Max-Planck-Institut
fiir Mathematik

in den Naturwissenschaften
Leipzig

Solution of large scale algebraic matrix
Riccati equations by use of hierarchical
matrices

by

Lars Grasedyck, Wolfgang Hackbusch, and
Boris N. Khoromskij

Preprint no.: 62 2002







Solution of Large Scale Algebraic Matrix Riccati Equations
by Use of Hierarchical Matrices

L. Grasedyck, W. Hackbusch, B.N. Khoromskij, Leipzig

Abstract

In previous papers, a class of hierarchical matrices (H-matrices) is introduced which are data-sparse
and allow an approximate matrix arithmetic of almost optimal complexity. Here, we investigate a new
approach to exploit the H-matrix structure for the solution of large scale Lyapunov and Riccati equations
as they typically arise for optimal control problems where the constraint is a partial differential equation
of elliptic type. This approach leads to an algorithm of linear-logarithmic complexity in the size of the
matrices.
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1 Introduction

1.1 Overview

In 1980, Roberts [17] published a method to solve the algebraic matrix Riccati equation by use of the matrix
sign function. Since the method basically involves the inversion, addition and multiplication of matrices,
one expects a cubic complexity in the size of the matrices.

In this paper we consider the same method but make use of a special matrix representation, the so-called
‘H-matrices, instead of the standard matrix representation. Our analysis consists of two parts:

1. We prove that the solution of the algebraic matrix Riccati equation can be approximated in the
‘H-matrix format. This existence result indicates the possibility to apply the H-matrix arithmetic.
Moreover, we prove that the matrices in Roberts method can be approximated by matrices in
‘H-matrix representation.

2. We develop an efficient numerical scheme to compute an H-matrix approximation to the solution of
the algebraic matrix Riccati equation with almost linear complexity in the size of the matrices, i.e.,
O(nlog?n) for n x n matrices.

This article contains six sections: the current section gives a short overview. The second section introduces
a linear quadratic optimal control problem leading to a Riccati equation. The solution procedure based on
the matrix sign function is introduced in Section 3. In Section 4 we investigate the structure of the matrices
appearing in the solution procedure and observe that H-matrices are a good choice for an (approximate)
representation of the matrices. The influence of the approximation error in the numerical scheme will be
analysed in Section 5 while the numerical results in the last section show the behaviour of our method applied
to two model problems.



1.2 Lyapunov and Riccati Equation

An equation of the form
ATX + XA-XFX+G=0

for given A, G, F € R"*" and unknown X € R™*" is called (algebraic matriz) Riccati equation. For F =0
the equation simplifies to a so-called Lyapunov equation. The standard approach to solve a Riccati equation
is to apply Newton’s method resulting in a series of Lyapunov equations.

1.3 Large scale Lyapunov Equations

A fixed Lyapunov equation can, e.g., be solved by the Bartels-Stewart algorithm [2], which is of complexity
O(n?). When dealing with large scale Lyapunov or Riccati equations (i.e., n is considerably large) one is
interested in reducing the complexity for a certain class of matrices A, F, G.

Rosen and Wang [18] assume that the matrix A stems from the discretisation of a partial differential equation
of elliptic type, while G is allowed to be arbitrary. Then it is possible to apply multigrid techniques and
solve the Lyapunov equation with O(n?) operations.

Penzl [15] assumes that A is symmetric positive definite and that G is a symmetric positive semidefinite
matrix of low rank kg = O(1). Then the eigenvalues of the solution X decay exponentially, such that the
solution can be approximated by a matrix of low rank. The low rank structure can be utilised (e.g., in the
Smith method [16]) to compute the solution with O(n) operations. However, one has to solve sparse linear
systems of equations in each step.

Let us consider a simple example: the matrix A € R™*"™ is assumed to be the symmetric stiffness matrix
from the Ritz-Galerkin discretisation (e.g., linear finite elements) of a partial differential operator of elliptic
type. Then the solution X to ATX + XA+ 1 =0 (I is the identity) is X = —3 A~'. Here, the matrix G = I
is not of low rank, but the solution X can still be represented in a suitable format that is explained in the
following section.

1.4 H-Matrices

In previous papers ([6],[7],[9],[10],[11]) a class of hierarchical matrices (H-matrices) has been introduced that
allows a sparse approximation to large, dense stiffness matrices arising in boundary element method or finite
element method applications. In the FEM case, it is the inverse of the stiffness matrix that is dense and can
be approximated by an H-matrix ([3]).

We consider matrices over the (product) index set I x J. The product index set I x J is partitioned into
blocks r x s C I x J, where the blocks r X s are nodes of a so-called H-tree T« ;. Each of those blocks allows
for a low rank representation of the corresponding matrix block. The maximal rank of the matrix blocks is
denoted by k.

The definition of the H-tree Tr« s and the set My 1 (Trx.7) of H-matrices can be found in [6] and [7]. Here,
it suffices to know that the leaves of the H-tree Ty« ; form a partition of I x J and a matrix M belongs to
Mo (Trx ) if the rank of M restricted to a leaf of Ty s is bounded by k.

Since H-matrices of fixed (block-wise) rank k corresponding to the H-tree Ty ; are not a linear subspace of
R*7_some kind of projection of the sum, product and inverse into the set of H-matrices is necessary. For the
(exact) sum of H-matrices one can calculate a best approximation (in the Frobenius norm | M||% = Do M)
in My ,x(Trxy). This is called the formatted addition (). For the product and inverse of H-matrices
the formatted multiplication ® and inversion Inv (introduced in [9],[6],[7]) is some approximation but not
necessarily a best approximation.

Associated to the H-tree Ty« are



e the depth p > 1 of the H-tree,
e the sparsity constant Cg, and

e the idempotency constant Ciq.

The depth p of the H-tree is typically proportional to log(|]| + |J|) (]I| denotes the number of elements in
I). The constants Csp, and Cig are defined and estimated in [6] and [7] (a constant similar to Cs, was also
used in [11]). Based upon these three values one can estimate the complexity of the standard arithmetic
operations for H-matrices.

Theorem 1.1 Let k € N denote the blockwise rank, n :=|I|, m :=|J| and Trxj be an H-tree with sparsity
constant Csp and depth p > 1. Then the storage requirements Ny store and computational complexity Ny, of
the matriz vector multiplication and Nxgy of the formatted addition for matrices belonging to My k(Trx 1)
are bounded by
NH,store S Cspk(n + m)pa
NH~v S 2Cspk(n + m)pa
Nyan < 20Cpk?(n +m)p + 368Cs, k> (n + m).

Let Try 5 be an H-tree with idempotency constant Ciq. Then the computational complexity of the formatted

multiplication Nyon and the formatted inversion NI’%(H) of matrices belonging to My x(T1x.) (n = m for

the inversion) can be estimated by

Nyon < 394C§pCidk:2(n + m)pmax{k, p},

NIan”(H) < NH@H-

Proof. [9], [6] and [7]. |

Remark 1.2 A matriz M € R™*™ of rank at most k can be represented in factorised form M = ABT with
matrices A € R"* and B € R™*k. We call this an R(k)-representation of the matriz M. For k < n,m,
this is an efficient way to store and evaluate the matriz M.

The (exact) multiplication of an R(k)-matriz with an arbitrary matriz yields again an R(k)-matriz.
The (exact) multiplication of two H-matrices belonging to My 11(Trx.7) as in Theorem 1.1 yields an H-matriz
belonging to M,, i(Trxg) with k := Cs,Ciakp.  The computational cost for the exact multiplication is

O(k*(n +m)p?) (see [6], [7]).

2 Problem Description

2.1 The Autonomous Linear Quadratic Optimal Control Problem

Let n,ny,ny, € N, zp € R*", A € R™*", B € R"™ and C € R™*". The autonomous linear quadratic
optimal control problem is to find u € L3(0, 00; R™*) minimising the quadratic performance index

J(u) = / (y®)Ty(t) +u(t) u)) dt (2.1)
0
for the solution = € Ly(0, 00; R™) of the differential equation

z(t) = Az(t) + Bu(t), t € (0,00),
y(t) = Cx(t),



Theorem 2.1 ([13] Existence of a linear state feedback solution) If (A, B) is stabilisable and (A, C)
detectable, that is there exist matrices Kgqp € R™*™ and Kger € R™*™ such that A + BKgiqp and
AT + CT Ko are stability matrices (spectrum in the left complex halfplane), then the optimal control u
exists and can be realised in linear state feedback form as

u(t) = =BT Xz(t), te(0,00),

where X € R™ ™ s the (in the set of symmetric positive semidefinite matrices) unique solution of the
algebraic matriz Riccati equation
ATX + XA-XFX+G=0

for the matrices F := BB” and G := CTC.

In general, the structure of the matrix A can be arbitrary and the stability and detectability is neither
easy to check nor always given. In the applications that we are aiming at, the matrix A will be the spatial
discretisation of some partial differential operator of elliptic type. Therefore, A is a stability matrix and
thus the system stabilisable and detectable.

2.2 The Algebraic Matrix Riccati Equation

According to Theorem 2.1, we seek a symmetric positive semidefinite solution X € R"™*"™ of the algebraic
matrix Riccati equation
ATX + XA - XFX +G=0. (2.2)

Here, A € R™"*" ig a stability matrix and F, G € R™"*" are symmetric positive semidefinite. The rank of the
matrices F = BBT and G = CTC is bounded by n,, and n,,, where BT € R"«*" and C' € R™*".

Remark 2.2 If A stems from the discretisation of some partial differential operator, then the dimension
n grows with decreasing mesh size. The ranks n.,ny of the matrices F' and G on the other hand can be
independent of the discretisation. In that case one can assume n,,n, < n, which will lead to an (approxi-
mate) low rank representation of the solution X. Our method can exploit this low rank structure, but is not
restricted to this case.

