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ABSTRACT 

In this paper we describe algorithms for solving nonlinear least squares 

problems on a message-passing multiprocessor. We demonstrate new parallel 

algorithms, including an efficient parallel algorithm for determining the 

Levenberg-Marquardt parameter and a new row-oriented QR factorization algo- 

rithm. Experimental results obtained on an Intel iPSC h ~ r c u b e  are presented 

and compared with sequential MINPACK code executed on a single processor. 

These experimental results show that essentially full efficiency is obtained for 

problems where the column size is sufficiently larger than the number of pro- 

cessors. These algorithms have the advantage of involving only simple dam 

movements and consequently are not constrained to the hypercube architecture. 

1. Introduction 

A common computational problem is the mi~timization of the function ~ : R ~ ~ R where 

is the sum of squares of nonlinear functions. That is, V can be expressed in terms of a func- 

tion F : R n -~ R m , m ---n, by the equation: 

W(x) = z,~ II F(x)1122-- 1/~ ~fi2(X) (1.1) 
i=1 

where f l  is the i-th component of F. In this paper we will describe a parallel implementation 

of the Levenberg-Marquardt algorithm for solving these nonlinear least squares problems. The 

experimental results presented in this paper were obtained on a hypercube multiprocessor but 

the algorithms themselves are more general. In fact, all that is required of multiprocessor inter- 

connection topology is support of a ring embedding and means for efficient gather and 

broadcast operations. 
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Unlike in the parallel solution of systems of nonlinear equations [CL87], low rank 

updates to the Jacobian approximation are usually not used in the small residual nonlinear least 

squares setting [GMWS1]. Consequently, the dominant costs in these problems are the approx- 

imation of the Jacobian J(Xk), where xk is the k-th iterative approximation to the solution, and 

the computation of the QR factorizafion of this approximation to J (x,). 

The development of parallel algorithms for these two aspects of the problem, the approxi- 

marion and QR factofization of J ,  represents a dilemma when considering how to distribute the 

elements of the Jacobian onto the processors. This dilemma arises because the approximation 

of J by finite differences is most naturally approached by a column-oriented method and the 

QR factorizafion stage suggests a row-oriented solution. In a column-oriented algorithm for 

approximating the Jacobian the columns of J are partitioned into sets that assign computation 

of columns to processors by these sets. Assuming that F(xk) is globally available, the j-th 

column of J can be approximated by computing F(xk+'cej), where e: is the j - th  column of the 

identity matrix and z a constant, for each column j assigned to a processor. These computa- 

tions are entirely local and if n/p>l, where p is the number of processors, then the computa- 

tional load can be well-balanced by an even distribution of work to the processors. On the 

other hand, because we have that m an ,  we expect a row-oriented approach, in which the rows 

of J are assigned to processors, to outperform a column-oriented method in the QR factoriza- 

tion stage. Using a row-oriented method in this case results in an algorithm whose efficiency 

depends on the ratio rn/p rather than n/p. 

We have chosen to pursue a row-oriented algorithm because experience has shown that 

computational costs involved in the QR factorizafion stage often dominate the Jacobian approx- 

imation stage. In addition, it is often the case that evaluation of the function F is separable. 

That is, if Ii is the set of row indices assigned to processor i then the evaluation of F(x) can 

be effectively broken up into blocks, Fli(x)= {f:(x) IJ ~ Ii }, where evaluation of each block is 

sufficiently independent to allow for parallel evaluatiorL 

The distribution of the rows of the Jacobian onto the processors determines the basic 

communication structure of the algorithms used in an implementation. We have chosen to use 

a ring embedding (e.g. a Gray code ordering of the nodes on a hypercube) and wrap the rows 

of the Jacobian onto this ring. Specifically, if the processors on the ring are numbered 



46 

0,1,2 ..... p-1 then row k of the Jacobian would be assigned to processor (k-1)mod (p ). Note, 

however, that components of F may be reordered to facilitate separability. This observation is 

especially applicable in the sparse setting where grouping rows with similar nonzero structure 

on the same processor would help ensure separable evaluation. Such an assignment would also 

make sense for a sparse QR factorizalion since much progress in the triangular reduction of the 

system could be made by locally applied Givens rotations. 

