, both the equations emerging from the geometrical con-
straints and those inferred from static equilibrium. The point-to-
point distance relations in Eq. (3) represent the typical constraints
governing the forward kinematics of parallel manipulators
equipped with telescopic legs connected to the base and the plat-
form by ball-and-socket joints. In particular, the DGP of the gen-
eral Gough-Stewart manipulator depends on six equations of this
sort, one of which is equivalent to Eq. (3a) and five more to Eqs.
(3b) and (3c). This problem is known to be very difficult and it
has attracted the interest of researchers for several years [50]. The
DGP of the 3-3 CDPR appears to be an even more complex task,
since, in this case, three equations analogous to Eqs. (3b) and
(3c), namely of degree 3 in X, are replaced by relationships that
are, at least, of degree 6 in X.

In the following, the four challenges mentioned at the end of
the Introduction are taken on.

3.1 Number of Solutions in the Complex Field. Let hJi be
the ideal generated by the set of polynomials J
¼ fq1; q2; q3; p1;…; p11g. q1, q2, and q3 have, respectively, degree
4, 3, and 3 in X, whereas all other generators in J have degree 6 in
X. For a generic choice of the robot geometric parameters, J con-
tains 348 monomials in X. In order to ease numeric computation
via a computer-algebra system, namely, the Groebner Package
provided within the mathematical software Maple, all geometric
parameters are assigned generic rational values. Accordingly,
hJi 	 Q½X�, where Q½X� is the set of all polynomials in X with
coefficients in Q. In the following, all Groebner bases are
assumed to be reduced and they are computed with respect to
graded reverse lexicographic monomial order (grevlex, in brief).
The lexicographic monomial order is particularly suitable to solve
systems of polynomial equations, for it provides polynomial sets
whose variables may be eliminated successively. However, the
Groebner bases that it provides tend to be very large and thus,
even for problems of moderate complexity, they have little chance
to be actually computable. Conversely, the graded reverse lexico-
graphic order produces bases that are endowed with no particular
structure suitable for elimination purposes, but it provides for
more efficient calculations.

In general, a Groebner basis G[J] of hJi with respect to grev-
lex(X), with variables ordered so that z > y > x > e1 > e2 > e3,
may be computed in a fairly expedited way. A key factor for the
efficiency of such a computation is the abundance of generators
available in J, which greatly simplifies and speeds up calculation
(a feature already pointed out in Ref. [51]). For instance, by
exploiting all 14 generators in J, the computation of G[J] for the
exemplifying 3-3 CDPR whose dimensions are reported in Table
2 requires roughly 1.3 min on a PC with a 2.67 GHz Intel Xeon
processor and 4 GB of RAM. If only six generators are used, com-
putation time is 30 times higher and, most important, spurious sol-
utions are introduced in the solution set (Eq. (5) requires all
minors of M to be zero).

2In very special cases, it may happen that Eq. (5) is fulfilled because L1, L2 and
L3 become linearly dependent. In these configurations, equilibrium is not possible if
rank(M)¼ 3, since the external wrench would not belong to the screw subspace
generated by the cable lines. Configurations like these need to be discarded from the
solution set.

3The notation Mhij;klm denotes the block matrix obtained from rows h, i and j, and
columns k, l and m, of M. When all columns of M are used, the corresponding
subscripts are omitted.
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Once G[J] is known, the normal set N[J] of hJi, i.e., the set of
all monomials that are not multiples of any leading monomial in
G[J], may be easily computed. In this case, N[J] is (in vector
format)

N½J� ¼ 1; e1; e2; e3; x; y; z; e
2
1; e1e3;…; xze1e2

� �T
(15)

and it comprises 156 monomials. For the properties of Groebner
bases, the number of monomials in N[J] coincides with the num-
ber of complex roots in the algebraic variety V of hJi, including
multiplicities, namely with the number of solutions of the problem
at hand [52].

3.2 Least-Degree Univariate Polynomial. This Section
aims at computing a least-degree univariate polynomial in hJi.
Some methods that are available in the literature are reviewed and
a novel technique is presented.

3.2.1 The Elimination-Ideal Approach. In order to eliminate
unknowns and solve J, Groebner bases with respect to some elimi-
nation monomial orders are needed. If Xl is a list of l variables in
X and XnXl is the (ordered) relative complement of Xl in X, the
lth elimination ideal hJli of hJi is defined as hJi \Q½XnXl�,
namely as the subset of all polynomials of hJi that comprise varia-
bles in XnXl only (and in which, thus, the l variables in Xl have
been eliminated). As hJi comprises six unknowns, the polyno-
mials of hJ1i contain only five variables, the polynomials of hJ2i
only four, and so on. hJ5i comprises a single variable and, thus, it
contains the least-degree polynomial of hJi in that variable. A mo-
nomial order >l on Q½X� is of l-elimination type provided that
any monomial involving a variable in Xl is greater than any mo-
nomial in Q½XnXl�. It may be proven that, if G>l½J� is a Groebner
basis of hJi with respect to >l, then G>l½J� \Q½XnXl� is a basis
of the lth elimination ideal hJli [53]. The l-elimination monomial
order implemented in Maple is a product order that induces grev-
lex orders on both Q½Xl� and Q½XnXl�.