Remark 2.3 Let A = M~'A and F = M=YEM~" with a symmetric positive definite matric M, a sym-
metric negative definite matric A and a symmetric positive semidefinite matrixz F (as it typically occurs for
finite element discretisations, see Section 6). Then the algebraic matriz Riccati equation (2.2) reads

AM™IX + XM'A—- XM7'FM~'X + G =0. (2.3)
If we multiply by W = M~z from the left and right of (2.3), the equation transforms into
WAW WXW + WXW WAW — WXW WEW WXW + WGW = 0. (2.4)

If we define A := WAW, F :=WEW and G :== WGW then we can solve the transformed algebraic matriz
Riccati equation o S B

AAX + XA-XFX+G=0
where all matrices A, F,G are symmetric, and gain the solution X by X := MzXMz. The eventual low

rank structure of the matrices F, G is preserved and the symmetry of A can be beneficial. Since the calculation
of Mz and M~ is rather expensive, the transformation to the symmetric case is usually omitted.



3 Solution Strategy

There is a variety of strategies for solving algebraic matrix Riccati equations for matrices of a certain
structure. Basically, one can either try to solve the (nonlinear) equation (2.2) directly, or one can apply
Newton’s method to simplify the equation to a linear one. The latter results in a series of Lyapunov equations
and is almost always the method of choice for solving sparse large scale Riccati equations. The method that
we propose is essentially based on the sign-iteration due to Roberts [17]. It can be applied to the Lyapunov
as well as the Riccati equation and is neither limited to some low rank structure of F' and G nor does depend
on the sparsity of A (but we adopt the data-sparsity of A). However, the analysis in this paper is only done
for the case that F' is of low rank, which corresponds to a low dimensional control . The motivation for
our particular choice of the solution process is to minimise the total number of matrix inversions which we
consider as a suitable complexity unit in the overall cost estimate.

3.1 Newton’s Method Applied to the Riccati Equation

The Newton iteration
X1 solves (A—FX)" X1+ Xii(A—FX;)+ X;FX; +G =0 (3.1)

converges (locally) quadratically to the solution X of the Riccati equation (2.2), if F' and G are symmetric
and the initial guess Xy stabilises (A, —F) (see, e.g., [12]). This is the case if A is a stability matrix and
the initial guess is chosen as Xy := 0. In this case, the solution to the Lyapunov equation (3.1) is explicitly
given as (see [14])

Moreover, all matrices A — F'X; are again stability matrices but typically not symmetric, while X; FX; + G
is symmetric positive semidefinite.

3.2 Solving the Riccati or Lyapunov Equation by Use of the Matrix Sign Func-
tion

Definition 3.1 (Matrix sign function) We define the matriz sign function as
1
sign : {M € C"*" | VA € (M) : Re(N) # 0} — C™*", M — p ?{(51 — M)'d¢ — 1,
r

where T' is an arbitrary path of index 1 around the eigenvalues of M with positive real part and I denotes
the n X n identity matriz.

Example 3.2 (Matrix sign of a diagonalisable matrix) Let M € C"*" be a matriz that is diagonalis-
able, M = TDT~', T € R™", D = diag(A1,...,\,) and Re(N\;) #0 for all j € {1,...,n}. Let T be a path
of index 1 around the eigenvalues of M with positive real part. For each of the eigenvalues \; there holds

] S g £ i
We can compute sign(M) as follows:
sign(M) = sign(TDT ™)
= = f(er D) Mg -1 = ifT(gl—D)—lT—ldg .y
i Jp '

1 ifRe(),) >0,

= Tdiag(s1,...,8,) T ", s;= { -1 ifRe(\;) <O0.



An algorithm to solve certain Riccati equations by use of the matrix sign function is presented in [17] and
we summarise the main result in

Theorem 3.3 (Representation by the matrix sign function) Let A € R™™ ™ be a stability matriz,
F,G € R™*"™ symmetric positive semidefinite. Then the stabilising solution X of (2.2) satisfies

N1 Nio
X=- : 3.3
[ N2y ] [ Nao ] (3.3)
where the matrices Ni1, N12, Na1, Nag € R"*™ are
Nip Niz | . AT @G [1 o0
Noi Ny | 78" F -A 0 I

and [ xﬂ ] 18 of full rank n. In the Lyapunov case F =0, this simplifies to
21

1
X = —-Njo.
5 V12

A method to solve (3.3) efficiently is presented in the last part of Section 5. A simple method to calculate the
sign function of a matrix S is Newton’s method applied to the equation X2 = I with initial guess Xg := S,
as it is described in [17].

Theorem 3.4 (Newton’s method to calculate the matrix sign function) Let S € R™*™ be a
matriz whose spectrum does not intersect the imaginary axis. Then the iteration

1
Sp:=S, Siy1 = 5(&- +57h (3.4)
converges (locally quadratically) to the sign of S.

Lemma 3.5 (Global convergence of Newton’s method) Let S € R"*" be a matriz whose spectrum

o(S) does not intersect the imaginary azis. Let || - |2 denote the spectral norm of a matriz and
—1, [SmW)
po=max{ 1+ [Re(\)| + [Re(\)| P+ o | A€ a(S) 5.
{ RV

Then the minimal number of iterations im:, of (3.4) necessary to get
YA€ o(S;,,.): N —1|<e (3.5)

for a given € € (0,1) is bounded by imin = O(log(u)? + log(log(1/¢))). If S = TJT = is a Jordan decompo-
sition of S then the minimal number of iterations jmin of (3.4) necessary to get

1Sjpmin — sign(S)[2 < €

is bounded by

Jmin = O (log()* + log(log(1/ + cond(T)))) .
If the spectral values X € o(S) fulfil [Re(X)| > |Sm(N)| then the number of iterations jmin necessary to get
15,0 — sign(S)l2 < € is bounded by O(log(p) + log(log(1/e + p))), where p := max e, (s)(|Al +|A71]).

min



Proof. Equation (3.5)

To prove (3.5) , we analyse the convergence for each Ao = xg + iyp € o(S5) separately. The corresponding

spectral values for the operators S; are defined by the sequence

1 _
Aj1 1= §(>\j +A71),

1 1
11 = Re(\; =_—z;(l+ ——=
Tj+1 e(Aj+1) 2%( + Z?erjg)a
Sm(Aj+1) . (1 : )
1= Sm(\; = —yi(l — ——).
Yj+1 j+1 2yj IE?er]Q

Throughout the proof we will make use of the following basic facts:
i/l < lyj—1/zj-al (G €N),

7
<ad+y; <8= |y /zipl < §|yj/fﬂj|,

oo | =

1
:E?er? >1/2 = |yj41| < §|y] .
We distinguish between three phases of convergence:

Phase 1 (Convergence towards equilibrium)

The first phase Py = {0,...,j1} is defined by the condition % < y7 for all j € P, and 3 ,, > y7 ..
From (3.6) we conclude that x?ﬁj > yF ., for all j € N. We want to prove that after O(log(u)?)
iterations we leave Phase 1 and x;, 1 is bounded from above and below.

Start of Phase 1

Case 1: 22 + y2 > 8. As long as IE? + y? > 8 the iterates decrease by a factor of 1/3:

lzj41| < 5 |~”CJ|(1 +1/8) < 16|$J|
1
[Yyj 1] = §|yj|(1 —1/(z5 +y7) < §|yj|,
81 1 1
Tty S gesvi gyl < 3@+, (3.9)

Since 23, 4 y3,, is also bounded from below (by 4/3) we come to Case 3 after log(x3 + y2)
iterations.

Case 2: 23 +yg < . Then |y1]| = 3|yo(1 — 1/(23 + 42))| = lyo| ™ > 1/2, therefore we come to Case
1 or Case 3 in the first iteration. x; is bounded from below and above by

1
) =

1 20
5+ 3 3ol

1 _ 1

Lol + laol ™) 2 foa] = Sfrol(1 +
while |y1] < ‘y"“ |z1| < plwg| 7t If 23 + 32 > 8 (Case 1) then we will need O(log(u)) iterations to
get to Case 3.

Case 3: o +y3 € [3,8].

Core of Phase 1. Without loss of generality, we assume :L'O + 8 € [%,8] (at most O(log(y)) iterations
are necessary to ensure this). Whenever the iterates 7 +y? are contalned in (%, 8] the ratio |y;41/2;41]

decreases by £ (see (3.7) ). After O(log(u)) of these steps we will therefore leave Phase 1. At last we
show that every O(log(y)) iterations one of the iterates is contained in [3, 8].

Let :c + y] [£.8] and :ch + ijr1 ¢ [%,8]. We prove that after at most j/ = O(log()) steps we
elther get back to x?ﬂ-/ + y?ﬂ-/ € [%, 8] or we leave Phase 1. In the latter case we bound x?ﬂ-/ from
below and above.



Case 1: :c?H + y]2+1 > 8. Since

1 1

Y2 = Zy?(l —1/(z5 +y3))* < Z8 49 < 98,
1 1

2 _

i =g 21+ 1/(x5 +93))? < ;8-81<162,

we will either leave Phase 1 with |z;1;/| € (2,13) or we will arrive after 4 steps (see (3.9) ) at
Y € 158

Case 2: 25, +y7,, < 1. As in the start of Phase 1, Case 2, we get either Yo > 3 or a3, > 1. We
will now bound z;4; from below and x;12,¥y;+2 from above.

1 1 |zo] 1
|1'j+1|2§|1'j|—2| ||]|—8M 17
1 —
42| < 5125l + 2 7H) < 5,
[Yjal < pilwjpn] < 5p.
After at most O(log(y)) iterations one of the iterates j + j' fulfils :E?_H, + yJ2+j, €[5, 8].

The number of iterations necessary to leave Phase 1 is O(log(u)?).

Phase 2 (Linear convergence)
From Phase 1 we have 22 ,; > y? ., and |z, 1] € [gp~",5p]. It follows |x]1+2| € [5,5p] and after
O(log(p)) steps we get |z, | € [§,2]. After another O(1) steps (3.8) yields |y;,| < § and ||z;,|—1] < 3.
After O(log(p)) iterations we leave Phase 2.