The remainder of this paper is organized as follows. In section 2 we briefly review the 

relevant aspects of the Levenberg-Marquardt algorithm necessary to explain details of our algo- 

rithms. In section 3 we consider the proNem of approximating the Jacobian and in section 4 

we present a new row-oriented parallel QR factorization. Section 5 describes our parallel algo- 

rithrn for determining the Levenberg-Marquardt parameter. Finally, we present experimental 

results and conclusions in section 6. 

2. Basics of the Levenberg-Marquardt Algorithm 

In this section we consider the essential aspects of the Levenberg-Marquardt algorithm 

relevant to a parallel perspective. For a more detailed description of the algorithm we refer the 

interested reader to the excellent article by Mor6 [M78]. As stated previously, the nonlinear 

least squares problem is to minimize ~g(x) as given in equation (1.1). Assuming that each 

f l  e C 2, then the gradient and Hessian of ~ are given by the expressions: 

V v = JTF (2.1) 

and 

V2V = j r j  + ~ f i  V2.fi , (2.2) 
i=1 

where J is the Jacobian of F. When one expects the value of the function to be small at the 

solution) the Hessian can be approximated by jTj in a neighborhood of the solution. This 

approximation, which ignores the second term in the expression for the Hessian, represents a 

significant computational savings. 

t known as "small residual" problems [MGW81] 
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Based on a quadratic model to the function V using the above Hessian approximation the 

Levenberg-Marquardt algorithm [M77,C84] solves a sequence of trust region problems of the 

form 

min { ]IJP + F  H2 s.t. IIP[[2 <A } (2.3) 

A solution to this problem is obtained in two steps. First, the Gauss-Newton step, P~N is 

determined by solving the problem 

min { II Jp + F 112 } , (2.4) 

by computing a QR factorization of Y and solving the upper triangular least squares system 

[R]p =_ QT F (2.5) 

If IIPGN II < LX, then the step is accepted$, otherwise we determine the Lagrange multiplier L, 

and vector p, ,  liP, II -- •, such that 

( j r j  + ~,,I )p,  = -JT"F (2.6) 

Using the previously computed QR factorization of J and given a value of Z,, the solution of 

the least squares system 

p(~,) = Q F (2.7) 

yields the value of the function ¢(%)= tlp(~,)II-A. Since ~ is monotonically decreasing on 

[0,~) from the positive value of llPau II - A at ~,=0 to the negative number -A as ; ~ o ,  an 

appropriate implementation of Newtons method is guaranteed to find the zero of ~ at ~,, the 

Lagrange multiplier [M78]. 

From this discussion we note that there are three main computational tasks that need to 

be addressed in a parallel implementation of the Levenberg-Marquardt algorithm. These 

features are: (1) the approximation of the Jacobian J(x), (2) the QR factorization of J(x)  

necessary to solve equation (2.5), and (3) computation of the Levenberg-Marquardt parameter 

that solves equation (2.6). In the following sections we present our implementation of the first 

task and new parallel algorithms for the last two problems. 

.~ contingent, of course, upon sufficient decrease in 
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3. Parallel Approximation of the Jacobian 

The approach used in the paraUel approximation of the Jacobian by forward differences 

depends on two criteria: (1) whether the function F ( x )  is sufficiently separable, and (2) if the 

function is not separable, whether evaluation of the function is computationally expensive. 

These criteria are somewhat subjective; whether they apply is a symptom of the specific prob- 

lem considered. In this section we describe parallel Jacobian approximation schemes which 

deal with the cases delineated by these criteria. 