In this perspective, the FGLM algorithm [54], which converts a
Groebner basis from one monomial order to another, may be
called upon to derive G>l½J� from G[J]. Once G>l½J� is known,
one may extract the subset G½Jl� of all polynomials of G>l½J� that
comprise variables in XnXl only. For the aforementioned prop-
erty, G½Jl� is a Groebner basis of hJli with respect to
grevlex XnXlð Þ. The structure of G½Jl�, as obtained by the FGLM
algorithm, is illustrated in Table 1 for l¼ 0,…, 5. This structure
holds for any generic choice of the robot parameters. Column 2
specifies the variables appearing in hJli. Column 3 reports the
number Nl of generators in G½Jl�. Column 4 provides the degree in
XnXl of such generators (in parentheses, the number of generators
having a certain degree is specified). Columns 5 and 6 report, for
each variable w 2 XnXl, the highest power of w in G½Jl� and the
number of monomials in G½Jl� having variables in XnXl � fwg,
respectively. Since the presented elimination ideals are based on
the sequential elimination of variables z, y, x, e1, and e2, G½J5�
coincides (up to a scalar multiple) with the least-degree polyno-
mial of hJi in e3. This polynomial has degree 156. Clearly, if a
different elimination sequence is chosen, a different structure is

obtained, and a 156th-degree univariate polynomial in another
unknown may be achieved.

In theory, by computing elimination ideals via the FGLM algo-
rithm, a least-degree polynomial in one variable may be calcu-
lated. In practical cases, however, the procedure may likely fail,
due to an excessively onerous computational burden. Section
3.2.3 will show that computing hJli is very demanding in terms of
both computation time and memory usage. Performing the elimi-
nation of the “last” variables, in particular, is extremely onerous
and it is likely to prove unfeasible on normal workstations.

3.2.2 Sylvester’s Dialytic Approach. Another strategy to
compute a univariate polynomial in hJi consists in deriving a
Sylvester-type eliminant matrix [44]. A crucial step in doing so
consists in finding, by either heuristic or algorithmic methods, via-
ble ways to augment the original set of equations to obtain a
square homogeneous linear system, without introducing spurious
solutions. The larger the final system is, the heavier the computa-
tional burden required by the resultant expansion proves to be and
the likelier extraneous polynomial factors are to appear. Heuristic
methods usually provide smaller eliminant matrices, but they rely
on procedures specifically tailored for the ideals at hand and they
are very difficult to conceive for high-degree problems, character-
ized by a large gap between the original number of equations and
the number of monomials therein involved. Conversely, algorith-
mic approaches are based on procedures guaranteed to deliver a
set of polynomials having the necessary properties to form an
eliminant, even though this may not have the least size. Since J
comprises 14 polynomials and 348 monomials, algorithmic meth-
ods are preferred here. In this context, two main procedures are
available in the literature, both exploiting a prior knowledge of
the Groebner basis G[J].

One procedure is based on the properties of Groebner bases and
normal sets [55,56]. Let the polynomial wgh be considered, with
w 2 X and with gh being the hth monomial in N[J]. If rh is the re-
mainder on division of wgh by G[J], rh is a linear combination of
monomials in N[J], i.e., rh ¼

P156
k¼1 ahkgk, with ahk being a con-

stant coefficient. Since rh � wgh belongs to hJi, it must vanish on
V. By assembling all the equations that may be obtained this way
for h¼ 1,…, 156, one has

A½J;w� � wI156ð ÞN½J� ¼ 0 (16)

where A½J;w� ¼ ½ahk� is a 156� 156 numeric matrix (called multi-
plication matrix for w) and I156 is the 156� 156 identity matrix.
Equation (16) is a linear eigenvalue problem, whose 156th-degree
characteristic polynomial is the desired resultant in w. While the
formulation (16) provides an efficient way to compute all 156 sol-
utions of the problem by numerical means (see Sec. 3.3), it is not
likewise effectual for the computation of the resultant, since it
requires the expansion of a 156� 156 matrix, which is a very
demanding computational operation.

Another method to compute a least-degree univariate polyno-
mial from G[J] is presented in Refs. [51]. It is based on the identi-
fication of a subset H[J] of G[J] and a variable w 2 X such that
the number of generators in H[J] equals the number of monomials
in the variables of X� fwg appearing in the polynomials of H[J].

