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We present a new numerical technique to discover a new solution of Singular Nonlinear Volterra Integral Equations (SNVIE). �e
considered technique utilizes the Hybrid Orthonormal Bernstein and Block-Pulse functions wavelet method (HOBW) to solve the
weakly SNVIE including Abel’s equations. We acquire theHOBW implementationmatrix of the integration to derive the procedure
of solving these kind integral equations. �e explained technique is delineated with two numerical cases to demonstrate the bene	t
of the technique used by us. At last, the exchange uncovers the way that the strategy utilized here is basic in usage.

1. Introduction

In the current literature, there are many di
erent appli-
cations of SNVIE in various areas, such as mathematical
physics, electrochemistry, scattering theory, heat conduction,
semiconductors, population dynamics, and �uid �ow [1,
2]. Numerical strategies for the SNVIE are spline colloca-
tion methods [3], Newton–Cotes methods [4], extrapolation
algorithm [5], and Hermite-collocation method [6]. �e
most popular methods for talking about the such equations
are introduced, such as homotopy asymptotic method [7],
Nyström interpolant method [8], Mesh method [9], Tau
method [10], Laplace transform [11], orthonormal Bernstein,
and block-pulse functions [12–17].

Wavelet theory is a moderately new and considered
as a rising territory in the 	eld of applied science and
engineering. Wavelets allow the accurate representation of a
lot of functions. �e wavelet technique is a new numerical
technique utilized for dissolving the fractional equations.

SNVIE has numerous applications in di
erent zones, for
example, semiconductors’ mathematical chemistry, chemical
reactions, physics, scattering theory, electrochemistry, seis-
mology, metallurgy, �uid �ow, and population dynamics [2,
18–20].

In 1823, Niels Henrik Abel derived the equation� (�) + ∫�
0

��(� − �)0.5 �� = 0, (1)

where �(�) is an unknown function and �(�) is a given
function. �is equation is an example of a nonhomogeneous
Volterra equation of 	rst kind with weak singularity. Abel
obtained this equation while studying themotion of a particle
on a smooth curve lying on a vertical plane. �e physical
depiction of this condition is given in [21] as pursues. Abel
thought about the issue in traditional mechanics, which is
that of deciding the time a molecule brings to slide openly
down a smooth settled bend in a vertical xy-plane (in
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Figure 1), from any settled point (�, 	) on the bend to its
absolute bottom (the starting point 0). If
means the mass of
the molecule and ��(�) signi	es the condition of the smooth
bend where � is a di
erentiable function of �, at that point we
acquire the vitality protection condition as12
V

2 + 
� = 
	, (2)

where V is the speed of the molecule at the position (�, �) at
time �, if the molecule tumbles from rest at time � = 0 from
the point (�, �), and  represents acceleration due to gravity.
�e connection (2) can be expressed as���� = − [2(	 − �]1/2 (3)

by utilizing the arc-length �(�), estimated from the starting
point to the point(�, �), where a less sign has been utilized in
the square root since � diminishes with time � amid the fall of
the molecule. Using the formula���� = [1 + ��2 (�)]0.5 (4)

we can compose���� = ���� ���� = −[2 (	 − �)1 + ��2 (�)]0.5 (5)

By integrating both sides of (5), we obtain∫0
�
[ 1 + ��2 (�)2 (	 − �)0.5]�� = −∫�0 �� = −�, (6)

where � is the total time of fall of the particle, from the point(�, �) to the origin (0, 0).�erefore, we have∫�
0

� (�)(	 − �)0.5 �� = � = � (	) ,
� (�) = [1 + ��2 (�)2 ]0.5 ,0 < 	 < �

(7)

where �(0) = 0. In this way, we can 	nd that the time
of descent of the particle, T, can be resolved totally by
utilizing the recipe (7), if the state of the curve � �(�), and
consequently the function �(�) is known. On the o
 chance
that we consider, on the other hand, the issue of assurance
of the state of the bend, when the time of fall � is known,
which is the historic Abel’s problem, then the relation (7) is
an integral equation for the unknown function �(�), which is
known as Abel’s integral equation.

