
Solution of Nonlinear Least Squares Problems on a Multiprocessor

Thomas F. Coleman
Paul E. Plassmann

Department of Computer Science &
Center for Applied Mathematics

Comell University
Ithaca, New York 14853

ABSTRACT

In this paper we describe algorithms for solving nonlinear least squares

problems on a message-passing multiprocessor. We demonstrate new parallel

algorithms, including an efficient parallel algorithm for determining the

Levenberg-Marquardt parameter and a new row-oriented QR factorization algo-

rithm. Experimental results obtained on an Intel iPSC h ~ r c u b e are presented

and compared with sequential MINPACK code executed on a single processor.

These experimental results show that essentially full efficiency is obtained for

problems where the column size is sufficiently larger than the number of pro-

cessors. These algorithms have the advantage of involving only simple dam

movements and consequently are not constrained to the hypercube architecture.

1. Introduction

A common computational problem is the mi~timization of the function ~ : R ~ ~ R where

is the sum of squares of nonlinear functions. That is, V can be expressed in terms of a func-

tion F : R n -~ R m , m ---n, by the equation:

W(x) = z,~ II F(x)1122-- 1/~ ~fi2(X) (1.1)
i=1

where f l is the i-th component of F. In this paper we will describe a parallel implementation

of the Levenberg-Marquardt algorithm for solving these nonlinear least squares problems. The

experimental results presented in this paper were obtained on a hypercube multiprocessor but

the algorithms themselves are more general. In fact, all that is required of multiprocessor inter-

connection topology is support of a ring embedding and means for efficient gather and

broadcast operations.

45

Unlike in the parallel solution of systems of nonlinear equations [CL87], low rank

updates to the Jacobian approximation are usually not used in the small residual nonlinear least

squares setting [GMWS1]. Consequently, the dominant costs in these problems are the approx-

imation of the Jacobian J(Xk), where xk is the k-th iterative approximation to the solution, and

the computation of the QR factorizafion of this approximation to J (x,).

The development of parallel algorithms for these two aspects of the problem, the approxi-

marion and QR factofization of J , represents a dilemma when considering how to distribute the

elements of the Jacobian onto the processors. This dilemma arises because the approximation

of J by finite differences is most naturally approached by a column-oriented method and the

QR factorizafion stage suggests a row-oriented solution. In a column-oriented algorithm for

approximating the Jacobian the columns of J are partitioned into sets that assign computation

of columns to processors by these sets. Assuming that F(xk) is globally available, the j-th

column of J can be approximated by computing F(xk+'cej), where e: is the j - th column of the

identity matrix and z a constant, for each column j assigned to a processor. These computa-

tions are entirely local and if n/p>l, where p is the number of processors, then the computa-

tional load can be well-balanced by an even distribution of work to the processors. On the

other hand, because we have that m an , we expect a row-oriented approach, in which the rows

of J are assigned to processors, to outperform a column-oriented method in the QR factoriza-

tion stage. Using a row-oriented method in this case results in an algorithm whose efficiency

depends on the ratio rn/p rather than n/p.

We have chosen to pursue a row-oriented algorithm because experience has shown that

computational costs involved in the QR factorizafion stage often dominate the Jacobian approx-

imation stage. In addition, it is often the case that evaluation of the function F is separable.

That is, if Ii is the set of row indices assigned to processor i then the evaluation of F(x) can

be effectively broken up into blocks, Fli(x)= {f:(x) IJ ~ Ii }, where evaluation of each block is

sufficiently independent to allow for parallel evaluatiorL

The distribution of the rows of the Jacobian onto the processors determines the basic

communication structure of the algorithms used in an implementation. We have chosen to use

a ring embedding (e.g. a Gray code ordering of the nodes on a hypercube) and wrap the rows

of the Jacobian onto this ring. Specifically, if the processors on the ring are numbered

46

0,1,2 p-1 then row k of the Jacobian would be assigned to processor (k-1)mod (p). Note,

however, that components of F may be reordered to facilitate separability. This observation is

especially applicable in the sparse setting where grouping rows with similar nonzero structure

on the same processor would help ensure separable evaluation. Such an assignment would also

make sense for a sparse QR factorizalion since much progress in the triangular reduction of the

system could be made by locally applied Givens rotations.