Phase 3 (Quadratic convergence)
Phase 3 is defined by the condition |y;,| < & and ||z;,| — 1| < 3. We prove

|zj1] — 1| < 2max{||z;| — 1], |y;]}?,
Y1) < 2max{||z;| — 1], [y;]}?

for all j > ja. Let ¢ := max{||x;| — 1|, |y;|}. Then

lz41] = 1 = 132101+ —2—p) — 1]
I_]J,-l — 2$J x?+y‘72
1 1 1 |l 1,
=|5lz| = 14 <l ™" + 5L — Sl
2" 2™ 223 +y7 2 J
1 y?
§| |:E| 1+ = |g; - 93
! Z Wy 2513 + |2y
1 1 3
<Z(l—lzD?— + 242 < 942
— 2( |1']|) |$]| + 4y] = q )
ly; |:l| 11— 1 |_1||yj|x?+|yj|3*|yj||
Yir1l = 1Y 3 +yr 2 22 4 y?

4 4 1 4
< zlyfl+=(ef =y < gglul® + Sllasl = Ullzs + 1ly;]

60
< L2+ D < 2
< Sl + ol — 1yl < 2

Consequently we get max{||zj,+;| — 1|, [yj+;]} < 22'8-2" = 4=2’ which ensures |)\?m — 1] < ¢ for
Jmin = 0(108;(#)2 + 1Og(10g(1/5)))'



Let S = TJT ! be a Jordan decomposition of S, where

Jl 1
Ai

consists of { Jordan blocks J;. We define the series J(© := J, JU+1) := 1(J@) 4 (JU))~1) which preserves
the block-diagonal structure. We fix a single Jordan block J; with corresponding eigenvalue A and define
the sequence

1 _
A= 50+ Dy Xoi= A
We define the upper-diagonal structure (of the same size as J)
a f
U, 8) :=

o™

Let JU) = U();, 3;). Then it holds
JU = UNjs1, Bj)s  Bjn = %@‘(1 -2
such that |3j41] < max{1, |)\;2|}|6j| and
Bl <ws mi= max (14]A77)).

As in the first part of the proof (core of Phase 1, Case 2) the norm of )\j_l is bounded by 8u such that
|3;] < (8w)7 (this is only a rough estimate). After i, steps of iteration (3.4) we get
Jl(imin)
Simin =T T_la Ji(imm) = U()\imin7ﬁimin)’

with |3;,,,.| < (8u)'min. From (3.5) it follows

|6imm +1 | < 25|6imm

Y

such that after i,,;, steps of the iteration we get

|32 1m

Taking € := ¢/(16u condz(T)) instead of e yields

< (16epu)imn.

152i,,:, — sign(9)]l2 < e.



4 Structure of the Matrices Involved

4.1 Sylvester Equation

Before we formulate the theorems in detail, we first outline the basic idea. Let A € C**" B € C"™*™,
G € C™*™, The spectra o(A),o(B) of A, B are assumed to be contained in the sets (see Figure 1)

og(A) CSa={z+iyeClra1 <z <Aazlyl <u} (4.1)
O'(B)CSB = {:c+iy€@|>\3,1 <:E<)\B,2,|y|§u}, (42)

where
A2+ A2 < —3. (4.3)

The assumption (4.3) is only needed to simplify the basic idea, later we will only need Mg 2 + A2 < 0. In

Figure 1: The spectrum o(A) of A is contained in S4, that of B in Sp. The sets I'4, ' have a distance of
at least 1 to S4,SB.

order to express the matrix exponentials exp(tA), exp(tB) by the Dunford-Cauchy representation

1

exp(tA) = — ¢ exp(&t)(&1 — A)~1dg,
27TZ Ta
1

exp(tB) = — exp(nt)(nI — B)~'dn,
27TZ T's

we define closed paths around S4, Sp:
T4:= {a—i—ib‘ (@€ Par—1, an+1AbeE{—pu—1,pu+1})
‘vMG{LM—ley+HAb€Pﬂ—Lu+H)}
Ty = {aJrz‘b‘ (@€ Mp1—1Apa+1Abe{—p—1,u+1})
\/me{hm—ldgy+HAbe}u—Lu+ﬂ)}

The paths are chosen such that dist(I'4,0(A4)) > 1 and dist(T'p,0(B)) > 1. From (4.3) we conclude that
the unique solution X € C™*" to the Sylvester equation

BX+XA+G=0 (4.4)

is (cf. [14])

X = exp(tB)G exp(tA)dt. (4.5)
0

10



Insertion of the Dunford-Cauchy representation yields
— f{ f{ (€1 — A *G(nl — B)~ / exp(t(£ 4+ n))dtdédn. (4.6)
4’/T s JT5

If we replace [~ exp(t(¢ + n))dt by a suitable quadrature formula ZJ__k wjexp(t; (€ +n)) (with t;,w;
independent of £ + 7)), then the modified solution reads

X= L j{ (€1~ A IGIT— B Y explty € + m)iedy (4.7)
4m T'a JI'p j=—k
k
= Z wjexp(t;B)G exp(t;A).
j=—Fk

The error | X — X|| is estimated in the following theorem preceded by two auxiliary lemmata.
Lemma 4.1 Let M € C"*", z € C with dist(z,0(M)) > 1.

1. If M is symmetric, then ||(z] — M)tz < 1.
2. If M =TDT~ ', D = diag(dy,...,dy,), then ||[(2I — M)7!||2 < conda(T).

Proof. Let M = TDT~', D = diag(ds,...,d,). Then
[(z1 = M)7 |2 = |T(2I = D)"'T7 |2 < conda(T)||(21 — D)~"{|2 < condy(T).

If M is symmetric, then condz(T") = 1. |

Lemma 4.2 (Stenger) Let z € C with Re(z) < —1. Then for each k € N the points and weights

= log <exp(jk1/2) + \/1 + exp(2jk1/2)> : (4.8)
= (k+kexp(=2jk~'2)"Y2 = —k, ...k, (4.9)

fulfil
/O ~ exp(tz)dt — J_zk_:k w; exp(t;2)| < Cune exp(Sm(2)| /) exp(—VE), (4.10)

where the constant Cgine does not depend upon k, z.

Proof. The function ¢t — exp(tz) is holomorphic in C and satisfies [20, (4.2.59)] with Co = 1,a =1, = 1.
The points t; are the zj from [20, Example 4.2.11] and the w; are the weights in [20, (4.2.60)] (with d := 71,
h=k Y2 andn =N = M = k). Applying [20, Example 4.2.11] yields the estimate

k

/000 exp(tz)dt — Z w;jexp(t;z)| < Cy exp(—Vk)

j=—k

with a constant C5 depending upon z. Finally, we estimate the constant C3. As in [20, Example 4.2.11] we

define
1

tanh(z)’

¢(2) :=log(sinh(2)),  ¢'(z) =
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such that ¢ is a conformal map of Dy := {z € C : |arg(sinh(z))| < d} (the analyticity domain for the
integrand) onto the strip Dg := {z € C : |Sm(z)| < d}. For the function G(t, z) := exp(tz) satisfying the
conditions of [20, Example 4.2.11] the quadrature rule of Stenger can be analysed by use of the splitting

< Gt 2) > =62 |, <~ G(t,2) = G(t,2)
| 9= 2 ) <\l G0 2 oty | 2w | 2 e |

J=k+1
Due to [20], each term in the above error estimate can be bounded by

1

_Csinc sup |g(§7 Z)| exp(f\/E),

3 Re()>0,Sm(e)|<d
where the constant Cg,. does not depend upon k, z. From the estimate

Re(z)<0,Re(£)>0

G(&; 2)| = exp(Re(z)Re(§) — Im(£)Im(z)) < exp(|Sm(z)|/)

we obtain C3 < Cgine exp(|Sm(2)|/7). |

Theorem 4.3 (Representation of the solution to the Sylvester equation) Let A € C"*", B €
Cmxm G e C"™™. The spectra o(A),0(B) of A, B are assumed to be contained in the sets Sa, Sp
defined in (4.1) , (4.2) , where we assume Aa 2 + Ap2 < 0. We define

a:=3Aa2+ g2l
ca = max{|[(s] — ad) |2 | 2 € C, dist(z, 0(ad)) > 1},
cp = max{||(z] — aB)7|2 | z € C,dist(z,0(aB)) > 1}.

For each k € N and j € {—k,...,k} let t; € [0,1 + Vk] and w; € (0,1) denote the points and weights from
(4.8) , (4.9) . If X is the unique solution to (4.4) , then the matriz

k
X = Z aw;j exp(at; B)G exp(at; A)
j=—k
and the constant
24 20p, «

C(A, B) := cacpCeinc exp( )R(S +a(pp+Aa2—Aa1))8+alp+ A2 — A1)

fulfil R
IX = Xll2 < C(A, B)|| G|z exp(—Vk).

Proof. If X is a solution to (4.4) then X satisfies
(aB)X + X(aA) + aG = 0.
The spectra of aA, aB fulfil als 2 + alp2 < —3 and we can define the sets I'4,'p as
4= {a—i—ib‘ (@ €ladags —L,adao+ 1 AbE{—ap—1,au+1})
V (@€ {adar—1aras +1} AbE [—au—1,au+ 1)) }
Ty = {a+ z‘b‘ (@€ adpy —1,ahps + 1 AbE {—au—1,au+1})

V (a€{arps—1l,adpa +1}AbE [—ap—1,ap+1]) }

12



such that dist(T'4,o0(ad)) > 1, dist(I'p,o(aB)) > 1, Re(§ +n) < —1 for & € Ta,n € I'p, and
o(ad) C T4, o(aB) C I'p. Let k € N and ¢j,w; be the points and weights from Lemma 4.2. We
estimate the approximation error by

(4.6),(4.7)

[X — X2 4ﬂ27§ (€I — aA)"raG(nI — aB)™!
I'y JT'p

k

/O exp(t(€ + 1) dthwjexp J(€+m)) | dgdy

2

An2

< C(A, B)||Gll2 exp (~VE) .