�emost general form of Abel’s integral equation is given
by∫�
0

� (�)[ℎ (�) − ℎ (�)]� �� = � (�) ,� > 0, � (0) = 0, 0 < � < 1, (8)
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Figure 1: Abel’s problem.

where ℎ(�) is a monotonically expanding function. We have
picked it as ℎ(�). Also, a general form of SVIE of second kind
is given as� (�) = � (�) + �∫�

0

� (�)(� − �)� ��, 0 < � < 1, (9)

where �(�) is in �2(�) on the interim � ≤ �, 0 ≤ � and � is a
steady parameter.

We utilize the HOBW method for determining the
approximation solution of SNVIE of the shape given by� (�) = � (�) + �∫�

�

! (�, �) " (� (�))(� − �)1−� ��, 0 ≤ � ≤ 1. (10)

where �(�), !(�, �) are continuous functions, while 0 < � <1 and �(�) is the unknown function to be determined.
�is paper is organized as follows. Initially the basic

formulation of the HOBW method and some properties of
HOBW are de	ned in Section 2. In Section 3, we determine
the HOBW implementation matrix of integration. While in
Section 4, we summarize the process of dissolving weakly
singular-Volterra integral equations based on the HOBW
implementation matrix method. In Section 5, we consider
two examples which demonstrate the validity of this method.
Finally, the concluding remarks are demonstrated.

2. The HOBW Method and Operational Matrix
of the Integration

2.1. Wavelets and the HOBW Method. Wavelets constitute a
group of functions constructed from dilation and translation
of a single function #(�) called the mother wavelet. In which
parameter of dilation � and parameter of translation $ vary
continuously.#�,	 (�) = |�|−1/2 #(� − $� ) , �, $ ∈ �, � ̸= 0 (11)
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By letting � and $ be discrete values such as � = �0−
, $ =-$0�0−
, �0 > 1, $0 > 0,
where - and ! are positive integers, we attain the family

of discrete wavelets:#
,� (�) = ////�0////
/2 # (�0
� − -$0) , -, ! ∈ 5+ (12)

�en we see that #
,�(�) forms a wavelet basis for �2(�). In
particular, when �0 = 2, $0 = 1, then #
,�(�) forms an ortho-
normal basis. Here, 6789�,(�) = 6789(!, :, ;, �) involves
four arguments, : = 1, . . . , 2
−1, ! is to be any positive integer,; is the degree of the Bernstein polynomials, and � is the
normalized time.6789�,(�) are de	ned on [0, 1) as [12, 13]

6789�, (�) = {{{{{{{2
(
−1)/2(-;) (2
−1� − : + 1) (1 − (2
−1� − : + 1))�− : − 12
−1 ≤ � < :2
−10 E�ℎFGFH:�F (13)

where : = 1, 2, . . . , 2
−1, ; = 0, 1, . . . ,I − 1 and ! is a
positive integer. �us, we attain our new basis as {HOBW1,0,
HOBW1,1, . . . ,HOBW2�−1 ,�−1} and any function is truncated
with them.

�e6789detect orthonormal basis is given by(6789� (�) ,6789�// (�)) = {{{1 (:, ;) = (:/, ;/)0 (:, ;) ̸= (:/, ;/) (14)

where (⋅, ⋅) is called the inner product in �2[0, 1).�e HOBW

has compact support [(: − 1)/2
−1, :/2
−1], : = 1, . . . , 2
−1.
2.2. Function Approximation by Using the HOBW Functions.
Any function �(�), which is integrable in [0, 1), is truncated
by using the HOBWmethod as follows:� (�) = ∞∑

�=1

∞∑
=0

M�6789� (�) ,: = 1, 2, . . . ,∞, ; = 0, 1, 2, . . . ,∞, � ∈ [0, 1) , (15)

where the HOBW coe�cients M� can be calculated as given
below: M� = (� (�) ,HOBW� (�))(HOBW� (�) ,HOBW� (�)) (16)

We approximate �(�) by a truncated series as follows:� (�) = 2�−1∑
�=1

�−1∑
=0

M�6789� (�) = O�HOBW (�) (17)

where HOBW(�) and O are 2
−1I× 1 vectors given by

HOBW (�) = [HOBW10,HOBW11, . . . ,HOBW1(�−1),
HOBW20,HOBW21, . . . ,HOBW2(�−1), . . . ,
HOBW2�−10, . . . ,HOBW2�−1(�−1)]� . (18)

andO = [M10, M11, . . . , M1(�−1), M20, M21, . . . , M2(�−1), . . . , M2�−10, . . . ,M2�−1(�−1)]� . (19)