As before, let Ii be the set of row indices assigned to processor i and let J r /i (x) be this 

set of the rows of the Jacobian evaluated at the point x. When evaluation of the function is 

separable, then the Jacobian can be evaluated in parallel by having each processor compute its 

components of the j- th column according to the formula 

FI~(x +'~e'i) - Fie(x) (3.1) j r  
; (x) ej =- z 

It is often the case that evaluation of F ( x )  is not completely separable, there may be some 

amount of redundant computation due to common factors that must be computed for each parti- 

tion of the function F1~(x), i =1 ..... p. If this redundant computation is inexpensive relative to 

communication cost entailed by using a column-oriented scheme then we consider this compu- 

tational overhead tolerable. All of the test problems considered in the experimental section fall 

into this category. Otherwise, if the redundant computation required by such a partition of the 

rows is deemed too expensive, a column-oriented approach to approximating J ( x )  must be 

adopted. In this approach a set of column indices, gi0 is assigned to each processor i. For 

each k • Ki the k-th column of J is approximated at processor i by the usual forward 

differences formula, 

F (x +'cek ) - F (x ) 
J (x )ek  = , (3.2) 

where in this case the function F can be thought of as a "black box." Assuming that the com- 

putation required to evaluate F ( x )  is independent of x, the computational load can be balanced 

by making the index sets Ki as close to the same size as possible. Using a wrap mapping wilt 

keep the cardinality of these sets within one, therefore any disparity in workload becomes rela- 

tively better as n/p increases. 
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The resulting problem is how to get this column-oriented distribution of the data con- 

verted to a row-oriented distribution for the QR factorization stage. Fommately, there exist 

efficient algorithms for transposing a matrix on the hypercube [MVV87]. Of course, this whole 

problem can be avoided by using column-oriented algorithms in the first place. Experimen- 

tally, we did not take such an approach, but good column-oriented QR factorization algorithms 

exist [M87]. In addition, in section 5 we describe an efficient column-oriented version of the 

Levenberg-Marquardt algorithms. 

A more subtle problem occurs when the evaluation of F(x) is not separable and the this 

evaluation is computationaUy expensive relative to the QR factorization. Suppose a step pk is 

to be considered at the k-th iteration of the algorithm then F(xk+pk) must be evaluated to deter- 

mine if it meets certain acceptance criteria. When this computation is relatively expensive and 

not separable, and therefore must be done on one processor, then the remainder of the proces- 

sors will remain idle during this computation. This can result in detrimental effects on the 

efficiency of the entire implementation. Byrd, Schnabel, and Shultz [BSS88] and Coleman and 

Li [CL87] note that this problem can be alleviated somewhat by guessing, based on the previ- 

ous iteration, whether the proposed point will be accepted. If acceptance is assumed, then the 

Jacobian at xk+Pk Can begin to be approximated by idle processors. If we guess that the pro- 

posed iterate will not be accepted, then idle processors could evaluate the function at some 

additional points which might fare better with the acceptance criteria. These ideas were not 

implemented in our code but could easily be added for cases of difficult functions. 

4. A New Parallel Row-Oriented Householder QR Algorithm 

The efficiency of the parallel QR factorization used to solve equation (2.4) is of 

paramount importance because a completely new approximation to the Jacobian is computed 

for each iteration. Consequently, a full QR factodzafion is also required. As we will see in 

Section 6 the QR factorization represents the dominant computational cost for the test problems 

we considered. In this section we present a new parallel row-oriented Householder QR factori- 

zation that was found to be more efficient than previous hybrid (Householder/Givens) factoriza- 

tion algorithms. In addition, this algorithm has the advantage that it produces the same House- 

hoider vectors that would be produced by a standard sequential Householder QR algorithm 

(unlike the hybrid scheme) which can be advantageous in situations where the same system 
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must be solved for multiple right hand sides. Finally, we show that column pivoting can be 

introduced into the algorithm with only a slight increase in the computation and communication 

complexity. In our implementation column pivoting is important because the QR factorization 

can then be used to determine matrix rank. 

Most of the research on QR algorithms for the hypercube has been directed toward 

column-oriented methods, however two row-oriented algorithms have been considered previ- 

ously [CP86,PR87]. These two algorithms are very similar in that to reduce each column of 

the matrix first a reduction hwolving only data local to each processor is performed and then 

this stage is followed by a global reduction requiting communication between the processors. 

