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W avelets1 have demonstrated their usefulness in sev

eral areas of physics. 2 In this article we show how 

wavelets can be used to solve partial differential equations 

that are characterized by widely varying length scales, and 

which are therefore hardly accessible by other numerical 

methods. The standard way to solve partial differential 

equations is to express the solution as a linear combination 

of so-called basis functions such as plane waves, Gaussians, 

or finite elements. Wavelets are just another basis set, but 

their use offers considerable advantages. By adding high

resolution wavelets to the basis set, we can systematically 

enhance the resolution in certain regions of space where the 

solution varies rapidly, and this trick can be repeated prac

tically ad infinitum without causing numerical instabilities. 

Even in the case of nonhomogeneous resolution, the nu

merical effort to solve the differential equation scales 

strictly linearly with respect to the number of basis func

tions. This linear scaling can be obtained because the matrix 

representing the differential operator is sparse and because 
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Figure 1. The Haar scaling function ifJ and wavelet lj!. 
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Figure 2. Function fat resolution level4 together with the scaling function 

of the same resolution. 
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Figure 3. A skinny (level k) scaling function is a linear combination of a 

fat (level k -1) scaling function and a fat wavelet. 

the number of iterations needed to solve the linear system 

obtained by the discretization of the differential equation is 

independent of the highest resolution if an appropriate pre

conditioning scheme is used. (Note from the Editor: Addi

tional recent discussion of wavelets can be found in CIP 

11:5, 1997, p. 429, and CIP 10:3, 1996, p. 247.) 
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The Haar wavelet family 
To illustrate the concepts of multiresolution analysis,3 

which is the formal theory behind wavelets, we first intro
duce the Haar wavelet family shown in Fig. 1. As in any 
other wavelet family, there are two fundamental functions 

in this family, namely, the scaling function ¢J and the wave

let r/f. 
To obtain a basis set at a certain resolution level k, we 

can use all the integer translations of the scaling function: 

(1) 

Note that with this convention, higher resolution corre
sponds to larger values of k. Exactly the same scaling and 
shifting operations can also be applied to the wavelets: 

(2) 

In the following we explain how to use such wavelets in 
combination with scaling functions as a basis. 

In the case of the Haar family, any function that can 

exactly be represented at any level of resolution is neces

sarily piecewise constant. One such function is shown in 
Fig. 2. This function can be written in a scaling-function 

representation as 

15 

f= L sj ¢Jj(x), 
i=O 

(3) 

where si= f(i/16). 
Let us now introduce wavelets. Even though the result

ing expansion contains both scaling functions and wavelets, 

we shall refer to such an expansion as a "wavelet represen
tation" so as to distinguish it from the scaling-function 

representation of Eq. (3). A wavelet representation is pos
sible because a scaling function at resolution level k is al
ways a linear combination of a scaling function and a wave

let at the next coarser level k-1, as shown in Fig. 3. 

Using this relation depicted in Fig. 3, we can write any 

linear combination of the two scaling functions cp~i(x) and 

¢J~i+ 1 (x) as a linear combination of ¢J~- 1 (x) and ~- 1 (x). 
Hence we can write f as 

7 7 

f= L s~ c/J~(x) + L d~ r/l;(x) . (4) 
i=O i=O 

It is easy to verify that the transformation rule for the co

efficients is given by 

dk-1 I k I k 
i = zSzi- zSzi+1 · (5) 

Thus, to calculate the expansion coefficients with respect to 

the scaling functions at the next coarser level, we have to 

take an average over expansion coefficients at the higher 

resolution level. Because we must take a weighted sum, 

these coefficients are denoted by s. To get the expansion 

coefficients with respect to the wavelet, we must take a 
weighted difference, and the coefficients are accordingly 
denoted by d. The wavelet part contains mainly high-

frequency components. By doing this transformation, we 

therefore peel off the highly oscillatory parts of the func
tion. 

For any data set whose size is a power of 2, we can 

now apply this transformation repeatedly. In each step the 

number of s coefficients will be cut into half, and so we 
have to stop the procedure as soon as there is only one s 

coefficient left. Such a series of transformation steps is 

called a ''forward Haar wavelet transform.'' The resulting 
wavelet representation of the function in Eq. (3) is then as 
follows: 

1 

f=sgcpg(x)+dgr/lg(x)+ L dJr/IJ(x) 
i=O 

3 7 

+ L dfrflf(x)+ L d;~(x) . 
i=O i=O 

A wavelet representation 
is possible because a scaling 

function at resolution level k is 
always a linear combination of a 
scaling function and a wavelet at 

the next coarser level k -1. 

