
/

17/,45,4CZ-/_Z,,m<_o

NASA Contractor Report 172500

ICASE REPORT NO. 85-1 NASA-CR-172500 i
19850008216 .

i

+ . J

ICASE
z-

SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS

ON VECTOR AND PARALLEL COMPUTERS

James M. Ortega

Robert G. Volgt

Fo_ _F,_ERENCE

Contract Nos. NASI-17070 and NASI-17130 _O_YOB£TAgE_rBO_r_mP_O_

January 1985

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING

NASA Langley Research Center, Hampton, Virginia 23665

Operated by the Universities Space Research Association

LIBIItttlY
_! .. /i o

National Aeronautics and
Space Administration LANGLEYRESEARCHCENTER

LIBRARY,NA_SA

Langley Research Center HAMPTON,VIRGINIA

Hampton,Virginia23665

SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS

ON VECTOR AND PARALLEL COMPUTERS

James M. Ortega

University of Virginia

Robert G. Voigt

Institute for Computer Applications in Science and Engineering

ABSTRACT

In this paper we review the present status of numerical methods for partial

differential equations on vector and parallel computers. A discussion of the relevant

aspects of these computers and a brief review of their development is included, with par-

ticular attention paid to those characteristics that influence algorithm selecUon. Both

direct and iteraUve methods are given for elliptic equations as well as explicit and impli-

cit methods for initial-boundary value problems. The intent is to point out attractive

methods as well as areas where this class of computer architecture cannot be fully utilized

because of either hardware restricUons or the lack of adequate algorithms. A brief dis-

cussion of application areas utilizing these computers is included.

Research of the first author was supported in part by the National Aeronautics and .Space
Administration under NASA Grant NAG-I-46. Research of the second author was sup-
ported by the NaUonal Aeronautics and Space Administration under NASA Contract Nos.

NASI-17070 and NASI-17130 while he was in residence at ICASE, NASA Langley
Research Center, Hampton, VA 23665.

5.

#-

1.1

1. Introduction

For the past 20 years, there has been increasing interest in the use of computers with

a parallel or pipeline architecture for the solution of very large scientific computing prob-

lems. As a result of the impending implementation of such computers, there was consid-

erable activity in the mid and late 1960's in the development of parallel numerical

methods. Some of this work is summarized in the classical review article of

Miranker [1971]. It has only been in the period since then, however, that such machines

have become available. The Illiac IV was put into operation at NASA's Ames Research

Center in 1972; the first Texas Instruments Inc. Advanced Scientific Computer (TI-ASC)

became operational in Europe in 1972; the first Control Data Corp. STAR-100 was

delivered to Lawrence Livermore National Laboratory in 1974; and the first Cray

Research Inc. Cray-1 was put into service at Los Alamos National Laboratory in 1976.

Since 1976,the STAR-100 has evolved into the CDC Cyber 203, which is no longer in

production, and the Cyber 205, which is now CDC's entry in the supercomputer field.

The Cray-1 has evolved into the Cray-lS, which has considerably more memory capabil-

ity than the original Cray-1, and the Cray X-MP, a faster multiprocessor version. On the

other hand, the T1-ASC is no longer in production, and the Illiac IV ceased operation in

1981.

The IUiac IV consisted of 64 processors. Other computers consisting of a (potentially

large) number of processors include the Denelcor HEP and the International Computers

Ltd. DAP, both of which are offered commercially, and a number of one of a kind sys-

tems in various stages of completion or development: the Finite Element Machine at

NASA's Langley Research Center; MIDAS at the Lawrence Berkeley Laboratory; Cosmic

Cube at the California Institute of Technology; TRAC at the University of Texas; Cm* at

Carnegie-Mellon University; ZMOB at the University of Maryland; Pringle at the

1.2

University of Washington and Purdue University; and the MPP at NASA's Ooddard Space

Flight Center. The first three of these are designed primarily for numerical computation

while the others are for research in computer science, for image processing, etc. A recent

development made possible by the increasing power and flexibility of microprocessors and

the dropping cost of fabrication is the emergence of several small entreponurial companies

offering commercial parallel and vector systems at modest prices. Examples include ELxsi,

Flexible Computer, Inc. and Convex Inc.

Other computers of some historical interest, although their primary purpose was not

for numerical computation, include Goodyear Corporation's STARAN (Goodyear[1974],

Gilmore[1971], Rudolph [1972], and Batcher[1974]), and the C.mmp system at Carnegie-

Mellon University (Wulf and Bell [1972]). Also of some historical interest, although it

was not brought to the market, is Burroughs Corporation's Burroughs Scientific Processor

(Kuck and Stokes [1982]).

During the last 15 years, the literature on parallel computing has been increasing at a

rapid rate and a number of ,books and survey papers have been written which comple-

ment the present work. The book by Hockney and Jesshope[1981] contains much infor-

mation on architectures as well as languages and numerical methods. Other books or sur-

veys dealing with architecture or other computer science issues or applications include

Worlton [1981] and Zakharov [1984] on the history of (and future for) parallel computing,

Hord[1982] on the illiac IV, Kogge[1981] on pipelining, Avizienius, et al. [1977] on fault-

tolerant architectures for numerical computing, Hockney [1977], Kuck[1977,1978], Kung

[1980], Stone [1980] and Uhr[1984]. Surveys on numerical methods include, in addition to

Miranker [1971] already mentioned, Traub [1974a], Poole and Voigt [1974], which was an

essentially complete annotated bibliography up to the time of its publication, Heller [1978],

which concentrates on linear algebra problems and gives considerable attention to

1.3

theoretical questions, "f. Jordan [1979], which summarizes performance data for linear alge-

bra software for several vector computers of the late 1970's, Book [1981], Buzbee [1981],

Evans [1982a], which also contains a number of non-numerical articles, Sameh [1977,1981,

1983], Voigt[1977], Ortega and Voigt [1977], which the present paper updates, Rodri-

gue[1982], a collection of review papers on various numerical methods and applications,

Gentzsch [1984b], which concentrates on vectorization of algorithms for fluid mechanics,

and Schnendel [191M], an introductory textbook.

There are also several interesting papers which review the need and uses for super-

computers. These include Ballhaus[1984], Buzbee[1984a], Buzbee, et a1.[1980], Chap-

man [1979], Fichtner, et al.[1984], Gautzsch, et a1.[1980], Gloudeman [1984], Hockney [1979],

Inouye [1977], Kendall, et a1.[1984], Lomax [1981], Peterson [1984a,b], Rodrigue, et al.[1980],

and Williamson and Swartztrauber [1984]. Finally, we mention that there has been

increasing interest in the use of add-on array processors such as those made by Floating

Point Systems, Inc. (Floating Point Systems [1976]), but this topic is beyond the scope of

this paper; see for example, F.isenstat and Schultz [1981] and Wilson [1982].

The challenge for the numerical analyst using vector or parallel machines is to devise

algorithms and arrange the computations so that the architectural features of a particular

machine are fully utilized. Many of the best sequential algorithms turn out to be unsa-

tisfactory and need to be modified or even discarded. On the other hand, many older

algorithms which had been found to be less than optimal on sequential machines have had

a rejuvenation because of their parallel properties. In sections 3 and 4 we review the

current state of parallel algorithms for partial differential equations, especially elliptic

boundary value problems. In section 3 we discuss direct methods for the solution of

linear algebraic systems of equations while in section 4 we consider iterative methods for

linear systems as well as time-marching methods for initial and initial-boundary value

1.4

problems. Finally, in section 5, we briefly review selected applications which have been

reported in the literature.

In order to have a framework in which to study and evaluate algorithms, a variety

of concepts have been introduced which we will use in the algorithm discussions that fol-

low. Many of these ideas are becoming widely acz2pted as a basis for study and we intro-

duce them in general terms now.

Traditionally, one of the most important tools of the numerical analyst for evaluat-

ing algorithms has been computational complexity analysis, i.e., operation counts. The

fact that the fast Fourier transform of n samples requires O(nlogn)arithmetic operations

(here and throughout, log denotes log2)while the straight forward approach requires O(n2)

provides a clear choice of algorithms for serial computers. This arithmetic complexity

remains important for vector and parallel computers, but several other factors become

equally significant. As we will see in the next section, vector computers achieve their

speed by using an arithmetic unit that breaks a simple operation, such as a multiply, into

several subtasks, which are executed in an assembly line fashion on different operands.

Such so-called vector operations have an overhead associated with them that is called the

start-up time, and vector operations are faster than scalar operations only when the

length of the vector in sufficient to offset the cost of the start up time. In section 3, we

show that this start-up time typically enters the complexity formula as a c.x_fficient of

the next to the highest order term. Thus, terms that are neglected in the usual complexity

analysis may play a prominent role in choosing algorithms for vector computers.

Nor is it sufficient just to minimize the number of vector operations. Every arith-

metic operation costs some unit of time on a vector computer even if it is part of a vector

operation. Thus for vectors of length n, an algorithm that requires Iogn vector operations

will not be faster for sufficiently large n than an algorithm that requires n scalar

1.5

operations since nlogn operations will be performed. This preservation of arithmetic com-

plexity is made more precise by the introduction of the concept of consistency in section 3

and we will show thal in general for vector computers one should "choose algorithms

whose arithmetic complexity is "consistent" with the best scalar algorithm.

Two techniques for improving the performance of vector computers involve the res-

tructuring of DO loops in Fortran, in order to force a compiler to generate an instruction

sequence that will improve performance. It is important to note that the underlying

numerical algorithm remains the same. The technique of rearranging nested DO loops is

done to help the compiler generate vector instructions. For example,

DO 1001= 1,N

DO lOOJ= 1,N

100 B(1) = B(I) + A (I,J)

would yield scalar add instructions and would be changed to

DO 100J= 1,N

DO 100I= 1,N

100 B(I) -- B(I) + A(I,J)

resulting in a vector add instruction for each value of J. The other technique, character-

ized as unrolling DO loops in Dongarra and Hinds [1979], is used as a way to force the

compiler to make optimal use of the vector registers on the Cray computers. (The role of

these registers will be discussed in the next section). In its simplest form, loop unrolling

involves writing consecutive instances of a DO loop explicitly with appropriate changes

in the loop counter to avoid duplicate computation. Several examples are given by

Dongarra[1983] and Dongarra and Eisenstat [1984] for basic linear algebra algorithms.

1.6

Although of little value in helping to evaluate different numerical algorithms, these

techniques do provide insight into how to obtain maximum performance on vector com-

puters.

The previous two examples indicate some of the limitations with present Fortran

compilers, but a general discussion of compilers for vector and parallel computers, though

crucial to performance, is beyond the scope of this review. For discussions of the present

state of the art see, for example, Arnold [1982,1983], Kuck, McGraw and Wolfe [1984], and

Kuck, et al.[1984].

The above discussion has focused on vector computers, and although some of the

issues are relevant to computers consisting of parallel processors, there are other important

considerations as well. Arithmetic complexity remains fundmental but extra computa-

tions may not involve the penalty that they would on vector computers (if, for example,

there are processors that would otherwise be idle). Equally important will be the degree

of parallelism, the amount of the computation that can be done in parallel, which will be

defined in section 3 and used extensively in the discussions on algorithms. We will see

that there are algorithms with relatively high operation counts that are attractive on

parallel computers because a high percentage of those operations can be done in parallel.

As emphasized by Gentleman [1978], a non-numerical issue that is crucial to the per-

formance of algorithms on parallel computers is the frequency and cost both of commun-

ication among processors and of synchronization of those processors. A simple iterative

method provides an example. If unknowns are distributed among processors and 9" the

new approximate solution has been computed in these processors, then parts of this solu-

tion must be communicated to other processors in order to compute the next iterate. The

amount and destination of this information depends on the underlying problem, on how

it is mapped onto the processors, and on the numerical algorithm. Once the communication

1.7

takes place there must be synchronization if the processors are to stay on the same itera-

tion step. There are a number of ways to do this, with varying costs depending on the

architecture. Many examples of communication and synchronization costs will be

brought out in sections 3 and 4 but they will not be incorporated into a formal complex-

ity analysis. Such analyses are only beginning to appear and a more complete discussion

of the costs and how to analyze them may be found in Adams and Crockett [1984], Reed

and Patrick [1984a,b]and Gannon and Van Rosendale [1984b].

Less formal consideration of communication and synchronization involves assump-

tions such as an equal cost to communicate one floating point number and to perform one

floating point operation. As an extreme case, one can assume zero cost to communicate.

This zero-cost model, although unrealistic, can provide useful bounds on the performance

of an algorithm and it was this motivation that led to the proposal of the Paracomputer

by Schwartz [1980]. In this model the parallel array contains an unbounded number of

processors all of which may access a common memory with no conflict and at no cost.

Such unrestrained resources make it possible to study the inherent, total parallelism in an

algorithm and to obtain an indication of its optimal performance. It also provides a stan-

dard by which to measure the effectiveness of other architectures. Some of the algorithm

development discussed in this review fits the paracomputer model The paracomputer

assumption of an unbounded number of processors has historically been a popular

assumption and Heller [1978] reviews research of this kind, particularly for linear algebra

algorithms.

At the opposite end of the spectrum from the paracomputer are actual running

arrays where the number of processors is obviously fixed, and (for the immediate future)

usually small relative to the size of the problem. These systems motivate research on

models involving p processors where p is fixed and is much less than n, a parameter

1.8

measuring the size of the problem. In between one finds the model of a system with the

number of processors given as some simple function of n. We will see that these different

models can lead to different algorithms for the same problem.

Most parallel numerical algorithms follow one or both of two related principles

which we refer to as dixhJe and c,92atlze.a:and r_eo._O_cyjag_The divide and conquer approach

involves breaking a problem up into smaller subproblems which may be treated indepen-

dently. Frequently, the degree of independence is a measure of the effectiveness of the

algorithm for it determines the amount and frequency of communication and synchroni-

zation. Applying the divide and conquer concept to the inner product computation)"_a_bi,

where the product aib i has been computed in processor pi, might involve sending a_+lbi+lto

processor Pi, for i odd. The sum operation is now "divided" among p/2 processors with Pi

doing the addition a_bi+a_+lbi+lfor i odd. The idea is repeated logn times until the sum is

"conquered" in processor pl. There are several other ways to organize the computation, all

of which will be superior (on reasonable architectures) to simply sending all the products

a_bito a single processor for summation. We will see that this simple idea pervades many

parallel algorithms.

The concept of reordering may be viewed as restructuring the computational domain

and/or the sequence of operations in order to increase the percentage of the computation

that can be done in parallel. For example, the order in which the nodes of a grid are

numbered may increase or d_-rease the parallelism of the algorithm to be used. An analo-

gous example is the reordering of the rows and columns of a matrix to create independent

submatrices that may be processed in parallel. Specific algorithms based on this concept

will be discussed in sections 3 and 4.

After one has obtained a parallel algorithm it is natural to try to measure its perfor-

mance in some way. The most commonly acz_epted measure is speedup, which is

1.9

frequently defined as

Sp = execution time usinE one processor
execution time using p processors

The strength of this definition is that it uses execution time and thus encorporates any

communication or synchronization overhead. A weakness is that it can be misleading to

focus on _lgo.r[l,12_ speed up when in fact one is usually more interested in how much

faster a problem can be solved with p processors. Thus, we wish to compare the best

serial algorithm with the parallel algorithm under consideration, and we define

Sp = execution time using the fastest sequential algorithm on one processorexecution time using the parallel algorithm on p processors

This second definition makes clear that an algorithm with excellent parallel characteris-

tics, that is, a high speed up factor Sp, still might not yield as much actual improvement

on p processors as Sp would indicate.

Ware[1973] suggested another definition of speedup in order to reflect more clearly

the role of scalar computation in a parallel algorithm:

Sp = [O-c_) + a]_,P

Here a is the fraction of work in the algorithm that can be processed in parallel, and the

execution time using a single processor has been normalized to unity. Buzbee[1983c]

points out that

dSp
do_ {_=1 p2_p

and this quadratic behavior is shown in Figure 1-1 where it is clear that the fraction of

work that can be done in parallel must be high to achieve reasonable speedups. Buzbee

also points out the similarity between Figure 1-1 mad the behavior of vector performance

if the abscissa is interpreted as the fraction of vectorizable work. Buzbee [1983b] uses the

1.10

17 --

15

13

11

.m

16 processors
o 9

7

8 processors

5

3 4 processors

i I I I

.6 .7 .8 .9 1

Fraction of work in parallel

Figure 1-1 Speedup as a function of parallelism and number of processors.

Ware model to discuss the parallel properties of particle-in-cell codes for fusion studies,

concluding that a large percentage of the work can be processed in parallel.

Buzbee[1983c] also notes that a weakness of the Ware model of speedup is that Sp=p

for ar_ algorithm that is completely parallel (o_=1),which is unlikely because of various

overheads associated with parallel computation. In fact, Minsky [1970] conjectured that

speedup for p processors would be proportional to log p. Buzbee modifies the Ware model

by inserting a term or(p)in thedenominator to reflect the overhead of using p processors.

Thus it is clear that if we are to improve on the Minsky conjecture, algorithms and

implementations must be found for which a is near unity and or(p)is near zero..Other

studies by Kuck, et a1.[1973] and Lee[1977] suggest that over a broad range of problems it

is reasonable to expect an average speedup proportional to p/log p.

Knowing the speedup, it is reasonable to ask how efficiently the parallel system is

being utilized by the algorithm. One way to accomplish this is to use the efficiency

1.11

measure defined by

p

Thus in the ideal situation of a speedup of p for p processors, the etSciency measure is

unity. For some other speedup factors, such as the conjectured p/log p discussed above, Ep

tends to zero as p is increased, giving a clear indication that certain algorithms may not be

appropriate for systems with a large number of processors.

In section 2, we will review in more detail various architectural features of both

pipelin.ed computers and arrays of processors, and give further details on some of the

machines mentioned in this section, as well as others. Among the topics that will not be

discussed in section 2 are digital optical computing and special devices designed to execute

a specific algorithm or to solve a specific problem. Digital optical computing utilizes pho-

tons as the information carrying media, but, generally, issues involving algorithms are the

same as for conventional digital computing. For a review see Sawchuck and Strand [1984]

and for a discussion of some algorithmic considerations see Casasent [1984]. Computers

designed specifically for an algorithm or problem are receiving increased attention because

of the dropping cost of components. One such system, described by Christ and Ter-

rano [1984], would deliver several billion floating point operations per second for elemen-

tary particle physics calculations.

2.1

2. Review of the Hardware

In this section we shall review some of the basic features of vector and parallel com-

puters. However, because of the plethora of such systems, each differing in detail from

the others, we shall attempt to stress some of the basic underlying architectural features,

especially as they affect numerical algorithms, and refer the reader to the literature for

more details on the individual computers. Another reason that we shall not attempl to

give a detailed treatment of any particular system is that the field is changing so rapidly.

For example, as of this writing, Cray Research Inc. has announced the Cray-2, Control

Data Corp. the Cyberplus, Denelcor the HEP-2, ETA the GF-10, and there are a number

of university development projects. Moreover, there is an expected impact from VI.SI

technology, although the precise form this will take is not yet clear. Finally, the

Japanese are developing several systems (Buzbee, et al.[1982], Kashiwagi [1984] and

Riganati and Schneck [1984]).