We de	ne the HOBWmatrix Φ2�−1�×2�−1� as follows:Φ2�−1�×2�−1� = [HOBW( 12 ⋅ 2
−1I) ,
HOBW( 32 ⋅ 2
−1I) , . . . ,
HOBW(((2 ⋅ 2
−1I) − 1)2 ⋅ 2
−1I )] ,

(20)

�e series in (17) contains an in	nite number of terms for a
smooth function �(�). �erefore, we haveO� ⟨HOBW (�) ,HOBW (�)⟩ = ⟨� (�) ,HOBW (�)⟩ (21)

so that O = Z−1 ⟨� (�) ,HOBW (�)⟩ , (22)

where Z = ⟨HOBW (�) ,HOBW (�)⟩ , (23)= ∫1
0
HOBW (�) .HOBW� (�) �� (24)

=(Z1 0 ⋅ ⋅ ⋅ 00 Z2 ⋅ ⋅ ⋅ 0... d 00 0 ⋅ ⋅ ⋅ Z�) (25)

�en, by using (14), Z� (: = 1, 2, . . . , 2
−1) is de	ned as
follows:(Z�)�+1,+1 = ∫�/2�−1(�−1)/2�−1

HOBW�,� (2
−1� − : + 1)⋅HOBW,� (2
−1� − : + 1) �� (26)

(Z�)�+1,+1 = 12
−1 ∫10 HOBW�,� (�)HOBW,� (�) �� (27)

(Z�)�+1,+1 = ( �� ) ( � )2
−1 (2- + 1) ( 2��+ ) (28)
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We can also approximate the function !(�, �) ∈ �[0, 1] as
follows:

! (�, �) ≈ HOBW� (�)`HOBW (�) , (29)

where` is an 2
−1I×2
−1Imatrix that we attain as follows:

` = Z−1 ⟨HOBW (�) ⟨! (�, �) ,HOBW (�)⟩⟩Z−1 (30)

2.3. Multiplication of the Hybrid Functions. We can evaluate

HOBW(2�−1�×1)(�)HOBW�(2�−1�×1)(�) for VIE of the second
kind via the HOBW functions as detailed below.

Let the product of HOBW(2�−1�×1)(�) and

HOBW�(2�−1�×1)(�) be given by

HOBW(2�−1�×1) (�)HOBW�(2�−1�×1) (�)≅ I(2�−1�×2�−1�) (�) (31)

where

I(2�−1�×2�−1�) (�)
= [[[[[[[[[[

HOBW10 (�)HOBW10 (�) HOBW10 (�)HOBW20 (�) ⋅ ⋅ ⋅ HOBW10 (�)HOBW2�−1 ,� (�)
HOBW20 (�)HOBW10 (�) HOBW20 (�)HOBW20 (�) ⋅ ⋅ ⋅ HOBW20 (�)HOBW2�−1 ,� (�)
HOBW30 (�)HOBW10 (�) HOBW30 (�)HOBW20 (�) ⋅ ⋅ ⋅ HOBW30 (�)HOBW2�−1 ,� (�)... ... ⋅ ⋅ ⋅ ...

HOBW2�−1 ,� (�)HOBW10 (�) HOBW2�−1 ,� (�)HOBW20 (�) ⋅ ⋅ ⋅ HOBW2�−1 ,� (�)HOBW2�−1 ,� (�)
]]]]]]]]]]

(32)

With the recursive formulas, we calculate I(2�−1�×2�−1�)(�)
for any ! andI.

�ematrixI(2�−1�×2�−1�)(�) in (23) satis	es the following
relation: I(2�−1�×2�−1�) (�) M(2�−1�×1)

= Õ(2�−1�×2�−1�)HOBW(2�−1�×1) (�)
(33)

where M(2�−1�) is de	ned in (33) and Õ(2�−1�×2�−1�) is the
matrix coe�cient. We consider the case when ! = 3 andI = 4. �us, we have