(6) 

Note that in both cases we need exactly 16 coefficients to 
represent the function. 

By doing a backward wavelet transform, we can go 

back to the original expansion of Eq. (3). Starting at the 
lowest resolution level, we have to express each scaling 
function and wavelet on the coarse level in terms of scaling 
functions at the finer level. This can be done exactly be
cause wavelet families satisfy the so-called refinement re
lations depicted in Fig. 4 fqr the Haar family. It then fol
lows that we have to backtransform the coefficients in the 

following way: 

k+1 - k dk 
Szi+1-si- i · (7) 

We can understand how wavelets are able to provide a 

compact representation of functions characterized by· differ

ent length scales by looking at the function in Fig. 5. Since 

this function varies strongly only in the middle part, many 
of the high-resolution d coefficients in Eq. (6) are zero and 

can be discarded. In fact, to represent the function of Fig. 5, 
only one d coefficient is needed per resolution level. Five 
coefficients are thus enough to represent the function in-
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Figure 4. Fat scaling functions and wavelets are linear combinations of 

skinny scaling functions. 
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Figure 5. A function requiring nonuniform resolution. 

stead of the 16 required by Eq. (3) in its most general form. 

Compact wavelet representations of this type corresponding 

to non-uniform resolution will therefore be the basic tool 

for the solution of multiscale differential equations. 

Interpolating wavelets 
We next describe a class of wavelets that are highly 

useful for numerical work, namely, biorthogonal wavelets. 

A biorthogonal wavelet family of degree m is.characterized 

by four finite filters denoted by h j , h j , g j , and g j • A filter 

is just a short vector that is used in convolutions. The scal

ing functions and wavelet satisfy the refinement relations 

m m 

cp(x)= .L hj c/J(2x- j); 1/J(x) =. L gj cp(2x- j), 
,=-m J=-m 

(8) 

which are a generalization of the relations represented pic

torially in Fig. 4 for the Haar family. In addition to the 

scaling function cp and wavelet 1/J, there are also the "dual 

quantities" '¢ and ifr. Construction of the dual quantities3•4 

will not be discussed in this article. They satisfy the or

thogonality relations 

I (iJ~(x)cpJ(x)dx= 8i,j, (9) 

I ~(x)cpJ(x)dx=O, k~q, (10) 
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I rtJ: -q ,(x)cpj(x)dx=O, k~q, (11) 

I ¢,(x)ifrJ(x)dx= 8k,q8i,j. (12) 

The expansion coefficients at different resolution ·levels are 

related by the wavelet transform equations. The analysis 

(forward) transform is given by 

m m 

(13) 

and a wavelet synthesis (backward) transform is given by 

m/2 

k+l "" h k dk 
s2; =. £.J 2j s;-j+ g2j i-j' 

J=-m/2 

m/2 (14) 

k+ 1 - "" h k dk 
s2i+1-. £.J 2j+1 si-j+ g2j+1 i-j · 

J=-m/2 

These two equations are generalizations of Eqs. (5) and (7), 

which we derived in an intuitive way for the Haar family. 

We first look at the forward transform given by Eq. (13). 

The peeling off of the high-frequency components in the 

forward transform can be illustrated in the following way: 