One obvious way to achieve greater computational power is to use faster and faster

circuits, and improvements in this area have been immense. However, the limit on

transmission speeds imposed by the speed of light and fabrication limitations (see, for

example, Seitz and Matisoo [1984])have led to attempts to improve performance by paral-

lelism, which, in its most general form, occurs whenever more than one function is being

performed at the same time. This idea actually dates back to the ENIAC, the first elec-

tronic computer (Eckert, et al.[1945]), which was capable of executing many arithmetic

operations simultaneously. However, the authors discussed severn levels of parallelism

and concluded that serial operation was to be preferred. One of their reasons - the

difficulty of programming for parallel operations - was. certainly prophetic. They also

observed that improving component speeds made parallelism unnecessar_

2.2

Parallelism did reappear occasionally in various forms beginning in the early 1950's.

For example, there was parallelism in the arithmetic units of the Institute for Advanced

Study computer at Princeton University and the Whirlwind I at Massachusetts Institute

of Technology (Kuck [1978]), and parallelism between program execution and I/O on the

UNIVAC I (Kogge[1981]). For a brief history of computers and an excellent guide to the

literature the reader is referred to Kuck [1978].

The general notion of parallelism discussed above is basically the same as that set

forth by Hobbs and Theis (Hobbs, et al.[1970])but is too broad for our interests here since

we are focused primarily on numerical algorithms. For our purposes, parallelism in com-

puting will be exemplified by those computers which contain instructions for performing

arithmetic operations on a collection of operands as an entity, such as vectors, or which

contain independent processing elements that may be used on the arithmetic aspects of the

same problem simultaneously.

One way of obtaining significant speedups is by the technique known as pipelining.

We will use the term pipelining (as given in Kogge [1981]) to refer to design techniques

that take some basic function to be invoked repeatedly and partition it into several sub-

functions which can be done in an assembly line fashion. This is illustrated in Figure

2-1, which shows how a floating point instruction is broken down into more elementary

parts.

Operands sign Ex- Align- Normal- Normal- End Result
_- control ponent ment Add ize ize case

compare shift count shift detec-
tion

Figure 2-1 Floating point pipeline

2.3

By the early 1960's pipelining was being used in a variety of computers to speed up

functions like memory access and instruction execution (Kogge[1981]). Eventually the

technique was used in arithmetic units on the CDC 7600 and the IBM System 360 Model

91. However these computers do not fit our view of parallelism because the arithmetic

instructions are executed with only one set of operands. The last necessary step was taken

with computers such as the CDC Cyber 200 series (formerly the STAR-100), the Cray

Series and the TI-ASC, which have hardware instructions which accept vectors as

operands. Since the ASC is no longer available, we will focus on the former two comput-

ers (see Watson [1972] for a description of the ASC). For simplicity, throughout the

remainder of this paper we will refer to the Cyber 200 series including the 203 and 205 as

the Cyber 200 and to the Cray family as the Cray unless there is some reason to make a

further distinction.

We next give a very brief functional description of the Cyber 200 and Cray families.

A thorough review of the Cray-1, the Cyber 205 and the Cray X-MP may be found in

Russell [1978],Lincoln [1982]and Chen [1984], respectively; see also Larson [1984] for the X-

MP. The Cyber 200 has separate arithmetic units for scalar and vector floating point

arithmetic. The latter units, which we shall refer to as pipelines, are accessed by

hardware vector instructions which obtain their operands directly from main memory.

Main memory size ranges from 0.5 to 2 million 64 bit words on the 203 and one to sixteen

million on the 205 with further increases in memory size already announced. The 203 had

two separate pipelines while the 205 may have 1,2 or 4. The pipelines are reconfigurable

via microcode in order to execute a variety of arithmetic operations. A schematic of the

Cyber 200 is given in Figure 2-2.

A vector hardware instruction initiates the flow of operands to the pipeline, and

assuming that the instruction involves two source vectors, each segment of the pipeline

2.4

Floating point[
pipeline

Main Memory -- Floating point
,

pipeline

Figure 2-2 Cyber 200 Schematic

accepts two elements, performs its particular function (e.g., exponent adjustment), passes

the result to the next segment, and receives the next two elements from the stream of

oporands. Thus several pairs of operands are being processed concurrently in the pipeline,

each pair in a different stage of the computation. The number of results emerging from

the pipeline each clock period (cycle time) depends upon the arithmetic operation and the

word length (64 bits or 32 bits). The maximum result speeds are given in Table 1 for

various cases.

203 (2 pipe) 205 (2 pipe)
64 bit 32 bit 64 bit 32 bit

+ 50 100 1O0 200
x 25 50 1O0 200
/ 12.5 25 1O0 200

Table 1 Maximum computation rates in MFLOPS for Cyber 203/205

For a 4 pipeline 205, the computation rates shown in Table 1 are doubled. Moreover, the

205 has the capability of handling 'qinked triads" of the form vector + constant × vector

at the same rate as addition; hence, this operation achieves 200 million floating point

operations per second (MFLOPS) for 64 bit arithmetic on a 2 pipeline machine, and 800

2.5

MFLOPS for 32 bit arithmetic on a 4 pipeline machine. This is the fastest possible result

rate for the 205.

The maximum result rates given above are not achievable because every vector

operation has associated with it a delay incurred after the instruction _s issued for execu-

tion and before the first result emerges from the pipeline. An approximate timing for-

mula for vector instructions for the Cyber 200 has the form

(2.1) T = S+an

where S is the overhead, frequently called the start up time, o_is the time per result in

clock periods, n is the length of the vector, and T is measured in clock periods. For the

Cyber 203, the clock period is 40ns, o_is 1/2, 1 and 2 for addition, multiplication and divi-

sion, respectively, in 64 bit arithmetic and S ranges from 70 clock periods for addition to

165for division. On the 205, the clock period is 20ns, while o_= l/2for 64-bit arithmetic

and S--50 for all the arithmetic operations. The effect of the startup time is to degrade

seriously the performance when n is small. This is illustrated in Table 2 for the 205 for a

particular case.

n T(clocks) Wn MFLOPS
|

10 55 5.5 9

100 100 1 50
1000 550 .55 91

10000 5050 .505 99
oo - .5 100

Table 2 Performance for 2-pipeline Cyber 205 in 64 bit arithmetic

As Table 2 shows, for short vectors (n--10) performance is less than 10 percent of the

maximum rate and vectors of length almost 1000 are required to achieve 90 percent of the

maximum rate. The computation rates can be further degraded by the fact that a vector

2.6

on the Cyber 200 is a set of contiguously addressable morage locations in memory, and if

the data for a vector operation is not already stored in such fashion, it must first be rear-

ranged. Although there are hardware instructions (gather, scatter) to effect this data

transfer, they add further overhead to the computation.

Hockney and Jesshope[1981] have introduced the useful concept of the half-

performance length, nt/2, which is defined as the vector length required to achieve one-

half the maximum performance; in the example of Table 2, nit 2 = 100. They use this

parameter together with the maximum performance rate to characterize a number of vec-

tor and array computers; see also Hockney [1983a,b]. We also mention that it has been

noted by several people that "Amdahl's Law", first suggested in Amdahl [1967]and a special

case of Ware's Law discussed in section 1, is particularly relevant in parallel computing.

Briefly, if a computation contains x scalar operations and y operations that can be done by

vector instructions, then the computation can be accelerated by no more than a factor of

(x+y)/x, even if the vector operations are infinitely fast. For example, ff there are 50 per-

cent scalar operations no more than a factor of 2 improvement over scalar code can be

achieved.

The Cray computers are similar in many ways to the Cyber 200 but have funda-

mental differences. Memory size ranges from 500,000 to 4 million 64 bit words on the

Cray-1 and IS and up to 8 million words on a four processor X-MP, but there is no provi-

sion for 32 bit arithmetic. Again, there are hardware vector instructions but these utilize

separate pipelined arithmetic (functional) units for addition, multiplication, and recipro-

cation rather than reconfigurable units as on the Cyber 200. The clock period is 12.5ns on

the Cray-I and IS and 9.5ns on the Cray X-MP, as compared with 20ns on the Cyber 205.

The X-MP series allows a configuration of 1,2 or 4 processors. The most basic functional

difference between the processors, however, is that the Cray vector instructions obtain

2.7

their operands only from eight vector registers, of 64 words each. A schematic of a Cray

processor is given in Figure 2-3.

Floating point

Vector pi pel i nes
register

Main Memory _ register *

•"

register

Figure 2-3 Cmy ProcessorSchematic

For data in the vector registers, the vector instructions on the Cray again obey

approximately the timing formula (2.1) but now the start-up times are O(10) clock

periods, considerably lower than the Cyber 200, while o_is, again, O(1). Discounting the

relatively low start-up time, the maximum result time for each of the three arithmetic

operations is 80 MFLOPS on the Cray-1. However, all functional units can be operated in

parallel so that, theoretically, the maximum speed on the Cray-1 is 160 MFLOPS for

addition and multiplication running concurrently. On the X-MP, this figure increases to

210 MFLOPS per processor because of the faster cycle time and would be 840 MFLOPS on

a full 4 processor X-MP system.

Although the vector operations on the Cray have relatively low start-up time, this

is balanced by the time needed to lead the vector registers from memory. For example,

for an addition, two vector registers must be loaded and the result stored back in memory

from a vector register. Although arithmetic operations can be overlapped to some extent

2.8

with the memory operations, there is only one path from memory to the registers on the

Cray-I and IS, and since memory load and store operations require one clock period per

word (after a short start-up), only either a load or a store can be done concurrently with

the arithmetic operations. This problem is alleviated to a large extent on the Cray X-MP

series, which has three paths between memory and the registers on each processor. In any

event, and especially on the Cray-1, one attempts to retain data in the registers as long as

possible before referencing memory. One says that _ _ are being obtained ff

vector hardware instructions are being utilized but that sugicient memory references are

required to hold the operation rate to nominally less than 50 MFLOPS on the Cray-l, and

that _l,tl_r-Y.f_r_. _ are obtained ff information can be held in the registers long

enough to obtain rates in the 50-160 MFLOP range. These figures would be scaled up

appropriately for the X-MP. The attainment of supervector speeds is enhanced by the

capability of _inLng_ which is the passing of results from one arithmetic unit directly to

another as illustrated in Figure 2-4.

Another major advantage that the Cray X-MP offers over the Cray-1 is that of mul-

tiple CPU's. The CPU's function off of a shared central memory with a set of shared data

and synchronization registers for communication. Some early benchmarks indicate speed-

ups of from 1.5 to 1.9 for two processors (Chert [1984],and Chen, et ai.[1984]).

To summarize the main functional differences between the Cray and Cyber 200, one

attempts to organize a computation on the Cyber 200 to utilize vector lengths as long as

possible while on the Cray one attempts to organize the computation so as to minimize

references to storage and utilize as much as possible information currently in the vector

registers. However, any realistic computation will require deviation from these ideals and

will also require a certain amount of scalar processing. Several benchmarking studies

have been published (e.g. Rudinski and Pieper [1979], Nolen, et al. [1979],

Floatingpoint 2.9
pipelines

Vector _ +
register 'I
Vector . _register

Vector
register

Vector I
register

Figure 2-4. Chaining on the Cray

Gentsch[1983,1984a]) which give valuable performance data for certain classes of prob-

lems. See also Ginsburg [1982].

It should be noted that Fujitsu, Hitachi and Nippon Electric have developed super-

computers whose performance would appear to be comparable to the Cyber and Cray

machines (see, for example, Riganati and Schneck [1984]). The previous discussion on the

Cray is appropriate for these machines for they are architecturally similar to it; in partic-

ular, they employ vector registers in much the same way as the Cray does (see, for exam-

ple, Miura and Uchida[1984]). Preliminary benchmark results including a comparison to

the Cray are given in Mendez[1984]and Worlton [19841

We turn now to computer organizations consisting of a potentially large num_oer of

processing elements. These computer architectures fall into two classes as defined by

Flynn [1966]. In Single Instruction Multiple Data (SIMD) systems, each processor executes

the same instruction (or no instruction) at the same time but on different data. In Multi-

ple Instruction Multiple Data (MIMD) systems, the instructions may differ across the

2.10

processors, which need not operate synchronously. A much more detailed taxonomy has

been given by Schwartz [1983] based on fifty-five designs, and excellent reviews of vari-

ous architectural approaches are given by Haynes, et a1.[1982], Siewiorek[1983] and

Zakharov [1984].

In the late 1950's, interest in designing a parallel array computer began to grow.

Designs such as the Holland Machine (Holland [1959])and yon Neumann's Cellular Auto-

mata (yon Neumann [1966],first published in 1952),consisting of arrays of processing cells

operating in MIMD mode and communicating with their four nearest neighbors, were

proposed. In the same period, Unger [1958] had proposed a parallel array of bit-serial pro-

cessors using the four nearest neighbor communication strategy; the machine was intended

for pattern recognition and suggested the architecture of later machines such as the

SOLOMON and the DAP. In the early 1960's, Westinghouse Electric Corp. constructed

prototypes of a parallel computer (SOLOMON) designed by Slotnick, et a1.[1962]. The

design was modified and refined into the Illiac IV at the University of Illinois (Barnes, et

a1.[1968] and Bouknight, et al.[1972]) and constructed by the Burrough's Corporation.

The Illiac IV consisted of 64 fast processors (about 1 MFLOP each), with memories of

2048 64 bit words connected in an 8x8 array as illustrated in Figure 2-5. The individual

proc.essors were controlled by a separate control unit and all processors did the same

instruction (or nothing) at a given time. Hence, the machine was of SIMD type and could

be visualized as carrying out vector instructions on vectors of length 64 or shorter. In

many ways, algorithm considerations were very similar for the miac IV and the Cray

and Cyber 200 machines. The Hliac IV was the first parallel array computer to become

operational for the benefit of a large, diverse user community when it was installed at the

NASA Ames Research Center in the early 1970's. (It was removed from service in 1981.)

Although a large number of parallel computers have been, and continue to be, developed,

2.11

Figure 2-5 Lattice Interconnection as Exemplified by the Illiac W.

probably most of the computational experience with such computers has been gained on

the lIIaac IV (see, for example, Feierbach and Stevenson [1979]).

At the same time that the lJliac IV was becoming operational, advances in micropro-

cessors led to a variety of speculations on connecting tens of thousands, or even hundreds

of thousands, of such processors together. A major consideration is how these processors

are to communicate. The design of the Hliac IV, in which each processor is connected to its

four nearest neighbors in the north, south, east, and west directions with wrap-around

connections at the edges (Figure 2-5), is suitable for the simplest discretizations of simple

partial differential equations but becomes less suitable for more complicated situations and

more sophisticated algorithms. Although the llliac IV was capable of performing in the 50

2.12

MFLOP range, this rate was difficult to sustain because, of the relatively small memories

and the limitations of the processor interconnection scheme.

The importance of communication among processors has led to extensive research on

interconnection methods. Fundamental work was done by Clos[1953] and by Benes

[1962,1965]for telephone networks, and surveys of more recent research may be found in

Anderson and Jensen [1975], Sullivan and Bash.kow [1977], Siegel [1979], Feng [1981], Haynes,

et al. [1982] and Broomwell and Heath[1983]. It is now clear that the interconnection

scheme is probably the most critical issue in the design of parallel systems because it

determines how data, and possibly instructions, are made available to the appropriate pro-

cessing elements. For many algorithms, the total time required to move data to the

appropriate processors is as large or larger than the time required for the completion of

the computation (see, for example, Gentleman [1978]).

Ideally, every processor would have a dedicated connection to every memory.

Although this would allow access in unit time independent of the number of processors,

it is impractical for systems with a large number of processors for two reasons. In the

first place, the complexity of the interconnection scheme for n processors increases as n2.

Furthermore, since each processor must support n communication lines, if a processor is a

single chip or even a few, the number of pins required to provide the communication

connections will exceed what present technology can provide, even for moderate size n.

On the other hand, an inadequate interconnection scheme limits the performance of the

system and thereby reduces the class of problems which can be solved in reasonable time;

this is the trade-off facing the designer of a parallel machine.

In practice, three fundamentally different interconnection schemes have been used,

and in turn, we will use these to introduce a classification of some simple types of parallel

arrays. More complex systems can usually be viewed as a combination of these three

2.13

types. We also note that, in principle, each of these in_erconnection schemes could be used

to implement a global shared memory.

Lattice: P processors, each with local memory, arranged into some form

of regular lattice. Each processor is permanently connected to a small

subset of the others, usually its neighbors in the lattice (Figure 2-5).

Bus: P processors, each with local memory, connected to a bus structure

allowing communication among the processors (Figure 2-6).

Switch: P Processors and M memories connected by an electronic switch

so that every processor has access to some, possibly all, of the memories

(Figure 2-7).

The classical lattice array is the Illiac IV. Other lattice computers include the Distri-

buted Array Processor (DAP) (Flanders, et al. [1977] and Parkinson [1982]),constructed by

International Computers Limited, the Massively Parallel Processor (MPP) at NASA-

Goddard (Batcher [1979,1980]), and the systolic arrays proposed by H. T. Kung and his

collaborators (Kung and Leiserson [1979], and Kung[1979,1980,1982,1984]). The DAP is an

array of single bit processors, each connected to their four nearest neighbors, and with

additional row and column data paths. A 64 × 64 array performing multiplication of

two 64 × 64 matrices using software to affect 32-bit arithmetic provides a computation

rate of 18MFLOPS (Reddaway [1979].) The bit orientation, which permits parallelism at a

very low level, and the row and column connections should alleviate some of the com-

munication difficulties of the Illiac IV. The MPP, constructed by Goodyear Aerospace

Corp, is also an array of single bit processors, 16,000 of them operating in SIMD mode. It

is used primarily for satellite data reduction but is capable of substantial floating point

computation rates. For example, for 32 bit operands, addition may be done at a rate of 430

MFLOPS while the rate for multiplication is 216 MFLOPS (Batcher [1979]).

2.14

Gallopoulos [1984] discusses performance on several fluid dynamics applications.

Systolic arrays consist of very simple processors capable of performing a single

operation such as ab + c. They are designed to perform specific computations such as

matrix multiplication or LU factorization. This specificity makes it possible to use a sim-

ple interconnection pattern and move the data continuously through the array. Thus one

could view the device as a large pipeline with each processor accepting data, performing a

simple operation and passing the operands and/or the result on to the next processing ele-

ment. The difference between this and a usual pipeline is that each processor performs

precisely the same simple function rather than different subfunctions. A significant

number of systolic algorithms have been developed; see, for example,

P0

• Mo I p I1

IP255

M255

P2

M2

IQO0

Figure 2-6 Bus lnterconnection as Exemplified by ZMOB

9 q>

9 9 ...

% ...
Figure 2-7 Switch knterconnection as Exemplified by C.mmp

Bojanczyk, et a1.[1984], Brent and Luk[1982,1983], HeUer and Ipsen[1983],Ipsen[1984],

Kung [1980,1984], Kung and Leiserson [1979], Melhem [1983a,b], and Schreiber [1984].

Another lattice thai has received considerable attention is the tree structure. For

example, Mago [1979,1980] has proposed a design for directly executing the functional pro-

gramming languages of Backus [1978]based on a binary tree in which a typical processor is

connected to one processor above it and two processors below. Such a tree is said to have a

"fan-out" of two; larger fan-outs have been discussed, but there is a potential for com-

munication bottlenecks as the fan-out increases. This can be particularly troublesome at

the root of the tree if a large amount of global communication is required. One way to

lessen the demand on the root is to introduce horizontal communication links among the

2.16

processors on any given level of the tree. Shaw [1984] has also proposed a tree structure for

the NON-VON machine, which is intended primarily for non numerical processing.