I(16)×16) (�) = [[[[[[[[[[
HOBW10 (�)HOBW10 (�) HOBW10 (�)HOBH20 (�) ⋅ ⋅ ⋅ HOBW10 (�)HOBW43 (�)
HOBW20 (�)HOBW10 (�) HOBW20 (�)HOBH20 (�) ⋅ ⋅ ⋅ HOBW20 (�)HOBW43 (�)
HOBW30 (�)HOBW10 (�) HOBW30 (�)HOBH20 (�) ⋅ ⋅ ⋅ HOBW30 (�)HOBW43 (�)... ... ⋅ ⋅ ⋅ ...
HOBW43 (�)HOBW10 (�) HOBW43 (�) 78620 (�) ⋅ ⋅ ⋅ HOBW43 (�)HOBW43 (�)

]]]]]]]]]]
(34)

�e coe�cient matrix Õ(2�−1�×2�−1�) in (33) is determined by

Õ(2�−1�×2�−1�) = [[[[[[
O0 0 0 00 O1 0 00 0 O2 00 0 0 O3

]]]]]] (35)

where O�, : = 0, 1, 2, 3 are 4 × 4matrices given by
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O�((2�−1�×2�−1�)) =
[[[[[[[[[[[[[[[[[[[[[[[[[

73c1i + 523c2i 1116c1i + 311c2i 322c1i + 516c2i −319 c1i + 119c2i− 1103c3i − 7201c4i + 521c3i + 1101c4i − 144c3i + 1103c4i + 3209c3i − 3209c4i22144c1i + 123c2i 2223c1i + 14123c2i 419c1i + 213c2i −123 c1i + 119c2i− 17143c3i − 13209c4i +1547c3i + 2175c4i − 281c3i + 2147c4i + 1190c3i − 3105c4i914c1i + 719c2i 2425c1i + 711c2i 415c1i + 24132c2i −19142 c1i + 319c2i− 13132c3i − 11120c4i + 734c3i + 3107c4i − 571c3i + 3107c4i + 3201c3i − 3208c4i1113c1i + 120c2i 2223c1i + 1327c2i 723c1i + 213c2i −323 c1i + 325c2i− 3103c3i − 1209c4i + 737c3i + 2103c4i − 190c3i + 3103c4i + 1213c3i − 1201c4i

]]]]]]]]]]]]]]]]]]]]]]]]]

(36)

3. HOBW Operational Matrix

Firstly, we review some basic de	nitions of fractional calculus
[22–24], which are required for establishing our results.

De
nition 1. �eRiemann–Liouville fractional integral oper-
ator o of order �, of a function � ∈ OV, V ≥ −1, is de	ned as
follows:(o��) (�)

= {{{ 1Γ (�) ∫�0 (� − r)�−1 � (r) �r, � > 0, � > 0,� (�) , � = 0 (37)

�e block-pulse functions (BPFs), an
-set of BPFs on [0, 1),
are de	ned by

$� (�) = {{{1, :
 < � < : + 1
 ,0, E�ℎFGH:�F, (38)

where : = 0, 1, 2, . . . , 
 − 1. �e BPFs have the orthogonal
properties as follows:

$� (�) $ (�) = {{{0, : ̸= ;,$� (�) , : = ;, (39)

and ∫1
0
$� (r) $ (r) = {{{0, : ̸= ;,1, : = ;, (40)

Every function �(�) which is integrable in [0, 1) can be
truncated with the aid of BPFs series as� (�) ≈ �−1∑

�=0
��$� (�) = "�8� (�) , (41)

where " = [�0, �1, . . . , ��−1]�, 8�(�) = [$0, $1, . . . , $�−1]�.

Using the disjointness of BPFs and thematrix of8� (�) can
be gotten by

8� (�) 8�� (�) = [[[[[[
$0 (�) 0$1 (�)

d0 $�−1 (�)
]]]]]] (42)

Equation (41) implies that the HOBW method can be trun-
cated into an
-set BPFs as follows:67892�−1� = Φ2�−1�×2�−1�82�−1� (�) . (43)

�e block-pulse implementation matrix of the fractional
integration "� has been given in [14] as follows:(o�82�−1�) (�) ≈ "�82�−1� (�) (44)

where"�
= 1(2
−1I)� 1Γ (� + 2)

[[[[[[[[[[[[[

1 s1 s2 s3 ⋅ ⋅ ⋅ s��−10 1 s1 s2 ⋅ ⋅ ⋅ s��−20 0 1 s1 ⋅ ⋅ ⋅ s��−3... ... ... ... ... ...0 0 ⋅ ⋅ ⋅ 0 1 s10 0 0 ⋅ ⋅ ⋅ 0 1
]]]]]]]]]]]]]