Smictml<2i2an ]
f f 0| G lacnCane exp(>E “) p(—VE)dédn

Corollary 4.4 (R(k)-approximation to the solution of the Sylvester equation) We use the same
notation as in Theorem 4.5. Let kg denote the rank of G. Then the minimal rank kx needed to approzimate
the solution X to (4.4) up to an error of || X — X|l2 <, € € (0,1), by an R(kx)-matriz X is bounded by

kx < kglog(C(A, B)|Gll2e™ )% (4.11)
Since ||G|l2 = ||AX — XBll2 < (||All2 + || Bll2)|| X |2 we also get the estimate for the relative error
IX = X[l2 < e[l X2
with X of rank kx < kg log(C(A, B)(|All2 + || Bll2)e1)2.

Remark 4.5 If we consider only the dependency on € in (4.11) then we have kx = O(log(1/¢)?), while in
[8] the estimate kx = O(log(1/e)) is established. However, the desired accuracy e, the size of the matrices
and the spectrum of the matrices is typically not independent. If we assume that the desired accuracy €
is of the size log(1/e) = O(q), the size of the matrices n and m is log(n +m) = O(q), the norm of the
matrices is log(||All + || B||) = O(q), the distance A between the spectrum of A and that of —B is bounded by
log(1/X) = O(q) and the mazimum of the imaginary part of the eigenvalues of A and B is bounded by O(X),
then the estimate (4.11) and the one from [8] read

kx = 0(q%),

which coincides with the estimate from Penzl [15] for the symmetric Lyapunov case.

Lemma 4.6 (Approximation of the operator exponential) Let u € Rx>¢ and A € C"*" with spec-
trum o(A) C{zx+iy € C|xz > 2 and |y| < p}. For the parabola

1 as 1
Pai= {5+ 170"+ 5 +in|n € (~00,00)} (412)

and the interior Qa4 := {{+in | n € (—00,00) and & > L(u+ 1)72n? + 1} we define the so-called strong
P-positivity constant

M := sup H(zI—A)71H2(1—|— Vz|)-
zeC\Qa

Then the matriz exponential exp(—A) can be approximated by a linear combination of resolvents, i.c., for
each kg € N there exist points z; € C\ Qa and weights w; € C such that

kg
lexp(—4) = 3 wylest — A) Mo < Mexp (40 + 17 — e+ D2/K27)). (113)

j=—kg

13



Proof. We want to apply [5, Theorem 2.4]. The integration parabola is defined by
a .
Ly = {7n* +b+in | n € (—00,00)},

(p+1)"2and b:=2— %(u +1)2. In the following we further estimate the expression appearing
We choose the parameter k := 4 and get

where a := %
in [5, (2.12)].
b(k)=2—(k—1)/(4a) =1,

1.k

d= (1= )5 =2An+ 1)

5 =

s = ((2md)*a/k)!* = (20 (u + 1)")V°,

¢ = My exp(d®a/k +d—b) = Myexp((n+1)%/2 +2(u+ 1) =2 + ;(u +1)%)
= My exp(4(p+1)%/2 —2).

To estimate the constant
[2az/k — i

sup —,
2€C,|Sm(2)|<2(ut1)? 1+ /|az?/k + b — iz|

we distinguish between two cases for z = x + iy:

My =

(4.14)

L TE [z] < 6(u+1)2 then My < [2az/k —i| = /(5 (u+ D=2[z])2 + (S + 1)=2ly] + 1) <3.

2. If |z| > 6(u + 1)? then we estimate the numerator in (4.14) by

€T
+1) 22| +3/2<24 ———
(4 )lal +3/2 <24 7%

A~ =

) 1 _ 1 _
[2az/k — il = |5 (s 1) 2 (g 0+ 1) 2y~ 1)] <
The denominator can be bounded from below if we consider only the real part:
2 . 1 2,2 1 22 3 2
laz®/k +b—iz] > |8(u+1) = +2 8(u+1) y 2(u+1) +yl.
From
1 22 3 2 2
| =g+ )77y = Slu+ )7 +yl <4(p+1)° and
1 -
—(nt1) 22% +4(p +1)?

we get 1+ /|az?/k +b—iz[ > 1+ /5 (n+1)"222 > 2/3+ 15 (u+ 1) |2|. Therefore M; < 3.

1 1 1
g+ D)%% 421 > (u+ 1) %% + S (p+ 1) %0 >

The error estimate [5, (2.12)] reads

lexp(—A4) = 3 wy(zl — A7 2 € Mym3exp(d(u+1)2 - 2) |2k 4+ 22

kg
Z1 Zy
| {Nl NJ , (4.15)
Jj=—kg

where

Zy = 2Vkexp(—s(kg +1)%/3) = dexp(—(27%(n + 1)*)V/3 (kg + 1)%/3)
< dexp(— (272 = 1)(p+ 1)¥2) exp(—(u + 1)? kg )

3
< dexp(—5 (u+ 1)) exp(— (1 + 1) ki),
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Zy = kexp(—s(ke +1)*/%) = 7y,
1 1
(1 —exp(=4)) > S(p+ 1,

Ny = Va1 = exp(—s(kn +177%) 2 ()7 5
= (ke +1)"/3(2rdka®)/* = (kg + 1)V (An(u+ 1)) 2 20+ 1)

Inserting these bounds in (4.15) , yields

21 22 3 3 2/3 2/3,2/3
[N1+NJ (u+1)4exp( S(u+1) exp(—(uﬂ) kE>

3 P
< 6exp(—3) exp (—(u+ 1))

kg
lexp(=4) = > wilzl = A7

j=—kg
3
< My/m3exp (4(pn+1)% —2) Gexp(fg) exp <7(u + 1)2/31%/3)
< Mexp (—(,u + 1)2/3k§3/3 +4(p + 1)2> )
]
Corollary 4.7 (Approximation of the solution to the Sylvester equation by a sum of resolvents)

Let A € C"*", B e C™*™, G € C"*™, A\ < Az € Reg, 0 € Rsg. The spectra o(A), o(B) of A,B are
assumed to be contained in

S={z+iyeC| M <z <X and |y| < p}.

We define the constants

a:= g|>\2|_1,
c:= CegixaB}max{||(zI —O) 72 | 2 € C,dist(z,0(C)) > 1},
Ce 1= Cg{l%XB}rggXH exp(tC) |2
For each k := (2kg + 1)?(2k; + 1) with kr, kg € N and
kg > <(log(M) +2)( (12@/'_) 1)72/3 4 4( (12|+A;/|_) 1)4/3>3/2 (4.16)

we define the integration parabola T, the interior ) and the strong P-positivity constant M by

D= {5((1+ VB +1) 27 + 5 +in| 1 € (~o0,00)),

Q:={+in|ne (- )and§>1((1+\/_)au+1) +l},

M = max max su 2 — DI+ atC)™ ! (I++/|2])
L mCe{AB}zeCE’Q”(( )1+ atC) a1+ V)

Then there exist points t; € [0,00) and weights w; € C, j € {1,. k;} such that the solution X to (4.4) can
be approzimated by a matriz X = Zj Lwji(z I — B)7'G(z;1 — A) with

1X — Xlls < 2Clne expl(2 + 2au)/w)$ﬁ|}\2|(13 430~ = A exp (—v/E) (4.17)
+emt G2 o 1) exp <2+4(3+3‘/_ BRICIE R T 1)2/%;/3).
2| | A2 A2
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If A and B are symmetric then

A1

o P V) 4+ MOk +9/2) el Gl exp(6 = k().
2

1X — Xl2 < 3Cune exp(2/7) || G2

Proof. Let X be the unique solution to (4.4) . According to Theorem 4.3, the matrix

ki
Y = Z aw;j exp(at;B)G exp(at; A)
Jj=—kr1
fulfils
X =Yl < €Cline xp(2 + 2000)/7) D2 5 1 -+ 2o — ) exp(—/)
3[1G]l2

= ¢*Cyinc exp((2 + 20) /7) (13 4 32|~ (1 = M))” exp(—/kr)

3272  Aq|
which produces the first term in (4.17) . The spectra of the matrices —at; A+21, —at; B+2I are contained in
{z+iy € C |z > 2and |y| < a(1++/kr)p}. Application of Lemma 4.6 for the matrices —at; A+2I, —at; B+21
instead of A and a(1 + v/ky)u instead of p yields

=:FEa,;
ke
lexp(at;A —2I) = > 1bji(%.0 — (—at;A+2I)) " ||
’L‘:*k}E

< M exp (4(04(1 + \/E)M +1)% = (a1 + \/k—f)ﬂ + 1)2/3k12«]/3)

and the same for B instead of A. For the matrix

kr
X = Z aw;Ep jexp(2l)Gexp(2)E 4 ;
Jj=—kr1
we get the error estimate
~ kl

IV = X2 =Y = Y aw;exp(2])exp(at; B — 21)G exp(2)Ea ;

Jj=—kr1

k:I N
+ Z aw; exp(2]) exp(at;B — 2I)Gexp(2I)Ea ; — X||2
Jj=—kr1

< (2k1 + 1)ac,||G||2e* M exp (4(04(1 +VEDp+ 1) — (a1 + Vkr)p + 1)2/31%/3)

k
o+ (2kr + Do i B j]12][Glloc*M exp (4(a(1 FVEDE+ 12 = (a1 + VErp + 1)2/3k§/3)
=—FKr

(4.16) )
< (2k; 4 1)adce||Gl|2¢* M exp (4(a(1 + VEDp+1)2 = (1 + V) + 1)2/%33/3)

9|G|l2 ( 3+ 3Vkr 5 3+ 3Vkr 273 2/3)
=ceM 2%k +exp [2+4(—Y 0 +1)2 — (—2Y 2+ 1)23% .
If A and B are both symmetric, then we can apply Lemma 4.1 and get c =1, ¢c. =1, u = 0. ]

Corollary 4.8 (H-matrix approximation to the solution of the Sylvester equation) We use the
same notation as in Corollary 4.7. We assume

G € My (Trxs)
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and that for 6 € Rxo all resolvents (z;1 — A)~1, (2,1 — B)™' can be approzimated by an H-matriz AU) ¢
M ks(Trxs), B9 € My gy (Trxr) with

(25 =A™ = AD 2 <6, ||(z] = B) ™" = BYV||]2 <6 (4.18)

(for a more detailed analysis concerning the existence of H-matriz approximants the reader is referred to
[3]). If we define the approximate solution

k
X = Y wBOGAD),

j=1
then the approximation error is of the size
1X = Xpll2 = O (exp(—/Fr) +exp(—k3/*) + )
(neglecting linear terms in ky) while Remark 1.2 yields
Xy € Myt iy (Trx ), kx = O (log(n +m)*(ka + kp)kckpkr) -
If the rank needed for the H-approzimants is ko = kg = O(log(1/9)) then
X — Xnlla =00) for kx = O(kglog(n +m)*log(1/5)%).
Since ||G|l2 = ||AX — X Bll2 < (||All2 + | Bll2) | X |2, we also get the above estimates for the relative error.