It is also possible to consider, at least conceptually, multi- dimensional lattices. An

example of such a structure is the binary k-cube for connecting n = 2k processors (see, for

example, Bhuyan and Agrawal [1984]). If the processors are viewed as the corners of a cube

in k dimensions, then the connections are the edges of the cube. For k = 3 this reduces to

a simple cube with each processor connected to three others. In general, if each processor

is given a unique label from the integers zero through n-l, then processor i is connected to

processor j if and only if the binary representations of i and j differ in a single bit. The

strength, and potential weakness, of this strategy is that the number of processors con-

nected to a given processor is k; thus there is a rich interconnection structure bul at some

point the requirement for k wires would introduce a fabrication difficulty. A 64 proces-

sor machine based on the 6-cube and known as the Cosmic Cube is operational at the Cal-

ifornia Institute of Technology (see, e.g., Seitz [1982,1984]). The processors utili7e the Intel

8086/8087chip family and have 128k bytes of memory.

Examples of bus arrays include Cm* at Carnegie Mellon University (Swan, et

al. [1977], Jones and Gehringer[1980]),ZMOB at the University of Maryland (Rieger[1981]),

and Pringle at the University of Washington and Purdue University (Kapauan, et

al.[1984]). Cm* is a research system consisting of approximately 50 Digital Equipment

Corporation LSI-11's configured in clusters, with the clusters connected by a system of

buses. The processors share a single virtual address space and the key to performance lies

in the memory references. For example, if the time to service a local memory reference is

one unit, then Raskin [1978] reports that a reference to a different memory, but one

within the same cluster, requires a little more than three units while a reference to a

different cluster requires more than seven units, assuming no contention. Further perfor-

2.17

mance data based on some applications programs, including the iterative solution of a

discretized Laplace's equation and a problem in computational chemistry, are given in

Raskin [1978] and Hibbard and Ostlund [1980], respectively. Additional applications are

treated in Ostlund, et al. [1982], and general programming considerations are discussed in

Jones, et al. [1978]. The machine was also used to simulate electrical power systems (Dugan,

et al. [1979] and Durham, et al.[1979]).

ZMOB is an array of up to 256 Z-80 microprocessors configured in a ring as depicted

in Figure 2-6. The performance of the bus relative to that of the processors is so great

that there are not the usual delays in communication characteristic of bus arrays. Because

of the high speed bus, a processor can obtain data from any memory in approximately the

same time but, unfortunately, this is not a characteristic that could be maintained if the

array were scaled up to a larger number of more powerful processors.

The Pringle system was designed and built to serve as a test bed to emulate the CHiP

architecture (Snyder [1982])as well as others. The system consists of 64 processing ele-

ments based on eight bit Intel processors with a floating point copr_r (Field, et

a1.[1983]). The processing elements, with a modest amount of local memory, are connected

via separate input and output buse_ The two buses are connected via a message routing

processor or "switch _ which establishes communication patterns that allow the Pringle to

emulate a variety of communication networks. Some preliminary performance data is

given in Kapauan, et al.[1984] for summing a sequence of numbers using an algorithm

based on recursive doubling.

The now classic example of a switch array is C.mmp, a research machine developed

at Carnegie Mellon University in the early 1970's (Wulf and Bell [1972] and Wulf and

Harbison [1978].) The system consisted of up to sixteen Digital Equipment Corporation

PDP minicomputers connected to sixteen memory modules via a 16x 16crosspoint switch,

2.18

as depicted in Figure 2-7. There is not a great deal of data on the performance of C.mmp

on scientific applications; however, one study by Oleinick and Fuller[1978] provides

insight into the importance of synchronization on performance. In a parallel version of

the bisection method for finding the root of a monotonically increasing function, after all

processors have evaluated the function they must halt and await the decision of which

subinterval to use next. Several synchronization techniques were investigated and it was

found that their time of execution varied by a factor of 15 with the more sophisticated

techniques requiring over 30 milliseconds. This obviously adds significant overhead to the

algorithm for all but the most complicated functions. Synchronization techniques are a

major area of concern in the design and use of parallel arrays.

The crosspoint switch is also the basis for the communication mechanism for the S-1

array under development at Lawrence Livermore National Laboratory (Farmwald [1984]).

This machine is intended to support up to sixteen processors of approximately Cray-1 per-

formance connected to a shared memory consisting of about 109 bytes per processor.

The full crosspoint switch for connecting n processors with n memories contains n 2

switches, which is not feasible for large n. This has led designers to consider simpler

switches consisting of O(nlogn) subswitches. An introduction to this area is contained in

Haynes, et al. [1982]. An example of an nlogn switch (and there are many) is the Banyan

switch (Goke and Lipovski [1973]), which is the basis for the Texas Reconfigurable Array

Computer (TRAC) under development at the University of Texas (Sejnowsld, et a1.[1980]

and Browne [1984b]). Some projected performance data for the TRAC, based on odd-even

reduction algorithms for block tridiagonal systems (Heller [1976]), is given by Kapur and

Browne [1981,1984].

Another computer utilizing a Banyan type switch is the Heterogeneous Element Pro-

Cessor (HEP) manufactured by Denelcor, Inc., (Smith[1978] and H. Jordan[1984]). It

2.19

consists of up to sixteen processors with the switch providing access to a data memory. In

a HEP processor two queues of processes are maintained. One of these controls program

memory, register memory and the functional units while the other controls data memory.

The mode of operation is as follows. If the operands for an instruction are contained in

the register memory, the information is dispatched to one of several pipelined functional

units where the operation is completed; otherwise the process enters the second queue

which provides information to the switch so that the necessary link between processor

and data memory can be established. After the memory access is complete, the process

returns to the first queue, and when its turn for service occurs, it will execute since the

data is available. The time required to complete an instruction is 800 ns, but a new

instruction may be issued every 100 ns. Thus, if the processors can be kept fully utilized,

on a sixteen processor machine a 160 MFLOP rate is theoretically possible. Some prelim-

inary information on utilizing the HEP for solving linear systems is given by Lord, et

al. [1980, 1983], H. Jotdan [1983,1984], Dongarra and Hiromoto [1984] and by H. Jordan [1981],

who concentrates on the sparse matrix package from AERE, HarweU, England, (Duff

[1977]). Moore, et al.[1984] discuss several hydrodynamic applications for which

eificiencies very close to unity are obtained on a single processor HEP. Operational results

for a four processor HEP at the Army Ballistic Laboratory are given in Pate1 and Jor-

dan [1984], where an iterative method for a problem in fluid mechanics is discussed. Some

preliminary performance data for the HEP and several other MIMD systems may be

found in Buzbee [1984b].

We have indicated many examples of parallel array computers covering the three

major classifications. Because of the importance of communication and the limitations of

the various strategies, we may expect to see computers which utilize combinations of the

techniques described above. One such machine is the Finite Element Machine (H. Jor-

2.20

dan[1978], Storaasli, et a1.[1982] and Adams and Voigt[1984b])al the NASA Langley

Research Center. This lattice array was designed for 36 16-bit microprocessors configured

in a planar array with each processor connected to its eight nearest neighbors as shown in

Figure 2-8. It is also a bus array because the nearest neighbor

I / \

'J • • •

[M0 J [MI] I n M2 M5

tI "6 ;l'17 M8 Mll

, ,]/) ! k,{) I "l : : l

 Po[i1LM30 M31 M35

I , I
\

\ /

Figure 2-8 Finite Element Machine

connections are augmented by a relatively high performance bus which services every

processor of the array. Some preliminary performance data are available in Adams [1982]

and Adams and Crockett [1984]. A rather similar machine, PACS, is being developed in

Japan (Hoshino, Kawai, et a1.[1983] and Hoshino, Shirakawa, et ai.[1983]).

Another system which combines communication strategies is MIDAS, a prototype of

which is operational at the Lawrence Berkeley Laboratories (Maples, et a1.[1983]). The

array consists of clusters of processors configured as a tree, with each cluster containing up

to eight processors interconnected by a full crosspoint switch. A discussion of program-

2.21

ming considerations and some results for a Monte Carlo simulation are given in Logan, et

al. [1984]; additional results are reported in Maples, et al.[1984].

Another approach to the communication problem is the configurable highly parallel

(CHIP) computer (Snyder [1982]). An interesting feature of this project is that the com-

munication network is programmable and reconfigurable. Thus, for an application

involving the direct solution of linear systems, it can be made to function as an appropri-

ate systolic device, while for another application involving the iterative solution of a

discretized differential equation, it can function as a lattice array. Reconfigurability offers

additional benefits for adapting to varying problem sizes and for providing fault toler-

ance. An example of this flexibility is given in Gannon and Panetta [1985]which discusses

implementing SIMPLE, a benchmark hydrodynamics code, on the CHIP.

The parallel microprocessor system P#Ps under development at Los Alamos National

Laboratory is intended to provide a means for studying the performance of various com-

munication strategies (Ethridge, et a1.[1983]). The system will consist of twenty 16-bit

microprocessors and 32 memory modules implemented as shared memory via a bus system.

A memory mapping facility will make it possible to configure the system to emulate a

variety of architectures.

There are also several other efforts whose impact will have to await further

development. More exotic switching networks such as the shuffle exchange, cube-

connected-cycles and omega networks have been studied, (see, for example, Haynes, et

a1.[1982]). The Ultracomputer project at New York University is building, in cooperation

with IBM, a large array based on the shuffle exchange (Oottlieb and Schwartz [1982],

Gottlieb, Grishman, et a1.[1983] and Gottlieb [1984]). The nodes of the shuffle exchange net-

work possess rudimentary processing capability which is used to help alleviate memory

contention. The Cedar project (Oajski, et al.[1983,1984])at the University of Illinois

2.22

makes use of the omega network to connect clusters of processors to a large shared

memory. Wagner [1983]has proposed the Boolean Vector Machine (BVM) as a large array

of single-bit processors with very small memories operating in SIMD mode using bit

serial arithmetic. The processors are interconnected via a cube-connected-cycles network

(Preparata and Vuillemin [1981])which links each processor to three others. An algorithm

for solving sparse linear systems on the BVM is analyzed in Wagner [1984].

Another interesting idea is the dataflow computer, which has been the subject of over

10 years of research by J. Dermis of MIT and his colleagues as well as others (see e.g.

Dennis [1980,191Mb]and Agerwala and Arvind [1982] and the references there-in for a

general overview). Two systems based on this concept are the Manchester Data Flow

Machine (Watson and Gurd[1982])which has been operational since 1981, and the

SIGMA-l(Hiraki, el al. [1984]and Shimada, et al.[191M])which is under construction at the

Electrotechnical Laboratory in Japan. Gurd and Watson[1982] report very promising

results for a variety of problems run on the Manchester machine. Studies on the

effectiveness of data flow computers for applications such as the weather problem and

computational fluid dynamics have been done by Dennis and Weng[1977] and

Dennis [1982,191Ma],respectively.

It is now clear that new designs from commercial manufacturers will utilize a com-

bination of vector and array concepts for computers that might be characterized as arrays

of vector processors. The first of these was the Cray X-MP (see e.g. Chen [1984],)which

was introduced as a two processor version and is now available with four processors. The

Cray 2 and Cray 3 are also expected to involve multiple processors with the Cray 2 ini-

tially offering four. Control Data Corp. has announced the Cyberplus(Ray [1984])which

consists of up to 64 processors each with multiple pipelined functional units. The func-

tional units within a processor may be connected via a cross bar switch to obtain the

2.23

equivalent of chaining, and the processors themselves are connected via three independent

buses. ETA Systems Inc., a spin off of Control Data Corp., has announced the GF-10

(Johnson [1983]). This system is expected to utilize up to eight pipelined processors similar

to the Cyber 205, but faster, operating off of a shared memory with up to 256 million

words. The individual processors will also have local memory of approximately four

million words.

3.1

3. Direct Methods for Linear Equations

We consider in this section direct methods for solving linear algebraic systems of

equations

(3.1) A_=..b_

where A is n × n. Our main concern will be when A is banded and usually symmetric

positive definite (or at least pivoting is not required). We will treat first elimination (fac-

torization) methods, then methods based on orderings such as nested dissection, and finally

special methods for tridiagonal systems and fast Poisson solvers.

Consider first Gaussian elimination, without pivoting, when A is a full matrix. If

we assume that A is stored by columns, as done by Fortran, then the usual row-oriented

elimination process is not suitable for vector machines. Rather, we need a column-

oriented algorithm as illustrated by the following first step of the elimination process.

Let ._ be the n-1 long vector of the last n-1 elements of the ith column of A. Then

(3.2) m = a_-___, _ - al.gn --*__, i = 2......n

completes the first step of the reduction. Note that all operations except one are n-1 long

scalar-vector multiplies or vector additions.

Following Hockney and Jesshope [1981], we will say that the _ of lm_ll_m., of

an algorithm is the number of operations that can be done concurrently. On vector com-

puters, such as the Cyber 200 and Cray, we will interpret this to mean the vector lengths

while on parallel computers it will mean the number of processors that can be operating

simultaneously. Clearly the degree of parallelism is n-1 for the first stage of the elimina-

tion reduction. For the second stage, the vector lengths decrease to n-2 and so on down to

3.2

a vector length of 1 for the last stage. Hence, the degree of parallelism constantly

decreases as the reduction proceeds, with an average degree of parallelism of O(n/2).

If A is banded, with semi-bandwidth m defined by m = max{li-jl:a_j ;_ 0}, then the

above algorithm allows constant vector lengths m until the reduction has proceeded to the

last mxm block, at which time the vector lengths again decrease by one at each stage

down to a length of 1. Thus, this algorithm leads to a low degree of parallelism for small

m and is totally inappropriate for tridiagonal matrices (m--l), for which special methods

will be discussed later in this section.

While the above form of Gaussian elimination is an appropriate starting point for a

parallel algorithm, the architectural details of a particular machine may necessitate

changes, perhaps drastic, to achieve a truly efficient algorithm. Several early papers (e.g.

Lambiotte [1975],Knight, et al. [1975],Calahan, et al.[1976],George, et al.[1978b],Fong and

Jordan[1977]) considered in detail the implementation of Gaussian elimination and the

Choleski decomposition A = LLTon the CDC STAR-100, TI-ASC, and Cray-1. The varia-

tions on the basic algorithms because of the machine differences are summarized in

Voigt [1977].

An important aspect of the analysis in some of the above papers is the derivation of

precise timing formulas which show the effect of the start-up times for vector operations.

For example, George, et al. [1978b]gave the following formula, which omits scalar arith-

metic times, for the Choleski decomposition of a banded matrix, taking advantage of

symmetry in the storage, on the STAR-100.

(3.3) T = 0.75nm2+232nm + low order terms

This timing formula is in units of machine cycles. The leading term reflects the arith-

metic operation count and the result rate for addition and multiplication while the second

3.3

term shows the effect of the vector operation start-up times which contribute most of the

large coefficient of the nm term. As an example of the effect of machine architec)ure,

Voigt [19??]showed that by modifying the Choleski algorithm to take advantage of some

features of the TI-ASC, the timing formula on that machine became

- 19

T=nm 2+ _ nm + 485n + low order terms

which gave a dramatic decrease in the coeiticient of the nm term. Timing formulas analo-

gous to (3.3) can be developed for the Cyber 205 and show a similar, but smaller, effect of

start-up time in the second term.

On the Cray-1, one is much less concerned with the start-up times; instead the basic

Choleski or elimination algorithms must be revised to keep data in the vector registers as

long as possible. This is accomplished by completely modifying the k+lst column of the

matrix during the k-th step of the factorization, leaving all other columns unchanged.

The details may be found in Voigt [1977] for the Choleski algorithm and in Dongarra,

Gustavson and Karp [1984]for Gaussian elimination. The latter paper gives an interesting

detailed analysis of six different forms of the basic algorithm which differ only in how

the data is accessed.

The above discussions concern only the factorization please of the overall algorithm

and it still remains to carry out the forward and backward substitutions, i_s. to solve

lower and upper triangular systems. Perhaps the simplest and most natural approach to

this, called the cz_ma, sw__ algorithm in Kuck [1976], is as follows for the upper tri-

angular system Ux= b First, x_ is computed from the last equation and its value is

inserted into each of the remaining equations so as to modify the right hand side, and,

clearly, the n-1 equations can be processed in parallel. The original system is now reduced

to an n-1 by n-1 system and the process is repeated. The degree of parallelism is the

3.4

bandwidth m until the system has been reduced to mxm and then the degree of parallel-

ism is reduced by one at each stage. We will consider other algorithms for triangular sys-

tems later.

One way to circumvent, in a sense, the back substitution phase is by the Gauss-

Jordan algorithm, which is not often used on serial computers since its operation count of

O(n3/2)to solve a linear system has a larger constant than the O(n3/3)of Gaussian elimina-

tion. However, it is relatively more attractive for parallel computing since the back sub-

stitution is effectively combined with the triangular reduction in such a way that a

degree of parallelism of order n is maintained throughout the computation. The imple-

mentation of the Gauss-Jordan algorithm on arrays of processors has been discussed by

Kant and Kimura [1978]and Kimura [1979];see also Parkinson [1984]for a banded system.

Unfortunately, the algorithm fills in the upper triangle and so is not attractive for a

banded system.

In principle the factorization methods discussed above may be implemented on paral-

lel arrays and a nice introduction may be found in Heller [1978]. For example, the vector

operations in expression (3.2)could be given to the ith processor, i=2,...,n, or if fewer pro-

cessors are available, groups of columns could be assigned to processors. It should also be

noted that the more usual row-oriented elimination could be implemented in a similar

fashion. But these algorithms have at least three drawbacks. First, as was pointed out

above, the degree of parallelism decreases at each stage of the elimination, eventually

leaving processors unused. Second, the algorithms require significant communication

because the pivot column (row) must be made available to all other processors (see e.g.

Adams and Voigt [1984a]).Third, when the problem does not match the array size, a very

difficult scheduling problem may arise (see, e.g., Srinivas [1983]). For banded matrices the

processor utilization problem is not as severe since it is: not a factor except in the final

3.5

stages.

A detailed analysis of the computational complexity of factorization algorithms may

be found in Kumar and Kowalik [1984]. Algorithms for the Denelcor HEP are given in

Dongarra and Hiromoto [1984] and the banded case is discussed in Dongarra and

Sameh[198A]. Computational results are reported by Leuze[1984b]for the Finite Element

Machine, and an interesting aspect of this study is the influence that different organiza-

tions of the rows of the matrix have on the performance of the algorithm due to different

communication requirements. Leuze[198A,a] and Leuze and Saxton[1983] have also noted

that minimizing the bandwidth does not always lead to the best parallel factorization

time for a banded matrix. They suggest other orderings of the matrix which appear to

improve on the degree of parallelism. Huang and Wing[1979] present a heuristic for

reordering a matrix specifically to increase the degree of parallelism. They also discuss an

implmentation on a hypothetical parallel system designed to take advantage of the

heuristic.