Table 1 Structure of the Groebner bases of the elimination ideals hJl i of hJi for any 3-3 CDPR of generic geometry

Degrees of the generators Highest degree in w, No. of monomials with variables in
G½Jl� XnXl Nl in XnXl w 2 XnXl XnXl � fwg, w 2 XnXl

G[J] ½z; y; x; e1; e2; e3� 137 3(2), 4(41), 5(94) 4, 4, 4, 4, 5, 5 183, 183, 172, 181, 150, 137
G½J1� ½y; x; e1; e2; e3� 126 5(96), 6(30) 5, 5, 5, 5, 6 145, 144, 142, 141, 126
G½J2� ½x; e1; e2; e3� 84 6(54), 7(30) 6, 6, 6, 7 98, 98, 94, 84
G½J3� ½e1; e2; e3� 45 8(9), 9(36) 8, 8, 9 53, 53, 45
G½J4� ½e2; e3� 18 17(15), 18(3) 17, 18 19, 18
G½J5� ½e3� 1 156(1) 156 —
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This way, H[J] (possibly coinciding with G[J]) may be set up as a
square system of homogeneous linear equations in the monomials
of X� fwg, whose coefficients only depend on w. An eliminant
matrix may be thus constructed and a resultant in w computed.
For the problem at hand, G[J] comprises 137 generators. By
choosing w 6¼ e3, the number of monomials in X� fwg proves to
be greater than 137, but, by choosing w ¼ e3 (e3 is the “smallest”
variable in the monomial ordering chosen to compute G[J]) the
number of monomials in X� fe3g is exactly equal to 137 (see Ta-
ble 1). By this approach, the resultant in w emerges from the
expansion of a 137� 137 matrix, which is still a very expensive
computational task.

3.2.3 A Novel Hybrid Approach. The approach followed in
this paper is a hybrid variant of those previously described. It
emerges from the observation that the method proposed by
Dhingra et al. [51] may be applied to the Groebner basis of any
elimination ideal of hJi, since Table 1 shows that, if e3 is the
smallest variable in XnXl;G½Jl� comprises a number of monomials
in XnXl � fe3g that is equal to Nl for all values of l. For example,
the Groebner basis G½J3� of hJi \Q½e1; e2; e3� with respect to
grevlexðe1; e2; e3Þ comprises 45 polynomials (9 of degree 8 in U
and 36 of degree 9 in U), including 45 monomials in e1 and e2 (of
degree ranging from 0 to 8).

It follows that, if e3 is assigned the role of “hidden” variable,
the generators of G½Jl� may be written, for any l, in the form

DlEl ¼
Xu

k¼0

ek
3Bl;k

 !
El ¼ 0 (17)

where u is the highest power of e3 in G½Jl�;Bl;k is a Nl � Nl

numeric matrix, Dl is a matrix polynomial of degree u in e3, and
El is a Nl-dimensional vector comprising all monomials in G½Jl�
having variables in XnXl � fe3g. Accordingly, the desired result-
ant, free from extraneous polynomial factors, is

G½J5� ¼ det Dl ¼
X156

h¼0

Lheh
3 ¼ 0 (18)

where coefficients Lh only depend on the robot geometric
parameters.

The advantage gained by applying a dialytic step to a Groebner
basis G½Jl� with l > 0 results from the data presented in Table 2.
This table reports, for an exemplifying robot, the CPU time
required to compute grevlex bases for the elimination ideals of
hJi, with l¼ 0,…, 5, on the PC mentioned in Sec. 3.1. In particu-
lar, the third column reports the CPU time TG½Jl� required to obtain
G½Jl� by computing hJi \Q½XnXl� or, in parentheses,
hJl�1i \Q½XnXl�, by the FGLM algorithm. As remarked in Sec.
3.2.1, the elimination task proves to be computationally very ex-
pensive and time consuming. In particular, the “deeper” the elimi-
nation process (i.e., the smaller the number of variables in XnXl),
the longer the time necessary to perform the computation and,
mainly, the larger the amount of memory that is required. The lat-
ter issue is particularly critical. Indeed, for the example at hand,
the last elimination ideal cannot be computed on the given PC,
due to excessive memory usage.4

The fourth column of Table 2 reports the CPU time TG½J5 �
required to calculate G½J5� by applying Sylvester’s dialytic elimi-
nation to G½Jl�, for l¼ 0,…, 4. In this case, computation time
depends on the dimension of Dl and, thus, it normally decreases
with the number of variables in XnXl. Memory requirements are
modest and the algorithm is ordinarily successful. The fastest
computation is obtained by computing hJ3i via the FGLM algo-
rithm, thus eliminating {x, y, z}, and then applying dialytic

elimination to G½J3�, thus eliminating fe1; e2g. The former step
requires 49 min, whereas the latter 33 min. The overall computa-
tion time (including the time necessary to calculate G[J]) is
1:3þ 49þ 33 
 83min. By considering the size of G½J5�, calcula-
tion proves to be particularly efficient, thus requiring less than
1/20 of the time that would be necessary by applying dialytic
elimination directly to G[J] (i.e., roughly 1919 min), as proposed
in Ref. [51]. Due to space limitations, the expression of G½J5� for
the example at hand is not explicitly reported.