The remainder of this paper is organized as follows. In section 2 we briefly review the

relevant aspects of the Levenberg-Marquardt algorithm necessary to explain details of our algo-

rithms. In section 3 we consider the proNem of approximating the Jacobian and in section 4

we present a new row-oriented parallel QR factorization. Section 5 describes our parallel algo-

rithrn for determining the Levenberg-Marquardt parameter. Finally, we present experimental

results and conclusions in section 6.

2. Basics of the Levenberg-Marquardt Algorithm

In this section we consider the essential aspects of the Levenberg-Marquardt algorithm

relevant to a parallel perspective. For a more detailed description of the algorithm we refer the

interested reader to the excellent article by Mor6 [M78]. As stated previously, the nonlinear

least squares problem is to minimize ~g(x) as given in equation (1.1). Assuming that each

f l e C 2, then the gradient and Hessian of ~ are given by the expressions:

V v = JTF (2.1)

and

V2V = j r j + ~ f i V2.fi , (2.2)
i=1

where J is the Jacobian of F. When one expects the value of the function to be small at the

solution) the Hessian can be approximated by jTj in a neighborhood of the solution. This

approximation, which ignores the second term in the expression for the Hessian, represents a

significant computational savings.

t known as "small residual" problems [MGW81]

47

Based on a quadratic model to the function V using the above Hessian approximation the

Levenberg-Marquardt algorithm [M77,C84] solves a sequence of trust region problems of the

form

min {]IJP + F H2 s.t. IIP[[2 <A } (2.3)

A solution to this problem is obtained in two steps. First, the Gauss-Newton step, P~N is

determined by solving the problem

min { II Jp + F 112 } , (2.4)

by computing a QR factorization of Y and solving the upper triangular least squares system

[R]p =_ QT F (2.5)

If IIPGN II < LX, then the step is accepted$, otherwise we determine the Lagrange multiplier L,

and vector p, , liP, II -- •, such that

(j r j + ~,,I)p, = -JT"F (2.6)

Using the previously computed QR factorization of J and given a value of Z,, the solution of

the least squares system

p(~,) = Q F (2.7)

yields the value of the function ¢(%)= tlp(~,)II-A. Since ~ is monotonically decreasing on

[0,~) from the positive value of llPau II - A at ~,=0 to the negative number -A as ; ~ o , an

appropriate implementation of Newtons method is guaranteed to find the zero of ~ at ~,, the

Lagrange multiplier [M78].

From this discussion we note that there are three main computational tasks that need to

be addressed in a parallel implementation of the Levenberg-Marquardt algorithm. These

features are: (1) the approximation of the Jacobian J(x), (2) the QR factorization of J(x)

necessary to solve equation (2.5), and (3) computation of the Levenberg-Marquardt parameter

that solves equation (2.6). In the following sections we present our implementation of the first

task and new parallel algorithms for the last two problems.

.~ contingent, of course, upon sufficient decrease in

48

3. Parallel Approximation of the Jacobian

The approach used in the paraUel approximation of the Jacobian by forward differences

depends on two criteria: (1) whether the function F (x) is sufficiently separable, and (2) if the

function is not separable, whether evaluation of the function is computationally expensive.

These criteria are somewhat subjective; whether they apply is a symptom of the specific prob-

lem considered. In this section we describe parallel Jacobian approximation schemes which

deal with the cases delineated by these criteria.

As before, let Ii be the set of row indices assigned to processor i and let J r /i (x) be this

set of the rows of the Jacobian evaluated at the point x. When evaluation of the function is

separable, then the Jacobian can be evaluated in parallel by having each processor compute its

components of the j- th column according to the formula

FI~(x +'~e'i) - Fie(x) (3.1) j r
; (x) ej =- z

It is often the case that evaluation of F (x) is not completely separable, there may be some

amount of redundant computation due to common factors that must be computed for each parti-

tion of the function F1~(x), i =1 p. If this redundant computation is inexpensive relative to

communication cost entailed by using a column-oriented scheme then we consider this compu-

tational overhead tolerable. All of the test problems considered in the experimental section fall

into this category. Otherwise, if the redundant computation required by such a partition of the

rows is deemed too expensive, a column-oriented approach to approximating J (x) must be

adopted. In this approach a set of column indices, gi0 is assigned to each processor i. For

each k • Ki the k-th column of J is approximated at processor i by the usual forward

differences formula,

F (x +'cek) - F (x)
J (x)ek = , (3.2)

where in this case the function F can be thought of as a "black box." Assuming that the com-

putation required to evaluate F (x) is independent of x, the computational load can be balanced

by making the index sets Ki as close to the same size as possible. Using a wrap mapping wilt

keep the cardinality of these sets within one, therefore any disparity in workload becomes rela-

tively better as n/p increases.