4.2 Lyapunov Equation

The Lyapunov equation
ATX + XA+G=0 (4.19)

for A, G € R™ " is a special Sylvester equation (4.4) for B := A”. Let the spectrum o(A) of A be contained
in the left complex halfplane and let X denote the unique solution to (4.19) .

If G is of low rank kg > 0, then Remark 4.5 proves that for each £ € (0,1) there exists a matrix Xp of rank
O(log(1/¢)) such that || X — Xgrll2/||X||2 < €. For the ease of presentation we neglect the constants.

If G is an element of the H-matrix class My k. (Trxr) and if the resolvents (2 — A)~! in (4.18) can be
approximated by an H-matrix up to an error of ¢ € (0,1) with blockwise rank k4 = O(log(1/e)), then
Corollary 4.8 proves that there exists a matrix X3y € My iy (Trxs) of blockwise rank kx = O(log(1/¢)%)
such that || X — X||2/[| X||2 < e. Again we neglect the constants.

These results are a generalisation of the ones from [8] and [15] (for the R(k)-matrix case) to the H-matrix
case. With the assumption that A € R™"*" is symmetric positive definite and G of low rank k¢, the author
of [15] was able to prove that the singular values Ay > ... > A, > 0 of X are bounded by

m—1
<(
7=0

2j+1

)2, Km,j = condg(A) 2m . (4.20)

Iimyj —1
Km,j + 1

)\’mnkGJrl
A1

Remark 4.9 In order to compare our estimate to the result by Penzl [15] we have to analyse (4.20) . We
assume that the spectral condition of A is larger than 1. Let € € (0,1) and

m := [(logy(conda(A4)) + 1)(logy(1/2) + 1)].
<

It follows for j < [logy(1/e)] that k; = (COIldQ(A))2g7+'11 (condg(A))1/ logz(condz(4) < 9 gng

nﬁl -\ nogﬁ/eﬂ N
m,J < - < 3—210g2(1/a) <e.
jo fomg T 1 = 3
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This proves that the solution X to (4.4) can be approzimated up to a relative error of € by a matriz X of
rank O(kc logy(conds(A))logy(1/¢))).

A conclusion of all the previous results is that the solution X to the Lyapunov equation can be approximated
by an H-matrix (or R(k)-matrix) if G is an H-matrix (or R(k)-matrix). An algorithm to compute the
‘H-matrix (or R(k)-matrix) approximation efficiently will be presented in the following sections.

4.3 Riccati Equation

Let A, F,G € R"™"™ and let the spectrum o(A) of A be contained in the left complex halfplane. A solution
X of the Riccati equation
ATX + XA -XFX+G=0 (4.21)

can (for theoretical considerations) be regarded as a solution of the Lyapunov equation
ATX +XA+G=0, G:=G-XFX.

If F and G are of rank kp, kg < n then G is of rank at most ks = kr + kg and we can apply Remark 4.5
to prove that the rank kx that is necessary to approximate X up to a relative error of € in the set of
R(k)-matrices is kx = O(log(1/¢)).

If Fisof rank kp < n and G € My ko (Tix1), ke < n, then G e My kotkr (Trxr) and we can apply
Corollary 4.8 to prove that the blockwise rank kyx that is necessary to approximate X up to a relative error
of € in the set My (Trx1) is kx = O(log(1/e)®).

Note that we make use of the low rank of the matrix F, while G can be an H-matrix. For the general
situation that F is not of low rank, the algorithms presented later are still applicable, but we cannot bound
the (blockwise) rank needed to approximate the solution to (4.21) .

4.4 Matrix Sign Function

In the last two subsections we have seen that the solution X to the Riccati or Lyapunov equation can (under
moderate assumptions) be represented as an H-matrix. The following two questions arise:

AT

e Does the matrix sign ({ r

A ]) consist of H-matrix substructures ?
e Do the iterates S; from (3.4) bear any specific structure ?

We assume that the matrices F, G € R™*™ are symmetric, F' is of low rank kp := rank(F) and A — FX is a
stability matrix (X solves (4.21) ). We define the matrix

AT @G
s=[4 5

For the solution X to (4.21) there holds

s=17 3T w17 I]l
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and it follows (see [17] and use sign(S)S = Ssign(S))
=[5 {457 DF ]

s A 4

[ -XZ-1 | 2X+XZX
T -7 | I1+7ZX ] ’ (4.22)
where Z satisfies the Lyapunov equation
AZ+7ZAT+G =0, G:=-FXZ—-ZXF-2F. (4.23)

According to Remark 4.5, the matrix Z can be approximated by a low rank matrix Z with ky := rank(Z ) =
O(krlog(1/e)) and || Z — Z]|2 < e. A direct conclusion is

Corollary 4.10 (Approximation of sign(S)) The matriz sign(S) can be approximated by a matriz

K= {gn §12 ], K1+ 1,K21, Koo — I, K12 —2X € R(kz).
21 22

We denote the index set by I :={1,...,n}. The matrices K11, Ko1 and Kag are contained in My i, (Trx1)
and K12 is contained in the same space (H-matriz or low rank matriz) as X but with rank increased by k.
The approximation error |Z — Z||2 leads to the estimate

Isign(S) — Kll, < e(1+ [ X]3) = O(e).
Lemma 4.11 Let Ay := A — FX and Fy := F. For each i € Ny we define

Ai+1 = (Az + A;l) and (424)

N — N

Fip1:= (F + AT R AT (4.25)

Ultimately A; converges to —I (because Ao is a stability matriz) and F; converges to —Z. The iterates F;
can be approximated by a matriz F; of rank at most 2kz, such that

|F; = Fill2 < el Ail2.

Proof. Since Y := —1Z solves (due to (4.23) ) the Lyapunov equation (A — FX)Y +Y(A—- FX)T+ F =0,
it holds

o . [A-FX F [y —I11[—-(A-FX)T 0 y 117"

0 0 —(A-FX)T |~ | I o0 0 A-FX I 0 '

For the matrix
s[4 R [y fI AT 0 ][y -117"
71 0o -AF - I 0 A I 0

we perform the Newton iteration (3.4), Sjy1 := (5’ 571, and get

g A E|_[Y -I 17" [ A -YAT —AY

Tlo AT T T o0 10 AT

It follows F; = =Y AT — A;Y = %(ZAiT + A;Z) and for the matrix F, = %(ZAZT + AiZ) of rank 2kz we

obtain .
1£: = Fill2 < 5(112 — Z|2l AT ll2 + [|Aill2l| Z = Z|2) < el Asllo-
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Lemma 4.12 Let Ag € C**™ be a regular diagonalisable matriz whose spectrum o(Ag) does not intersect
the imaginary axis. Let Ay = TDoT ! be a diagonalisation of Ay, d := mMaxycq(a) |A + A7, Foralli e N

we define

1
A; = 3 (Ai—1 + A;_ll) )

If for all x + iy € o(A) the imaginary part is bounded by |y| < |z|, then the norms of A;, A; " can be bounded
by
IA7 2 < V2eondo(T), [ Ail2 < (2"d+ V2(1- 2—i)) condy(T). (4.26)

If 0(Ap) C R, then

||A;1H2 < condz(T), [|Ai]|2 < (1 +27"(d — 1)) condy (7). (4.27)

Proof. We define for i« € N the matrices

1 _
Di = §(D’L'—1 + Difll)a

such that A4; = TDiT_l. Let HMHT = ||T_1MT||2 Then ||AZHT = ||DIL||2 and ||AZH2 < COHdQ(T)HAiHT.

Case (4.26) : If |y| < |z| for all  + iy € o(A) then this implies |Sm(d;)| < |Re(d;)| for d; = (Dg);;. For all
subsequent d; = (D;);; with  + iy = (Dj_1)s it follows

di: I_Zy):

. . Y
(I+Zy+x2+y2 m2+y2+l(y_1.2+y2)

N =

which implies |[Sm(d;)| < |Re(d;)].
We prove || D; |2 < v/2 for all i € N and by induction

1—1
IDifl2 < 277+ ) 2772,
j=1

which is fulfilled for ¢ = 1. Let ¢ € N and D;_; = diag(dy,...,dy).

|Sm(d) | Re(as)|
1D |2 =2 max |d; +d; |7 < 2/v2 = V2.

1—2 1—1
1 -1 1 Loo—it1 —j _ o—i —j
IDille = (it + DY)l < 5v2+ 52 d+j§:132 W2 =27+ Y 27V,

j=1

Case (4.27) : Same as above but all (Dj;);; are real-valued and thus 2max;—1,.. n |d; + d;1|*1 <1. [

Theorem 4.13 (Newton iteration for sign(S) with low rank G ) Let the matrices F,G € R™"™ be
symmetric, F' of rank kr and G of rank k. Let € € (0,1) and A € R"*™. We assume:

1. The solution X to (4.21) can be approzimated by a matriz X of rank kx such that || X — X||2 < e.
2. A— FX is a stability matriz.