The hybrid elimination procedure described here was tested on
several robot geometries. Throughout the numerical experimenta-
tion, the fastest computation of G½J5� was always obtained by first
computing hJ3i and then applying dialytic elimination to G½J3�.
On this basis, a simple automation of the presented elimination
algorithm may be implemented, including a stage that eliminates
{x, y, z} by the FGLM algorithm and a subsequent dialytic step
that eliminates fe1; e2g. It is noteworthy that the partition
½fx; y; zg; fe1; e2; e3g� of X leads to the minimal multihomogene-
ous Bezout number of the generators of hJi (see Sec. 3.3.2). This
observation may suggest an algorithmic heuristic to determine a
priori which variables may be most conveniently eliminated by
the FGLM procedure before attempting the dialytic step.

It emerges from the above considerations that the presented
hybrid approach provides a profitable strategy to compute a least-
degree univariate polynomial in hJi, which may succeed when
other methods (such as those derived from Refs. [51,54–56]) ei-
ther fail or prove to be too onerous in terms of computational bur-
den. The bottleneck of the procedure is the strong dependence of
the computation performance on the “size” of the coefficients
expressing the robot geometric parameters. Indeed, the latter must
be assigned rational values, which are ordinarily obtained by con-
verting real values. The higher the number of digits in the original
floating-point data, the bigger the numerators and denominators of
the resulting rationals, and the larger the size of the coefficients in
the polynomials forming the ideal. As a result, computation
becomes much slower and memory-demanding. This is a limita-
tion shared by all computational methods based on Groebner
bases.

3.3 Numerical Computation of the Solution Set. For the
numeric solutions of the problem to be actually calculated, work-
ing with a polynomial of degree 156 is unpractical and it poses
substantial numerical problems. In this perspective, several alter-
native options are considered.

3.3.1 Eigenvalue Formulations. An efficient technique,
which eliminates the burdensome operations related to the expan-
sion of the determinant in Eq. (18), consists in setting up Eq. (17)
as a polynomial eigenvalue problem [57]. The roots of Eq. (18)
and the corresponding vectors El (from which the solutions in
XnXl � fe3g may be immediately obtained) are, respectively, the
eigenvalues and eigenvectors of Dl. The most widely used
approach to compute these eigenpairs is the conversion of Eq.
(17) into a linear eigenproblem of order uNl with the same finite
eigenvalues, so that classical methods for generalized eigenpro-
blems may be pressed into service.

Table 2 Computation time to obtain Groebner bases of the
elimination ideals hJli for a robot with a2 ¼ ½10; 0; 0�;
a3 ¼ ½0; 12; 0�;b01 ¼ ½1; 0; 0�; b02 ¼ ½0; 1; 0�; b03 ¼ ½0; 0; 1�, and q1; q2;ð
q3Þ ¼ ð7:5;10;9:5Þ

l hJli TG½Jl � (min) TG½J5 � (min)

0 hJi 1.3 1919
1 hJi \Q½y; x; e1; e2; e3� 19 2159
2 hJi \Q½x; e1; e2; e3� 42 (27) 579
3 hJi \Q½e1; e2; e3� 49 (24) 33
4 hJi \Q½e2; e3� 160 (80) 11
5 hJi \Q½e3� … –

4In a computation performed on a more powerful workstation, Maple estimated a
memory usage of about 12GB, in order to derive hJ5i from hJ4i.

Journal of Mechanisms and Robotics AUGUST 2013, Vol. 5 / 031008-5



For the robot whose dimensions are reported in Table 2, the
command Polyeig available within the mathematical software
Matlab computes (on the PC mentioned in Sec. 3.1) all eigenpairs
of D0 (which is the matrix polynomial obtained from G[J]) in
roughly 1 s. Accuracy is good, provided that D0 is conditioned by
premultiplying it by B�1

0;0 [58,59].
An even faster computation is provided by the linear formula-

tion presented in Eq. (16). In this case, the 156 eigenpairs of
A½J; e3� are accurately computed by the Matlab command Eig in
roughly 0.03 s. Since the first seven entries of N[J] are
1; e1; e2; e3; x; y; z (see Eq. (15)), a unique solution in X emerges
from each eigenvector in a straightforward manner.

A drawback of the eigen approaches described above is that
both of them require a prior computation of G[J]. As observed at
the end of Sec. 3.2.3, the efficiency of the computation of a
Groebner basis highly depends on the size of the rational coeffi-
cients of the polynomials generating the basis. For the robot in Ta-
ble 2, G[J] may be computed in as low as 1.3 min, because the
rationals representing the robot parameters may be expressed via
one- or two-digit integers. Instead, for the robot whose dimensions
are reported in the subsequent Table 4, the conversion of real pa-
rameters into rationals brings in six-digit integer denominators
and numerators, and the computation of G[J] requires more than
1 h.

Once an equilibrium configuration X is found, it proves feasible
only if it is stable and therein cable tensions are positive. Cable
tensions may be obtained by any three suitable relations chosen
within Eq. (4), e.g., if s1; s2, and s3 are linearly independent, as

s1

s2

s3

2
4

3
5 ¼ � s1

q1

s2

q2

s3

q3

� ��1

Qk (19)

Stability may be assessed by the definiteness of the reduced Hes-
sian Hr , as explained in Ref. [37]. Due to space limitations, Table
3 reports only the real solutions of the DGP of the robot presented
in Table 2. The symbols >, �, <, � and <> denote, respectively,
a positive-definite, a positive-semidefinite, a negative-definite, a
negative-semidefinite and an indefinite Hessian matrix. In this
case, 10 out of 156 solutions are real and, among them, only 6
have nonnegative tension in all cables. These are shown in Fig. 2.
Only the configuration in Fig. 2(b) is stable and, thus, feasible.