Algorithms based on a block partitioning of A are natural to consider on arrays of

processors. Lawrie and Sameh [1983,1984] (see also Sameh[1983] and Dongarra and

Sameh [1984]) give a block elimination algorithm for symmetric positive definite banded

systems which generalizes one of Sameh and Kuck [1978] for tridiagonal systems. The

coefficient matrix A is partitioned into the block tridiagonal form

A2 ° o
• b

A -- *

" • " • Bp-I

BTI Ap

where each Bi is strictly lower triangular and p is the number of processors. For simpli-

city, assume that each Ai is q×q so that n = pq. The factorizations Ai = LiD,L,T are then

3.6

carried out in parallel, one per processor. Using these factorizations, the systems

AjVi = Bi. Ai+lUi+l = B,T , i=l p--l, are solved, utilizing the zero structure of the Bi. These

solutions are done in parallel, one pair per prof. The matrix A has now been reduced

to

I Vl

U2 I V2

('Vp_ l

Up I

and, provided that 2pm__<n, where m is the semi bandwidth of the system, there is an

uncoupling of 2re(p-l) equations in the corresponding system, namely the equations

jq - re+k, j=l p-l, k=l 2m. Once this smaller system is solved, the remaining unk-

nowns can be evaluated by substitution. Note that the larger 2mp, the larger the size of

the uncoupled system, which is undesirable. A reasonable balancing of work would have

all systems roughly the same size. Since the Ai are n/p×n/p this would imply that

2rap -" n/p or 2rap 2 - n which, of course, also implies that 2rap < n.

Other block algorithms have been proposed by Hwang and Cheng[1980] and.

Halada [1980, 1981]. The former authors, motivated by VLSI design, propose a block Gaus-

sian elimination scheme in which four basic chips handle LU decomposition without

interchanges, matrix multiplication, matrix-vector multiplication, and inversion of tri-

angular matrices, respectively. Halada presents an algorithm for banded linear systems

with n > 3m based on the partitioning of the system as

ALIA1., xl b 1

where A_z is n-m x n-m, triangular, and assumed non-singular. The key step in the

3.7

algorithm solves an auxiliary system with the coefficient matrix

A_2

Unfortunately, without further (and unreasonable) assumptions on A12,the algorithm is

numerically unstable.

The above discussions are predicated primarily on the assumption that A is sym-

metric positive definite or, in any case, that no interchanges are required to maintain

numerical stability. The incorporation of an interchange strategy into Gaussian elimina-

tion causes varying degrees of difficulty on parallel architectures. Partly to alleviate these

difficulties, Sameh[1981] (see also Sorenson[1984b] for further analysis) introduced a

different pivoting strategy in which only two elements at a time are compared. This

ensures that the multipliers in the elimination process are bounded by 1, but requires an

annihilation pattern different from the usual one for Gaussian elimination. (This annihi-

lation pattern is identical to the one used for the parallel Givens algorithm of Sameh and

Kuck, to be discussed next).

The difficulties with implementing interchange strategies on parallel architectures

suggest that orthogonal reductions to triangular form may have advantages. It was

observed by Gentleman [1975]that the orthogonal reduction to triangular form by Givens

or Householder transformations has a certain natural parallelism, and an algorithm for

the Givens reduction was given in detail by Sameh and Kuck [1978],who also show that

the use of Givens transformations is slightly more etScient in a parallel environment than

Householder transformations. Recall that the Givens reduction to triangular form can be

written as

Qr ""• QIA = u

3.8

where r = n(n-l)/2 and each Qj is a plane rotation matrix whose multiplicative effect is to

zero one element in the lower triangular part of A. The Sameh-Kuck algorithm groups

these rotations in such a way as to achieve a degree of parallelism essentially the same as

Gaussian elimination. An illustration of the grouping is given in Figure 3-I for an 8x8

matrix in which only the subdiagonal elements are shown. In this figure, the number

indicates the stage at which that element is annihilated.

7
68
579
46810
357 9 11
2 4 6 8 10 12
135 7 9 1113

Figure 3-1. Sameh-Kuck Givens annihilation pattern.

Gannon[1980] develops an implementation of the Sameh-Kuck Givens algorithm for a

mesh-connected array of processors such as the Finite Element Machine. The implemen-

tation is such that the data moves through the array so as to give a pipelining or systolic

effect. The back solve is carried out in an analogous way.

Lord, et al.[1980, 1983] (see also Kowalik, Kumar and Kamgnla [1984]) also discuss

Givens transformations for full systems, motivated by multiprocessor systems and the

Denelcor HEP in particular. As opposed to the annihilation pattern of Sameh and

Kuck [1978],which is predicated on using O(nz) processors, they assume that p<O(n/2)and

give two txxssibleannihilation patterns as illustrated in Figure 3-2. The zigzag annihila-

tion pattern is based on using (n-l)/2 processors, one for each two subdiagonals, while the

column sweep pattern assumes p <<n. Numerical results indicating the effectiveness of the

zigzag algorithm on the Denelcor HEP are given in Lord, et al. [19801

3.9

i 1

PI
2 3 2 3

P2 3 4_ 3 4 5

4 5 6 7 4 5 6 *

P3 5 _8 5 6 7 * *

6 • 7 [8

P4 7 L
8

• " P1 P2 P3 P1 P2 " " "

ZigZag Annihilation Column Sweep Annihilation

Figure 3-2. Givens Annihilation Patterns

Although not discussed by the authors, note that the zigzag pattern adapts nicely to

banded systems; here one would assume that p =[m/2]. Moreover, for banded systems the

process is relatively more efficient since in the full case, the higher numbered processors

are doing considerably less work. The column sweep pattern also adapts nicely to banded

systems and seems to be very efficient. Other parallel orderings for Givens annihilations

are considered by Modi and Clarke [1984].

In general, it would seem that the use of Givens transformations is probably prefer-

able to Gaussian elimination if interchanges are required and probably not otherwise.

However, the details of a particular architecture could make a difference on both of these

statements. For least squares problems, however, orthogonal reduction has other advan-

tages and Sameh [1982] has considered the use of Givens transformations for this problem

in the context of a ring network of processors.

Toeplitz matrices (each diagonal is constant) arise in a number of applications. Grear

and Sameh[1981] consider banded Toeplitz matrices and, under various assumptions on the

3.10

matrix, they give three algorithms. For banded symmetric positive definite matrices, their

algorithm requires O(mlogn)time steps using 4n processors. See also Bini [1984] for other

work on Toeplitz matrices.

An interesting variation of the elimination process has been advanced by D. Evans

and several colleagues in a series of papers (Evans and Hatzopoulos [1979], Evans and Had-

jidimos [1980], Evans, et al.[1981]; Shanehchi and Evans[1981, 1982]) and reviewed in

Evans [1982b, 1983]. The basic idea is a factorization of A, called the Quadrant Interlocking

Factorization (QIF), which has the structure

"I 0 "'" 0 "* ... *"

* 1 * 0 0

(3.4) A = WZ = " * 0
* " " 0 * 0 "

• 0 • • •

* * 0 0
0 "'' 0 1 * ... *

Here W has l's on its main diagonal, Z has non-zeros on its main diagonal and the *'s

indicate generally non-zero elements. Variations of this factorization have been given

that allow a Choleski type decomposition WDWT and that are appropriate for banded sys-

tems.

The decomposition (3.4) is carried out as follows. First zli =ali, zm = a,_, i=l,...,n, and

then the first and last columns of W are obtained from the n-2 2×2 systems

Wil ZII+ Win Znl = &!l

(3.5) , i = 2,...n--1
Wil Zin + Win Znn "- &in

The first and last columns of W and Z are now determined and the elements of A are

updated by

3.11

(3.6) A ..-.A - WlZr_- W_Z_

where Wi and Wn are the first and last columns of W and ZT and ZT the first and last rows

of Z. The first stage of the factorization is now complete and the second stage proceeds in

the analogous way to determine the remaining elements in the 2nd and n-lst rows and

columns of W and Z and then update A corresponding to (3.6). Thus the factorization is

complete in O(n/2) stages.

At the kth stage, n-2k 2x2 systems need to be solved to determine the w's at that

stage, and these 2x2 systems can be solved in parallel. Also, an n-2k by n-2k submatrix

of A needs to be updated and these calculations can also be done in parallel. Hence, the

degree of parallelism at the kth stage is O(n-2k) and the overall average degree of paral-

lelism is O(n/2), the same as Gaussian elimination. To complete the solution of Ax = b. we

then need to solve the systems Wy_= b. Zx =y_. The solution of the first system can be

overlapped with the factorization; as the w's become available during the factorization,

the corresponding y's can be computed.

Evans and his coworkers have done various analyses of this and related QIF methods

and claim essentially the same numerical stability as Gaussian elimination; in particular,

the algorithms are stable if A is symmetric positive definite or diagonally dominant.

These QIF methods seem to be potentially attractive alternatives to Gaussian elimination

or Choleski factorization for parallel computation but more experience with their numer-

ical stability and efficiency on different parallel architectures is needed.

The methods we have reviewed so far aH have a maximum degree of parallelism of

O(n) for full systems or O(m) for banded systems. There have been a number of attempts,

especially in the earlier literature, to devise methods with a higher degree of parallelism.

In general, these papers have been directed at the theoretical question of how fast a sys-

3.12

tem can be solved given an unlimited number of processors, ignoring such practical con-

straints as communication delays, etc. Several results of this kind are reviewed in detail

in Sameh[1977]and Heller [1978]and we give here only a sampling.

It is quite easy to see that, for a full matrix and without pivoting, Gaussian elimina-

tion can be carried out in 3(n-l) time steps using (n-l) 2 processors. Preparata and

Sarwate [1978], improving on a result of Csanky [1976], showed that the system can be

solved in O(log2n)time steps using no more than 2n3"3_/log2nprocessors. The algorithm

makes use of the Cayley-Hamilton theorem to compute A-_ and is numerically unstable.

It is an interesting complexity result but does not yield a practical algorithm.

Similarly, for triangular systems (which are to be solved in the back substitution

phase of elimination or orthogonal reduction algorithms), Sameh and Brent [1977] gave

algorithms which could be carried out in O(log2n)steps using no more than n3/68 + O(n2)

processors for full matrices, and O(logmlogn) steps using no more than m2n/2 + O(mn) pro-

cessors if the bandwidth is m. These results improved on previous ones of Chen and

Kuck [197.5],but the error analysis given, as well as some numerical results, shows that the

algorithms may be numerically unstable in certain cases. Chen, et al. [1978] gave another

algorithm for banded systems which requires O(2m2n/p)time steps, where p, the number

of processors, is assumed to be at least 2m. Generally, this algorithm wiU require more

time steps, but uses fewer processors; for example, if p=2m, O(mn) time steps are required.

Again an error analysis performed by the authors showed a potential exponential growth

in rounding error, but numerical experiments showed that the error bounds were prob-

ably unrealistically large.

More recently, Montoye and Lawrie [1982]have given an algorithm for full triangu-

lar systems on a hypothetical SIMD array of p processors which are connected to p

memories with suitable alignment networks. The algorithm uses partitioning of the

3.13

system and requires O(n2.r) time steps with r = log p/log n; for example it requires O(n)

steps with n processors.

Evans and Dunbar [1983] give two algorithms for solving triangular systems called

the Wavefront and Delayed Wavefront methods. The former assumes that the number of

processors satisfies 2(n-1)/3 _ p _<n-1 while the latter assumes that p _<2(n-1)/3. In both

cases, optimal performance is achieved for p=2(n-1)/3 and in this case, O(2n) time steps are

required. The algorithms proceed in 3 phases. In the first, processors are assigned to the

2nd through p+lst rows of the system. The known value xl is substituted into row 2,

giving x2, and processor 2 is reassigned to row p+2. The process continues in this way

until a processor has been assigned to row n. This is the end of the first phase. In the

second stage, as soon as processor k becomes available it is reassigned to row n at column

k+l, processor k+l is assigned to row n-1 at column k+2, and so on. The xi are now being

worked on in two pieces until the two "wavefronts" come together. At this point, there

remains only a triangular system of less than p rows and it is solved by assigning one row

per processor. A potential drawback of these methods is the large amount of communica-

tion required by reassigning processors.

Although many of the above algorithms for triangular systems are interesting, and

may turn out to be useful in practice, it is unlikely that they will give enough speed-up

over the basic column sweep algorithm to justify their increased complexity. Moreover,

the numerical stability of the column sweep algorithm is well-understood since it is just

the usual serial algorithm.

The previous discussion has focused on banded systems such as might arise from

discretizations of elliptic equations in which the node points are ordered so as to achieve

relatively small bandwidths. We now consider other orderings that are known to reduce

both the number of arithmetic operations and the storage requirements for factoring the

3.14

matrix of the resulting system. The first of these is known as one-way dissection and is

discussed in detail in George[1972,1977]and George and Liu[1981]. Referring to Figure 3-3,

the idea is first to divide the grid of NxN nodes with l horizontal separators. The nodes

in the l +1 remaining rectangles are numbered toward a separator as indicated by an arrow

and then the separators are numbered. For the proper choice of l this ordering has been

©--
I®

®--

®--
I®

Figure 3-3. An N by N mesh dissected into 4 blocks with the ordering
indicated by the circled numbers and the arrows.

shown (see George[1972])to reduce the number of arithmetic operations required for the

7

factorization of the n x n (n = N2)system from O(n2)for the natural ordering to O(n_).

3

The nested dissection ordering further reduces the operation count to O(n2) as shown

in George[1973, 1977]. The idea here is to divide the grid with both horizontal and verti-

cal separators as shown in Figure 3-4. Regions 1- 4 are again divided using horizontal

and vertical separators. Clearly the idea may be applied recursively, and in the case

3

N = 2k --1, dissection will terminate after k--1 steps. In order to obtain the O(nT) operation

count, dissection must be carried to completion; however, as noted in George, et al.[1978a],

there are advantages in terms of storage to terminating dissection early.

3.15

© ©
-®- -®-

©©©
I

Figure 3-4. One step of the nested dissection ordering for the N by N grid.

Nested dissection for vector computers was first discussed by Calahan [1975], in the

context of rather general rectangular finite elements, and estimates are given of the

number of vector operations required for the factorization and their average lengths,

assuming dissection is carried to completion. The appropriate level of dissection becomes

an interesting question for a vector computer. We have already seen that for the Cyber

200 it is desirable to work with vectors whose length is as great as possible; however,

from Figures 3-3 and 3-4 it is clear that at least some of the vectors become shorter as

dissection continues. This problem is studied in detail in George, et al. [1978b]for vector

computers with a range of start-up times covering both the Cray and the Cyber 200. For

the Cyber 200 their results indicate that the minimum time for factorization is obtained

by stopping nested dissection two levels from completion. Another approach to the prob-

lem of vector lengths was suggested by Calahan [1975]. He noted that on the TI-ASC it

was possible to execute simple triply nested 130 loops as one vector instruction resulting

in vector lengths equal to the product of the loop lengths. Applying this idea to nested

dissection resulted in an increase in average vector lengths. Unfortunately no vector

computer presently available provides this capability; however, the idea is closely related

to unrolling DO loops, a technique that has become a powerful way to increase perfor-

3.16

mance (see section 1).

Another result discussed in George, et al.[1978b]deals with the general problem of

how effectively an algorithm translates into vector operations. Both the one-way and the

nested dissection algorithms translate almost entirely into vector operations; however, in

spite of a lower operation count, one-way dissection introduces more vector operations

than are present in banded algorithms for the natural ordering, resulting in the natural

ordering being superior for all but very large n. Fortunately this phenomenon is fairly

rare, and as expected, nested dissection can be implemented with fewer vector operations

than the usual banded algorithms. This situation is discussed in more detail in

Voigt[1977]. In principle, both dissection algorithms would be attractive for the Cray

X-MP; however, the limited paths between memory and the vector registers could

adversely affect performance on the earlier Crays.

Calahan [1979b]introduces a variant of nested dissection in which the separators are

the diagonals indicated by the square points in Figure 3-5. The dissection may be per-

formed recursively, and Calahan claims that if the nodes are properly ordered, resulting

Figure 3-5. Diagonal Variant of Nested Dissection

in 4x4 diagonal blocks, the process may be implemented on the Cray-1 with performance

in excess of 50 MFLOPS on the 4x4 factorizations. The dense lower right hand block

corresponding to the separators may be factored at rates in excess of 100 MFLOPS. For the

processing required by the blocks that represent the connections between the separators

3.17

and the 4x4 diagonal blocks, Calahan estimates performance in the 30 MFLOP range but

this requires introducing new nodes and unknowns in order to achieve regularity of the

block structure. This technique adds approximately 25 percent more nodes to the dense

lower right block and the overall effect on computation time is not known.

Another variant of nested dissection suggested by Liu[1978]may offer distinct advan-

tages for parallel arrays. Liu suggests making the separators two mesh lines wide rather

than one as in the George algorithm shown in Figure 3-4. This provides more complete

independence of the remaining subsets which may lead to better interprocessor communi-

cation characteristics. A possible disadvantage is that the submatrices associated with the

separators are twice as large. Nevertheless, Liu shows that, in theory, the algorithm will

solve an NxN grid problem in O(N)steps using O(N 2) processors.

For parallel arrays, a careful analysis of nested dissection has been given by Gan-

non[1980]. He considers an MIMD array with nearest neighbor connections and assumes a

processor for each node in the discretization. The algorithm uses a pipelined version of

Givens rotations as a building block. Utilizing an NxN array for an NxN grid, Gannon

shows that nested dissection will run in C(N + r log N)time for r right hand sides. The

constant C is fairly large and may result in the algorithm not being competitive with

other methods for a single right hand side. Communication time is included, and he

shows that contention for data in common regions such as the bisectors can be avoided.

The MIMD capability is essential because different processors execute different code

sequences. Allocation of one grid point per processor does mean that some processors

would be idle during the algorithm. Using more points per pr(_ssor could increase pro-

cessor utilization but it might also increase communication time.

We now turn to general sparse matrices. The methods discussed above do not expli-

citly deal with the sparsity structure of the system (3.1). For banded matrices this is not

3.18

normally necessary because the matrix fills out to the band during the factorization.

However, there are applications such as load in electrical power networks which produce

very sparse matrices with little exploitable structure and treating these as dense systems

incurs an intolerable overhead. The importance of such systems was recognized by Con-

trol Data Corp. in the development of the STAR-100 and sparse arithmetic instructions

were implemented; these remain available on the Cyber 200. The idea is to store as vec-

tors only the non-zero values, together with a bit vector which indicates the location of

the non-zero elements. There seems to be little use of the instructions, however, because

their performance is not much better than the standard arithmetic instructions unless the

vectors are extremely sparse and the non-zeros occur in clusters. In addition, the storage

requirements of the bit vector are much greater than those of modern sparse matrix

methods. For example, since a word on the Cyber 200 contains 64 bits, the storage of an

nxn sparse matrix requires n2/64 words plus the nonzeros even though the matrix may be

less than 1 percent dense. For large matrices this is simply too large an overhead.

The storage requirement is potentially reduced in a sparse arithmetic processor pro-

posed by Gao and Wang[1983]. In their scheme, an integer vector denoting the locations of

the nonzero elements of the data vector is carried with the data vector. Depending on the

storage format for the integer vector and the degree of sparsity, this could be an etficient

scheme. They include a high level description of a machine which uses a floating point

pipeline for the arithmetic processor; however, details such as the integer format are not

discussed.

We next consider algorithm development for general sparse matrices. In one

approach, changes are made in the implementation of standard methods in order to

improve performance; in the other approach, different ordering schemes are employed

with the express purpose of introducing parallelism. Most of the implementation changes

3.19

have focused on vector computers, and we begin the discussion with these techniques.