3. FEach of the matrices A; from (4.24) in Lemma 4.11 can be approzimated by a matriz A; e Mot ks (Trxr)
such that ||A; — A;ll2 < e.
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Then each iterate S; of the iteration (3.4) can be approzimated by a matriz

: K k(Y 6) 7@ (i) ()
K% = Kb-l) K%?) Ki7, Kyy € Mygaton, (Trxr), Kis € R(2kx +2kz), Ky € R(2kz)
21 22

and the approximation error is bounded by
I15: = K@ll2 < (1 + [|Aill2(2 + [ X |2 + 1 X113)-
Proof. Using the notation from Lemma 4.11, the statement holds for
SO{)I( —I] { —(A-FX) ~F T} {X —I]I{X —I](SO){X —1}1
0 0 (A-FX) I 0 I 0 I 0

and we can conclude

I
~ >
o’\(
(I
—
O

H(’IH

[ AT+ XF | ATX XA XFX]

F; —-A; — F,X

We define K9 := AT + XF,, K{) .= —A4; — F;X, K) .= —ATX — XA, - XF,X, K§! := F, and get the
error estimate
1S — KDl < [|A; — Agll2 + || X || i — Fill2
+max{[|[F; = Fill2, 2[|Aill2]| X = X|[2 + [|F = Fill2| X3}
< e+ el| X[|al|Aill2 + max{e] Aill2,  2e[|Aillz + ]| Asll2l| X 115}
= e(1+ 2] Aillz + | Aill2 X (12 + | Asll2[l X [13)
From Lemma 4.11 the rank of F; is bounded by 2ky;. Due to the ideal property (see Remark 1.2) of

R(k)-matrices, we have rank(Kg)) < 2kx + 2kz. Since A; € My, (Trxr), it follows that Kﬁ),K()
Mot kav2kz (Trxr) ]

Theorem 4.14 (Newton iteration for sign(S) with H-matrix G) Let the matrices F,G € R™™ be
symmetric, F of rank kp and G € My o (Tix1). Let € € (0,1) and A € R™*™. The depth of Trxr is
denoted by p and the constants describing the sparsity and idempotency are Csp, Cia. We assume:

1. The solution X to (4.21) can be approzimated by X € My gy (Trx1) such that | X — X[z <e.
2. A— FX is a stability matrix.

3. Each of the matrices A; from (4.24) can be approximated by a matric A; € Mok (Trxr) such that
|Ai — Aifl2 <e.

Then each iterate S; of the iteration (3.4) can be approzimated by a matriz

K® —

KO g . ) )
Ki) K?) K9 KD € My (Tivr), K9 eRBkx), K3 eR(2kz)

with k' := 2Cs, Ciapmax{k, kx} + 2kz such that the approzimation error is bounded by

1S = KDl < e(L+[Fi]l2(1+ | X [l2) + 2/ Asll2).
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Proof. Using the notation from Lemma 4.11, the statement holds for

o _[X ~IT[-(A-FX) -F X —-17' [ x -I Ca X I -
R Y AR 0 (A—FX)T I 0 |1 0 0
and we can conclude, as in the previous Theorem,

o _ [ AT +XF | —ATX - XA~ XFX
i Fi | —A; - FX '

We define the matrices K\V := AT + XF;, K$) == —A, - F,X, K\) .= —ATX — XA, - XF,X, K} .= F,
and get the error estimate

18; — Kill2 < e(1 42| Agllz + [ Asll2l| X |l2 + || Asll2]1X[13)-

From Lemma 4.11 the rank of F; is bounded by 2kz. Due to the ideal property of R(k)-matrices,
we get K{?,Kég € My patok, (Tixr). Remark 1.2 ensures Xﬁi,flff( € My (Trxr) with k7 :=
CepCiapmax{k, kx}. Since rank(X F; X) < 2k, we get K'Y € My p (Trxr) with k' := 2k + 2ky. =

Remark 4.15 In Theorem 4.13 and Theorem 4.14 we need three assumptions:

1. The solution X can be approzimated in a suitable format, namely by an R(k)-matriz or an H-matriz
X. This has already been investigated in Remark 4.5 and Corollary 4.8.

2. A— FX is a stability matriz. This can be assumed because we seek a stabilising solution X .

3. Each of the matrices A; can be approximated by an H-matriz. If A is the (sparse) stiffness matriz
from the (finite element or finite difference) discretisation of an elliptic partial differential operator,
then A — FX belongs to My . (Trx1). The set of H-matrices was chosen such that the inverse A~1

to A can be approximated by an H-matriz A—1 with moderate blockwise rank. Since the matriz Ay is
a rank 2kg-perturbation of %(A + A7Y), we can approzimate Ay by an H-matriz. Moreover, the A;
can be regarded as the discretisation of an elliptic pseudo-differential operator which makes it plausible
that they can again be approzimated by an H-matriz.

5 Using H-Matrices for the Solution

In the last section we have used the matrix exponential in order to prove that, if the matrix G is an H-matrix
or R(k)-matrix, then the solution X to the Riccati or Lyapunov equation is an H-matrix or R(k)-matrix. The
representation of the solution X used in Corollary 4.4 and Corollary 4.8 leads to an algorithm where one can
insert H-matrix arithmetics to get a fast solver for the Lyapunov equation. For the solution of the Riccati
equation (4.21) one has to deal with a series of Lyapunov equations (4.19), where one can exploit the fact
that the matrices A, appearing in the Lyapunov equation in the v-th Newton step are rank-kp-perturbations
of A.

An entirely different approach for the solution of the Riccati equation is to use the algorithm of Subsection 3.2
with the formatted H-matrix arithmetics. We already know that the iterates in (3.4) can be approximated
by blockwise R(k)-matrices and H-matrices, but the influence of the approximation error in the numerical
scheme has to be analysed. It turns out that scaling strategies (since sign(S) = sign(a.S) for @ > 0 one can
choose a scaling parameter « in each step to accelerate convergence) are not advisable.

5.1 Application of the Matrix Sign Function

The formatted H-matrix operations (6, @,1?1:/) introduce some kind of “rounding” error that has not yet
been regarded. Our main concern is the iterative scheme (3.4) to compute the matrix sign function. Since
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there will be O(log(n)) steps, the rounding errors could be amplified such that the approximate solution
does not approximate the solution.

AT @
F -A
i € Ny as Siy1 := %(SZ + S;l). The exact starting matrix is replaced by some approximation Sy € Mo 1(T)
where T is, as we have derived in Theorem 4.13 and Theorem 4.14, the partitioning

We start the (exact) Newton iteration with the matrix Sy := [ } and define the (exact) iterates for

T:|:T[><[ IxI

IxI T } (if G has low rank), T= { Trxt Trxr ] (if G is an H-matrix),
IxI

IxI T]X]

for the index set I = {1,...,n}. For the sake of simplicity we assume that the rank & in the blockwise low
rank structures is always the same, which could be enforced by taking the maximum of all ranks appearing
in Theorem 4.13 and Theorem 4.14.

The (inexact) iterates are defined as

Siy1 = %(S’, b I/I‘?l;f(gz)) S MHJC(T), (5.1)

where @ and Inv are the formatted H-matrix addition and inversion in the set My (T). The accuracy
d, p of the formatted addition and inversion, respectively, can be controlled by the blockwise rank k of the
‘H-matrices. Typically, we have k = O(log(1/6) + log(1/p)).

Theorem 5.1 (Error propagation) Let p,d > 0, imar € N and for all i =0,. .., imax
[ I?fv(Sy)Hg <4 (H-matriz inversion error), (5.2)
H (5'1 + I?l%(@)) — (5’1 & 1/1\1;/(5'1)) H <p (H-matriz addition error). (5.3)
We define the error amplification coefficients

co =[S0 = Sll2(5 + p) .

1 S;713
Cit1 1= 5(1 +oci + i1 Ci(|p _;_ 5|)ﬁsi_1|2)
by induction for i € Ny and assume that
ci(p+0)IS; Hl2 <1 (5.4)
foralli=0,...,imqs. Then the distance of the inexact iterate to the exact iterate can be bounded by
18 = Sill2 < ci(p+ ). (5.5)

Proof. By induction, where (5.5) for ¢ = 0 is fulfilled due to the definition of ¢y. For the induction step
1 — i+ 1 we define

E;:=5; -5,
D; = Inv (S*) St
R; = ( ; +In ( i) — (S @Inv(g ))-
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Then the (inexact) iterate in step ¢ + 1 can be written as

o 1 - —
Si+1 = (Sz D IDV(SZ)) = 5(5’1 + IDV(Si) + RIL)

(Si — Ei + (Si — Ei)™" + Di + Ry)

Z Nl

N |

(5.4

(Si— Ei+ 87> (EiS; )" + Di + Ry)

v=0
1 0o
St ACB Dot R S ES)
v=1

Using the Definition of ¢; and (5.4), (5.5) we get

o0

- 1 _ — v
11 = Sizalla < 5(eilp+0) + 0+ p+ 157 2 > (clp+ oS 2)")
v=1
1 (oo}
=5+e+ allSTHE D (eilp + 0)I1S; H2) ) (o + 6)
v=0
1 IS 13
=-(1+4+c+c L — +40) = ¢ +90).
]
Corollary 5.2 We use the notation from Theorem 5.1 and define
s = max |15} |2
1€Np
We fix a number of iterations i;mar € N and assume
1 .
Vie{l,... imac} p+6< 5(c0+z‘+1)*25*4“3.
Then the error amplification coefficients ¢;, i € {0, ..., imaz}, can be bounded by
ci < (co +1)s*. (5.6)

To achieve ||S;, .. — S;,... |l2 <& one has to take

. , 19 1 , o 4
p+5§m1n{5(00+zmaz) s 217"“7 5(00+2maz+1) s dimaz 3}.

If we assume that the rank k needed to gain a relative error € in the H-matriz arithmetic is proportional
to log(€71), then the rank k needed to get an overall accuracy of € (error due to the formatted H-matriz
arithmetics and due to the error propagation) is k = O(log(e™1) + 10g(imaz) + imaz 10g(s)).