3.3.2 Homotopy Continuation. An alternative approach with
respect to the eigenvalue formulations presented in Sec. 3.3.1 is
offered by homotopy continuation [52]. Continuation has the sig-
nificant advantage that it requires no prior Groebner-basis compu-
tation by a computer-algebra system and real-value geometric
parameters may be directly handled in floating-point arithmetic.
Accordingly, the dependence of computation time on the specific
values of the robot parameters is rather modest.

If no information is a priori known about the roots in the variety
V of J, the DGP of the 3-3 CDPR may be cast, on the basis of the
degree of the polynomials contained in J, into the larger family of
all polynomial systems made up by one quartic, two cubics and
three sextics on X 2 P6. By counting solutions at infinity, a gen-
eral member of this family, e.g., Jred ¼ fq1; q2; q3; p1; p2; p3g, has
a number of isolated roots equal to the minimal multihomogene-
ous Bezout number [47,48]. This is also the number of paths
tracked by the homotopy-continuation software used in this paper,
i.e., BERTINI [60]. By searching all possible multihomogenizations
[49], the minimal Bezout number of Jred emerges when X is parti-
tioned as ½fx; y; zg; fe1; e2; e3g� and it is equal to 1920. Computa-
tion converges in a robust way. For the robot in Table 2, BERTINI

computes finite solutions to Jred in roughly 10 min (on the same
PC mentioned earlier and by adopting BERTINI default settings).
However, since only three relations (i.e., p1, p2, and p3) are used
within those that emerge from Eq. (5) to form, together with Eq.
(3), a square system of six equations in six unknowns (and, thus,
only three minors of M are set to zero), spurious solutions, for
which some of the unused minors of M do not vanish, are intro-
duced. Therefore, the roots computed by BERTINI must be sifted in
order to retain only those that actually lie in V. As expected, 156
solutions are finally obtained.

The above procedure is suitable to solve the DGP of the 3-3
robot under the assumption that no information is known about
the number of roots in C

6
. Once the latter information is known, a

more efficient continuation technique may be used to numerically
solve practical cases. Indeed, the complete family of the DGPs of
3-3 CDPRs lies in a 21-dimensional parameter space, parame-
trized by the geometric quantities ai; b

0
i and qi, i¼ 1,…, 3.

Accordingly, when the 156 isolated roots of the DGP are known
for a generic “start” robot geometry, parameter homotopy contin-
uation may be used to find solutions for any other “target” robot
of the family [52,61]. Since the equation coefficients are continu-
ous functions of the geometric parameters, a continuous path

Table 3 DGP of the 3-3 CDPR presented in Table 2: real potential solutions

Geometric dimensions and load: a2 ¼ ½10; 0; 0�; a3 ¼ ½0; 12; 0�;b01 ¼ ½1; 0; 0�; b02 ¼ ½0; 1; 0�, b03 ¼ ½0; 0; 1�; q1; q2;q3ð Þ ¼ ð7:5; 10; 9:5Þ, Q¼ 10.

Conf. e1; e2; e3; x; y; zð Þ ðs1; s2; s3Þ Hr Fig. 2

1 (�4.2220216376218525374, �5.9041632869515210360, �0.4719284164260346102;
þ1.6804603696020390943, þ3.5743047536049493407, þ5.5605475750988856764)

(þ6.84, þ3.05, þ6.14) <> (2a)

2 (�3.3553981637732204646, þ0.5425359168641715099, þ1.7110227662077546889;
þ2.9313331749199504570, þ4.0768903590846968732, þ6.0451905744644536057)

(þ5.26, þ5.11, þ5.81) > (2b)

3 (�2.6616890629909497781, þ0.4160373487571940226, þ0.9655548628886102991;
þ2.5977352480361477511, þ3.8457865212868645040, �4.8661048045758031135)

(�5.71, �4.85, �5.59) <>

4 (�2.5291311336353393166, þ7.3670838551717188775, �3.0436947470784328872;
þ4.3757198849572551337, þ5.8522722689950264632, �4.0010370837572794347)

(�1.40, �9.30, �9.83) >

5 (�1.1658499286472699650, �1.2731250301592223731, �1.0066002786209496830;
þ1.3992607683511133116, þ3.2794852510182088478, þ5.5312834538826469464)

(þ6.76, þ2.51, þ4.86) <> (2c)

6 (�0.5483498696623835987, �0.4877188327940637588, �1.2105960172659885404;
(þ1.8159313811036966479, þ4.3022189513770458215, þ5.5516371755216273886)

(þ5.46, þ3.25, þ5.50) <> (2d)

7 (�0.5044737581189470443, þ2.5903097146888037712, �1.2479550929596409397;
þ3.5231344366003843222, þ5.5320236367500482920, þ5.2626779413057278297)