(45)

s
 = (! + 1)�+1 − (2!)�+1 + (! − 1)�+1 . (46)

At � = 1, "� is BPF’s implementation matrix of integration.
Let (o�#2�−1�) (�) ≈ P�2�−1�×2�−1�82�−1� (�) (47)
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where the matrix P�2�−1�×2�−1� is called the HOBW imple-
mentation matrix of fractional integration [2, 17]. Using (43)
and (44), we have

(o�#2�−1�) (�) ≈ (o�Φ2�−1�×2�−1�82�−1�) (�)= Φ2�−1�×2�−1� (o�82�−1�) (�)= Φ2�−1�×2�−1�"�82�−1� (�) . (48)

From (38) and (39) we can get

P�2�−1�×2�−1�#2�−1� (�)= P�2�−1�×2�−1�Φ2�−1�×2�−1�82�−1� (�)= Φ2�−1�×2�−1�"�82�−1� (�) (49)

�en the matrix is P�2�−1�×2�−1� given byt�2�−1�×2�−1� = Φ2�−1�×2�−1�"�Φ−12�−1�×2�−1� (50)

For example, when � = 0.5,M = 2, and ! = 3, the operational
matrix of the fractional integration P�2�−1�×2�−1� is expressed
as follows:

P0.58×8 =
[[[[[[[[[[[[[[[[[[

0.19343 0.2579 0.1725 0.10262 0.10856 0.08539 0.08608 0.07330−0.0645 0.5158 0 0 0 0 0 00 0 0.19344 0.25792 0.17247 0.10262 0.10856 0.085390 0 −0.04299 0.34389 0.24862 0.09946 0.12097 0.090770 0 0 0 0.19344 0.25792 0.17247 0.102620 0 0 0 −0.04299 0.34389 0.24864 0.099460 0 0 0 0 0 0.19344 0.257920 0 0 0 0 0 −0.04299 0.34389

]]]]]]]]]]]]]]]]]]
(51)

4. Solution of Nonlinear Volterra Integral
Equations via the HOBW Method

Consider the following integral equation:

� (�) = � (�) + �∫�
0
(
! (�, �) (� (�))�(� − �)1−� ��, 0 ≤ � ≤ 1, (52)� (�) ≈ 	�6789(�) ≈ 	�Φ2�−1�×2�−1�82�−1� (�)! (�, �) ≈ 6789� (�)`6789(�)≈ (Φ2�−1�×2�−1�82�−1� (�))�⋅ `Φ2�−1�×2�−1�82�−1� (�)� (�) ≈ "�6789(�) ≈ "�Φ2�−1�×2�−1�82�−1� (�)

(53)

where` is 2
−1I× 2
−1Imatrix with` = (6789(�) , (! (�, �) , 6789(�))) . (54)

�e functions ��(�) can be truncated into the HOBB func-
tions as �2 (�) = [	�HOBW (�)]2= 	�HOBW (�)HOBW (�)� 	= HOBW (�)� 	̃	

�3 (�) = 	�HOBW (�) [	�HOBW (�)]2= 	�HOBW (�)HOBW (�)� 	̃	= HOBW (�)� 	̃	̃	= (Φ2�−1�×2�−1�82�−1� (�))� (	̃)2 	�� (�) = HOBW (�)� (	̃)�−1 	= (Φ2�−1�×2�−1�82�−1� (�))� (	̃)�−1 	
(55)

�erefore, upon substituting into (52), we get	�6789(�) = "�6789(�) + �∫�
0
(� − �)�−1⋅ 6789� (�)`6789(�)HOBW (�)� (	̃)�−1⋅ 	 �� (56)

	�6789(�) = "�6789(�) + �6789� (�)⋅ `∫�
0
(� − �)�−16789(�)HOBW (�)� (	̃)�−1 	�� (57)

where∫�
0
(� − �)�−1HOBW (�)HOBW� (�) (	̃)�−1 	��= ∫�
0
(� − �)�−1 ((	̃)�̃−1 	)HOBW (�) ��
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Table 1: Maximum absolute errors at di
erent values of ! andI for Example 1 via HOBW.

