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Abstract

This paper presents a solution to the entalpy equation corresponding to solid-liquid phase change
systems by the dual reciprocity boundary element method. The physical model is based on the
one-phase averaged formulation of incompressible distinct or continuous phase-change mate-
rials with temperature-dependent thermal conductivities and specific heats of the solid and
liquid phases. The boundary-domain integral equation is structured by Green's function of the
Laplace equation and by the dual reciprocity boundary representation of the domain integrals.
Discretization in a two-dimensional cartesian frame is based on straight line boundary elements
with constant space and linear time shape functions, and on global so-called first order radial
interpolation functions. The convergence of the method with respect to discretization, Peclet
and Stefan number is investigated by comparing the quasi-one-dimensional numerical solution
with the one-dimensional exact solution.

Introduction

Various aspects of modern technology are related to the prediction of solid-liquid phase
change phenomena. The modelling of transport phenomena represents an important
share of this activity. An overview of this discipline can be found in [1]. A data base of
relevant references including a glossary of key words is provided in [2].

When treating transport phenomena through the physical concept of continuum me-
chanics, the coupled microscopic conservation equations for energy, entropy, momentum,
moment of momentum, and species have to be solved in the solid and in the liquid phase
connected with the microscopic interfacial balances.

Due to the presence of complex interfacial structures that characterize solid-liquid
phase change in most cases, it is impossible to predict macroscopic system characteris-
tics by solving the described set of equations on the microscopic scale. Averaging has
to be applied to the microscopic equations in order to be able to describe global sys-
tem behaviour. These equations are then solved for averaged macroscopic quantities.
Such two-phase averaged formulation [3] for solid-liquid phase change systems could be
much simplified by neglecting the dispersive and phase-interphase terms and by adding
the averaged conservation equations of one phase to the corresponding ones of the other
phase. A one-phase averaged formulation is thus obtained. Models based on this for-
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174 Free and Moving Boundary Problems

mulation [4] are advantageous because there are only half as many equations to solve as
in two-phase models. Their main disadvantage is the fact that some of the quantities
have to be assumed instead of calculated. The first discrete approximative solving of
transient temperature, velocity and concentration fields based on one-phase solid liquid
phase-change model was begun in the second part of the eighties by using the established
finite volume method.

Due to the substantial advances [5] made in using the boundary element method in
solving nonlinear transport phenomena models, great interest exists in using this method
for coping with solid-liquid phase changes as well. A comprehensive survey of the related
BEM efforts is published in [6].

The primary step towards solving one-phase solid liquid phase-change equations by
the BEM has been achieved by rewriting them [7] into boundary-domain integral shape
using structuring with the fundamental solution of the Fourier equation. This allows
the solving of the derived boundary-domain integral equations by including the dual
reciprocity conversion [8] of the domain integrals to boundary integrals. The calculations
in the problem subsequently reduce to the integrations on the geometrical boundary of the
considered system exclusively. This strategy was first applied for solving the conduction-
governed Stefan problem [9] followed by a comparison with the results obtained by several
finite element methods [10] for Rathjen and Jiji's rectangular corner freezing benchmark
[11] and standards set in [12]. The comparison favoured BEM with respect to accuracy.

The two advantages, the boundary only character of the calculations and accuracy,
have led the present authors to upgrade their previous research by considering both con-
vective and conductive terms in the solid-liquid phase change averaged enthalpy conser-
vation equation. The previous effort in applying the dual reciprocity boundary element
method to convective-diffusive problems [13] provides useful support in achieving this
goal.

Governing Equation

Consider a connected fixed domain 61 with boundary F occupied by a phase change ma-
terial with density po, temperature dependent specific heat c-p and thermal conductivity
kp of the solid r = 5 and the liquid v — c phase, and specific fusion enthalpy of the
solid-liquid phase change \IM . The volume-averaged one-phase continuum formulation
for enthalpy conservation in the assumed system is

•57 ( fs Po hs + fc Po he ) + V • ( fs Po Vs h$ + fc Po Vc he )ot
fcFc) + fsqs+ftqc, fs + /£ = !. (1)

Function fp presents the temperature dependent volume fraction, hp the specific en-
thalpy, Vp the known solenoidal velocity, Fp the heat flux, and qp the heat source of
phase ?>. Pressure effects and viscous dissipation have been ignored. Heat sources could
depend arbitrarily on temperature and independent time and position variables. Due to
the local thermal equilibrium between the phases, the phase temperatures TS and TC are
equal and denoted by the common symbol T. Constitutive equations for the two heat
fluxes are based on the Fourier relation