49

The resulting problem is how to get this column-oriented distribution of the data con-

verted to a row-oriented distribution for the QR factorization stage. Fommately, there exist

efficient algorithms for transposing a matrix on the hypercube [MVV87]. Of course, this whole

problem can be avoided by using column-oriented algorithms in the first place. Experimen-

tally, we did not take such an approach, but good column-oriented QR factorization algorithms

exist [M87]. In addition, in section 5 we describe an efficient column-oriented version of the

Levenberg-Marquardt algorithms.

A more subtle problem occurs when the evaluation of F(x) is not separable and the this

evaluation is computationaUy expensive relative to the QR factorization. Suppose a step pk is

to be considered at the k-th iteration of the algorithm then F(xk+pk) must be evaluated to deter-

mine if it meets certain acceptance criteria. When this computation is relatively expensive and

not separable, and therefore must be done on one processor, then the remainder of the proces-

sors will remain idle during this computation. This can result in detrimental effects on the

efficiency of the entire implementation. Byrd, Schnabel, and Shultz [BSS88] and Coleman and

Li [CL87] note that this problem can be alleviated somewhat by guessing, based on the previ-

ous iteration, whether the proposed point will be accepted. If acceptance is assumed, then the

Jacobian at xk+Pk Can begin to be approximated by idle processors. If we guess that the pro-

posed iterate will not be accepted, then idle processors could evaluate the function at some

additional points which might fare better with the acceptance criteria. These ideas were not

implemented in our code but could easily be added for cases of difficult functions.

4. A New Parallel Row-Oriented Householder QR Algorithm

The efficiency of the parallel QR factorization used to solve equation (2.4) is of

paramount importance because a completely new approximation to the Jacobian is computed

for each iteration. Consequently, a full QR factodzafion is also required. As we will see in

Section 6 the QR factorization represents the dominant computational cost for the test problems

we considered. In this section we present a new parallel row-oriented Householder QR factori-

zation that was found to be more efficient than previous hybrid (Householder/Givens) factoriza-

tion algorithms. In addition, this algorithm has the advantage that it produces the same House-

hoider vectors that would be produced by a standard sequential Householder QR algorithm

(unlike the hybrid scheme) which can be advantageous in situations where the same system

50

must be solved for multiple right hand sides. Finally, we show that column pivoting can be

introduced into the algorithm with only a slight increase in the computation and communication

complexity. In our implementation column pivoting is important because the QR factorization

can then be used to determine matrix rank.

Most of the research on QR algorithms for the hypercube has been directed toward

column-oriented methods, however two row-oriented algorithms have been considered previ-

ously [CP86,PR87]. These two algorithms are very similar in that to reduce each column of

the matrix first a reduction hwolving only data local to each processor is performed and then

this stage is followed by a global reduction requiting communication between the processors.

The reduction of rows local to a processor results in one row per processor with a nonzero in

the column being reduced to upper triangular form. The advantage of this approach is that all

these reductions and matrix updates will be local to the processors and with the wrap mapping

of rows the computational load will be well-balanced. Following this local stage is a global

stage where a minimum spanning tree is embedded in the hypercube rooted at the processor

where the nonzero for the column under consideration should reside. Rows are communicated

up this tree and the leading nonzero is armihJlated by a Givens rotation with respect to the

parent's row. These rows are then updated with this rotation and the result communicated

back to the child. The hypercube topology allows this global reduction process to take place in

log (p) steps, Of these two algorithms the one presented by Pothen and Raghavan [PR87]

seems to be the most efficient since Householder reductions, as opposed to Givens, are used in

the local stage.