(þ2.89, þ7.87, þ9.12) <> (2e)

8 (�0.3252555841337169146, �0.8891989606461705137, �1.6130562813850683595;
þ2.5760653793782856615, þ4.3924466541541392403, �6.7527508537785241857)

(�4.61, �4.12, �5.65) <

9 (þ0.5434332197723969320, �0.1455056574282349313, þ0.5696219999523911064;
þ3.0240954483208687602, þ4.7309738515237873056, þ3.3019215367593690362)

(þ5.90, þ7.83, þ9.56) < (2f)

10 (þ0.6844447542486557310, �0.0996112288836193264, þ0.5262976928395059876;
þ2.8401864910572365897, þ4.8133317875987522652, �4.4534720523569757781)

(�6.01, �7.61, �9.53) <>

� � � � � � � � � � � �
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through parameter space determines a continuous evolution of the
coefficients and, generally, continuous paths for the solutions as
well. Accordingly, by a suitable homotopy [62], only the paths
originating at the isolated roots of the start system (in a number
equal to 156) may be tracked, whereas those corresponding to sol-
utions at infinity (which cause unbeneficial computational burden)
may be ignored. By using parameter continuation and default set-
tings, BERTINI computes the finite solutions to Jred, for the robot
whose geometric parameters are reported in Table 2, in roughly
6.2 min.

A more efficient implementation of the parameter-continuation
routine may be constructed on the basis of the system S formed by
the geometric constraints in Eq. (3) and the static relations in Eq.
(4), which include cable tensions among the unknowns. S contains
nine scalar relations in nine variables (i.e., X and s) and it has a
much larger Bezout number compared to Jred, namely, 4800
against 1920. Nonetheless, this does not result in a larger number
of paths to be followed when parameter continuation is performed,
since only the 156 paths corresponding to the finite solutions of the
start system are tracked. Furthermore, S comprises simpler lower-
order polynomials compared to Jred, and this produces paths that
may be tracked in a considerably more rapid and stabler way. By
this implementation, BERTINI is able to compute the finite solutions
to S in less than 1.4 min, for the robot in Table 2.

As for the eigenvalue formulations presented in Sec. 3.3.1, the
solution search cannot be limited to predefined domains, so that it
is not possible to incorporate constraints on the unknowns in the
continuation routine. It is necessary to calculate all roots of Eqs.
(3) and (4) (real and complex, regardless of the sign of cable ten-
sions), and then use a postprocessing step to eliminate inadmissi-
ble solutions. For a more detailed discussion about the application
of continuation methods to the DGP of the 3-3 CDPR, the reader
may refer to Ref. [62].

3.3.3 Interval Analysis. Another approach to efficiently solve
the DGP of the 3-3 in practical cases relies on techniques based
on interval analysis. The latter have the following interesting
properties [63]:

• real-value geometric parameters may be directly handled in
floating-point arithmetic;

• results are guaranteed against numerical computer round-off
errors;

• real solutions may be directly searched for, and constraints
on the unknowns (particularly lower and upper bounds on
cable tensions) may be easily incorporated within the
problem-solving routine;

• the abundance of linearly independent equations available in
J allows lower computation times to be attained, by enriching

Fig. 2 DGP of the 3-3 CDPR presented in Table 2: equilibrium configurations with
nonnegative tension in all cables
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the set of available tests that may be used to exclude portions
of the search domain from the solution search;

• uncertainties in the parameter values, e.g., due to manufactur-
ing tolerances or measuring errors, may be easily taken into
account.

A drawback of interval analysis is that efficiency is heavily de-
pendent upon the choice of heuristics implemented in the
problem-solving algorithm. For a given problem, computation
time may vary from seconds to hours, depending on the specific
heuristics that are used.

Preliminary results concerning the application of interval analy-
sis to the DGP of the 3-3 CDPR may be found in Ref. [64].
Results are promising, as the feasible solutions to the DGP of a
generic robot may be ordinarily found in less than 2 min, and there
is room for significant further improvements.

3.4 Number of Real-Valued Solutions. The 156 solutions
computed by the methods presented in Sec. 3.3 may be complex
or real, but only the latter have physical interest. By varying the
robot parameters in R21, the count of real roots changes. How-
ever, since there may be roots in the solution set that always
remain complex, the maximal number of real solutions may be
smaller than 156. Determining a tight bound for this count is a
challenging task.

Three numerical approaches were developed in Ref. [62],
namely, a continuation procedure adapted from an algorithm orig-
inally proposed by Dietmaier [65] to determine the maximum
number of real assembly modes of the Stewart-Gough platform
and two evolutionary procedures. In the first approach, an arbi-
trary set of the parameters defining the manipulator geometry is
chosen, and all real and complex solutions of the corresponding
DGP are computed. Successively, the robot parameters are modi-
fied in such a way that the imaginary parts of pairs of complex
conjugate roots are caused to vanish and new pairs of real roots
are brought into existence. By the iterative application of the pro-
cedure, the number of real solutions is maximized. The evolution-
ary procedures are based, respectively, on a genetic algorithm and
particle swarm optimization. In both cases, maximizing the num-
ber of real equilibrium poses is set as the objective function.