The reduction of rows local to a processor results in one row per processor with a nonzero in 

the column being reduced to upper triangular form. The advantage of this approach is that all 

these reductions and matrix updates will be local to the processors and with the wrap mapping 

of rows the computational load will be well-balanced. Following this local stage is a global 

stage where a minimum spanning tree is embedded in the hypercube rooted at the processor 

where the nonzero for the column under consideration should reside. Rows are communicated 

up this tree and the leading nonzero is armihJlated by a Givens rotation with respect to the 

parent's row. These rows are then updated with this rotation and the result communicated 

back to the child. The hypercube topology allows this global reduction process to take place in 

log (p) steps, Of these two algorithms the one presented by Pothen and Raghavan [PR87] 

seems to be the most efficient since Householder reductions, as opposed to Givens, are used in 

the local stage. 

Our algorithm is computafionatly more efficient than the hybrid approach because the full 

Householder vector is calculated and the intermediate Givens reductions are avoided. The 

difficulty is obtaining the same communication complexity as the hybrid approach. The trick is 

to notice that computation of the Householder vector and the rank one update to the matrix can 

be combined to half the number of messages that seem to be required at first inspection. 

To illustrate the algorithm consider the QR factorization of an m x n matrix A. At step j 

of the factofizafion the first j - 1  rows of R and the Householder vectors have been computed 

and we need only consider the (m-j+l)x(n-j+l) lower right submatrix of A, which we will 

denote by A (i), with columns ak (/), k = j ..... n. The Householder transformation, pc/~, to reduce 

the first column ofA (/~, ay ~, is given by 
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V q)v To) 
Pq)  = !~ I - 2 ..'77-ff"S--'.. ] , 

v (j)v q) 

where vq) = aj (/) + Ilay)lh ej. To determine ak q+l), k=j+l  ..... n, 

corresponding rank one update to A q) given by: 

ak q+l) = ak (/) - 7 2 ......... v~i)ak (i) v(y) 
vo)vo) 

: , 

(4.1) 

we need to compute the 

(4.2) 

(4.3) 

with c~  ) defined as shown. Suppose row j is assigned to a processor that we will designate 

leader. Note that v(/) agrees with a (/) except in the first component, hence the portions of  the 

inner product v~)ak (j~ local to each processor are just a y  ) Tak(/) except on leader where a (/) and 

v(/) differ in the first component. We can take advantage of  this fact to combine the communi- 

cation to compute v~/> with the communication required for the rank one update to the 

remainder of  the matrix. An outline of  the resulting algorithm is given below. 

Index Set: // {set o f  rows indices assigned to processor i } 

Proc  (i) : {program for processor i } 

For j = I , . . . ,  n do 

I f  (i=leader) Delete {j } from li 

Compute dot products for k = j ,  - • •, n 

~k = [aq)lrl J1 i [afJ)]1 i 

Combine [~: , -  - - ,  an] using ga ther-sum 

I f  (i=leader) then 

Compute first component of  vV) and the coefficients 

[ ~ + ~ , . . . ,  ~ff)] and broadcast the result 

Update columns, k = j +1, • - •, n 

[akq+l)]l i = [ak~/)lti - ~ )  [vq)]zi 

enddo 

Algor i thm 4.1: A Parallel Row-Oriented Householder QR Algorithm 

Here we use the notation [a:q)] h to represent the subvector o f  ay q) with components given by 

the index set Ii. The ~ vector is a work vector used in the computation of  Ilaj(/~l h and the 
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constants ~), k = j+ l  ..... n. In Figure 4.1 we show the efficiencies of this algorithm compared 

to the hybrid algorithm described by Pothen and Raghavan in [PR87] as a function of the 

number of rows. For this plot the number of columns is fixed at 100. 
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Figure 4.1: Efficiency of Algorithm 4.1 and Hybrid on a 16 Node Hypercube (n=100) 

Execution Times (sec) ENciencies 

n m Single processor Hybrid Householder Hybrid Householder 

100 150 109.5 15.5 11.95 .44 .57 

100 500 434.2 35.7 31.5 .76 .86 

100 1000 897.8 64.7 59.3 .87 .95 

200 350 1040.1 93.9 81,0 .69 .80 
! 