Our algorithm is computafionatly more efficient than the hybrid approach because the full

Householder vector is calculated and the intermediate Givens reductions are avoided. The

difficulty is obtaining the same communication complexity as the hybrid approach. The trick is

to notice that computation of the Householder vector and the rank one update to the matrix can

be combined to half the number of messages that seem to be required at first inspection.

To illustrate the algorithm consider the QR factorization of an m x n matrix A. At step j

of the factofizafion the first j - 1 rows of R and the Householder vectors have been computed

and we need only consider the (m-j+l)x(n-j+l) lower right submatrix of A, which we will

denote by A (i), with columns ak (/), k = j n. The Householder transformation, pc/~, to reduce

the first column ofA (/~, ay ~, is given by

51

V q)v To)
Pq) = !~ I - 2 ..'77-ff"S--'..] ,

v (j)v q)

where vq) = aj (/) + Ilay)lh ej. To determine ak q+l), k=j+l n,

corresponding rank one update to A q) given by:

ak q+l) = ak (/) - 7 2 v~i)ak (i) v(y)
vo)vo)

: ,

(4.1)

we need to compute the

(4.2)

(4.3)

with c~) defined as shown. Suppose row j is assigned to a processor that we will designate

leader. Note that v(/) agrees with a (/) except in the first component, hence the portions of the

inner product v~)ak (j~ local to each processor are just a y) Tak(/) except on leader where a (/) and

v(/) differ in the first component. We can take advantage of this fact to combine the communi-

cation to compute v~/> with the communication required for the rank one update to the

remainder of the matrix. An outline of the resulting algorithm is given below.

Index Set: // {set o f rows indices assigned to processor i }

Proc (i) : {program for processor i }

For j = I , . . . , n do

I f (i=leader) Delete {j } from li

Compute dot products for k = j , - • •, n

~k = [aq)lrl J1 i [afJ)]1 i

Combine [~: , - - - , an] using ga ther-sum

I f (i=leader) then

Compute first component of vV) and the coefficients

[~ + ~ , . . . , ~ff)] and broadcast the result

Update columns, k = j +1, • - •, n

[akq+l)]l i = [ak~/)lti - ~) [vq)]zi

enddo

Algor i thm 4.1: A Parallel Row-Oriented Householder QR Algorithm

Here we use the notation [a:q)] h to represent the subvector o f ay q) with components given by

the index set Ii. The ~ vector is a work vector used in the computation of Ilaj(/~l h and the

52

constants ~), k = j+ l n. In Figure 4.1 we show the efficiencies of this algorithm compared

to the hybrid algorithm described by Pothen and Raghavan in [PR87] as a function of the

number of rows. For this plot the number of columns is fixed at 100.

.8

.6 O

0

~-4 .4

M

.2

Algorithm 4.1 (Hous~

/ ~igorithm
/

I

J

I - - t l I

250 500 750 i000 1250

Number of Rows (m)

Figure 4.1: Efficiency of Algorithm 4.1 and Hybrid on a 16 Node Hypercube (n=100)

Execution Times (sec) ENciencies

n m Single processor Hybrid Householder Hybrid Householder

100 150 109.5 15.5 11.95 .44 .57

100 500 434.2 35.7 31.5 .76 .86

100 1000 897.8 64.7 59.3 .87 .95

200 350 1040.1 93.9 81,0 .69 .80
!

Table 4.1: Execution Times and Efficiencies of Algorithm 4.1 on a 16 Node Hypercube

In Table 4.1 we show some representative execution times of our implementations of the

hybrid algorithm (Hybrid) and Algorithm 4.1 (Householder) as compared to a sequential QR

53

factorization program executed on a single processor. These results were all obtained on a 16

node iPSC hypercube and the comparison was made with the MINPACK QR factorization sub-

routine QRFAC executed on a single processor of the hypercube.

A subtle point in solving equation (2.5) is that the orthogonal matrix Q does not need to

be saved if the right hand side of equation is updated along with the rows of the Jacobian. To

achieve this aim the right hand side is treated like an additional column to the man'ix J and

distributed across the processors in the same wrap mapping and updated along with the

corresponding rows of the Jacobian.