s4 __. s3 __. sz __. si __. so 

~~~~ 
D3 Dz Dl Do. 

By convention the data are arranged in the following 

order: 

original data 

4444444444444444 
so s1 s2 s3 s4 s5 s6 s7 ss s9 s1asus12s13s14s15 

= S4; 

after first sweep 

S 3 s3 s3 s3 s3 s3 s3 s3 d3 d3 d3 d3 d3 d3 d3 d3 
0123456701234567 

= s3,D3; 

after second sweep 

2 2 2 2 d2 d2 d2 d2 d3 d3 d3 d3 d3 d3 d3 d3 
so S1 S2 s3 o 1 2 3 o 1 2 3 4 5 6 7 

= s2,D2,D3; 

after third sweep 

s~ s~ d~ d~ d~ df d~ d~ d~ di d~ d~ d~ d~ d~ d~ 

= S1,D\D2,D3; 

final data 

s& dg d~ d~ d~ df d~ d~ d~ di d~ d~ d~ d~ d~ d~ 

= S0 ,D0,D\D2,D3• 

Note that this transformation from the "original data" 

to the "final data" corresponds exactly to the transforma

tion done in an intuitive way to get from Eq. (3) to Eq. (6). 

Just as in the case of a fast Fourier transform, we have 



log2(n) sweeps to do a full transform. However, in the case 

of the wavelet transform, the active data set (the s coeffi
cients) is cut into half in each sweep. If our filters h and g 

have length 2m, the operation count is then given by 

2m(n+n!2+n!4+ ... ). Replacing the finite geometric se

ries by its infinite value, we find that the total operation 

count is given by 4mn. A backward transform [Eq. (14)] is 

accomplished by essentially inverting all the steps of the 

forward transform. 
Because of their smoothness, "interpolating wave

lets"5 are highly useful as basis functions for partial differ

ential equations. In addition, they are also conceptually 

rather simple. We therefore briefly describe their construc

tion. 
The construction of interpolating wavelets is closely 

connected to the question of how to construct a continuous 

function f(x) if only its values fi on a finite number of grid 

points i are known. One way to do this is by recursive 

interpolation. In a first step we interpolate the functional 
values on all the midpoints by using, for instance, the values 
of two grid points to the right and to the left of the midpoint. 

These four functional values allow us to construct a third

order polynomial, which we can evaluate at the midpoint. In 

the next step, we take this new data set, which is now twice 
as large as the original one, as the input for a new midpoint

interpolation procedure. This can be done recursively ad 
infinitum until we have a quasicontinuous function. 

We now show how this interpolation prescription leads 

to a set of basis functions. Denoting by the Kronecker 8i _ j 
a data set that has a nonzero entry only at the jth position, 
we can write any initial data set also as a linear combination 

-3 -2 -1 0 

0.5 

0 1------..J. 

-0.5 

-1 
-3 -2 -1 0 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

2 3 

2 3 

of such Kronecker data sets: fi= L j{j8i- j. Now the whole 

interpolation procedure is clearly linear; i.e., that is, the sum 

of two interpolated values of two separate data sets is equal 
to the interpolated value of the sum of these two data sets. 
This means that we can instead also take all the Kronecker 
data sets as the input for separate recursive interpolation 

procedures to obtain a set of functions cp(x- j). The final 

interpolated function is then identical to 

f(x)= 4 fjcp(x- j). (15) 
J 

If the initial grid values fi were the functional values of 

a polynomial of a degree less than four, we will have ex
actly reconstructed the original function from its values on 
the grid points. Since any smooth function can locally be 

well approximated by a polynomial, these functions cp(x) 

are good basis functions also for the case in which f is not 
a polynomial, and we shall use them as scaling functions to 
construct a wavelet family. 

The first construction steps of an interpolating scaling 
function are shown on top of the left panel in Fig. 6 for the 

case of linear interpolation. The initial Kronecker data set is 

denoted by the big dots. The additional data points obtained 
after the first interpolation step are denoted by medium-size 

dots, and the additional data points obtained after the sec
ond step, by small dots. 

Continuing this process ad infinitum will then result in 
the function shown in the left panel of Fig. 6. If a higher
order interpolation scheme is used, the function shown in 

0.5 

-0.5 

-1 ~--L--~-~~~~---._--~ 
-3 -2 -1 0 1 2 3 

Figure 6. A Kronecker delta interpolated ad infinitum with linear interpolation (left panel) and a third-order interpolation (right panel). 
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the right }'anel of Fig. 6 is obtained. By a similar 
procedure, the wavelets associated with the scaling func
tion can be constructed. For the cases of first- and third
order interpolation, they are also shown in Fig. 6. 

Wavelets can also be constructed in higher
dimensional spaces.3 Higher-dimensional wavelets are es
sentially products of one-dimensional wavelets. 

Expanding functions in a wavelet basis 
As was demonstrated for the Haar wavelet, there are 

two possible representations of a function within the frame
work of wavelet theory. The scaling-function representation 
[corresponding to Eq. (3)] is given by 

f( X) = L sf max ¢'fmax( X). (16) 