Table 4.1: Execution Times and Efficiencies of Algorithm 4.1 on a 16 Node Hypercube 

In Table 4.1 we show some representative execution times of our implementations of the 

hybrid algorithm (Hybrid) and Algorithm 4.1 (Householder) as compared to a sequential QR 
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factorization program executed on a single processor. These results were all obtained on a 16 

node iPSC hypercube and the comparison was made with the MINPACK QR factorization sub- 

routine QRFAC executed on a single processor of the hypercube. 

A subtle point in solving equation (2.5) is that the orthogonal matrix Q does not need to 

be saved if the right hand side of equation is updated along with the rows of the Jacobian. To 

achieve this aim the right hand side is treated like an additional column to the man'ix J and 

distributed across the processors in the same wrap mapping and updated along with the 

corresponding rows of the Jacobian. 

Column pivoting can be added to AIgorithm 4.1 in the following manner. The column 

norms of the matrix A are initialized at the beginning of the algorithm and are then updated 

after each stage of the computation to obtain the column norms of A q). For example, suppose 

at stage j in the QR factorization the column norms Ilak(/)ll2, k = l  ..... n are known by leader. 

The column of maximum norm, k . . . .  is determined by leader, the result is broadcast, and 

columns j and kmax are interchanged by all processors. After stage j of the algorithm the 

updated norms can be obtained by the formula: 

= IlakU)ll2 [ 1 -  II ak~+l)112 
L 

I 1T 
L JJ ' 

(4.4) 

for k =j+l ,  • •. ,n, and the results sent to the next processor on the ring for stage j+l  of the 

QR algorithm. Note that numerical cancellation can be a problem in computing these norm 

updates. However, circumstances that would result in this problem can be monitored for and 

in such cases the suspect column norm can be recomputed. In our implementation tiffs is done 

by broadcasting a special notifier to the other processors instead of the column pivot. The 

required column norms are then recomputed and the result gathered at leader. Our observation 

has been that recomputation of the coIumn norms is rarely required and therefore does not 

significantly effect the efficiency of the algorithm. 

One last concern for numerical stability might be the possibility of overflow from the 

way the ~k are computed in Algorithm 4.1. We note that these partial sums can be scaled by 

the most recent approximation to the cotumn norms available to all the processors. However, 

we did not find it necessary to include this scaling in our implementation. 
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A graph comparing the efficiencies of Algorithm 4.1 with and without pivoting is 

included as Figure 4.2. The efficiency is again computed by comparing the running times of 

parallel algorithms to running times of the MINPACK QR subroutine QRFAC on a single pro- 

cessor. These results were obtained on a 16 node hypercube with the number columns fixed at 

100. In table 4.2 we include some representative times from these experiments. 
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Figure 4.2: Efficiency of Algorithm 4.1 With and Without Column Pivoting 

Execution Times (sec) Efficiencies 

n m Single processor Householder Householder 

100 150 112.6 14.2 .50 

100 500 439.0 34.1 .80 

100 1000 906.5 62.1 .91 
I 

Table 4.2: Execution Times and Efficiencies of Algorithm 4.1 with Pivoting 
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5. A Parallel Implementation of the Levenberg-Marquardt Algorithm 

To determine the Levenberg-Marquardt parameter Algorithm 5.1 was used to reduce 

equation (2.7) to upper triangular form. This reduction requires a surprising amount of work: 

n(n+l) /2  Givens rotations and the corresponding row updates, or O(n 3) flops. Note that the 

work required in this reduction is independent of m, the number of  rows. Algorithm 5.1 

details a parallel method to accomplish this reduction. In the algorithmic description let S 

represent storage for an upper triangular matrix which is initially set equal to the matrix ~,1/21 in 

equation (2.7). Remember that the rows of R and S are wrapped onto an embedded ring of 

processors as described in Section 1. 