Column pivoting can be added to AIgorithm 4.1 in the following manner. The column

norms of the matrix A are initialized at the beginning of the algorithm and are then updated

after each stage of the computation to obtain the column norms of A q). For example, suppose

at stage j in the QR factorization the column norms Ilak(/)ll2, k = l n are known by leader.

The column of maximum norm, k is determined by leader, the result is broadcast, and

columns j and kmax are interchanged by all processors. After stage j of the algorithm the

updated norms can be obtained by the formula:

= IlakU)ll2 [1 - II ak~+l)112
L

I 1T
L JJ '

(4.4)

for k =j+l , • •. ,n, and the results sent to the next processor on the ring for stage j+l of the

QR algorithm. Note that numerical cancellation can be a problem in computing these norm

updates. However, circumstances that would result in this problem can be monitored for and

in such cases the suspect column norm can be recomputed. In our implementation tiffs is done

by broadcasting a special notifier to the other processors instead of the column pivot. The

required column norms are then recomputed and the result gathered at leader. Our observation

has been that recomputation of the coIumn norms is rarely required and therefore does not

significantly effect the efficiency of the algorithm.

One last concern for numerical stability might be the possibility of overflow from the

way the ~k are computed in Algorithm 4.1. We note that these partial sums can be scaled by

the most recent approximation to the cotumn norms available to all the processors. However,

we did not find it necessary to include this scaling in our implementation.

54

A graph comparing the efficiencies of Algorithm 4.1 with and without pivoting is

included as Figure 4.2. The efficiency is again computed by comparing the running times of

parallel algorithms to running times of the MINPACK QR subroutine QRFAC on a single pro-

cessor. These results were obtained on a 16 node hypercube with the number columns fixed at

100. In table 4.2 we include some representative times from these experiments.

.8

.6

o

0
• r4 .4
q-4
qq

.2

Algorithm 4.1

/// ~ Algorithm 4.1
with pivotlng

0 i i i i

250 500 750 I000

Number of Rows (m)

I

J

1250

Figure 4.2: Efficiency of Algorithm 4.1 With and Without Column Pivoting

Execution Times (sec) Efficiencies

n m Single processor Householder Householder

100 150 112.6 14.2 .50

100 500 439.0 34.1 .80

100 1000 906.5 62.1 .91
I

Table 4.2: Execution Times and Efficiencies of Algorithm 4.1 with Pivoting

55

5. A Parallel Implementation of the Levenberg-Marquardt Algorithm

To determine the Levenberg-Marquardt parameter Algorithm 5.1 was used to reduce

equation (2.7) to upper triangular form. This reduction requires a surprising amount of work:

n(n+l) /2 Givens rotations and the corresponding row updates, or O(n 3) flops. Note that the

work required in this reduction is independent of m, the number of rows. Algorithm 5.1

details a parallel method to accomplish this reduction. In the algorithmic description let S

represent storage for an upper triangular matrix which is initially set equal to the matrix ~,1/21 in

equation (2.7). Remember that the rows of R and S are wrapped onto an embedded ring of

processors as described in Section 1.

Functions: next {returns number of next processor in the ring},

prev {returns number of previous processor in the ring}

Index Set: Ii {set of rows assigned to processor i }

Proe (i) : {program for processor i }

For j = 0, n-1 do

For ke l j do

If (3' el3) receive row S{_j from processor prev(i)

Compute Givens rotation to zero the bottom of the vector (Rk~, Sk-j,k) r

Update rows R T and sT_j with above Givens rotation

Send row S/_j to processor next(i)

If (k=j+l) Delete {k } from Ii

enddo

enddo

Algorithm 5.1: A Parallel Row-Oriented R-S Reduction

Algorithm 5.1 proceeds in n stages which have been indexed by j = 0 n-1 in the

description. At stage j of algorithm 5.t the superdiagonal of S that is a distance j from the

main diagonal is eliminated by Givens rotations. After n stages, the upper triangular matrix S

has been completely zeroed and the updated upper triangular matrix R is still wrapped onto the

processors in the same manner as at the start of the algorithm. As the leading nonzero of each

row of S is eliminated and the corresponding rows updated the rows of S move around the

embedded ring in a systolic manner. Note, that although the work at each stage is not com-

pletely balanced, the processor doing the most work rotates around the ring. This imbalance is

56

somewhat offset by the required commtmicafion. Experimental results of the efficiency of this

algorithm as a function of number of columns are shown in Figure 5.1.