Fj = -6fVr, Fc = -kcVT, (2)

and the enthalpy-temperature relationship is defined as
,T ,T

hs=hos + cs(6)dO, hc = hoc + cc(0)d0 + hM, (3)
JTh JT*

with hop representing the specific enthalpy reference of phase T> and 7% representing the
enthalpy reference temperature.
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Free and Moving Boundary Problems 175

The specific type of the solid liquid phase-change process is incorporated into equation
(1) by prescribing the appropriate dependence fp(T) and by providing the velocity of
the liquid phase through the one-phase momentum equation. The velocity of the solid
phase has to be prescribed. The liquid fraction function for the pure substance is mod-
elled by the Heaviside step function centred around melting temperature TM . The linear
variation from 0 to 1 from the solidus temperature T$ to the liquidus temperature TC or
some other, more sophisticated relation, is used in the case of multicomponent systems.
The equiaxed type of solidification is modelled by V$ = Y£ and the columnar one with
Y£ = V, Vs - Vgys, where Vgys denotes the system velocity. The complete range of
possible specific one-phase models is elaborated in [4].

Equation (1) is rewritten into boundary-domain integral shape by introducing the Kirch-
hoff variable

^a = T+ [**»&, (4)
&0 JT-r &0

with TT denoting the Kirchhoff variable reference temperature, and by weighting it over
space-time [ft] x [to, to + At] with the fundamental solution of the Laplace equation
T*(p;s). After a lengthy procedure, detailed in [14], the following boundary-domain
integral expression is obtained

/ /?oCoT(p,*o + A*)T*(p;s)rfn
Jn

/to + At /.
/ \-VTT*dttdt

.0 Jn
/to+At r QJ rto + At r #%"*

/ kvT*^-dYdt- / / koT^—dTdt
Jr dnr J^ Jr <™r

/to+At /-to+At /. ftq-
c*(to,s)koT(8,t)dt+ \ U + T — \T*dndt\

Jto Jtl "• ^ •"

dfc dT
— ̂-

(5)

Function T% stands for the two-dimensional planar symmetry form of the fundamental
solution T*. Position vectors of the field and source point are denoted by p and s
respectively, and the normal on Y by np The volume- averaged thermal conductivity &
and the specific heat c are defined as

k - ko + kr = fs ks + fc kc, c - CQ + CT = fs Q> -f fc cc- (6)

Constants &o, CQ denote mean values, and functions &T, CT the temperature behaviour
of the respective quantities.

We seek the solution of the governing equation for volume-averaged temperature at final
time t = to + A£, where £Q denotes the initial time and AZ the positive time increment.
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176 Free and Moving Boundary Problems

Equation (5) is solved by the related Kirchhoff transformed initial and boundary condi-
tions

T(p,t) = TT+ I * £-d8; p e r" , (8)
JTr *0

-jtoĵ (p,l) = Fp; per", (9)

dT fT(T(p,t)) i
-fco^-(p.t) = hr(T(p,t)-Tr- /cW); p e T*.

onr JTT to
(10)

The initial conditions are defined with the known function TO and the boundary con-
ditions of the Dirichlet, Neumann and Robin type are determined through the known
functions Tp, Fp and hp defined at the not necessarily connected parts F^, F^ and F^
of the boundary F.

Numerical Implementation

The transformation of the domain integrals in equation (5) into boundary integrals is
based on the Dual Reciprocity Method (DRM). In this method an arbitrary scalar valued
function J"(p,t) is approximated over the domain Q with n = 1, 2, . . . , N global space
interpolation functions #%(p) and time shape functions #̂ (f)

The Einstein summation is used in this text wherever possible. By defining the matrix
^nm &nd its inverse \&%̂  with the positions of m = 1, 2, . . . , AT points p™ distributed in

,0 = *5r»*:M, M̂/̂  = l, (12)

the time shape function #̂ (f) is expressed through

(̂t)=9̂ F(pm,t). (13)

By defining the harmonic functions #^

and by using Green's second identity, the domain integrals of function .F(p,f) and the
domain integral of scalar product (7(p, /) • V̂ (p, t) (Q presents an arbitrary vector-valued
function) weighted with the Green function T* over H approximately transform into a
finite set of TV integrals over the boundary F

, t), (15)

*"^ = /r ̂  Ifc ̂  ~ L *" E"- °'&' ̂  *»(•>•
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Free and Moving Boundary Problems 177

The efficiency of the transformations (15,16) depends strongly on the choice of the inter-
polating functions #%. The so-called first order (7* = 1) radial interpolation functions
are used in this paper

The convergence properties of these interpolating functions have been studied by Yamada
et al. [15] recently.