As noted in Duff [1984] (see also Duff [1982a,b]), for example, the difflculty with vec-

torizing a general sparse routine is the indirect addressing as given below. This loop may

DO 10 II = 11,12

I = INDEX (II)

T(1) = T(I) + CONST*A(II)

I0 CONTINUE

be treated directly using a GATHER operation to form a vector out of the T's, performing

the arithmetic operation on the vector, and than using a SCATFER operation to distribute

the new vector to the proper locations in T. The Cyber 200 provides hardware instruc-

tions for these operations while on the Cray they are available as assembly language rou-

tines. For the Cray-1 this technique has an asymptotic rate of 7 MFLOPS or approxi-

mately double that obtained from the FORTRAN code given above (see Duff [1984]).

Additional results involving assembly language coding also are reported in Dodson [1981]

and Duff and Reid [1982].

In order to avoid the problem of indirect addressing in sparse systems, Duff[1984]

proposed using a frontal technique based on the variable band or profile scheme suggested

by Jennings [1966]. The idea is not to form the entire matrix but to eliminate each vari-

able whenever its row and column are available. This allows one to work with a rela-

tively small dense submatrix whose size is governed by the distance from the main diago-

•nal of the first non zero in a row. The size may vary as the process moves down the diag-

onal since all elements will not in general be the same distance from the diagonal. No

extra storage is used because the factorization produces fill inside the first non zero of each

row. By holding appropriate values in the vector registers in the spirit of the algorithms

3.20

discussed earlier, Duff [1984] claims performance in the 80 megaflop range for the factori-

zation, a dramatic improvement over general sparse techniques. The frontal technique is

particularly attractive for finite element analysis since the factorization may be coupled

with the assembly of the global stiffness matrix so that the entire matrix is never formed.

The technique also offers a possible solution to the I/O problem produced by very large

problems and known to be potentially devastating on high performance systems (see for

example Knight, et a1.[1975]).

In a series of papers, Calahan [1979a,b, 1981a] has suggested a block approach to solving

sparse systems that has some of the characteristics of the frontal technique discussed

above. Again the motivation is to reduce the cost of indirect addressing usually associated

with sparse methods. In Calahan[1979a], for example, it is pointed out that sparse

matrices arising from discretizations of partial differential equations typically give rise to

matrices that are globally sparse but locally dense. This observation is particularly true if

the f111associated with direct methods is taken into account. Motivated by the ability of

the Cray to process relatively short vectors efficiently, Calahan [1979a, 1979b] suggests the

use of block factorization methods where efficient dense solvers are used to factor the

diagonal blocks. As one would expect, the approach becomes very efficient on the Cray as

the block size approaches 64. Based on a very accurate simulator described in Orbits [1978],

Orbits and Calahan [1978]and Calahan [1979a]predict performance exceeding 100MFLOPS.

The choice of the blocks is an interesting issue, particularly if the sparse matrix is

not sufficiently regular. Calahan [1979a] suggests that the blocking should be done on the

LU map of the factored matrix, thus taking into account any fill that may take place. He

also proposes that it be based on selecting the largest diagonal block available followed by

the next largest and so on. There remains the problem of determining when to end one

block and begin with a new one since there is a trade off between the inclusion of a row

3.21

in order to approach the optimum size of 64 and the unnecessary computations that may

result because of the structure of the row. This is illustrated in Figure 3-6 where one

must decide between the blocking indicated by solid lines and the one indicated by dashed

lines. Note thai neither this approach nor the frontal method would be as attractive on

the Cyber 200 because of the short vector lengths.

The matrix in Figure 3-6 also demonstrates that blocking can be used to introduce

parallelism. If the solid line blocking is used, then the 4x4 block cannot be factored until

the 2×2 block is factored and the 3,1 element is eliminated. However the dashed line

xx x I
xx 0 l

I

xO x I

I x x 0
I x x 0
t 0 0 x

Figure 3-6 Matrix Blocking

blocking decouples the matrix and makes it possible to factor both 3x3 blocks simultane-

ously. For systems with a sufficiently large number of decoupled diagonal blocks of the

same size and structure, this strategy could be effective on the Cyber 200 where vectors

would consist of appropriate elements from successive blocks. Arrays of processors could

also be used on the system, and if the array is of MIMD type, the blocks could have a

different size and structure.

This suggests another way to seek parallelism in the sparse matrix problem, namely,

can the underlying grid be numbered or can the rows and columns be interchanged so as

to decouple blocks of the matrix? In an early paper, Calahan [1973]noted that the odd-

even reduction strategy of Buneman [1969]applied to tridiagonal matrices could be viewed

as a decoupling of those matrices. This will be treated in more detail shortly. Calahan

3.22

[1973] also discussed a reordering strategy for finding diagonal submatrices in order to

introduce parallelism.

The existence of diagonal blocks thai are also diagonal matrices, although attractive,

is not necessary for parallel factorization of a matrix. Thus we seek orderings which pro-

duce diagonal blocks, with no particular structure, that are decoupled from one another.

Such an ordering has been used by structural engineers and is called substructuring (see,

for example, Noor, et al.[1978],and also Golub and Meyer [1983] and Widlund [19IM]for

related approaches). The motivation for substructuring in structural analysis was not to

introduce parallelism but to decouple as much as possible different parts of a structure

that were united by a relatively small number of points; for example, the wing and

fuselage of an aircraft would be treated as separate structures joined by a few points

where the wings are attached. Conceptually, the situation is depicted in Figure 3-7, in

which the circle points represent interface nodes between the two regions.

- i "

-I
Figure 3-7 Substructuring

Notice that the regions may consist of different types of elements - in this case rectangu-

lar and triangular elements. The nodes in the region may be numbered in any appropriate

order but the interface points are numbered last. This gives rise to a block matrix of the

form

3.23

DI D2

where the A matrices represent the two substructures, the B matrix represents the inter-

face points, and the C and D matrices represent the dependencies between the interface

nodes and the two regions. For many problems, the matrix is symmetric so that

Di = C_, i - 1,2. The A matrices may be factored in parallel, and then steps of the form

B - DIA_'IC1are used to eliminate the off diagonal blocks. Finally the modified B matrix is

factored. This process may be generalized to any number of substructures, and is discussed

in more detail in Adams and Voigt [1984a]. They use a three dimensional cube as a model

region and obtain formulas to help in the selection of the number of substructures, for if

too many are chosen, there will be too many interface nodes and the work involved in

factoring the modified B matrix will dominate all other computation. They also com-

pared the technique with a parallel band solver and found that for sufficiently large

problems the substructuring technique has advantages.

It should be noted that the nested dissection process described earlier may be viewed

as a type of substructuring in which the ordering is chosen so as to minimize storage

requirements and operation counts. If the dissection is carried to completion, the diagonal

blocks of the resulting matrix reduce to single elements and the upper left hand corner of

the matrix is diagonal. If the dissection is stopped early, as discussed in George, et al.

[1978a],the matrix has a block structure of the type obtained by substructuring.

The computing system considered for the substructuring study in Adams and

Voigt [1984a]was of MIMD type. This is particularly attractive because in general the A

matrices will not be of the same size nor will they have the same structure. Conse-

quently, it would be di!ficult to use a vector processor where the vectors were defined

across substructures or submatrices. For sutficienfly large problems, the Cray would be

3.24

effective applied to each diagonal block in turn; however, the relatively short vector

lengths would probably make the technique less desirable for the Cyber 200.

As we have already pointed out, the degree of parallelism for factorization methods

is governed by the semi-bandwidth, m, of the linear system. The tacit assumption has

been that m is sufficiently large so that vector operations are efficient or so that there is

reasonable processor utilization in a parallel system. However, for small bandwidth sys-

tems, and in particular tridiagonal systems (m--l), the methods discussed above are inap-

propriate, and we will now focus on algorithms which have been designed specifically for

tfidiagonal systems.

If we consider an LU factorization of a tfidiagonal matrix A where L is unit lower

bidiagonal and U is upper bidiagonal, the usual algorithm is inherently serial. Defining

the i*h row of these matrices as (0,...,O,ci,a_,bi,0,...,0),(0,...,0,/_1,0,...,0),and (0.....0,ui,bi,0.....0)

respectively, the ith element of the diagonal of U is given by

(3.7) ui = ai -- cibi_l/Ui_l .

Since th depends on th-_, expression (3.7) cannot be evaluated directly using vector opera-

tions or an array of processors. This example points out the importance of recurrence

relations and indicates why they are a particular problem for parallel processing. We

will not discuss algorithms for recurrence relations but instead refer to Kogge and

Stone [1973], Hyafil and Kung [1977], Heller [1978], Kuck [1978] and Hockney and

Jesshope[1981] for detailed discussions and additional references.

There are algorithms which avoid the difficulty suggested by equation (3.7). The first

of these was introduced by Stone[1973] and it still represents one of the very few new

algorithms that have resulted from considering parallel computation; most others are

attempts to introduce parallelism into traditional sequential algorithms. Stone began

3.25

with the well-known fact that the formulas required by LU factorization of a tridiago-

ned matrix could be expressed as first and second order linear recurrences. In particular, if

one uses the recurrence

(3.8) qo = 1, ql = al, qi = aiqi-l--Cibi-lqi-2, i=ln

then ui of equation (3.7)is given by

Ui ----qi/qi-l, i=l n

On the surface this does not appear to help, but Stone also observed that the recurrence

(3.8) can be written in matrix form as

il I::]I] Iqi c I I qi-I
= _ GiQi-1= Gj QI, i =2,3...

(3.9) Qi -'_ qi-i qi-2 j=2

Similar expressions are given for the forward and back substitution.

Stone proposed the parallel computation of (3.9)by recursive doubling, a procedure

which, in the simplest case, expresses the 2i.th element in a sequence in terms of the i.th.

Thus for n = 2k, the n.th component can be computed in logn steps. For purposes of illus-

tration, let n = 8 and define Pij _- II_=ldi, where d_,1 = 1.....n is a set of scalars. Then Figure

3-8 shows the k vector multiply operations that compute each of the Plj for j = 1,2.....n.

The blanks left in some of the vectors are to indicate that no operations are performed

there. Thus the first is a multiply of length 7, then 6, and then 4. In general for n = 2k,

there are k multiplies of length n -- 2i for i = O,1,2,...k--1. The average length of each mul-

tiply is given by

I
k--li=o I= (l/k)[_n--2i_ = (n(logn--1) + 1)/logn_n.

na

3.26

r- --

dl Plli P11 Pll IP11 Ptli

d2 dl Pl21 P12 P12 P12 Pl2

d3 d2 P23! P23 P11 P13 P13 P13
i

d4 d3 P3_ P34 P12_ P14 P14 Pl4

d5 d4 P4_ P45 P23 P25 P25 Pli P15

d6 d5 Ps_ P56 P3a P36 P36 Pl2 Pl6

d7 d6 P6_ P67 P45 P47 P47 P13 Pl

d8. d7 P78 PT_. P56 Ps8 P58 Pl4 Pl8

Figure 3-8 Recursive Doubling

Since there are logn such multiply's, the total number of results generated is then

nlogn-n + 1. Thus we have replaced a serial computation requiring O(n)computations

with one that requires O(nlogn) computations. If there are n processors available, then we

have gone from O(n) steps to O(logn), a clear improvement. However, as was pointed out

in Lambiotte and Voigt [1975], for vector computers the total number of operations is

important, so that even though vector operations can be used, at some point the nlogn

operations will dominate and the vector algorithm will require more time than the scalar

algorithm. This led them to propose the following definition for a consistent algorithm.

A vector implementation of an algorithm for solving a problem of size n is said to be

_e,_t_ if the number of arithmetic operations required by this implementation as a

function of n is the same order of magnitude as required by the usual implementation on

a serialcomputer. Thus both the recursive doubling algorithm and the tridiagonal algo-

rithm which uses it are inconsistent. Stone[1975] and Lambiotte and Voigt [1975] give

consistent versions of Stone's original algorithm although the latter paper points out that

the asymptotic superiority has little significance for problems whose size might be of

3.27

practical interest.

Another consistent algorithm known as odd-even reduction or cyclic reduction

appears to be the most popular alternative to the standard sequential algorithm. Cyclic

reduction was originally proposed by Gene Golub and Roger Hockney and is discussed in

Hockney [1965] for the block tridiagonal systems arising from the five-point difference

approximation for Poisson's equation. Subsequently, several authors, including Hock-

ney[1970] and Ericksen [1972],pointed out that the algorithm could also be adapted to gen-

eral tridiagonal systems. The idea is to eliminate the odd numbered variables in the even

numbered equations by performing elementary row operations. Thus if R(2i)represents

the 2i.th row of the tridiagonal matrix, the following operations can be performed in

parallel for i=ln-1 assuming n is odd:2 '

(3.10) R(2i) - (c2i/a2i_l)*R(2i--1)--(b2i/a2i+l)*R(2i+l)

There are several observations about cyclic reduction that should be noted. If the

matrix is stored by diagonals, then expression (3.10)may be evaluated using vector opera-

tions on a computer like the Cray or the Cyber 200. Mter the step indicated by (3.10)is

completed, the resulting system under a reordering is again tridiagonal but only half as

large. Thus the process may be continued for k steps until, in the case that n = 2k-l, only

one equation remains; then all of the unknowns are recovered in a back substitution pro-

cess. The details of these observations are given in Lambiotte and Voigt [1975], where it is

also shown that cyclic reduction requires O(n)operations and is thus consistent. It should

be noted that this is another example of the paradigm of reordering to increase parallelism

that was discussed in section 1.

One major difficulty with cyclic reduction is that it can require significant data rear-

rangement between steps. For example, on the Cyber 200 one cannot apply vector opera-

3.28

tions directly to every other element of a vector. Thus extra operations must be

employed to reformat those elements into a new vector. Lambiotte and Voigt [1975] show

that this overhead accounts for approximately half of the total operations. Their analysis

is based on STAR-100 timing but the situation remains essentially the same for the Cyber

200. Accessing elements of a vector on the Cray at a fixed increment or stride is possible

but it may lead to a degradation in performance ff the same memory bank is read too

frequently. This was recognized in Kershaw [1982], where a storage scheme is discussed

that makes it possible to avoid memory bank conflicts. Results reported there indicate

that the algorithm is more than six times faster than the scalar algorithm for matrices of

order n > 1000; even for small systems with n - 10 the cyclic reduction algorithm is faster.

The importance of this overhead was also discussed by Boris[1976b] who considered an

implementation of cyclic reduction for the TI ASC, a computer which did not require

that a vector be defined as elements in contiguous memory locations.

Because of the" overhead of data rearrangement, one would expect that for sufficiently

small n the serial algorithm would run faster than cyclic reduction. This leads to the

possibility of a polyalgorithm in which cyclic reduction is used until the matrix size is

reduced to the point that the serial algorithm is more efficient. This idea is discussed in

Madsen and Rodrigue[1976], where it is shown to be superior to an inconsistent algorithm

proposed by Jordan[1974]. The idea also serves as a basis for discussion of many algo-

rithms in Hockney and Jesshope [1981], including those for the tridiagonal problem.

Under appropriate assumptions, Heller [1976]showed that during the cyclic reduction

process the off-diagonal elements decrease in size relative to the diagonal entries at a qua-

dratic rate. This means that it may be possible to terminate the process in less than logn

steps. For vector computers it is thus possible to avoid the last few steps which are with

short vectors; for parallel computers it means that poor processor utilization associated

3.29

with the last few steps may be avoided. A similar phenonenon was observed earlier by

Malcolm and Palmer[1974] for an LU factorization algorithm for tridiagonal systems

which are real, symmetric and diagonally dominant with constant diagonals. Their idea

was used by O'Donnell, et al. [1983] as a basis for a fast Poisson solver tailored for the

Floating Point Systems, Inc. FPS-164.

Cyclic reduction for block tridiagonal matrices has been studied for parallel comput-

ers by Kapur and Browne [1981,1984]who consider implementations on the TRAC com-

puter. They also considered a variant of cyclic reduction known as odd-even or cyclic

elimination that was introduced in Heller [1976,1978]. In this elimination method expres-

sion (3.10)is applied to _ equation (or block) rather than to just the even ones. The

result is that the off diagonal entries move away from the diagonal so that after logn steps

a diagonal matrix remains and the solution is obtained immediately without a back sub-

stitution process. As with cyclic reduction, the off diagonal elements decrease at a qua-

dratic rate making early termination an attractive alternative. The algorithm is of little

interest for vector computers because it is inconsistent, requiring O(nlogn) operations.

However, it was superior to cyclic reduction on the TRAC. This is made possible because

the extra operations of the elimination method are done in parallel at no extra cost and

because there is no back substitution step. Thus we have an example of a good uniproces-

sor algorithm being outperformed by a poor uniprocessor algorithm in a parallel environ-

ment. Another interesting aspect of their study is that they were able to implement the

algorithm so that the overhead cost of data movement, synchronization eta was kept to

approximately ten percent of the total time. Gannon, et al. [1983] also recognized the

potential superiority of odd-even elimination in their study of implementing parallel

algorithms on the CHiP system. The algorithm was also used by Gannon and

Panetta [1985] in a study of the performance of the SIMPLE code on CHIP. In a recent

3.30

paper, Johnsson [1984b] gives a thorough analysis of the implementation of cyclic reduc-

tion and some variants on a family of parallel computers called ensemble architectures.

These designs are of MIMD type using simple processors and no global memory. A

variety of interconnection schemes are considered.

To this point we have said nothing about the stability of the tridiagonal schemes.

There has been the tacit assumption, for example, that no pivoting is required, and in fact

there does not appear to be any way to incorporate a pivoting strategy into the algorithms

discussed. Several authors have noted that cyclic reduction is just Gaussian elimination

applied to PAPT for a particular permutation matrix P (see, for example, Lambiotte and

Voigt [1975]). Thus the algorithm is numerically stable for matrices for which Gaussian

elimination is stable without pivoting, for example, symmetric positive definite or diago-

nally dominant matrices. The situation is not as attractive for Stone's algorithm. Using a

stability analysis technique for recurrence relations introduced in Sameh and Kuck [1977a],

Dubois and Rodrigue[1977a] have shown that the algorithm is in general unstable,

suffering from exponential error growth.

As discussed earlier in this section, Givens transformations may be used to overcome

the difficulties of pivoting for stability. Sameh and Kuck [1978] present two such algo-

rithms for tridiagonal systems using O(n) processors. One of the algorithms requires logn

steps but can suffer from exponential growth of errors; the more stable version requires

O[(loglognXlogn)] steps. Another Givens based algorithm is discussed in Hatzopoulos [1982].

The Idifferent feature of this algorithm is that the Givens transformations are applied

from the top and from the bottom of the matrix simultaneously, thus increasing the

degree of parallelism by a factor of two but still requiring O(logn) steps on O(n) processors.

Hatzopoulos [1982] also considers using the QIF method discussed earlier in this section.

Again the implementation requires O(logn) steps on O(n)processors. Unfortunately all of

3.31

these algorithms are inconsistent and unless stability is a problem, they would not be

attractive for vector computers. There appears to be no implementation of a Givens

transformations based algorithm that is consistent.

There are consistent algorithms other than cyclic reduction. Swarztrauber [1979a,b]

introduced an algorithm for tridiagonal systems based on an efficient implementation of

Cramer's rule. The algorithm requires O(Iogn) steps on O(n) processors but only O(n) total

operations are performed. The algorithm also requires only a single divide, and unlike

cyclic reduction it is well defined for general non-singular systems. There has been no

formal stability analysis but Swarztrauber reports results comparable to Gaussian elimi-

nation with partial pivoting for a series of experiments run on the Cray-1. The algo-

rithm has a slightly higher operation count than cyclic reduction but it is more efficient

than Gaussian elimination on the Cray-1 when n exceeds 32. Kascic[1984a]has compared

cyclic reduction with the Cramer's rule algorithm and found cyclic reduction to be about

twice as fast on the Cyber 205.