Proof. We prove (5.6) by induction. The case ¢ = 0 is obvious. Since lim; oo S; = lim; 00 Si_l, we get
s > 1. For the induction step we have to show

IS 113

1= ci(p+0)]1S; "l

1 )
1+ci+ci )§(60+i+1)521+2'

5
Estimating ||S; !||2 < s and multiplying both sides by 1 — ¢;(p + d)s it suffices to prove

%((1 +ei)(1—ci(p+0)s) +cis®) < (co+i+1)s* (1~ ci(p +0)s).
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The left side can be bounded by

1 1
5((1 + )1 —ci(p+6)s) +¢is?) < 5 + ¢+ =¢s? <

the right-hand side fulfils
(co4i+1)s*T2(1 —c;(p+6)s) > 14 (co +1)s* 2 — (co +i + 1)s*2c;(p + 0)s.

Therefore, we have to ensure

1 . ; . N 4
5 > (co+i+1)s% 2¢ci(p+0)s = (co + i+ 1)(co +1)s* 3 (p 4 )
which is true due to the assumption p 4+ 8 < 3(co + i+ 1) 7257473,

The bound on the error amplification coefficients ¢;,,,, yields

i (5.5) ‘ 0
HS’L - S’LH2 S (CO + Zmaz)s e (p + 5)7

which gives the last assertion of the corollary. [

Remark 5.3 Theorem 5.1 is only a worst case estimate. In practice the error amplification is almost
negligible. However, in the literature (see, e.g., [1]) an acceleration technique by scaling is proposed for
Newton’s method to calculate the sign of a matriz. Iteration (8.4) is replaced by

1
SiJrl = 5(0[51 + Otilsi_l), o > 0,

which is equivalent to one Newton step with the matriz a.S; instead of S; (both have the same sign). In the case
a < 1 the norm of the inverse is amplified by a factor of o=t and estimate (5.6) indicates the consequences:
the error is amplified by a2 for each Newton step where the scaling technique is used. Therefore, scaling is
only an option in the first step if the initial error is cg = 0.

From Theorem 5.1 the bound for the distance of the inexact iterates S; of (5.1) to the exact iterates S;
grows with increasing ¢, therefore it could happen that Newton’s method converges while (5.1) is divergent.
The next Lemma ensures at least local quadratic convergence for the inexact iterates.

Lemma 5.4 (Local convergence) We use the notation from Theorem 5.1, including assumptions (5.2),

(5.3), (5.4). We define o
o= I_Ié%X”Si + 872 > 2,

and assume

q =I5 I < -, (5.7)

O = | =

p+d< -0t (5.8)

Then it holds for i € N that v
157 = Ill2 < ¢* +o(p +9).
Proof. The case ¢ = 0 is true due to the definition of q. We define
E;:=1-57,
D; :=Inv(S;) — S;7°1,
R = (8i +Inv(Sy)) — (Si & Inv(Sy)).
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The induction step ¢ — ¢ + 1 follows. First we get

(D; + Ri))2

l\D|H

1. 1.
S2, = (55- 55

. 1
—SQ+ S + I+ (S S )(Di + Ri)® + 2(Di+ Ri)?

3 v & —1 2 1 2
- 3 3 L " 1 1
E+ § E! S + 87 )(Di + Ry) +4(D + R;)

~ ~ 1
—I4- ZE” s + 87 )(Di + Ri)* + 1(Di + Ri)?,

1 |IEl13

1 1 (¢? +o(p+9))?
e <
15741 — Ills < 777 IIEII 500 +0)+(p+0) <

1—¢% - (p+5)

So(0+8)+ 3(0+ ).

We have to prove

1(¢* +o(p+9))?
41—-¢* —o(p+0)

1 i+1
+50(p+0) + 4<p+5>gq2++a<p+5>.

Multiplying both sides by 1 — q , we get for the left side

L= L 4 ol o) +

and for the right side

~alp+
%(1 — ¢ oo+ O)olp+0) + 71— —(p+6)p+9)

RS :=(q
The left side can be estimated by

+olp+08)1—q¢* —alp+9)).

i+1 1
< 2"t —
LS 4q + 20(p+5) 4(p+5)

1 +1 5
- d b
9t 80(p+ ),

while the right side can be estimated by

i+1 i i+1 i+1 i+1 5
RS=¢"" — "¢ — ¢ oo +0) +o(p+0) = (00 +6)* oo +0)¢* 2 5* T + Solp+9).

l\D|H

Corollary 5.5 (Stopping criterion) In Theorem 5.1 we have seen that the attainable accuracy decreases
as the number of iterations increases. Therefore, one has to stop the iteration as soon as possible. On the
other hand, the convergence is locally quadratic (Lemma 5.4), such that stopping just before the quadratic
convergence would lead to an approximate solution that is not even close to the solution. This dilemma can
be overcome by the following simple criterion:

e In each step of Newton’s method calculate the approzimate spectral norm n; := ||S? — I||2 (the power
iteration takes O(log(n)) steps to determine n; up to 10 percent relative error).

e After each iteration i compute

e [f the convergence rate 0; stays smaller than %, then stop after a fized number of iterations (e.g., 5).
The convergence is dominated by the H-matriz errors p,d.

o [If the convergence rate 0; grows larger than %, then stop if the rate 0; decreases, that is 0; <
3 max;—1,..; 0;.
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So far we have investigated how to compute the sign of the matrix S = [

compute the solution X that solves equation (3.3):
Nu Yo Nia Ni1 Nio — sion AT @ [r o
Noy |7 7| Nao | Noy Nop |~ 78 F —A 0 I
According to (4.22), we know

Ny =—XZ—2I,Njs =2X + XZX,
Noy = —Z,Nog = ZX,
where Z satisfies (4.23) and can be approximated by a rank-kz matrix 7 and Ni = —XZ — 2I. Therefore

it is advisable to compute a low rank approximation Ry; to (N11 + 27) and a low rank approximation Rag
to Nag (this conversion is not expensive because N1; and Nag are given in the H-matrix format). Equation

(3.3) reads
X=- ,
{ Ny } [ Rao }
If Ry; — 21 is invertible (this is easy to check, because R;; is of low rank), one can directly apply the
Sherman-Morrison-Woodbury formula to compute

1 1 1
X = (20 = Ri) 'Niz = 5Nio + ZU(I = SVIU) 'WINy, UVT = Ry

(the invertibility of Ry; — 21 is equivalent to the invertibility of the 2kz x 2kz-matrix I — %VTU). If Ry1—21
is not invertible, we solve the normalised equation

[Nn ]T[Nn ]X[NH ]T[Nm ]
Ny Nop Ny Nap |’
where the matrix on the left side is
Mg =4I +2ZX +2XZ+ZXXZ+Z7Z =41 +2ZX + 22X+ ZXX+2)Z
and can be approximated by an R(2kz) matrix plus 41. Using the low rank approximations Ry, Reo we get
Mys =4I — 2Ry; — 2R}, + R{,R11 + Ngy Noy =: 4T + Ryps.
The right side is
Mgs := —RTNis 4+ 2N13 — No1Roy = Z(2XX + XXZX +2ZX)+ XZX +4X

which can be approximated by an R(2kz) matrix plus 4X. Using a low rank representation UV’ of Rpg

we get the solution

Ll 1 11y
X = 4MRS 16U(I+4V U) V* Mgs.

Remark 5.6 (Complexity) In order to estimate the overall complexity of our method to solve the algebraic
matriz Riccati equation, we first summarise the necessary steps of the algorithm:

1. Compute the matrices A, F,G. This involves choosing a proper discretisation scheme and computation
of the entries. The achievable accuracy (for a fized blockwise rank) for the solution of the Riccati
equation may depend upon the discretisation error.

T

2. Store the matriz Sy = { ’L}T 7GA } in the H-matriz format Mo ,(T) described at the beginning of
Subsection 5.1. It may be necessary to convert subblocks of the matrices A, F,G to fit the H-matriz
format, but typically the entries of the H-matriz format can be computed directly.
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3. Compute sign(Sy) by Newton’s method (5.1) , Sit1 := 1(S; & Inv(S;)), using the formatted H-matriz
arithmetics. The number of iterations necessary depends on the spectrum of the matric Ag = A — FX
and is typically proportional to log(cond(A)) (see Lemma 3.5).

4. Solve the equation (3.3) , which basically involves the inversion of a low rank perturbation of the
identity.

The complexity for the first two steps depends on the discretisation scheme, but it should be negligible, e.g.,
proportional to the storage requirements of the H-matriz Sy.

In the third step, we have to compute the formatted sum and inverse of H-matrices in My i (T) which is of
complezity O(nlog(n)?k?). Assuming that the number of iterations is proportional to log(n), this amounts
to O(nlog(n)3k?).

The last step is again negligible.

5.2 Error Estimation

Let X be an approximate solution to (4.21) and denote the exact solution by X. We want to estimate the
relative error || X — X||2/||X||2 of the approximation, but the exact solution X is not available.

If we define R(X) := ATX + XA — XFX + G then the difference Z := X — X fulfils the equation
(A-FX)'Z+Z(A-FX)—-ZFZ - R(X) = 0.

So far we have not gained anything, because in order to determine Z (or € := || Z||2/|| X ||2) we have to solve
again a Riccati equation. The crux is that it is sufficient to determine Z up to a relative error of %: let € < %

and Z be an approximation to Z with
~ 1
1Z = 2] < 5121

Then it holds

Z Z-7Z Z Z Z
||~||2 < I H2~+H ll2 < §(17€)71 1Z]]2 < 3H ||27
X2 — 1 XTl2 = [[X = Xl2 2 X2 X1
1Z]|2 31212 >1||ZH2

X[~ (L)Xl — 31X
The relative error || X — X||2/||X||2 of the approximate solution X is therefore bounded by

2l _ X = X]» 1212
Xl Xl = Xl

This error estimator leads again to the task of solving a Riccati equation (only up to a relative error of 1/2),

but simply taking ||R(X)||/||A|| or a similar easier computable value does not give a reliable estimate for the
relative error.

6 Numerical Examples

The numerical examples in this section serve two purposes: in the one-dimensional example we can compare
our results to the ones gained in the literature. Since the structure of the matrices is rather simple, there are
plenty of methods available, but many of them depend on the special one-dimensional structure. In the two-
dimensional example the matrix G from the Riccati equation (4.21) is not of low rank, the differential operator
has “jumping coefficients” and the structure of the matrix A is not as simple as in the one-dimensional case.