Integrals over time [/o,̂ o + AZ] appearing in equation (5) could be qualified into two
types, illustrated by the scalar functions £ and 7. By approximating these functions by
linear time shape functions, the following approximative integrations are valid

/to + At 0/77
f ±L <

6% 2

/to+At A/ 9 i A/ 1 9
£?dt tt JT'°+*<̂ t (5 £'"+*' * £«„) + f'.fH (1 £<o+A< + f £«.), (20)

2 O O Z O O-0
where superscript denotes the evaluation at inital or final timestep level.

The boundary is discretized by Nr boundary elements Ffc with piecewise straight-line
geometry and piecewise constant space shape functions. The first TVp points p» of the
approximative function (18) coincide with the nodes (geometric centres) of the bound-
ary elements, and the last Afo points are arbitrarily distributed in f2. All subsequently
involved boundary integrals have been evaluated analytically. Our previous studies show
that for solidification problems, one can not expect much better behaviour of higher-order
space shape functions due to the discontinuities of the heat fluxes at the phase-interface.

Equation (5) is solved by constructing an algebraic equation system of j = 1,2, ,7V
equations. These equations are obtained by writing the discretized form of equation (5)
for source point s to coincide with the nodal points p» The deduced system of algebraic
equations could be cast in a symbolic form

Fj£*' ' T'(p™, to + At) + T}£*' • VT'(p™, to + At)

= F)̂ T(pm, to) + T% • VT(p™, to) + qj£*' «(pm, to + At) + q& g(p™, *„), (21)

which has to be rearranged according to boundary condition types before solution. The
matrix elements are explicitly presented in [16].

The numerical solution of the nonlinear integral equation (5) inherently requires
timestep iterations. Superscript i denotes the value of a quantity at the z-th iteration.
The idea proposed by Voller and Swaminathan [17] has been used to some extent for the
iterative updating of nonlinear terms with A and T. Since function S in equations (19,20)
depends on function F, the following approximation for function £ at time level Zo + AZ
at iteration level i has been included to speed up the internal timestep convergence

_ __ _
dJ-

This strategy requires no under or overtaxation. The timestep iterations are stopped
when the absolute Kirchhoff variable difference of the two successive iterations does not
exceed some predetermined positive margin 7^ in any of the nodal points p^
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178 Free and Moving Boundary Problems

Numerical Examples

The characteristics of the developed method are checked by comparing the numerical
solution with the closed form solution. To the best of the authors' knowledge the exact
closed form solution exists only for a relatively simple steady state class of problems
with uniform velocity field, i.e. the domain Q, is described by the cartesian coordinates
x- < x < x+ and %/_ < y < y+. The boundary conditions at X- and at x+ are of the
Dirichlet type with uniform temperatures TT_ and Tp-f. Thermal insulation boundary
conditions of the Neumann type are assumed at the boundaries y = y~ and y = y+. The
material moves with the constant uniform velocity V = V$ = Vc with the components
Vx = V and Vy = 0 [m/s]. The isothermal melting temperature is between TT_ and Tp+.
The solid phase occupies the domain with X- < XM, and the liquid one the domain with
%M < #+ for TT+ > Tr-. The corresponding temperature distribution in phase p is

——\
PP CP

P = 5, C. (23)

with constants

As = 1<
V*
as

V*
ag

Ofp Vx

and the position of the interphase boundary
equation

(24)

determined from the transcendental

/). (25)

The analytical solution is presented for the constant and different material properties (ex-
cept density) of the phases, however the testing of the method is done with the unit ther-
mal properties po = I [kg/nf], k = ks = kc = 1 [W/(mK)], c = c$ = cc = 1 [J/(kgK)].
The adjacent constant thermal diffusivity is denoted by a. The isothermal melting tem-
perature is approximated by a narrow temperature range T$ = 0.765[K],T£ = 0.775 [K]
and linear variation of the liquid fraction function over this temperature interval. The
computations are done on two meshes. Their schematics are shown on Figure 1. The
steady-state solution was reached through a transient from the initial uniform temper-
ature TQ = TT— and a jump of the boundary condition at x-}- from TT_ = 0 [K] to
Tr+ = 1 [K] for t > to. The timestep iteration margin 7% was set at 0.001 [K] and the
steady state was assumed to be reached when the maximum gridpoint difference between
two sucessive time steps did not exceed T$.