By all methods, several sets of robot parameters for which the
DGP provides at the most 54 real configurations were found. The
coherence of the obtained results may lead to conjecture that the
achieved bound is tight, even though formal proof is yet to be

discovered. Table 4 reports one of the aforementioned sets. Due to
space limitations, only the real solutions with nonnegative tension
in all cables are reported. Even though the geometric dimensions
of the robot are not particularly meaningful under a practical point
of view, the example shows that the DGP of the 3-3 CDPR may
admit multiple feasible configurations: in this case, in fact, 5 out
of 54 real equilibrium configurations have positive tension in all
cables and are stable, thus being feasible.

4 Equilibrium Configurations With Unloaded Cables

When cable lengths are assigned as inputs, nothing ensures, a
priori, that when the platform reaches its stable equilibrium pose
all cables are under tension. Accordingly, the final pose may be ei-
ther a DGP solution for the current 3-3 CDPR or a valid pose for
any one of the m–m CDPRs (with m < 3) that may be derived
from the initial 3-3 robot. Accordingly, the overall solution set
must be obtained by solving the DGP for all possible constraint
sets fjjsjjj ¼ qj; j 2 Wg, with W � f1; 2; 3g and cardðWÞ � 3,
and by retaining, for each corresponding solution set, only the sol-
utions for which jjskjj < qk; k 62 W. In general, this amounts to
solving 7 DGPs, namely, 1 DGP with 3 cables in tension, 3 DGPs
with 2 cables in tension and 3 DGPs with 1 cable in tension. The
solution of the problem with a single taut cable is trivial, whereas
the complete solution of the DGP of a CDPR suspended by 2
cables is available in Ref. [37].

When the DGP admits multiple feasible solutions, and these are
“sufficiently” close to each other, the robot may switch (because
of inertia forces or external disturbances) across portions of the
configuration space characterized by different numbers of taut
cables, thus bringing the end-effector onto unpredicted trajecto-
ries. Accordingly, the computation of the complete set of equilib-
rium configurations is essential for robust trajectory planning.
This motivates and gives relevance to the algorithms presented in
this paper.

5 Conclusions

This paper studied the kinematics and statics of undercon-
strained CDPRs with 3 cables, in crane configuration. For such
robots, kinematics and statics are coupled and they must be dealt
with simultaneously. This poses major challenges, since displace-
ment analysis problems gain remarkable complexity with respect
to those of analogous six-dofs rigid-link robots.

Table 4 DGP of a 3-3 CDPR with 54 real potential solutions

Geometric dimensions and load: a2 ¼ ½0:87239; 0; 0:087941�; a3 ¼ ½0:31752; 0:48646;�0:016501�;b01 ¼ ½�0:78466;�0:35058; 0:48115�; b02
¼ ½0:46664;�0:35058; 0:48115�; b03 ¼ ½�0:00704; 0:47275; 0:48115�; q1;q2; q3ð Þ ¼ ð1; 0:95110; 0:73758Þ, Q ¼ 10.

Conf. e1; e2; e3; x; y; zð Þ ðs1; s2; s3Þ Hr

1 (�5.4614294311925020053, þ0.0173536807147813177, �0.3100210753440456029);
(þ0.3935472842368857842, þ0.1808111691242998204, þ1.0383599167105029146)

(þ4.26, þ4.05, þ7.42) >

2 (�4.1797214292900880282, �6.8478347950258985815, þ0.3514991521292444341);
(þ0.7103362119654336397, þ0.0958262602998788014, þ0.7810086923081841400)

(þ4.98, þ14.34, þ9.51) >

3 (�2.3841200362918340257, �2.3394159764963221491, þ0.8490321441619597505);
(þ0.8607788314718697152, �0.0037527353690492382, þ0.7552546007023042315)

(þ0.36, þ13.79, þ10.83) <>

4 (�0.4863019644307176738, �2.1657311861304995048, �0.2863725216731426209);
(þ0.9686378130633803271, þ0.0868818876119070610, þ0.7354857781799160742)

(þ7.21, þ13.16, þ3.10) <>

5 (�0.2013943322393901434, �0.0453416376226155101, þ0.0515296024454830576);
(þ0.5283918784779030256, þ0.0792999430885494435, þ0.4244176372233764265)

(þ3.02, þ5.55, þ1.70) >

6 (þ1.4255092412518180719, �2.6189943609918970012, þ0.3505962651985286990);
(þ0.5085291895448221065, þ0.3290333889906895434, þ0.9262916536766926699)

(þ7.02, þ4.41, þ7.77) >

7 (þ3.5322905636419180394, þ5.8388951790075283681, �0.0970283274196336667);
(þ0.4060218349169291586, þ0.2419089653712617907, þ0.7766016270169904300)

(þ6.20, þ14.29, þ11.45) >

8 (þ4.5169587479064276016, þ7.4484757910582396270, �0.1526687793821966507);
(þ0.4428326095347329080, þ0.2245389964586149584, þ0.7765833645732042240)