K M=8 M=16 M=32

4 4.21 × 10−6 4.10 × 10−10 6.06 × 10−11
5 3.71 × 10−7 1.37 × 10−12 2.92 × 10−12
6 4.82 × 10−8 3.27 × 10−13 3.51 × 10−14

Table 2: �e comparison among HOBW, exact, and Chebyshev solutions for Example 2.�� HOBW
Exact Solution

Absolute error Of HOBW
Absolute error Of Chebyshev base at - = 8! = 8, I = 8 ! = 8, I = 8

0.1 0.6309573449 0.6309573445 4 × 10−10 1.4 × 10−5
0.2 0.7247796642 0.7247796637 5 × 10−10 2.1 × 10−5
0.3 0.7860030896 0.7860030856 4 × 10−9 3.5 × 10−5
0.4 0.8325532052 0.8325532074 2.2 × 10−9 5.5 × 10−5
0.5 0.8705505674 0.8705505633 4.1 × 10−9 2.4 × 10−5
0.6 0.9028804552 0.9028804514 3.8 × 10−9 4.4 × 10−5
0.7 0.9311499137 0.9311499151 1.4 × 10−9 5.2 × 10−5
0.8 0.9563524927 0.9563524998 7.1 × 10−9 7.1 × 10−5
0.9 0.9791483643 0.9791483624 1.9 × 10−9 6.9 × 10−5

= Γ (�) ((	̃)�̃−1 	) o�82�−1� (�)= Γ (�) ((	̃)�̃−1 	)"�82�−1� (�)
(58)

With the aid of the previous equations, (52) becomes	�Φ2�−1�×2�−1�82�−1� (�)= "�Φ2�−1�×2�−1�82�−1� (�)+ �Γ (�) ((	̃)�̃−1 	)"�Φ2�−1�×2�−1�82�−1� (�) (59)

where6789(�) ≈ Φ2�−1�×2�−1�82�−1�(�).
To compute the unknown HOBW coe�cients, we use the

collocation points as follows:�� = 2: − 12
−1I, : = 1, 2, . . . , 2
−1I (60)

From (60), we have a system of 2
−1I nonlinear equations

with 2
−1I unknowns. Newton iteration method is used for
completing the solution of the resulting nonlinear system, to
get the unknown vectors	. So, the approximated results �(�)
can be calculated as� (�) = 	2�−1�×1�67892�−1�×1 (�) . (61)

5. Numerical Examples

We use the demonstrated technique in this article for 	nding
the numerical results of fourweakly singular-Volterra integral
equations.

Example 1. Consider the generalized Abel’s integral equation
[21]. � (�) = �2 + 1615�5/2 − ∫�0 � (�)√(� − �) ��, (62)

�e exact solution is �(�) = �2.
�e outcomes demonstrate the high exactness and the

e
ectiveness of the technique. �is outcome can be e
ort-
lessly con	rmed that the strategy yields the desired accuracy
only in a few values of ! andI.�e results of this example at
di
erent values of k and M are presented in Table 1.

Example 2. Consider the following WSVIE:� (�) = w�5 csc(w5 ) + �1/5 − ∫�0 � (�)(� − �)0.2 ��, (63)

�e exact solution is �(�) = 5√�.
Table 2 likewise checks all favorable circumstances of the

strategy examined in the past examinations. It ought to be
noticed that the HOBW additionally e
ortlessly composes
PC code. �is is another vital trademark for the numerical
calculation. �ese actualities delineate the HOBW strategy
as a quick, dependable, legitimate, and useful asset for
understanding WSVIEs.

Example 3. Consider the singular kernel Volterra integral
equation [25]:� (�) = � (�) + ∫�

0

��(� − �)0.5 �2 (�) ��� (�) = �3 − 4096�17/26435 (64)
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Table 3: �e comparison among HOBW, exact, and SCW solutions for Example 3.�� HOBW
Exact Solution