Functions: next {returns number of next processor in the ring}, 

prev {returns number of previous processor in the ring} 

Index Set: Ii {set of rows assigned to processor i } 

Proe (i) : {program for processor i } 

For j  = 0, n-1  do 

For ke l j  do 

If (3' el3) receive row S{_j from processor prev(i) 

Compute Givens rotation to zero the bottom of the vector (Rk~, Sk-j,k) r 

Update rows R T and sT_j with above Givens rotation 

Send row S/_j to processor next(i ) 

If (k=j+l) Delete {k } from Ii 

enddo 

enddo 

Algorithm 5.1: A Parallel Row-Oriented R-S Reduction 

Algorithm 5.1 proceeds in n stages which have been indexed by j = 0  ..... n-1  in the 

description. At stage j of algorithm 5.t the superdiagonal of S that is a distance j from the 

main diagonal is eliminated by Givens rotations. After n stages, the upper triangular matrix S 

has been completely zeroed and the updated upper triangular matrix R is still wrapped onto the 

processors in the same manner as at the start of the algorithm. As the leading nonzero of each 

row of S is eliminated and the corresponding rows updated the rows of S move around the 

embedded ring in a systolic manner. Note, that although the work at each stage is not com- 

pletely balanced, the processor doing the most work rotates around the ring. This imbalance is 
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somewhat offset by the required commtmicafion. Experimental results of the efficiency of this 

algorithm as a function of number of columns are shown in Figure 5.1. 
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Figure 5.1: Efficiencies of Algorithms 5.1 and 5.2 on a 16 Node Hypercube 

A column-oriented approach is also possible and is presented as Algorithm 5.2. From 

Figure 5.1 it is apparent that this version is superior experimentally. Even though the algo- 

rithm is a bit more complicated, the total number of messages that have to be sent is the same 

as Algorithm 5.1 and the total number of values that have to communicated is actually less. 

For an average step j in Algorithm 5.2 we need only communicate the single Givens vector g 

of length O (n) between neighboring processors. For the row-oriented version we need to com- 

municate O(n/p) rows of S of length O(n) between processors. In practice the rows of S are 

combined into one long message which results the same number of communication start-ups as 

appear in Algorithm 5.2. The message start-up cost, measured in "flops," for the Intel iPSC 

hypercube is very expensive and is normally the dominant factor in the communication cost of 

an algorithm. However, for these two algorithms the average message lengths are extremely 

different, hence one sees a difference in efficiency between these two algorithms experimen- 

tally. 
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Index Set: Ki {set of columns assigned to processor i } 

Proc (i) : {program for processor i } 

For j = 0, n-1  do 

I f  (j ~0) Receive Givens vector g from processor prey(i) 

For k ~ Kj do 

For l = m/n(j,p-l), . .1 do 

Update rows Rr_j+l and Sr_j with Givens rotation gk-j+i 

enddo 

Compute Givens rotation to zero the bottom of the vector (Rk,k, Sk-j,k) r 

Update rows R T and SL: with above Givens rotation 

Update gk in Givens vector 

If (k=j+l) Delete {k ] from Ii 

enddo 

Send Givens vector g to processor next(/) 

enddo 

Algorithm 5.2: A Parallel Column-Oriented R-S Reduction 

For Algorithm 5.2 the columns, as opposed to the rows, of R and S are wrapped onto the 

ring of processors. Rather than communicating rows of S between neighboring processors, the 

Givens rotations are stored in vectors g which rotate around the ring. Once the algorithm has 

been running for more than p steps, i.e. j >_p-l, then the Givens vector g is completely filled 

with updates that need to be applied once received. The order that these rotations are applied 

in the 1 loop is important. Since they operate on the same row of S, the rotations must be 

applied from oldest to newest. Also, note by row R[ we mean the nonzero components of  row 

R [ that are local to processor i. These components are given by the index set Ki. Note that 

the difference in the average length of the messages sent between Algorithms 5.1 and 5.2 

translates into a much more efficient algorithm for the column-oriented approach. It is possible 

to decrease the length of the messages sent in the row-oriented method by postponing the 

application of  the Givens rotations. Unfommately, this algorithm is very complicated and was 

not implemented. 