0.2

0.1

0

0.1

0 0.5 1 0 0.5 1
Figure 1: Arrangement of meshes I and II. The borders between boundary elements are marked
with | and the gridpoints with o. Mesh I: N = 33, NT = 24, Afo = 9. Mesh II: N = 45, NT = 32,
Nn = 13.
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Free and Moving Boundary Problems 179

Because the one-dimensional problem is solved in two dimensions, the transversal length
y+ — y- becomes a free parameter. The solution behaves in an oscillatory manner if
the transversal boundary element lengths are taken longer or shorter than the lateral
ones. In such cases the first calculated temperatures in internal points after the initial
temperature jump were below and those on the lateral sides above the exact solution.
The behavior of the error in next time step was found to be reversed and its magni-
tude greater. The timestep length was changed in the interval from 0.005 [s] to 0.1 [s].
Shorter timesteps give larger amplitude growth of the oscillations. Same behavior has
been observed also for the much simple conduction-only single-phase governed cases. The
solution was found to be stable with equal length boundary elements. Global errors of
the solution converge with shorter boundary elements as illustrated in Tables 1 and 2.
The solution is not sensitive to timestep length changes.

Sensitivity with respect to Peclet number
In the first test case, the accuracy of the method was investigated with respect to the
Peclet number Pe = \4 (x+ — z_)/a on two different meshes by assumming the constant
Stefan number Ste = po c(Tp+ - TT-)//I.M.

Pe 1.0 2.0 3.0 10.0
Tave[K]
Trms[K]
7WK]

.327E-2

.354E-2

.460E-2

.201E-2

.228E-2

.369E-2

.240E-2

.261E-2

.345E-2

.203E-2

.230E-2

.372E-2

.549E-2

.582E-2

.833E-2
mesh I II I II II

Table 1: Average, rms and maximum errors as a function of Peclet number. Ste = oo.

The respective errors of the steady-state solution have been calculated as

*
)

-

(26)
where 7̂ %i and Tana stand for the numerical and analytical values respectively.

Sensitivity with respect to Stefan number
In the second test, the accuracy of the method with respect to the Stefan number has
been investigated on two different meshes by assuming the constant Peclet number.

Ste 0.10 0.25 0.5 1.00
Tave[K]
Trms[K]
7WK]
mesh

.332E-2

.359E-2

.466E-2
I

.306E-2

.331E-2

.433E-2
I

.272E-2

.296E-2

.389E-2
I

.260E-2

.280E-2

.429E-2
II

.245E-2

.267E-2

.353E-2
I

Table 2: Average, rms and maximum errors in meshpoints as a function of Stefan number.
Pe = 3.

The computer times for solving one iteration on meshes I and II are approximately 10
and 14 CPU seconds respectively on a 100 MHz HP 715/100 workstation with an HP
Fortran compiler.
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180 Free and Moving Boundary Problems

Figure 2: Axonometric view of the solution. Mesh I. Pe = 3, Ste = 1. Dimensionless scales are
simply T* = T/(l [A"]), X* = x/(l [m]), and Y* = y/(l [m]).

Conclusions

This paper presents the first attempts to computationally solve the enthalpy equation
relevant to solid-liquid phase change by assuming both convective and diffusive terms
through the calculations that reduce to the integration of the fixed boundary quantities
only. These types of problems appear for example during the continuous casting process
with the velocity field beeing the result of the advection, and thermal, compositional,
and surface tension driven convection. The current results confirm the suitability of the
described method for problems with uniform velocity fields, e.g. for coping with advection
in the presented example.

The principal advantage of the method is the ease of coping with geometrically com-
plicated situations, ease of implementation of different boundary condition types, same
order of temperature and heat flux approximation at the boundary, accuracy, and simple
mesh structure. The main disadvantage of the method is the resulting large algebraic
system of equations and relatively involved calculation of the domain integrals by the
finite set of boundary ones.

Further elaboration of the developed method will concentrate on situations including
nonuniform velocity fields. However, no exact solution is available for the spatially vary-
ing velocity field and melting/freezing, so the checking of the method and the model will
have to rely on experimental data or results obtained by other numerical methods.
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