.8

.6
O

O

.4

.2

\ ,

/ ~ Algorithm 511 °w-°riented)

(column-oriented)

0 i00 200 300 400 500

Number of Columns (n)

Figure 5.1: Efficiencies of Algorithms 5.1 and 5.2 on a 16 Node Hypercube

A column-oriented approach is also possible and is presented as Algorithm 5.2. From

Figure 5.1 it is apparent that this version is superior experimentally. Even though the algo-

rithm is a bit more complicated, the total number of messages that have to be sent is the same

as Algorithm 5.1 and the total number of values that have to communicated is actually less.

For an average step j in Algorithm 5.2 we need only communicate the single Givens vector g

of length O (n) between neighboring processors. For the row-oriented version we need to com-

municate O(n/p) rows of S of length O(n) between processors. In practice the rows of S are

combined into one long message which results the same number of communication start-ups as

appear in Algorithm 5.2. The message start-up cost, measured in "flops," for the Intel iPSC

hypercube is very expensive and is normally the dominant factor in the communication cost of

an algorithm. However, for these two algorithms the average message lengths are extremely

different, hence one sees a difference in efficiency between these two algorithms experimen-

tally.

57

Index Set: Ki {set of columns assigned to processor i }

Proc (i) : {program for processor i }

For j = 0, n-1 do

I f (j ~0) Receive Givens vector g from processor prey(i)

For k ~ Kj do

For l = m/n(j,p-l), . .1 do

Update rows Rr_j+l and Sr_j with Givens rotation gk-j+i

enddo

Compute Givens rotation to zero the bottom of the vector (Rk,k, Sk-j,k) r

Update rows R T and SL: with above Givens rotation

Update gk in Givens vector

If (k=j+l) Delete {k] from Ii

enddo

Send Givens vector g to processor next(/)

enddo

Algorithm 5.2: A Parallel Column-Oriented R-S Reduction

For Algorithm 5.2 the columns, as opposed to the rows, of R and S are wrapped onto the

ring of processors. Rather than communicating rows of S between neighboring processors, the

Givens rotations are stored in vectors g which rotate around the ring. Once the algorithm has

been running for more than p steps, i.e. j >_p-l, then the Givens vector g is completely filled

with updates that need to be applied once received. The order that these rotations are applied

in the 1 loop is important. Since they operate on the same row of S, the rotations must be

applied from oldest to newest. Also, note by row R[we mean the nonzero components of row

R [that are local to processor i. These components are given by the index set Ki. Note that

the difference in the average length of the messages sent between Algorithms 5.1 and 5.2

translates into a much more efficient algorithm for the column-oriented approach. It is possible

to decrease the length of the messages sent in the row-oriented method by postponing the

application of the Givens rotations. Unfommately, this algorithm is very complicated and was

not implemented.

The reduction of equation (2.7) to upper triangular form is the major task to be rendered

parallel in an algorithm for determining the Levenberg-Marquardt parameter L, and we have

58

shown that there exist effective algorithms to perform this reduction. However, efficient solu-

tion of triangular systems is also important in this context. In fact, for each iteration involving

a solution of equation (2.7) there are two associated triangle solves that are used to bracket the

solution ~ [M78]. Experimentally we used the triangle solve algorithms developed by Li and

Coleman [LC86], but it should be noted that the efficiencies of these algorithms are not nearly

as good as those of Algorithms 5.1 and 5.2. This difference is what accounts for the

discrepancies between the efficiencies shown in Figure 5.1 and the efficiences reported in the

next section for solving for the Levenberg-Marquardt parameter. This effect is apparent even

though there is an O(n) difference between the amount of work required for Algorithm 5.1 and

the corresponding triangular solves. The importance of efficient parallel triangle solvers has

also been observed in the solution of systems of nonlinear equations [CL87].

6. Experimental Results and Conclusions

These algorithms were implemented on a 16-node Intel ff'SC hypercube in RM/Fortran

and run under version R3.1.1 of the iPSC operating system. The efficiencies shown below

were calculated by dividing the running time of MINPACK [MGH80] code on a single proces-

sor by 16 times the running times of the algorithms described above on the hypercube. The

comparison is fair as both programs generate the same sequence of iterates and consequently

do the same number of Jacobian approximations (J Appr), QR factorizations (QR Fact), and

calculations of the Levenberg-Marquardt parameter (L-M). Results from this comparison for

representative test problems of moderate size are sumrnerized below in Table 6.1.