J 

It follows from the orthogonality relation (9) that the coef

ficients sfmax can be calculated by integration: 

sf= J ¢f(x) f(x)dx. (17) 

Once we have a set of coefficients sfmax , we can use a full 

forward wavelet transform to obtain the coefficients of the 
wavelet representation [corresponding to Eq. (6)]: 

Kmax 

f(x)= L sKmin ifJKmin(x)+ L L dK rf/f(x). 
j 1 1 K=Kmin j 1 1 

(18) 

Alternatively, we could also directly calculate the d coeffi

cients by integration: 

df= J ij/f(x) f(x)dx. (19) 

Equation (19) again follows from the orthogonality rela

tions (10)-(12). 
So we see that if we want to expand a function either in 

scaling functions or wavelets, at some point we have to 
perform integrations to calculate the coefficients. For gen
eral wavelet families this integration can be difficult and 
computationally expensive. 6 The interpolating wavelets dis
cussed above are the glorious exception. Since both the dual 

scaling function and the dual wavelets are delta functions,4 

one or just a few data points suffice to do the integration 

exactly. We therefore get exactly the same number of co
efficients as data points and have an invertible one-to-one 
mapping between the functional values on the grid and the 

expansion coefficients. This is even true for nonuniform 
data sets, for which we necessarily have to calculate the s 
and d coefficients directly by integration using Eq. (19). 

Standard and nonstandard operator forms 
We shall now discuss how to apply a differential op

erator A such as the Laplacian to a function defined with 
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respect to a wavelet basis set. MatrixXvector multiplica
tions of this kind will be the basic ingredient for the 
conjugate-gradient techniques used later in this article on 
the solution of Poisson's equation. Given a vector b con
taining the expansion coefficients of the function, we thus 

want to calculate the vector c, where c=Ab. The matrix A 

is the Petrov-Galerkin [G. Strong and G. T. Fise, An Analy
sis of the Finite Element Method (Prentice Hall, London, 

1973)] approximation to the operator A. Since we shall 
have different representations of A, a double subscript 
formed from the letters S and D will indicate whether the 
left and right basis functions used for the calculation of the 

matrix elements are scaling functions ¢J (indicated by the 

subscript S) or wavelets 1/J (indicated by the subscript D). 
Superscripts indicate in the usual way the level of resolu
tion. Because of the finite support of all the basis functions, 
all matrices are banded. We have also assumed that enough 
derivatives of our wavelet family exist to make the differ
ential operator well defined. This assumption will not hold 
for the Haar wavelet family introduced for pedagogic rea
sons, but it will hold, for instance, for interpolating wave
lets of sufficiently high degree. 

There are two possible ways to apply operators onto 
functions within wavelet theory. They are called the stan
dard and nonstandard forms. 

To derive these two forms, we always first assume that 
the operator A is defined with respect to a scaling-function 
representation [Eq. (16)]; that is, 

(A~~ 1 );,j=J¢:+ 1 (x)A¢'J+ 1 (x) dx. 

The matrixXvector multiplication then reads 

ck+1 =Ak+1bk+ 1 s ss s , (20) 

where c~+ 1 are the scaling-function coefficients of the out-

If we want to expand a 
function either in scaling functions 

or wavelets, at some point 
we have to perform integrations to 

calculate the coefficients. 

put vector c and b~+ 1 are the corresponding coefficients of 

the input vector b. 

Since we shall be interested in representations allowing 
varying resolution, this form is useless for us. Instead, we 

wish to derive the form of the operator with respect to a 
wavelet representation [Eq. (18)]. To obtain a wavelet rep
resentation, we have to apply a fast wavelet transformation 
on the input and output vectors and consequently on all the 



Figure 7. The structure of a matrix in the standard form. The parts con
taining nonzero entries are shaded. 

rows and columns of the matrix. After one step of the wave

let .transform, we obtain the following equations: 

where 

and 

k_Ak bk Ak bk 
Cs- SS s+ SD D• 

k Akbk Ak bk 
CD= DS s+ DD D• 

(A~~ 1 ); , j= I 4>7+ 1(x)AI/1+ 1(x) dx, 

(A~~ 1 ); , j=Ii/i;+ 1 (x)A</>J+ 1 (x) dx, 

(A~ · ~/ ); ,j= I iii;+ \x)AI/1+ 1(x) dx. 

(21) 

(22) 

Note that even though there are now two equations, the 
dimension of the total vectors b and c is of course the same 
in Eq. (20) as it is in Eqs. (21) and (22). Applying the 

further steps of the wavelet transformation to split up all the 

remaining Ass parts recursively, we obtain the standard op

erator form that is visualized in Fig. 7. 
Note that there is coupling between all resolution lev

els. Because of the coupling, it is neccesary to calculate 

many different types of matrix elements corresponding to 

all possible products of wavelets and scaling functions at 

different resolution levels and positions. This complicated 

structure makes the standard form inefficient for numerical 

purposes. 