A variety of other algorithms have been proposed for tridiagonal systems. For

example, Sameh[1981] and Kowalik, Lord and Kumar [1984] consider a block algorithm

where the number of blocks is chosen to match the number of processors available. An

elimination scheme is used within each block until a reduced system remains. Following

an order of elimination suggested by Wang[1981], Kowalik, Lord and Kumar [1984]obtain

a system of p equations that must be solved sequentially, where p is the number of blocks.

They present results from an implementation on the Denelcor HEP and note that the

speedup falls considerably short of p because of extra computation that the algorithm

requires. Sameh [1981] considers his algorithm for a linear array of processors. The

sequential part of the algorithm is in the back substitution but the algorithm is structured

nicely for a linear array so that the communication should not be a major overhead. He

3.32

shows that for p = n the algorithm requires O(n1/2) time including communication.

Because of their inherent parallelism, iterative methods have been considered by

Traub[1974b] for solving tridiagonal systems, and further studied by Lambiotte and

Voigt [1975] and Heller, et al.[1976]. Traub's idea was to turn the three basic recurrence

relations associated with the LU factorization into iterations. For example, equation (3.7)

is formulated as

ui(k+I) .-- __ (kJai cibi-l/Ui- 1 , k = 1,...m.

and the rate of convergence depends on the degree of diagonal dominance of the system.

Except for certain situations such as a very strongly diagonally dominant system or

where an excellent starting value need only be improved by a few digits, these methods

do not appear to be competitive with direct methods such as cyclic reduction.

Most of the work discussed to this point has focused on reducing the parallel compu-

tational complexity of the algorithm with occasional concerns for the overhead arising

from such things as communication. A rather different approach is taken by Mer-

riam [1984]where, motivated by the small memory that was available on the Illiac IV, he

considers mimimizing the total time to solve tridiagonal systems by trading off extra

computation with storage that might require expensive I/O operations. His idea is to save

a few carefully selected values from the factorization stage, and then begin the back sub-

stitution. When an element is required that is not available it is recomputed using the

values saved from the factorization. This idea can have merit in any situation where the

cost of communication is high relative to computation.

There are, of course, non tridiagonal matrices of interest whose bandwidth is too

small for etficient use of banded solvers on vector or parallel computers. One way to treat

these problems is to view them as block tridiagonal and apply block cyclic reduction as

3.33

discussed in Lambiotte [1975] and Heller [1976]. It would be more attractive to apply the

cyclic reduction idea directly as suggested by Rodrigue, et al. [1976]and Madsen and Rodri-

gue[1977] so that the parallelism obtained is by the diagonals of the matrix rather than

the band. Unfortunately, the numerical stability of the algorithm remains in doubt;

indeed, even reasonable conditions on the matrix that guarantee that the algorithm

remains well defined (i.e. division by zero cannot occur) have not been given although

some numerical experience in Madsen and Rodrigue[1977] did not expose any problems.

So far in this section, we have made few assumptions about the differential equations

which give rise to the linear systems to be solved. However, for separable problems there

are special methods, generally known as "fast" methods, which are considerably better

than other direct or iterative methods. These methods are reviewed for scalar computers

in, for example, Dorr[1970], Swarztrauber [1977],and Temperton [1979a,b,1980_ Although

some of the algorithms are applicable to more general problems we will again use the

Poisson equation on a square in order to provide a focus for the discussion. For this prob-

lem, Swarztrauber [1977] has shown how to handle periodic, Dirichlet-Dirichlet,

Dirichlet-Neumann, and Neumann-Neumann boundary conditions.

The algorithms to be discussed depend on the Fast Fourier Transform (FFT).

Swarztrauber [1982, 1984] contains a thorough discussion of FFT's on vector computers,

particularly the Cray, while the Cyber 200 motivated Korn and Lambiotte [1979] and

Lambiotte [1979] to develop algorithms for multiple transforms that give rise to vector

lengths that are longer than that provided by a single transform. These algorithms main-

tain the serial complexity of O(mnlogn) for m transforms of length n and exhibit a degree

of parallelism of m or n.

Pease[1968], Stone[1971] and Jesshope[1980a] have considered the efficiency of FFT

algorithms on a variety of parallel arrays. Since the algorithms depend on data

3.34

distributed over the entire array rather than on data contained in neighboring processors,

communication becomes a significant issue. Finally, Hockney and Jesshope[1981]provide a

lengthy discussion of algorithms for both arrays and vector processors including guide-

lines on the choice of methods depending on the architecture and the size and number of

transforms required.

Both Pease and Stone noted than an interconnection scheme known as the perfect

shuffle provided the kind of data transmission required by the FFT. For processors

Pi, i=O.....N--I, the perfect shuffle provides direct communication as follows:

Pi"*P2i, 04 i _<N/2--1,

Pi-'* P2i+l-n, N/2_<i_<N-1.

This accomplishes an interleaving of transmitted information analogous to what one

obtains with a perfect shuffle of a deck of cards. The following figure shows the perfect

shuffle interconnection for eight processors.

Figure 3-9 Perfect Shuffle Interconnection

We now show how the Fast Fourier Transform plays a crucial role in various fast

Poisson solvers. Following Hockney and Jesshope [1981], we assume that a five point

difference scheme is used to discretize the Poisson equation

(3.11) ZXu= f

3.35

with doubly periodic boundary conditions on an N by N grid. Then taking a Fourier

transform in the x direction followed by one in the y direction gives rise to the following

expression for the transform of the right hand side fjx,

r_-_1 lq-1

I q_=o(_" _ fp,qexp[-2zrijp/N])exp-2_rikq/N],l._<_j,k<N.p=o

A division of each fjk by the coefficient of the transformed left hand side of the discrete

form of (3.11)gives a value for each transformed unknown variable Uj.k and finally the

solution .Uj,k is obtained by an inverse transform of U_k. The serial complexitiy of the

algorithm is O(N21ogN) and the degree of parallelism in calculating i'j,k is either N, if a

serial algorithm is used on N transforms in parallel, or Nz if a parallel algorithm is used.

As usual, the choice would depend on the machine and the value of N.

Another algorithm based on the bTT, which also has serial complexity of O(N21ogN),

is known as matrix decomposition. It was introduced by Buzbee, et al. [1970] and was first

analyzed as a parallel algorithm by Buzbee [1973]. If equation (3.11)is discretized using the

five point difference formula on an evenly spaced square grid one obtains the block tridi-

agonal system

! lil;A • , •

(3.12) " ""• =

I
I A ra

where A is an NxN tridagonal matrix whose ith row is (0,...0,1,--4,1,0 • • • 0), and Ui and fi

are N-vectors. Matrix decomposition is based on the fact that the eigensystem of A is

known explicitly and thus the factorization VTAV = A is possible where A is a diagonal

matrix whose entries are the eigenvalues of A. Using this relationship, equation (3.12)

3.36

may be rewrittenas

A01+02=

(3.13) 0i-, "1"A0i dr 0i+l _-- fi i=2 N--1

+ =

where 0i = VUi and fi = Vfi i=lN. Because of the form of the eigenvectors of A, fi

may be computed using a fast sine transform. Then l]_is obtained by solving the systems

that result from reorganizing (3.13)into N independent tridiagonal systems each one of

which depends on a single eigenvalue of A. The solution U_is recovered from l]_ by means

of an inverse sine transform. Thus the degree of parallelism and the appropriateness of

the method for a particular computer depends on algorithms for the FFT and for systems

of tridiagonal equations.

Sameh, et al.[1976] obtained a complexity of O(log N) parallel steps for matrix

decomposition on a parallel computer consisting of N2 processors with an arbitrarily

powerful interconnection network that required unit time for the transfer of a piece of

data from any processor to any other processor. The interconection requirement could be

relaxed to a perfect shuffle network without serious degradation in performance.

Sameh[1984a] has also considered a ring of p processors, p<N, where each processor can

simultaneously perform an arithmetic operation, receive a floating point number from an

immediate neighbor and transmit a floating point number to another neighbor. "_ith such

a system, he shows that matrix decomposition requires O((N2/p)log N) parallel steps,

resulting in a speedup of O(p). He also considers a three dimensional problem using a

seven point difference approximation on an N3 grid. By using N copies of the ring of N

3.37

processors with each ring attached to a global memory, it is possible to solve the Poisson

equation in O(N log N) parallel steps. Performance degrades linearly for r < N rings of p

< N processors.

Vajtersic [1982]reports results obtained from an implementation of matrix decompo-

sition on the MIMD system EGPA (Erlangen General Purpose Array) under development

at the Erlangen-Nurnberg University. The system presently consists of a pyramid of five

processors with four processors serving as slaves to the apex processor. Using the four

processors for the execution of the algorithm he obtains speedups increasing to 3.6 for N

ranging to 128. The speed up figures are not as high as they might be because the full

parallelism of the algorithm is not utilized in order to simplify synchronization and data

transfer.

As mentioned earlier in the discussion of tridiagonal systems, cyclic reduction was

developed as a fast Poisson solver for a system of the form (3.12)on which it exhibits

serial complexity of O(N2 log N). Its parallel implementation is analogous to that discussed

for the tridiagonal problem; details for the llliac IV are given in Ericksen [1972].

Hockney [1965] used one step of cyclic reduction and then solved the remaining sys-

tem, which is half the original size, by matrix decomposition, resulting in an algorithm he

called FACR. Later Hockney [1970] noted that the overall work could be reduced by tak-

ing .more cyclic reduction steps. The algorithm known as FACR(/) involves l as steps of

cyclic reduction, the resulting system is solved by matrix decomposition, and the solution

of the discretized Poisson equation is obtained by a back substitution step.

Swartztrauber [1977] showed that the minimum computational complexity of

O(N2 log log N) is obtained with l = log log N.

Grosch[1979b] presents an analysis of the FACR(/) algorithm including communica-

tion costs for arrays with a nearest neighbor connection and a nearest neighbor connection

3.38

augmented with a perfect shuffle. He found that the augmented array would operate with

an efficiency of around 90 percent for a wide range of values for N while the efficiency

of the other array would drop off rapidly with increasing N.

As was noted in the previous discussion of cyclic reduction for tridiagonal systems,

the degree of parallelism decreases as more steps are taken and Temperton [1980]peints this

out for the FACR(/) algorithm. This phenomenon has prompted research on the selection

of the appropriate value of l to maximize performance on a variety of vector and parallel

computers (see, for example, Hockney and Jesshope[1981land Hockney [1982a, 1983b]and

the references therein). In particular, evaluating the FFT more rapidly will lead to

smaller values of l while solving tridiagonal systems faster will lead to a larger value of

l. The algorithm has been used on a variety of computers including the IUiac IV (Erick-

sen[1972]), the Cray-I (Temperton [1979b]), and the Cyber 205 and ICL DAP

(Hockney [1983b]).

Finally, we should mention that the multigrid algorithm can also be viewed as a fast

Poisson solver because of its theoretical complexity of O(N2). We defer a detailed discus-

sion until the next section since the method is appropriate for more general partial

differential equations but point out that Grosch[1979b]has studied parallel implementa-

tion issues for a Poisson solver that indicates that the method is attractive on arrays of

processors.

4.1

4. Iterative and Time Marching Methods

The parallel implementation of mosl of the usual iterative methods for discrete elliptic

equations has been studied extensively by a number of authors. Some of the earlier papers were

Ericksen [1972], Hayes[1974], and Lambiotte [1975], primarily for the ILLIAC IV, the TI-ASC, and

the CDC STAR-100, respectively, and Morice [1972]for general parallel processors. We also note

the papers by Heller [1978land Ortega and Voigt [1977], which survey many aspects of iterative

methods for vector and parallel computers up to that time. More recent surveys which include

material on iterative methods are Buzbee [1981,1983a], Evans [1982b], Feilmeier [1982], Hockney

and Jesshope [1981] and Sameh[1983].

For simplicity and ease of presentation much of our discussion will be for the model prob-

lem of Laplace's equation on a square with Dirchlet boundary data discretized using the five

point difference star. Such a problem would, of course, actually be solved by one of the fast

Poisson solvers mentioned in the last section but it makes a convenient example with which to

treat many of the issues that arise in more general problems.

The discrete domain is shown in Figure 4.1 where the boundary points are indicated by b's

and N is the number of interior points in each row and column. The classical Jacobi method

(4ol) uk+l 1 k k k k"- Ui,j+ 1_-[u_+_,j+ ui-_,j+ + u_,j__]

where the superscript denotes the iteration number and uij is the solution at the i,j grid point, is

generally considered to be a prototype parallel method. However, care is needed in certain

aspects of its implementation in order to achieve the greatest degree of paraUelization. For

example, (4.1)would be more efficiently implemented on the Cray in a row by row fashion if N

were 64 or a multiple thereof and on a p × p array of processors if N were a multiple of p.

4.2

b b b b b b

(N+2) 2

b b

b b

b b
2N+5

b b
N+3 N+4

b b b b b b
1 2 N+2

Figure 4-1 Grid Points

On the Cyber 200 machines, on the other hand, we would like the vector lengths to be as

long as possible. One could carry out (4.1) row by row but then the vectors would only be of

length N and one would pay N times the number of start-up penalties. Alternatively, we can

use vectors of length O(N2) by treating the boundary positions as unknowns. That is, let U now

denote an (N+2)2 long one-dimensional array with the lexicographic ordering of Figure 4-1, and

use the notation U(K;L) to denote the L-long subvector starting at the Kth position of U. With

M1 = (N+lXN+2) - I and M2 = N(N+2) - 2, we can then implement (4.1) by the instructions

+ +
(4.2) T(2;M1) = U(2;M1)._- U(N+3;M1) U(N+4;M2) = T(2;M2) ._- T(N+5;M2)

+

where T is a temporary vector and where we have used -_- to denote an "average" instruction,

that is, addition followed by division by 2. Such an instruction is available on the Cyber 200's

and takes essentially the same time as an addition.

As a penalty for using vectors whose length is the total number of grid points, the final

instruction of (4.2) will overwrite the positions 2N+4, 2N+5, 3N+6, 3N+7 corresponding to

boundary positions along the vertical sides, thus destroying the correct boundary values. One

4.3

would then have to restore these values before the next iteration. On the Cyber 200's however,

there is a convenient feature which permits storage to be controlled by a bit vector (the control

vector); this can be used to ensure that the boundary positions are not overwritten and, hence, no

"fLxing up" is needed before the next iteration. The instruction time is no greater using the con-

trol vector but, of course, one pays the penalty for storage of approximately N2/64 words for the

bit vector.

Although the Jacobi method vectorizes well, it has not been used in practice because of its

slow convergence. However, Schonauer[1983a,b] has reported promising results on a "meander"

Jacobi over-relaxed method in which the relaxation parameter varies with the iteration number

in rather complicated ways.

Whereas the Jacobi iteration is often cited as a "perfect" parallel algorithm, the Gauss-Seidel

and SOR iterations are considered to be the opposite. The usual serial code for Gauss-Seidel in

the context of (4.1) would have new values at each point replace the old as soon as they are com-

puted; it is this recursive process that is not amenable to vectorization. However, several early

authors (e.g. Ericksen [1972], Hayes [1974], Lambiotte [1975]) observed that by using the classical

red-black ordering of the grid points, as shown in Figure 4-2, Gauss-Seidel can be carried out

Bll R9 B12

B8 R7 B9 R8 B10

R4 B6 R5 B7 R6

B3 R2 B4 R3 B5

B1 R1 B2

Figure 4-2. The Red-Black Ordering

4.4

N 2

in the same fashion as the Jacobi iteration by using two vectors of length O(--_--)corresponding to

the red and black points. The boundary points would be handled in the same way as with

Jacobi's method and the introduction of the SOR parameter causes no difficulty. The time per

iteration for SOR carried out in this way should be little more than for the Jacobi iteration so

that the SOR method is potentially very useful for parallel computation. Lambiotte [1975] also

considered a diagonal ordering for the grid points but showed that this is inferior to the red-

black ordering.

In related work, Buzbee, et a1.[1977] discussed the treatment of the equation

(O_Ux) x -[- (_]Uy)y m f on the Cray-1. They used the 5-point difference star with the red/black ord-

ering, and also considered a skewed 5 point difference scheme using the NE, SE, SW and NW grid

points rather than the usual north, south, east, west ones. In the latter scheme, they ordered the

grid points red/black by columns.

While the red-black ordering allows an efficient implementation of the SOR method for the

five point difference scheme, it does not work for higher order finite difference or finite element

discretizations or for more general elliptic equations which contain mixed partial derivative

terms. However, several authors have observed that the red-black ordering can be extended to a

_multi-color" ordering which can give the same effect as the red-black ordering for the 5-point

star. Hotovy and Dickson [1979]used a three-color ordering for a finite difference approximation

of the small disturbance equation of transonic flow, Hackbusch [1978]used a four-color ordering

for 9-point finite difference stars and Adams and Ortega [1982] gave a general treatment of the

idea which we now describe (we note that Young [1971]had much earlier used a three-color ord-

ering but not in the context of parallel computing and that Berger, et al. [1982] use multicolor

orderings for the assembly of finite element equations).

4.5

The basic idea of the multicoloring ordering is to label (color) the grid points in such a way

that there is local decoupling between the unknowns. This leads to the system being expressed

in the form

1

D,B,2 B,p
B21 D2

(4.3) • = " I
I

Bp-1,p " " I

Bpl Bp,p-i D v lip])_p]

for p colors, where the Di are diagonal. The case 1>=2is the red-black ordering. The k+lst

Gauss-Seidel iterate is then

D_Y_k+'= - _'.Bi_k+'- EBi_Y_k +-hi,
j<i j>i

and is effectively implemented by p Jacobi sweeps. As an example, Figure 4-4 gives a coloring

suitable for a discretization in which each grid point is coupled to its eight nearest neighbors as

indicated in Figure 4-3.

N
NW NE

W E

SW SE
S

Figure 4-3. Eight Nearest Neighbors

A variety of other examples could be given (see, e.g., Adams[1982]). Provided that the

domain of the differential equation is a rectangle or some other regular two or three dimensional

region and the discretization pattern is repeated at each grid point, it is usually evident how to

4.6

R B W O R B W O

W O R B W O R B

R B W 0 R B W 0

.w O R B W O R B

Figure 4-4. Four color ordering of the gridpoints

color the points to achieve the desired result. However, obtaining the minimum number of

colors for arbitrary discretizations is equivalent to the graph coloring problem which is NP-

complete.

Other orderings which are conducive to parallel computing have also been used.

Oq_.eary [1984] gives a number of interesting orderings, one of which is illustrated in Figure 4-5.

Here, the nodes are grouped in blocks of five, except at the boundaries. First, all points labeled 1

are ordered, followed by all points labeled 2, then all points labeled 3. The resulting system has

the form (4.3) with p = 3 but now the Di are block diagonal matrices with blocks that are 5×5 or

less. A block SOR iteration can then be carried out with block Jacobi sweeps which involves

solving 5×5, or smaller, systems.