Absolute error Of HOBW Absolute error Of SCW at! = 4, I = 2 ! = 4, I = 2 ! = 4, I = 2
0.1 0.0010010729 0.001 1.0729 × 10−6 9.6679 × 10−5
0.2 0.0080011451 0.008 1.145146 × 10−6 4.7192 × 10−4
0.3 0.0269910936 0.027 8.9064 × 10−6 7.6218 × 10−4
0.4 0.0639790239 0.064 2.0976 × 10−5 5.2959 × 10−4
0.5 0.1246774895 0.125 3.2251 × 10−4 4.7042 × 10−3
0.6 0.2157735888 0.216 2.2641 × 10−4 4.3467 × 10−4
0.7 0.3416681741 0.343 1.3318 × 10−3 2.7024 × 10−5
0.8 0.5074658635 0.512 4.5341 × 10−3 5.0051 × 10−5
0.9 0.7139664754 0.729 1.5033 × 10−3 7.3236 × 10−3

Table 4: �e comparison among HOBW, analytic, and SCW solutions for Example 4.�� Absolute error of HOBW Absolute error of SCW at Absolute error of HOBW Absolute error of SCW at! = 4, I = 2 ! = 4, I = 2 ! = 5, I = 2 ! = 5,I = 2
0.1 4.1161 × 10−4 6.8039 × 10−3 2.413 × 10−4 1.4565 × 10−3
0.2 7.0253 × 10−4 1.4873 × 10−3 3.6508 × 10−5 1.8367 × 10−4
0.3 2.1435 × 10−4 5.2635 × 10−4 1.1701 × 10−5 1.2211 × 10−4
0.4 5.1621 × 10−5 2.7043 × 10−4 2.1061 × 10−4 6.8020 × 10−5
0.5 9.7003 × 10−5 8.2247 × 10−4 7.2708 × 10−5 2.2140 × 10−4
0.6 6.4325 × 10−4 1.6089 × 10−4 1.1578 × 10−6 2.6100 × 10−5
0.7 1.3045 × 10−4 7.3143 × 10−5 1.0186 × 10−6 2.9370 × 10−5
0.8 3.1324 × 10−3 4.6887 × 10−5 9.4106 × 10−4 2.4144 × 10−6
0.9 4.0371 × 10−3 7.3699 × 10−5 1.0512 × 10−4 8.3715 × 10−6

x

1

0.8

0.6

0.4

0.2

0

10.80.60.40.20

Exact solution

Numerical solution

Figure 2: Comparison of numerical solutions and exact solution of
Example 1 for ! = 4,I = 2.

�e analytic solution of (49) can be detected in [18] as �(�) =�3.
�e comparison among the 6789 solution and the

second Chebyshev wavelet (SCW) solution is shown in
Table 3 for ! = 4 andI = 2, which con	rms that the6789
method gives almost the closer loose as the analytic solution.
Figure 2 shows the comparison among the HOBW solution

and the analytic one for � ∈ [0, 1). Better approximation is
expected by the values of ! andI as in Table 2.

Example 4. Consider the nonlinear Volterra integral equa-
tion with singular kernel [25]:� (�) = � (�) + ∫�

0

�4 (�)(� − �)0.5 ��� (�) = √�15 (15 − 16�2) (65)

with the exact solution �(�) = √�.
�e comparison among the HOBW solution and the

analytic solution for � ∈ [0, 1) is shown inTable 4 and Figure 3
for ! = 4 andI = 2 and con	rms that the HOBW method
gives almost the same solution as the analytic method. Better
approximation is expected by choosing higher values of ! andI.

6. Conclusion

In this investigation, the combination of orthonormal Bern-
stein, block-pulse functions, and wavelets is applied for
resolving SNVIE.�emain purpose of ourmethod is to com-
bine the orthonormal Bernstein and block-pulse functions
wavelet method with the de	nition of the Riemann–Liouville
fractional integral with the singular integral. �e method
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x
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Exact solution
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Figure 3: Results of Example 4 for k = 4,M = 2.

depends on reducing the considered system to a set of
nonlinear algebraic equations. �e generated system just
needs sampling of functions and no integration. Wavelets as
orthogonal systems have di
erent resolution capability for
truncating functions by the increasing of dilation parameter! that can give a good truncation for integral equations
without using a polynomial solution. �e considered method
has its e�ciency and simplicity. �e matrices D and P are
sparse; hence theCPU time and the computermemorywill be
reduced and at the same time the solution remains accurate.
We also noted that when the degree of HOBW is increased,
the errors will be decreased to smaller values. When the
values of ! andI are higher, we get more accurate solutions
for the given problems.
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