The reduction of equation (2.7) to upper triangular form is the major task to be rendered 

parallel in an algorithm for determining the Levenberg-Marquardt parameter L, and we have 
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shown that there exist effective algorithms to perform this reduction. However, efficient solu- 

tion of triangular systems is also important in this context. In fact, for each iteration involving 

a solution of equation (2.7) there are two associated triangle solves that are used to bracket the 

solution ~ [M78]. Experimentally we used the triangle solve algorithms developed by Li and 

Coleman [LC86], but it should be noted that the efficiencies of these algorithms are not nearly 

as good as those of Algorithms 5.1 and 5.2. This difference is what accounts for the 

discrepancies between the efficiencies shown in Figure 5.1 and the efficiences reported in the 

next section for solving for the Levenberg-Marquardt parameter. This effect is apparent even 

though there is an O(n) difference between the amount of work required for Algorithm 5.1 and 

the corresponding triangular solves. The importance of efficient parallel triangle solvers has 

also been observed in the solution of systems of nonlinear equations [CL87]. 

6. Experimental Results and Conclusions 

These algorithms were implemented on a 16-node Intel ff'SC hypercube in RM/Fortran 

and run under version R3.1.1 of the iPSC operating system. The efficiencies shown below 

were calculated by dividing the running time of MINPACK [MGH80] code on a single proces- 

sor by 16 times the running times of the algorithms described above on the hypercube. The 

comparison is fair as both programs generate the same sequence of iterates and consequently 

do the same number of Jacobian approximations (J Appr), QR factorizations (QR Fact), and 

calculations of the Levenberg-Marquardt parameter (L-M). Results from this comparison for 

representative test problems of moderate size are sumrnerized below in Table 6.1. 

Shown in Table 6.1 are the efficiences and the fraction of the total running time spent in 

each of the three previously described sections of the program. For these problems the total 

time of computation is dominated by the QR factorization, hence the implementation tends to 

be more efficient as m, the number of rows, increases. We feel that the relative time spent in 

function evaluation, and consequently approximation of the Jacobian, is too short and not 

representative of real world problems. For these problems the efficiency of the Jacobian 

approximation would play a more dominant role in the performance of the program. Then the 

sequential nature of the function evaluation while testing for adequate decrease in the objective 

function at the candidate iterate would become more of a problem. However, as discussed ear- 

lier, this problem can be alleviated by simultaneous function evaluation and computation of the 



Jacobian at the new point [CL87]. 
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Prob 

1 

Efficiencies Compared to MINPACK % Time Spent in Routine 

QR Fact J Appr QR Fact L-M J Appr n 

100 

50 

100 

100 

m 

200 

200 

200 

200 

Total 

.86 

.65 

.72 

.77 

.91 

.78 

.80 

.86 

L-M 

.51 

.25 

.46 

.57 

.52 .85 

.35 .75 

.37 .72 

.58 .92 

.10 .02 

.19 .02 

.26 .01 

.03 .03 

Table 6.1: Experimental Results of Parallel Algorithms Compared with MINPACK 

In sum, we have observed good efficiencies when solving moderately sized nonlinear 

least squares problems on the Intel hypercube. We also point out that it is possible to solve 

much larger problems than those we have described above (which had to be run on one proces- 

sor for comparison). The efficiencies for such larger problems would be correspondingly 

better. In addition to comparisons with larger dense problems one can consider solving large 

sparse problems that have special structure. For example, we note that a simple generalization 

of Algorithm 5.1 would work well if the Jacobian were banded and that the row-oriented 

approach to the QR factorization would be efficient in solving problems with block structure. 
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