Fortunately a second form, the so-called nonstandard 

form/ gives an easier and more efficient representation of 

the matrix. To derive it, we again assume that initially all 

our quantities are given in a scaling-function representation 

[Eq. (20)]. We also do again the first transformation step 

visualized in Eqs. (21) and (22). To get the nonstandard 
form, we artificially enlarge the matrix by putting in five 

blocks of zeroes denoted by Ok: 

cl~ = A~sb~ + okb~ + Okb~ , 

c2~ = okb~ + okb~ + A~Db~ , 

c~ = Okb~ + A~sb~ + A~Db~ . 

(23) 

(24) 

(25) 

Both the input vector b and output vector c are now larger 

than necessary and therefore redundant. In the input vector 

(b~ ,b~ ,b~), we have two copies of the b~ part; in the 

output vector we must add cl~ and c2~ to get back the 

correct c~ from Eq. (21). We can now recursively apply this 

two-step procedure, from Eq. (20) to Eqs. (21) and (22) and 

from these to Eqs. (23)- (25), on the remaining Ass parts. 

This procedure produces the nonstandard form that is 

graphically visualized in Fig. 8. 

There are no blocks in this matrix between the different 

levels, and so they have been completely decoupled. The 

coupling of different levels enters only through the wavelet 

transforms that must be performed at the beginning and end 

of the operator application to generate the redundant input 

vector and to reduce the redundant output vector to a non

redundant form. To generate the redundant input vector b of 

Fig. 8, we have to generate S1 from S0 and D 0 , then S2 

from S 1 and D\ and finally S3 from S2 and D 2• The re

duction of the output vector c is done by splitting up S3 into 

S2 and D 2 and adding this result to the S2 and D 2 parts, 

which are the output of the preceeding matrixXvector mul

tiplication. Next this modified S2 part is split into an S 1 and 

D 1 part, and again the result is added to the existing con

tributions. Finally the S 1 part is split and added to the ex

isting S0 and D0 parts. 

Note also from Fig. 8 that all the nonzero blocks of this 

nonstandard matrix representation are strictly banded. The 

application of this matrix to a vector therefore scales lin

early. 

The relative sizes of the different blocks of the matrix 

in Fig. 8 are for the case of uniform resolution in which all 

c A b 

s' 

D D 

s 

D 

Figure 8. The structure of a matrix in the nonstandard form. 
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the possible D coefficients at the highest resolution level are 

nonzero. The nonstandard form, however, also allows 

matrixXvector multiplications to be done with strictly lin

ear scaling in the varying resolution case in which only 

some of the D coefficients are nonzero. In this case the 

structure of the matrix in Fig. 8 remains the same; just its 

proportions change. This aspect of the matrix allowed us to 

achieve overall linear scaling in the multiscale application 

that is presented in the next section. 

To set up an operator in the nonstandard form we only 

need a few basic integrals a; . If the operator represents a 

differential operator for the second derivative, we need, for 

instance, only the basic integral 

I az 
a;= '?>(x)-2 cp(x-i)dx, 

ax 
(26) 

which can be calculated analytically.4•8 All the matrix ele

ments can then easily be obtained from a; by scaling and by 

using the refinement relations (8). 
The nonstandard operator form can be used not only 

for the application of differential operators but also for 

other operations. To transform, for instance, from one 

wavelet family 4> to another wavelet family <I>, the basic 

integral becomes 

a;= I cf>(x)(p(x-i)dx. (27) 

Another use is for scalar products, for which the fundamen

tal integral is 

(28) 

Solving Poisson's equation for the uranium dimer 
Biorthogonal wavelets form a natural basis for solving 

a differential equation in the Petrov-Galerkin sense. The 

Petrov-Galerkin method has two functional spaces. The first 

functional space is that of the basis functions and is used to 
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represent the solution. The space of the test functions is 

used to multiply the differential equation from the left. In

tegration then yields a linear system of equations, which is 

the discretized version of the differential equation. In our 

case the expansion set are the scaling functions and wave

lets, whereas the test set are their dual counterparts. 

We consider the case of Poisson's equation 

V2v =- 47Tn. (29) 

We look for a wavelet representation v of the potential v, 
having available the corresponding wavelet representation 

n, which is obtained from the charge density n on a non

uniform grid by the methods described in the section 

headed "Expanding functions in a wavelet basis." Given 

an approximate solution vector v, the iterative solution of 

Poisson's equation consists of three principal steps: calcu

lating the residue vector, preconditioning, and updating the 

solution. 

Calculation of the residue vector. The residue r is cal-

culated from the definition, r= Av- n, where A is the 

Laplace operator with respect to the wavelet basis. Because 