28



6.1 The One-Dimensional Low-Rank Model Problem

We consider the linear quadratic optimal control problem of the one-dimensional heat flow: the goal is to
minimise

J(u) = /000 (y(t)* +u(t)?) dt

for u € Ly(0,00), where y is defined by the differential equation

ot ) = Zat,)+b@ut), €€ (0,1), te(0,0),
x(t,§ = 0, £€{0,1},t € (0,00),
m(oaf) = 330(5)) § € (07 1);
y(t) = (;);x (t,&)dg, t € (0,00).

The starting value zg € L2(0,1) is given and

b(e) ::{ 1 £€(0.2,0.3),

0 otherwise.

The differential equation is discretised by finite differences on a uniform mesh of (0, 1) with n inner grid-points
and mesh width h = (n + 1)~!. If we define the matrices

—2h2 =7 .
_ . 1 th €[0.2,0.3
A=< h? i—jl=1, Biy = { 0 other[wise | ’
0 otherwise
0.3
Clj = ¢J(I)d$, i, ] € {1,...,’[7,},
0.2

where ¢; denotes the i-th Lagrange basis function for the interpolation, then the discrete problem is the
autonomous linear quadratic optimal control problem of Subsection 2.1 with n, = n, = 1 (this implies
rank(B) = rank(C) = 1).

The H-tree for the index set I = {1,...,n} is defined in [9, Section 5]. For the iterates of Newton’s method

to compute the matrix sign function of .S '—[ AT e } we use the format from Theorem 4.13 depicted in

Figure 2 with M,k (T7x1)-matrices in the two diagonal blocks and R(20)-matrices in the two (largest) off-
diagonal blocks. The relative error ||.X — X |2/ X || for the approximate R(20)-matrix solution X can be seen
in Table 1 and the singular values of X are depicted in Figure 3. A blockwise singular value decomposition
of sign(S) is depicted in Figure 3.

J‘r,,

Figure 2: The structure of the matrices S;. The grey boxes are full matrices, the white squares are R(k)-
matrices.
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| R(20)-matrix | 100

12345678 91011121314151617181920

Figure 3: Left: the first (largest) 20 singular values of the solution X in logarithmic scale from 10715 to 10°.
Right: a blockwise singular value decomposition of sign(S). Depicted are the first (largest) k singular values
of each R(k)-block in logarithmic scale from 1071° to 10° as in the left image. Singular values smaller than
107'® are plotted as 1012,

If we use full matrices instead of H-matrices in the two diagonal blocks and R(20)-matrices in the two
(largest) off-diagonal blocks, then we would need about 15 years to compute the solution for n = 65536
degrees of freedom (by use of the matrix sign function) on a SUN QUASAR. The complexity is cubic in n.

The results by Rosen and Wang [18] computed on a SUN SPARC 600 for n = 101 degrees of freedom took
2062 seconds. This extrapolates to approximately 27 years for n = 65536 degrees of freedom, which is
equivalent to roughly one year on a SUN QUASAR. The complexity is quadratic in n.

For n = 65536 degrees of freedom we need about 6 hours to compute the solution X up to a relative error
of 1072 (cf. Table 1). The complexity is almost linear in n.

The storage requirements for the (exact) solution for n = 65536 degrees of freedom would be 35 Gigabytes,
and due to the quadratic dependency on n we are not able to store or compute the exact solution X for
larger n. An R(20) representation of X takes only 20 Megabytes (linear dependency on n).

Penzl [16] computed a low rank approximation X to the solution of the Lyapunov equation (4.19) with
matrices A, G similar to the ones in our example. The work for n = 10000 degrees of freedom amounted
to 10® flops, whereas the exact solution by the Bartels-Stewart algorithm would take 10'3 flops. Since the
CPU time is not mentioned, we cannot directly compare those results to the ones from our method.

6.2 The Two-Dimensional H-Matrix Model Problem

In the previous section we have compared our method to existing methods for a low rank approximation
of the solution X to the Riccati equation. Now, we want to give an example where the matrix G in the
Riccati equation is not of low rank, but an H-matrix of full (global) rank. While our method can exploit the
‘H-matrix structure and computes an approximation to the solution with linear-logarithmic complexity in
the size of the matrices, there are no known algorithms in the literature that can achieve a similar efficiency.
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rank k number of degrees of freedom n

256 1024 4096 16384 65536
k=1 1.510-1 1.310-1 2.519-0 divergent divergent
k=2 2.619-4 4.219-4 1.210-3 5.610-4 6.710-4
k=3 1.219-5 1.310-5 1.519-5 2.310-5 3.910-5
k=4 9110-8  1.130-7 1.010-6  1.810-6  6.210-7
k=5 4.610-9 1.110-8 1.510-8 3.010-8 3.11p-8
k=6 3.710-10  2.415-10 4.915-10  5.919-10 1.710-9
Newton steps 14 17 20 23 26
time [sec.], k=2 | 8.5 67 462 3033 18263
time [sec.], full | 17.7 1814 ~ 11100 =~ 74106 ~4.8108

Table 1: The table contains the relative error € := | X — X||2/[| X ||2 for increasing rank k and n degrees of

freedom. The number of Newton steps to compute sign(S) are glogQ (n). In the last two rows we compare
the time in seconds (on a SUN QUASAR with 450 Mhz) needed to compute the solution for the H-matrix
approach (rank k = 2) and the full matrix approach.

The following example is the two-dimensional optimal control of the heat equation. The goal is to minimise

J(u) = /000 (y(t)* +u(t)?) dt

for u € Ly(0, 00) where y is defined by the differential equation

ix
Zat) = (& +%) <a<§> l i xEZg ) FB(E)ult), €€ (0,1),¢ € (0,00),
x(t,§) = 0, £e[0,1]2\ (0,1)%,t € (0, 0),
1'(0,5) = 1'0(5)7 12 g € (07 1)2a
yt) = (foapet©ag) t € (0,00).

The starting value xo € La((0,1)?) is given and the functions b, o are (see Figure 4)

10 £€0,1] x [£,3] 1143 5
0©=1 01 celtAxlnpu).  wo={g SLind
1.0 otherwise

The differential equation is discretised (in the weak or variational formulation) using the space of nodal affine
finite elements on a uniform triangulation of (0,1)? with n inner grid points. We denote the (Lagrange) basis
functions by ¢; (i = 1,...,n). The resulting discrete problem is the autonomous linear quadratic optimal
control problem from Section 2 with n, = 1,1, = n and matrices A, B, C defined as follows. The entries of
the mass matrix and the stiffness matrix are

Byim [ 0©00de A= [ a(€)(Va;(e). Vaue)de
(0,1)2 (0,1)2

foré,j € {1,...,n}. Both E and A are symmetric positive definite, but A is ill-conditioned. The entries of
the discrete right-hand side B are

Bu= [ WO&©E  i=l.n
(0,1)2

Finally, the matrices A, B, C are

A:=—-E'A, B:=E'B, C:=FEY%
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o=10 6;0.1 6=1.0 b=1.0 b=0.0
Figure 4: The functions b and & on (0,1)2.

We store the matrices A and G = CTC = F in the H-matrix format based on the H-tree Tiy; that was
established for this two-dimensional uniform triangulation of [0,1]? in [10]. Similarly, appropriate H-trees
can be constructed for arbitrary triangulations (see [7]).

The singular values of the solution X are depicted in Figure 5, where one can see that the singular values
do not decay rapidly as it was the case in the one-dimensional example with low rank G.

| R(20)-matrix 1070

1234567 891011121314151617181920

Figure 5: The first 20 singular values of the solution X in logarithmic scale from 101 to 10°.

For the iterates of Newton’s method to compute the matrix sign function of S ::[ AT @ ] we use the
format from Theorem 4.13 depicted in Figure 6 with My (17 )-matrices in three of the blocks of S and
an R(2k)-matrix in the lower left block. The relative error || X — X||2/[|X||2 for the approximate H-matrix

solution X can be seen in Table 2 and a blockwise singular value decomposition of X is depicted in Figure 6.

The mass matrix E has to be inverted, which is done in the set My x(T7x1). By taking the formatted

inverse Inv(E) instead of E~! we introduce an error (besides the discretisation error), but since E is well
conditioned this error is rather small (see [3]). The matrix F' = BB is of rank 1 but again we use the

formatted inverse m)(E) to define an approximation to F.

We compute an approximation X to the solution X of (4.21) as described in Section 5 with rank & for the
blockwise rank of the H-matrices and rank 2k for the rank of the lower left block that corresponds to the
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Figure 6: Left: the structure of the matrices S;. The grey boxes are full matrices, the white squares are
R(k)-matrices. Right: a blockwise singular value decomposition of X. Depicted are the first (largest) 8
singular values of each R(k)-block in logarithmic scale from 107! to 10° as in Figure 3. Singular values
smaller than 10715 are plotted as 10715,

iterates F;. The results for K = 1,...,7 can be seen in Table 2, where we estimate the relative error € by

e = 1X = X2/ X2~ | X3¢ = Xl|2/[[ X2l

for an H-matrix approximation Xy computed with rank k£ = 8.

rank k number of degrees of freedom n
256 1024 4096 16384
k=1 4.190-3 1.510-2 2.010-2 7.210-2
k=2 1.610-4 2.110-3 7.610-3 2.310-2
k=3 7.410-5 3.410-4 1.610-3 8.110-3
k=4 1.410—5 1.110-4 4.010—4 6.010-4
k=5 3.110-6 2.210-5 2.010-4  2.610-4
k=6 8.410-7 6.910-6 5.210-5 7.510-5
k=7 5.710-7 1.6190-6 1.299-5 2.019-5
Newton steps | 10 11 12 13
time [sec] 20 570 5784 38613

Table 2: The Table presents the relative error €. Last but one row: number of Newton steps to compute
sign(.S). Last row: time in seconds to compute the rank k& = 2 solution on a SUN QUASAR with 450 Mhz.
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