Shown in Table 6.1 are the efficiences and the fraction of the total running time spent in

each of the three previously described sections of the program. For these problems the total

time of computation is dominated by the QR factorization, hence the implementation tends to

be more efficient as m, the number of rows, increases. We feel that the relative time spent in

function evaluation, and consequently approximation of the Jacobian, is too short and not

representative of real world problems. For these problems the efficiency of the Jacobian

approximation would play a more dominant role in the performance of the program. Then the

sequential nature of the function evaluation while testing for adequate decrease in the objective

function at the candidate iterate would become more of a problem. However, as discussed ear-

lier, this problem can be alleviated by simultaneous function evaluation and computation of the

Jacobian at the new point [CL87].

59

Prob

1

Efficiencies Compared to MINPACK % Time Spent in Routine

QR Fact J Appr QR Fact L-M J Appr n

100

50

100

100

m

200

200

200

200

Total

.86

.65

.72

.77

.91

.78

.80

.86

L-M

.51

.25

.46

.57

.52 .85

.35 .75

.37 .72

.58 .92

.10 .02

.19 .02

.26 .01

.03 .03

Table 6.1: Experimental Results of Parallel Algorithms Compared with MINPACK

In sum, we have observed good efficiencies when solving moderately sized nonlinear

least squares problems on the Intel hypercube. We also point out that it is possible to solve

much larger problems than those we have described above (which had to be run on one proces-

sor for comparison). The efficiencies for such larger problems would be correspondingly

better. In addition to comparisons with larger dense problems one can consider solving large

sparse problems that have special structure. For example, we note that a simple generalization

of Algorithm 5.1 would work well if the Jacobian were banded and that the row-oriented

approach to the QR factorization would be efficient in solving problems with block structure.

Acknowledgements

The work that produced this paper was [partially] completed with the assistance of com-

puting facilities of the Advanced Computing Facility at the Comell Center for Theory and

Simulation in Science and Engineering, which is supported by the National Science Foundation

and New York State.

60

References

[BSS88]

[CP86]

[C84]

[CL87]

[LC86]

[M87]

[MVV87]

[GMW81]

[M77]

[MGH80]

[PR87]

R. Byrd, R. Schnabel, & G. Shultz. Parallel Quasi-Newton Methods for Uncon-

strained Optimization. Manuscript, Department of Computer Science, University

of Colorado at Boulder, I988.

Richard Chamberlain and M. J. D. Powell. QR Factorisation for Linear Least

Squares Problems on the Hypercube. Chr. Michelsen Institute, 1986.

Thomas F. Coleman. Large Sparse Numerical Optimization. Springer-Verlag,

1984.

Thomas F. Coleman and Guangye Li. Solving Systems of Nonlinear Equations on

a Message-Passing Multiprocessor. Tech. Rep. 87-887, Computer Science Depart-

ment, Cornell University, 1987.

Guangye Li and Thomas F. Coleman. A Parallel Triangular Solver for a Distri-
buted Memory Multiprocessor. Tech. Rep. CS-86-787, Computer Science Depart-

ment, Comell University, 1986.

C. Moler. Matrix Computations on Distributed Memory Multiprocessors. Tech.

Rep., Intel Scientific Computers, 1987.

O. M. McBryan and E. F. Van de Velde. Hypercube Algorithms and Implementa-

tions. SIAM J. Sci. Comput., 1987.

Phillip Gill, Waiter Murray, and Margaret Wright. Practical Optimization.

Academic Press, 1981.

Jorge J. Mot6. The Levenberg-Marquardt Algorithm: Implementation and Theory.

Springer-Verlag, 1977.

Jorge J. Mot6, Burton Garbow, and Kenneth Hillstrom. User Guide for

MINPACK-1. Argonne National Laboratory, 1980.

Alex Pothen and Padma Raghavan. Distributed Orthogonal Factorization: Givens

and Householder Algorithms. Pennsylvania State University, 1987.