of the advantages described in the previous section the non

standard form of the operator, it is used in the calculation of 

Av. 

Preconditioning. The condition number of the Laplace 

matrix worsens as high-resolution levels are added. The 

number of iterations needed to obtain convergence would 

dramatically increase if we used straightforward iterative 

methods. It is therefore absolutely necessary to use a pre

conditioned iterative method so as to obtain a condition 

number that is independent of the maximal resolution. Pre

conditioning requires finding an approximate inverse matrix 

of the Laplace matrix. If the Laplace matrix is strongly 

diagonally dominant, then the inverse of just the diagonal 

part (which is again diagonal) will be a good approximate 

inverse. Since the Laplacian is not diagonally dominant in 

the nonstandard form, we have to try the standard form for 

this step. 



Whether the Laplace matrix is strongly diagonally 

dominant in the standard form depends on the kind of wave

let family that is used. In a plane-wave representation, the 

Laplace matrix is strictly diagonal. If therefore our wavelet 

family has good frequency-localization properties, the re

sulting matrix will be strongly diagonally dominant in the 

standard form. Unfortunately our favorite interpolating 

wavelets have poor frequency localization, making an itera

tive solution practically impossible. It is therefore necessary 

to do the preconditioning step within a related wavelet fam

ily, namely, the lifted interpolating wavelets,4•9 which have 

much better frequency-localization properties, as shown in 

Fig. 9. 

As discussed above, the transformation into another 

wavelet family [Eq. (27)] can also be done with the help of 

the nonstandard operator form. Using lifted interpolating 

wavelets, we were able to reduce the norm of the residue 

vector by one order of magnitude with three iterations in

dependent of the maximal resolution. 

Updating the solution. The preconditioned residue vec

tor is then used to update the potential within a conjugate

gradient scheme. The process returns to the beginning of 

the iteration unless convergence has been achieved. 
To demonstrate the power of the wavelet method, we 

solved the standard Poisson equation under the most diffi

cult circumstances we could think of. We calculated the 
electrostatic potential of a three-dimensional uranium 

dimer.10 In this example, we clearly find widely varying 
length scales. The valence electrons have an extension of 5 
atomic units, and the ls core electrons have an extension of 
2/100 atomic units. The nucleus itself was represented by a 

charge distribution with an extension of 1!2000 atomic 
units. Overall, therefore, the length scales varied by four 

orders of magnitude. Two centers of increasing resolution 
(around each nucleus) were needed. In order to have qua

siperfect natural boundary conditions, we embedded the 

molecule in a computational volume of side length 104 

atomic units. Altogether this necessitated 22 levels of reso
lution. Even though the potential itself varies by many or
ders of magnitude, we were able to calculate the solution 
with typically 7 digits of accuracy. We believe that it would 

Figure 10. A grid with two centers of increased resolution around the two 
nuclei. Only 3 of the 22 resolution levels used in the calculation are shown 

in this projection on a plane. 

not be possible with any other method to solve this kind of 
benchmark problem. 

Initially we had to find the wavelet expansion for a data 
set on a nonuniform real-space grid structure shown in Fig. 

10, which represents the charge density. The resolution 
needed could be estimated in this example from the known 
extension and variation of the different atomic shells. 

Analogous to the one-dimensional case, this expansion can 
also easily be obtained for higher-dimensional interpolating 
wavelets, since all the dual functions are related to delta 

functions. In this case also the mapping from real-space to 
wavelet representation is invertible, and we could thus get 

back exactly the same real-space values if we evaluated the 
wavelet expansion on the grid points. 

A similar approach to the solution of the three
dimensional Poisson equation ha~ been proposed by Lippert 

et al., 11 who, however, used unlifted interpolating wavelets 
despite their poor frequency-localization properties. In a 

similar spirit the one-dimensional heat and Burgers equa
tions have been solved12 as well as the two-dimensional 

Helmholtz equation. 13 

Conclusions 
Wavelets are an elegant and powerful new mathemati

cal theory that has a large impact on many areas. Used as a 
basis set, wavelets allow us to solve differential equations 

characterized by widely different length scales. Partial dif
ferential equations of this type can be found in many areas 
of physics and chemistry such as in quantum chemistry.14 

This article is based on a tutorial-style book4 describing 
in detail how to use wavelets for the solution of partial 
differential equations. 
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