33 11 3312 33
33 22 3322 31
31 22 1122 11
11 23 1133 11
11 33 1233 22

Figure 4-5 O'Leary's P3 Ordering

There are at present only partial results concerning the rate of convergence of SOR using

multicolor and related orderings. Adams [1982] showed that, in general, these are not consistent

orderings in the sense of Young. However, O'Leary [li984] proved that if the matrix (4.3) is an

4.7

irreducible Stielt]les matrix then the asymptotic rate of convergence is no worse than for the

natural ordering. A differenl approach was motivated by the implementation of SOR on the

Denelcor HEP by Palel and Jordan [1984] in which they use the natural ordering and let the

updating take place as soon as the requisite values at the neighboring points are available. This is

illustrated in Figure 4-6 for the 9-point stencil of Figure 4-3; the numbers given under each

grid point are the times at which the corresponding unknown can be updated.

11,15,19,23 12,16,20,24 13,17,21,25 14,18,22,26 15,19,23,27

9,13,17,21 10,14,18,22 11,15,19,23 12,16,20,24 13,17,21,25

7,11,15,19 8,12,16,20 9,13,17,21 10,14,18,22 11,15,19,23

5, 9,13,17 6,10,14,18 7,11,15,19 8,12,16,20 9,13,17,21

3, 7,11,15 4, 8,12,16 5, 9,13,17 6,10,14,18 7,11,15,19

1,5, 9,13 2, 6,10,14 3, 7,11,15 4, 8,12,16 5, 9,13,17

Figure 4-6 Update times for 9-point stencil

Further analysis of this procedure by Adams and Jordan [1984] showed that it is equivalent, in

certain cases and up to transient effects, to carrying out SOR under a multicoloring ordering. In

particular, they show for a wide class of discretization stencils that the spectral radius of the

SOR iteration matrix for certain multicolor orderings is the same as that of the iteration matrix

for the natural rowwise orderings and hence, in these cases, the asymptotic rate of convergence

for the multicolor orderings is the same as that for the natural ordering.

We turn now to the implementation of the Jacobi or SOR iterations on a array of processors.

As discussed in section 2, this will require a suitable distribution of the work amongst the pro-

cessors so as to minimize processor idleness. In order to carry out these iterations in their

mathematical form we also need to ensure that the processors are synchronized before the

4.8

beginning of each iteration, or in the case of the multicolor SOR method, before the beginning of

each Jacobi sweep. This synchronization can be carried out in a number of ways but, in essence,

it requires that each processor wait after completion of its part of the computation until all pro-

cessors have completed their work and the next iteration can begin. This adds two forms of

overhead to the computation: one is the work required to verify that every processor is ready

for the next iteration, the other is the idle time that some processors may experience while wait-

ing for all processors to complete their tasks.

An alternative that has special appeal in the case of the Jacobi or SOR iterations is to let the

processors run asynchronously. This idea goes back at least to the chaotic relaxation methods of

Chazan and Miranker [1969]and has been studied in some detail by]3audet[1978],following work

of Kung[1976]. See also Deminet [1982],who gives some performance results on the Cm', Barlow

and Evans [1982],and Dubois and Briggs[1982]. In its simplest form, in the present context, we

would simply not worry about synchronization at each iteration in carrying out the Jacobi

sweeps of the multicolor SOR method; that is, at any given time, the Jacobi iteration would take

as its data the most recently updated values of the variables. In general, this asynchronous itera-

tion will deviate from the synchronized one but this need not diminish the rate of convergence.

A different approach to the parallelization of the SOR iteration is taken by Evans and

Sojoodi-Haghighi [1982] who develop methods related to the QIF factorizations of the previous

section; they are not SOR methods but have somewhat the same spirit. Let A = X - W - Z be a

splitting of A where the zero/non-zero patterns of X, W and Z are indicated by

(4.4) X= , W= _o ° , Z= " "

4.9

that is, X has non-zero elements only on the main diagonal and the cross diagonal, and W and Z

have zeros on the main and cross diagonals and non-zeros only in the indicated hatched positions.

Evans and Sojoodi-Haghighi then define overrelaxed Jacobi and SOR-like methods by

(4.5a) u k+_ = [oaX-l(W+Z)+ (1-oJ)]u k + d. k=O,1,...

(4.5b) u k+_ =(X-o_W) -_ [oJZ+(1-oJ)X]u k + d. k=O,1

called, respectively, the Jacobi-Overrelaxed Quadrant Interlocking (JOQI) and the Successive

Overrelaxed Quadrant Interlocking (SOQI) methods. They prove most of the usual types of con-

vergence theorems for these methods; for example, if A is irreducibly diagonally dominant, then

SOQI converges for o<co__l . If A and X are symmetric positive definite, then SOQI converges

for o<oJ<2 and JOQI converges if and only if 2oJ-IX- A is positive definite. The solution of the

systems with either X or X-oJW as the coefficient matrix in (4.5) can be effected by solving n/2

two by two systems, which can be done in parallel. Since the right hand sides of these systems

can be evaluated in parallel, the degree of parallelism of the methods is essentially the same as

that of SOR with the red/black ordering. What is not clear at this time is the rate of conver-

gence of these new methods.

Relaxation methods play a critical role in the multigrid method developed by Brandt [1977],

Bank and Sherman [1978], Bank and Dupont [1981], and others. The crucial observation in all

multigrid methods is that relaxation methods are very effective at reducing the high frequency

component of the error between the computed solution on a particular grid and the true solution,

but are very ineffective at reducing the long wave length components. However, ff the error is

viewed on a sufficiently coarse grid, the long wave length components become high frequency

components on that coarser grid, and thus can be effectively reduced by relaxation methods. A

4.10

very simple multigrid algorithm that incorporates the essential ideas is as follows.

1) Let Gi, i=lm, be a sequence of nested grids covering the domain of interest such that

the grid spacing of G_-I is 2hi where h_ is the grid spacing of Gi. Gm is the grid on

which the solution is desired and G1is an appropriately chosen coarse grid.

2) An approximate solution, um, to the discretized differential equation LhUh=F h is

obtained by a few iterations of a relaxation method on Gm.

For i=m...... 2,

3) The residual Fh--Lhu i __ fi is transferred to the grid Gi-1 by a process known as

injection.

4) A correction to the solution ui is computed on the grid G_-_. This step reduces

high frequency errors that appear on the coarser grid Gi-_.

5) The solution on the grid G i iS corrected using information interpolated from the grid

Gi-1 for i=2.....m.

This description, though somewhat simplistic, captures the main steps in the multigrid algo-

rithms; there are many sophisticated variations that are used in practice (see e.g. Hackbusch and

Trottenberg [1982]).

The major attraction of the multigrid method is that a wide class of problems discretized on

a grid with n points requires only O(n) arithmetic operations to obtain a solution to within the

truncation error of the discretization. This attractive computational complexity has led

researchers to investigate the method for vector and parallel computers. The relaxation steps on

the various grids may be carried out using methods discussed earlier with red-black SOR being

4.11

the most popular, and the issues raised for effective utilization of the Cray and Cyber 200 remain

relevant; however, the nested grids introduce a new difficulty. One would prefer to use vectors

of grid points from the finest grid in at least one direction of the region, but then coarser grids

require sets of points that are not contiguous in memory and are thus not vectors. For the Cray

this means that the vectors must be moved from the vector registers to memory and then the

appropriate subset read back into the registers. As indicated earlier, this prevents operation at

super vector speeds, and in fact, Caughey [1983] reports performance of 32 MFLOPS on a mul-

tigrid code for the solution of the three-dimensional transonic potential flow equations.

For the Cyber 200, hardware instructions for data manipulation must be used to create vec-

tors from the coarse grid points. A detailed description of a multigrid algorithm tailored for the

Cyber 205 is given in Barkai and Brandt [1983] and, despite the overhead associated with the data

manipulation instructions, the authors report that the vector version of the algorithm runs 15

times faster than the scalar version for a Poisson problem discretized on a 129×129 fine grid. The

Cyber 205 is also the target machine for a comparison by Gary, et al.[1983]of multigrid, SOR and

a conjugate gradient method preconditioned by a fast Poisson solver. For a three dimensional

diffusion equation with Neumann boundary conditions, they report similar performance for the

multigrid and conjugate gradient methods on a 32x32x32fine grid. They also conjecture that if

the fast Poisson solver based on FFT's were replaced with one based on multigrid then the conju-

gate gradient algorithm would be 2 to 4 times faster than the pure multigrid algorithm. Finally,

Hemker, et al. [1983] discuss the development of fast solvers for elliptic equations based on the

multigrid method, including modifications required for the Cyber 205.

Multigrid algorithms have also been considered for parallel arrays. As with vector comput-

ers, the nested grids create some difficulties. If these grids are reproduced in their entirity on an

array of processors, then in the traditional multigrid formulation most of the processors will be

idle most of the time since computation is done only on one grid at a time. On the other hand, if

4.12

only the finest grid is laid out on the processors, then the pattern of communication between

processors will change as the algorithm moves through coarser grids. This can create serious

difficulties for a mesh connected array because communication that is between nearest neighbors

on the finest grid will not be between nearest neighbors on the coarser grids.

This communication difficulty was recognized by Grosch[1979b] in the first paper that dis-

cussed the parallel aspects of multigrid. He compared two strategies. In the first the finest grid is

distributed across the processors and the necessary data is communicated for each grid; in the

second the coarser grid is compressed onto directly connected processors before computation is

initiated on that grid. The second strategy is shown to require fewer data transfers. In order to

facilitate the communication, Grosch proposed a perfectly shuffled nearest neighbor array by

augmenting the nearest neighbor connections with perfect shuffles on each row and column of

processors (see Figure 3-8). A comparison of these two arrays with the optimal paracomputer of

Schwartz [1980] indicated that the multigrid algorithm could be implemented with high

efficiency on either array.

Brandt [1981]also advocated the perfectly shuffled nearest neighbor array as the basis of a

parallel computer for multigrid. In addition he pointed out that the overall efficiency of such

computers was going to be adversely affected by processors that were near boundaries or singu-

larities because those processors could have higher computation requirements that would dictate

the overall pace of the computation. One suggestion by Brandt that may hold promise for

improving the efhciency is to use the finer grid processors to continue relaxation sweeps while the

basic algorithm is requiring computation on a coarse grid. A specific example using this idea is

given in Brandt [1981]but the results do not indicate that much is accomplished by the extra

relaxation sweeps; in fact, if the extra relaxation steps are not done with care, the solution pro-

cess can deteriorate.

4.13

Simultaneous relaxation on all grids is the basis of an algorithm proposed by Gannon and

Van Rosendale [1982]. They give a specific way for moving the solutions and residuals between

grids and thereby seem to overcome the difficulties encountered by Brandt. This algorithm and

two others based on serial implementations of multigrid are analyzed for parallel architectures

exhibiting a variety of communication topologies. Simulation experiments based on solving

three specific problems indicate that the parallel algorithm would be superior when the computer

can efficiently support communication between physically remote processors. One difficulty with

the algorithm is that its spectral radius increases with finer grids. This is in sharp contrast to the

"classical" multi grid algorithm which owes its attractiveness to the fact that the spectral radius is

independent of grid size.

Another study of parallel implementations of serial multigrid algorithms was done by

Chan and Schreiber [1983]. They considered large networks of simple processors with local com-

munication, incorporating the ideas that make systoctic architectures attractive for VLSI imple-

mentation. Their work contains a careful complexity analysis involving parameters that control

key aspects of the multigrid algorithms and a parameter that specifies the number of processors as

a function of the number of points in one direction of the grid. By using these complexity

results and the concepts of speedup and etficiency they make precise the notion discussed above

that if the number of processors is related to the total number of grid points, then many of the

processors will be idle a significant amount of the time.

Another approach that has not received study would be to trade off efficiency with perfor-

mance by sizing the array of processors with one of the coarser subgrids. Processors would go

idle only when grids coarser than the one that matched the number of processors were being

used. The performance degradation would occur because parallelism available on finer grids

could not be u_ed due to the restricted number of processors. Using this approach one could be

led to different size arrays and different communication topologies depending on the power and

4.14

cost of the individual processors. It also raises the question of whether one should select a small

number of powerful processors or a large number of simple processors for the design of a cost

effective computing system for multigrid.

We consider next the Alternating Direction Implicit (ADD method, which seems, at first

glance, to be rather unsatisfactory for parallel computation since it is based on the solution of

tridiagonal or small bandwidth systems. Ericksen [1972] and Morice [1972], however, observed

that since these tridiagonal systems are independent, they can be solved in parallel. More pre-

cisely, we recall that the ADI method - for the model problem and the grid of Figure 4-1 - con-

sists of two half-steps as indicated by the iteration scheme (see, e.g., Varga[1962])

(4.6a) (H+OLkI)2k k+_h = (O_kI--V)zL k + b

(4.6b) (V+akI)XTM = (akI--H)xk+lh+ b

The first step, (4.6a), consists of the solution of N tridiagonal systems of size N corresponding to

the horizontal lines of the grid, while (4.6b) likewise is the solution of N tridiagonal systems

(after permutations of the unknowns) corresponding to the vertical lines. On an array with p

processors, p of the tridiagonal systems (4.6a) can be solved in parallel with the usual Gaussian

elimination algorithm; it is desirable in this case that N be a multiple of p. On the next half

step, the systems of (4.6b) will be solved in parallel. On a vector computer, the vectors would be

aligned across the systems to be solved.

A potential problem on both parallel and vector computers is to arrange the storage so that

transfers between half-steps are minimized. This storage problem is particularly pronounced on

the Cyber 200, ff we vectorize across the tridiagonal systems, and the storage must be rearranged

- by the equivalent of a matrix transpose - between each sweep. However, Lambiotte [1975]

observed that on the half-sweep that the storage is not correct for the simultaneous solution of

the tridiagonal systems, it is correct for the solution of the individual tridiagonal systems by the

4.15

cyclic reduction (CR) method of the previous section. Moreover, the N individual systems may

be viewed as forming a single tridiagonal system N times as large and the CR method may be

applied to this large system; as we saw in the last section, the larger the system the better.

Finally, because the individual systems are uncoupled, the CR method will actually terminate in

logN steps rather than the expected logN2. Thus, the ADI algorithm is implemented on the Cyber

200 by solving the tridiagonal systems "in parallel" on one half-sweep and as a single large tri-

diagonal system on the other haft-sweep. Lambiotte also discusses a similar strategy for three

dimensional problems.

Many of the same considerations for ADI apply also to the implementation of Successive

Line Over-Relaxation (SLOR). If one uses the lexicographic ordering, the same difficulties occur

as with point SOR. To circumvent this, Ericksen [1972land Lambiotte [1975]studied various other

orderings, such as a red-black ordering by lines, which allow a number of the tridiagonal sys-

tems either to be solved in parallel or as one large tridiagonal system by cyclic reduction. Like-

wise, multicoloring by lines may be used, if necessary. More recent work on block or line

methods has been reported by Boley, et al.[1978], Buzbee, et al.[1979] and Parter and

Steuerwalt [1980,1982],motivated largely by three dimensional elliptic problems on the Cray-1;

see also Faber[1981]. Various possible relaxation schemes using K x K blocks are discussed, and

some of these methods may prove to be attractive. We note also that on arrays, the number of

processors may be a key factor in determining the block size. For example, with p processors we

would probably try to arrange the computation so that the number of blocks assigned to each

processor is a multiple of p.

Somewhat related to block methods, O'l_2.ary and White[1984] consider multisplittings

A = Bi -- Ci, i=l, • • •, k, of A and an iteration matrix is defined by

k

H = _ DiBi'-ICi
i=l

: where the Di are non-negative diagonal matrices, with]]Di = I. Then the iteration x k+l= I-I_k + d

4.16

is carried out by executing in parallel the partial iterations defined by DjBj-ICi.

Another group of methods which are potentially useful on vector or parallel machines is

semi-iterative (SI) methods. (See, e.g., Young [1971] for a general discussion of these methods.)

Consider, for example, the Jacobi-Sl method which can be written in the form

(4.7) uk+_= C_kBUk + Bk_k+ _,kU_-'

for suitable choice of the parameters a,/3, and "y. Here B is the Jacebi iteration matrix so that Buk

is the result of a Jacobi sweep starting from u k, and the remainder of the calculation of (4.7),

once the parameters are known, is ideally suited for vector or parallel machines. Of course, one

pays the penalty of additional storage for u k-l. More importantly, the choice of good parameters

may be difficult for other than model problems since the optimal parameters are based on a

knowledge of the largest and smallest eigenvalues (assumed real) of B. In the case that the

coefficient matrix A is symmetric positive defirdte and has property A, then it is known that the

asymptotic rate of convergence of Jacobi-SI is approximately half that of SOR, both using

optimal parameters; in this case, Jacobi-SI may not be useful, even on vector computers, How-

ever, in more general sithations, the rate of convergence of Jacobi-SI may be quite superior to

SOR and its somewhat better parallelization properties makes it potentially attractive, provided

that reasonable values of the parameters can be chosen. Hayes[1974] and Lambiotte [1975] con-

sidered, for the TI-ASC and CDC STAR-100, respectively, the Jacobi-SI method in some detail,

as well as other semi-iterative methods such as SSOR-SI and cyclic Chebyshev-SI.

We turn next to conjugate gradient (CG) methods, which were first developed by Hestenes

and Stiefel [1952] as alternatives to Gaussian elimination. Although iterative in nature, they are

actually direct methods since, in the absence of rounding error, they converge to the exact solu-

tion in no more than n steps for systems of size n. However, in the presence of rounding error,

this no longer occurs and the CG methods dropped out of contention as a competitor to elimina-

4.17

tion. Reid[1971],however, following earlier work of Engeli, et al. [1959],observed that for certain

large sparse problems, CG methods gave sufficiently good convergence in far less than n iterations

and this spurred revival of these methods as iterative methods for discrete elliptic equations. See,

also Concus, et al. [1976]as one of the important early papers in this revival.

The rate of convergence of the CG methods, viewed as iterative, depends on the condition

number, K(A), of A: the smaller the condition number, the more rapid the convergence. Hence,

much of the more recent work on CG methods has been devoted to the development of suitable

pre-conditioning strategies. It turns out (see Chandra [1978]for a full discussion of this and many

other basic facts about CG methods) that the preconditioning can be incorporated into the basic

CG algorithm as applied to the original matrix A in the following form:

Preconditioned Conjugate Gradient (PCG) Algorithm:

Set r ° = b--Ax °. Solve Mi_° = x_°. Set pO= _o.

For k = 0,1,...until convergence

Compute ak = _r--k-rk)/(]3k,Apk),2_-k+l = _.k-I-Otkp..._k

Check for convergence. If not, continue

Compute r TM =r k- akApk. Solve M__k+l=r k+l

Compute _k -" _-k+12+l)/_-rk), pk+l =._..k+1. _kpk

In the above, (_x,y_)denotes the inner product xTy_and M arises from the preconditioning of A; if

M = I, the algorithm reduces to the standard conjugate gradient method. As pointed out earlier,

inner products are not attractive computations on parallel or vector computers because of the

summation. With this in mind, Van Rosendale [1983b] proposed a modification to the conjugate

gradient method that permits the calculation of the inner product from previously computed and

4.18

stored information. This idea is applicable to the variants discussed below and merits further

study.

The matrix M can be viewed as an approximation to A and should satisfy the following

criteria (See Concus, et a1.[1976]):

a) M is symmetric positive definite

b) the system M_ = r is "easily" solved

c) M-IA has "small" or "nearly equal" eigenvalues or has small rank.