(þ6.27, þ14.89, þ11.63) <>

� � � � � � � � � � � �
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An original geometrico-static model was presented, which
allowed the DGP to be effectively worked out and the complete so-
lution set to be determined. The DGP aims at determining the plat-
form pose and the cable tensions once the cable lengths are assigned.
A least-degree univariate polynomial in the ideal governing the prob-
lem was obtained by an innovative hybrid procedure relying on
Groebner bases, the FGLM algorithm and Dhingra et al. dialytic
elimination, thus showing that 156 solutions exist in the complex
field. The procedure encompassed three steps. First, a Grobner basis
G was calculated with respect to an efficient monomial order (such
as grevlex). Then, a subset of the original unknowns was eliminated
by computing, by way of the FGLM algorithm, a Groebner basis Gl

of a suitable elimination ideal. Finally, a least-degree univariate
polynomial devoid of extraneous factors was computed by applying
dialytic elimination to the polynomials of Gl. The adopted approach
appeared to provide a profitable technique to compute a least-degree
univariate polynomial in a polynomial ideal. By considerably reduc-
ing computation requirements, in terms of both memory and time, it
was successful when other methods either failed or proved to be
excessively onerous in terms of computational burden.

The 156 solutions of the DGP were numerically computed via
three alternative approaches, namely

• an eigenproblem associated with the Groebner-basis
computation,

• homotopy continuation,
• interval analysis.

The advantages and drawbacks of each approach were critically
discussed.

The problem of identifying a robot geometry providing the
highest number of real equilibrium configurations was addressed.
Based on a study presented in Ref. [62], the maximal number of
real-valued solutions of the DGP was conjectured to be equal to
54. However, the big gap between the maximal number of com-
plex and real solutions still deserves in-depth investigation.

Equilibrium configurations with slack cables were finally discussed.
All reported solution counts concern potential solutions of the

problems at hand, since they do not take into account the con-
straints imposed by the sign of cable tensions and the stability of
equilibrium. Once such constraints are imposed and solutions are
sifted, the number of feasible configurations is drastically reduced.
When multiple feasible configurations exist, the end-effector may
switch across them, due to inertia forces or external disturbances.
Computing the complete set of equilibrium configurations is, thus,
essential for a robust trajectory planning.

The problem-solving methods presented in this paper have gen-
eral validity and they may be profitably used to solve the DGP of
CDPRs suspended by more than 3 cables or characterized by spe-
cial geometries (these typically emerge when some cable anchor
points on the base and/or the platform coalesce). Clearly, in all
these cases, the maximal number of solutions is likely to change.
Preliminary results about generic CDPRs with 4 and 5 cables may
be found in Refs. [42,43], respectively.
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[56] Corless, R. M., 1996, “Gröbner Bases and Matrix Eigenproblems,” ACM SIG-
SAM Bull., 30(4), pp. 26–32.

[57] Manocha, D., and Krishnan, S., 1996, “Solving Algebraic Systems Using Ma-
trix Computations,” ACM SIGSAM Bull., 30(4), pp. 4–21.

[58] Higham, N., Mackey, D., and Tisseur, F., 2006, “The Conditioning of Lineari-
zations of Matrix Polynomials,” SIAM J. Matrix Anal. Appl., 28(4), pp.
1005–1028.

[59] Higham, N., Li, R.-C., and Tisseur, F., 2007, “Backward Error of Polynomial
Eigenproblems Solved by Linearization,” SIAM J. Matrix Anal. Appl., 29(4),
pp. 1218–1241.

[60] Bates, D. J., Hauenstein, J. D., Sommese, A. J., and Wampler, C. W., “BERTINI:
Software for Numerical Algebraic Geometry,” Available at: http://bertini.nd.edu

[61] Morgan, A. P., and Sommese, A. J., 1989, “Coefficient-Parameter Polynomial
Continuation,” Appl. Math. Comput., 29(2), pp. 123–160.

[62] Abbasnejad, G., and Carricato, M., 2012, “Real Solutions of the Direct
Geometrico-Static Problem of Under-Constrained Cable-Driven Parallel
Robots With 3 Cables: A Numerical Investigation,” Meccanica, 47(7), pp.
1761–1773.

[63] Merlet, J.-P., 2009, “Interval Analysis for Certified Numerical Solution
of Problems in Robotics,” Int. J. Appl. Math. Comput. Sci., 19(3), pp.
399–412.

[64] Berti, A., Merlet, J.-P., and Carricato, M., 2013, “Solving the Direct
Geometrico-Static Problem of 3-3 Cable-Driven Parallel Robots by Interval
Analysis: Preliminary Results,” Cable-Driven Parallel Robots, T. Bruckmann
and A. Pott, eds., Springer-Verlag, Berlin Heidelberg, pp. 251–268.

[65] Dietmaier, P., 1998, “The Stewart-Gough Platform of General Geometry can
have 40 Real Postures,” Advances in Robot Kinematics: Analysis and Control,
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