Condition c) ensures that the rate of convergence of the PCG method will be faster than that of

CG itself. Condition a) is a necessary part of the current theory.

There have been proposed several possible ways to obtain a suitable M; for example:

a) Take M to be the tridiagonal or small bandwidth part of A

b) Obtain M from an "incomplete" Choleski decomposition of A

c) Obtain M as a splitting matrix for some suitable iterative method.

As we saw in section 3, the solution of small bandwidth systems is not very efficient on vector

and parallel computers and option a) has not been very seriously explored for such architectures.

We discuss the other two possibilities in more detail.

Probably the most successful preconditioned conjugate gradient methods for sequential com-

puters are the incomplete Choleski conjugate gradient (ICCG) methods (Meijerink and van der

Vorst [1977,1981]). Here, M is obtained as an "incomplete" Choleski decomposition of A; that is,

M = LLT where L is constrained to have the same sparsity pattern as the lower triangular part of

A, or some other constraint which makes "easy" both the formation of L and the solution of the

linear systems

(d.8) I__= r , LT__= __

with L and LT as coefficient matrices. The decomposition can be done once and for all at the

4.19

outset of the iteration and the factor L retained. Thus in the PCG method the solution of

M.__=I is effected by the solution of the (4.8). As with option a), the solution of these banded

systems is not particularly attractive on parallel architectures and most of the research to date

has been on different approaches to circumvent this problem.

Rodrigue and Wolitzer [1982a,b], T. Jordan [1982a] and Kershaw [1982]ali assume that A is

block tridiagonal and that the blocks themselves are tridiagonal, so that A is a 9-diagonal

matrix. Then all of the above authors use some variant of incomplete block cyclic reduction or

block odd/even reduction (see section 3)to form L and solve the triangular systems (4.8). This

extends earlier work of Greenbaum and Rodrigue[1977] who treated 5-diagonal matrices.

Kershaw reports that this vectorized algorithm gives speed-ups of factors of 3 to 6 over the

corresponding scalar code on the Cray-I for certain test problems. Axelsson [1984] also considers

block tridiagonal matrices and gives a preconditioning based on an approximate block factoriza-

tion of A in which the inverses required in a block LU factorization of A are approximated by

banded matrices. This is recursive but need be done only once at the beginning of the iteration.

The forward and back solves, which are done on each iteration, require only matrix-vector mul-

tiplication and are amenable to parallel computation. A modification of the factorization using a

cyclic reduction ordering is also presented.

A somewhat different, but related, approach to the ICCG algorithm has been taken by

Lichnewsky [1982](see also Lichnewsky [1983,1984])and Schreiber and Tang [1982] by reordering

the equations. Lichnewsky, assuming also a block tridiagonal matrix, reorders the blocks in a

red/black (odd/even) fashion, and then further reorders within the blocks. The final algorithm

is similar to the block cyclic reduction ones described above. Schreiber and Tang use red/black

and 4-color reorderings of the equations, and also consider orderings for the ICCC-(3) version of

Meijerink and van der Vorst [1977], in which L is allowed to have 3 non-zero diagonals outside

the non-zero pattern of A. Following Schreiber and Tang's suggestions, Poole and Ortega[1984]

4.20

give experimental results for two model problems on the Cyber 203 and show that the choice of

the multicolor ordering is important in achieving maximum vector lengths. Other related work

on ICCG includes Meurant [1985], who develops an incomplete block Choleski decomposition

based on work of Concus, et al.[1982], and implements it on the Cray-1, Reiter and Rodri-

gue[1984], who give an incomplete block Choleski decomposition but based on a permuted form

of A, Kowalik and Kumar [1982] who, in the context of a block conjugate gradient algorithm for

a multiproceasor environment such as the Denelcor HEP, use a limited Choleski preconditioning

scheme in which the diagonal blocks of A are Choleski decomposed, and Jordan and Podsiadlo

[1980], who describe a conjugate gradient method implementation on the Finite Element

Machine.

Still another approach to ICCG was taken by van der Vorst [1981]. He assumes that A is a

5-diagonal matrix with the main diagonal scaled to 1 and takes L to be the lower triangular part

of A so that no Choleski decomposition is really involved. The solution of the systems (4.8) is

then effected by a truncated Neumann expansion of (I--E)-1, where E is one of the off-diagonals

of L. However, this choice of L is just equivalent to the 1-step SSOR PCG method described

below and Adams [1982] has shown that the SSOR approach is more effective.

We now turn to the other general approach to obtaining preconditioning matrices. Let A --

P - Q be a splitting of A which defines an iterative method with iteration matrix G = P-*Q. If

we take m steps of this iterative method towards the solution of the system Ai = r. starting with

an initial guess._.° = O,the ruth iterate satisfies

._'-)= (l+G+...+Gm-')p-h:

so that _(=' is the solution of the linear system

(4.9) Mi=r. M _ P(I+...+Gm-_) -_

4.21

As perhaps the simplest example, we can use the Jacobi method in which P = D (the diagonal

part of A); the solution of the system (4.9) is then implemented by m Jacobi iterations which, as

we have seen, are easily done on parallel and vector architectures.

As a second example, we could use the SOR iteration but this gives a nonsymmetric matrix

M. The symmetric SOR (SSOR)iteration (see, e.g. Young[1971]) does lead to a symmetric positive

deftrdte M. In the SSOR method, one iterative step consists of an SOR sweep through the grid

points followed by a sweep through the grid points in the reverse order. Formally, this can be

represented by the splitting A = P-Q with

P = _(:...._),(D--coL)D-I(D-_LT)

where D,--L,--L T are the diagonal, lower and upper triangular parts of A; the solution of the

system (4.9) is then implemented by m SSOR iterations in which we would probably use the

multi-color orderings previously discussed. We note, however, that the number of iterations of

the m-step SSOR PCG method using multicolor orderings to implement the SSORsweeps may be

somewhat more than when using the natural ordering. Wang[1982b] has reported on an imple-

mentation of a 1-step SSOR PCG using diagonal ordering of the grid points. Although the diago-

nal orderings do not vectorize as well as the multicolor ones, a reduction in the number of itera-

tions could make them attractive. Rodrigue, et al. [1982]and Lipitakis [1984]have also discussed

the use of Jacobi and SSOR preconditioners.

The question arises, in general, as to when the matrix M of (4.9) is symmetric positive

definite. Adams [1982,1985]proved the following, which extended a previous result of Dubois, et

a1.[1979]. If P-Q are symmetric positive definite with P symmetric and nonsingular, and

G = p-iQ, then the matrix M of (4.9) is symmetric and

a) For m odd, M is positive definite if and only if P is positive definite

4.22

b) For m even, M is positive definite if and only if P+Q is positive definite.

As an example of the use of this theorem, it can be shown that the matrices P and P+Q of the

SSOR splitting are symmetric positive definite if 0 < o_< 2. Thus the matrix M for the m-step

SSOR preconditioning is symmetric positive definite. Similarly, for the Jacobi iteration, the

theorem shows that for m odd, M is positive definite but for m even, M is positive definite only

if D+L+L T is positive definite, which is the classical condition for the convergence of the Jacobi

iteration (see, e.g., Young [1971]).

Adams [1982,1985] has given numerical results for the m-step SSOR PCG method applied to

Laplace's equation and a plane stress problem. For these problems the number of iterations

required was indeed a decreasing function of m but the point of diminishing returns occurred for

m -- 1 or 2; that is, at least for these problems, it did not pay to use m larger than 2.

Johnson and Paul[1981a,b]and Johnson, et al. [1983] have extended the Dubois, et a1.[1979]

approach in another direction by replacing the expansion I+...+Gm-_in (4.9) by a polynomial in G;

that is,

(4.10) M-l = (€_oI._lG+...+CXm_iGm-1)P-I

(Actually they considered only the case P = I corresponding to the Jacobi iteration on a matrix

assumed to have its main diagonal scaled to be the identity. But Adams [1982,1985]has shown

that the same general approach holds for splittings in which P is symmetric.) The idea now is to

choose the parameters ai in (4.10) so as to ensure the positive definiteness of M and to minimize

the ratio of the maximum and minimum eigenvalues of M-IA. Johnson, et al.[1983] approach

this problem by first noting that, in the case P = I, M-_A is also a polynomial, g(A), in A and then

choosing the ai to minimize either max g(x)/min g(x) or

(4.11) fx)[1--g(x)]2w(x)dx.

4.23

In the above, kl and kn are the minimum and maximum eigenvalues of A, w is a suitable weight

function, and the max and min of g are taken over the interval [k_,kn]. Numerical experiments

are reported for Laplace's equation on a rectangle with the five-point-star finite difference

discretization. They compared their method (with m=3 and the ai chosen by minimizing (4.11))

with various other methods (ICCG, point SOR, conjugate gradient without preconditioning, etc.)

and showed that in every case their method required fewer iterations. Johnson and Lewitt [1982]

describe software for implementing the method on the Cyber 205. Saad[1983a,b] has given a

rather general analysis of the polynomial preconditioning approach including application to

non-symmetric matrices.

Rodrigue, et a1.[1982], consider various versions of the preconditioned conjugate gradient

method applied to a diffusion problem on the STAR-100. The diffusion equation is approximated

by the method of lines and the corresponding system of ordinary differential equations solved by

an implicit method. It is in carrying out this implicit method that the CG algorithm is used.

Preconditioners considered were 1-step Jacobi, 1-step line Jacobi, 1-step Symmetric Gauss-Seidel

(SGS) and 1-step SGS with the equations ordered in red/black form. On a particular sample

problem run on the STAR-100, the 1-step Jacobi PCG method was the fastest by a good margin.

Saad and Sameh[1981b]and Saad, et al. [1985] also consider the conjugate gradient method as

well as a cyclic Chebyshev method and a block Stiefel method treated in an earlier paper (Saad

and Sameh[1981a]). Their model problem is a second order elliptic equation with Dirichlet boun-

dary conditions on the unit square, discretized by the five--point star and with the finite

difference equations ordered red/black by lines. They consider the use of a hypothetical array of

p processors with a shared memory and report numerical experiments on a sequential computer

which showed that the conjugate gradient method was the best of the three, but under certain

assumptions on the array they conclude that the block Stiefel method may be superior.

4.24

Software for some of the above methods, as well as others, is discussed in several papers by

Kincaid (see, e.g., Kincaid, et a1.[1984])and Schonauer (see, e.g. Schonauer, et a1.[1983]) and their

colleagues.

So far we have considered mostly the solution of the linear systems obtained from discre-

tizing a differential equation. With general elliptic operators, additional difficulties will tend to

revolve around the best ways to compute and manage storage of the coefficients. For example,

consider the equation

aUxx + buyy + CUzz = f, 0 _<x,y,z _<1

where a, b, and c are functions of x, y, and z. The corresponding difference equations using the

usual 7-pt formula with h -- Ax = ZXy= Az are

2(aijk-l-bijqt+Cijk)Uijk -- aijk(Ui+l,jk+Ui_l,j,k)-- bijk(Uij+l,k+Uij_l,k)--Cijk(Uijk+l+Ui_--I)= h2fiik

For a sufficientlycoarsegrid,the coefficientscan be computedonceand foralland heldin five

O(N3)longarraysforvectormachines,ordistributedoverthevariousprocessorsofan array.But

for a moderatelyfinegrid,say N > i00,back-upstoragemay be requiredand dependingupon

thecomplexityofthecoefficients,theoperatingsystem,and variousotherfactors,itmay bemore

economicaltorecomputethecoefficientsateachiteration.Thisstrategyis,ofcourse,common on

existingserialmachinesand the onlynew factorforvectoror parallelcomputerswould be to

compute thecoefficientsinsufficientlylargebatches- say 1,000- I0,000ata time- sothatthe

computationaswell asthesubsequentusageintheequationsolvercan bedoneefficientlywith

parallelor vectoroperations.In particular,recomputationof thecoefficientson an arraymight

beusefultosavecommunicationtimebetweentheprocessors.

A lesssatisfactorysituationexistsforhandlingirregulardomains.Consider,forexample,

thegridinFigure4-7

4.25

x x b b b b x x

x x b b x

x b b

b b

x b b x

x x b b b b x x

Figure 4-7

where the boundary nodes are indicated by b. One way to handle such a grid is to circumscribe

it by a rectangle - the additional grid points thus introduced are indicated in Figure 4-7 by

crosses - and work with the entire rectangular grid. For example, for Laplace's equation and the

Jacobi iteration on such a grid, one could use the vector code (4.2) on the Cyber 200 with a con-

trol vector, as before, to ensure that the boundary positions are not overwritten. Of course, both

additional storage and additional arithmetic are required for the points outside of the domain,

and the procedure becomes increasingly less efficient as the domain deviates from a rectangle. At

some point, it is probably beneficial to use a union of smaller circumscribing rectangles. This, of

course, would save considerable storage over a complete circumscribing rectangle but now the

rectangles must be proc_sed separately; that is, the code (4.2) must be written separately for

each rectangle. Ideally, of course, one would like an ordering of the grid points that would

allow processing and storage of only the minimum number of points and still use vectors whose

length is the total number of grid points; but such an ordering, ff it exists, is not evident and has

not appeared in the literature. A more sophisticated approach is to use capacitance matrix

methods (see, e.g., O'Leary and Widlund [1979])but no results for vector computers have been

reported.

We turn now to methods for parabolic and hyperbolic equations. As we will see, many of

the considerations for time-marching methods on vector and parallel computers are very similar,

if not identical, to those for iterative methods for elliptic problems. Explicit methods will tend

4.26

to be relatively more attractive than on serial computers because of their usually better parallel-

ization properties, but this will not necessarily overcome the stringent stability requirements of

small time steps. The question of implicit versus explicit methods, however, is only one part of

the broader consideration of how well the method can be adapted to the architectures under con-

sideration. Other aspects which affect this will include the domain, the boundary conditions

(and perhaps computational boundary conditions needed for hyperbolic equations and/or higher

order methods), the form of the coefficients and whether their calculation can be parallelized, the

number of space dimensions, etc..

We will begin with the simple parabolic equation

(4.12) ut = auxx, t > 0, 0 < x < 1

with constant coefficient a and initial-boundary conditions

(4.13) u(0,x)= g(x),u(t,0)= _, u(t,1)=

for constant o_and /3.

Considerfirstthestandardsecond-orderCrank-Nicolsonscheme

(4.14) U_+1_uk = P__.*+I k+, k+1 k k k2 (Uj+I--2Uj +Uj_I +Uj+f--2Uj+Uj_I), j=lN

where # = aAtl(Ax)2 and uk and ujk+1indicate values at the current and next time levels, respec-

tively. At each time step, a tridiagonal system of equations must be solved and, as we saw in the

last section, this is not particularly efficient on vector or parallel computers with the algorithms

now known. By contrast, the simplest explicit method

(4.15) uf +'= u_+#(u_l-2uJ'+u_.,), j= 1.....N,

4.27

is mechanistically ideal for vector or parallel computers. Indeed, (4.15) has the same form as the

Jacob° iteration applied to a tridiagonal system of equations. On the other hand, the Jacob° itera-

tion could be applied to the tridiagonal systems of the Crank-Nicolson method (4.14). McCulley

and Zaher[1974] reported reasonable results with this approach for a diffusion problem on the

ILLIAC IV; in their case 15 Jacob° sweeps sufficed at each time-step. More recently, Berger, et al.

[1981] discussed a similar approach using the Crank-Nicolson method. With a suitable time step

and a suitable predictor formula (forward Euler, Dufort-Frankel) to obtain the initial guess,

they found that a single Jacob° sweep on the implicit equations gave sufficient accuracy.

Gelenbe, et a1.[1982] also consider the solution of the one dimensional heat equation. Finite

difference discretization is used with a resulting parameterized scheme which includes the fully

implicit, fully explicit and Crank-Nicolson methods as special cases. For the implicit schemes,

an equation Airm+l= Bum+_€_must be solved at each time step and the grid points are ordered in

such a way that A has the form

. ..

. ° •

• ° _

• ° .

1..

. o •

That is, it is tridiagonal except for two elements. This sparsity pattern is maintained under LU

or Choleski decomposition which is assumed to be done once at the outset. The problem is the

forward and back substitutions at each time step. The main purpose of the paper is to give a

probabliistic model of the computation on a multiprocessor system and the authors consider m

detail the two processor case. The results of their model agree very well with experiments con-

ducted on a system of two LSI 1l's at the University of Paris.

4.28

The same general considerations apply to problems in two or three space dimensions. For

example, for the two dimensional heat equation, t'he explicit method corresponding to (4.15) has

the same form as the Jacobi iteration. Similarly, the ADI iteration will have the same form as

discussed for elliptic equations and the same techniques for handling the tridiagonal systems

would again apply.

For hyperbolic equations, the situation is similar. Indeed, it is somewhat simpler in the

sense that except for certain "stiff" systems (i.e. systems with a wide range of eigenfrequencies

and characteristic phase velocities), implicit methods are less frequently used, even on serial

computers. As a simple example, consider the hyperbolic system

(4.16) _ + F(a)x= 0, O_<x_<l

with suitable initial and boundary conditions. The standard two-step Lax-Wendroff scheme is

(4.17) .k+'/_= 1/2(__k+,+_u_k)_ 3',(F_+,--Fk),._-j+m/2

= _ _

where3'2= Z_t/Axand 3',= _,2/2.We seethatthetwo setsofdifferenceequationsin(4.17)again

have the general form of a Jacobi-like iterative method. A potential ditticulty, however, is the

evaluation of the vectors derived from F(u). How well this can be done in parallel will depend

on the form of F. For example, suppose that u is the 3-vector of density p, momentum m, and

energy e and F -- (m,p+m2/p,(e+p)m/p)where p is given in terms of p, and possibly also m and e,

by some "equation of state" p = f(p,m,e). Then the evaluation of F can be done in parallel as indi-

cated in

mj2 . mj

Fj= j=I.....

whereN isthenumberofgridpoints.However,thecalculationofthevectorofp valuesmay or

4.29

may not also be computed efficiently by vector operations depending on the form of f. In addi-

tion, we will need to handle the given boundary conditions as well as the computational boun-

dary conditions obtained, for example, by extrapolation. Johnson [1984] reviews various other

considerations in solving the three dimensional wave equation on vector computers.

The preceeding discussion has assumed that the grid over which the partial differential

equation, be it elliptic, parabolic, or hyperbolic, is discretized remains fixed throughout the solu-

tion process. This makes it relatively easy to create vectors out of the grid points or to map grid

points onto processors so as to balance computation or to take advantage of the communication

topology. On the other hand, many problems or methods may require a dynamically changing

grid. It has become common to treat time dependent problems, where some physical phenomena

such as a shock wave is moving through the region, with adaptive techniques or grid refinements

by adding or deleting grid points in some area of the region that requires more accuracy. This

dynamic change in the grid structure has a dramatic effect on the data structures for either vec-

tor or parallel computers.

For vector computers adaptive computation can be handled in much the same way as

described earlier for the multigrid algorithm, that is, by using the data movement instructions

on the Cyber 200 or by returning to memory on the Cray. In either case machine efficiency will

be reduced. The situation is more dit_cult for parallel computers. If a subregion assigned to some

processor is refined, then either the computation on that processor increases, causing an imbalance,

or the region must be redistributed across the array of processors. In either case, an extra burden

may be placed on the interprocessor communication mechanism. One approach to the redistribu-

tion problem is to have processes that are controlling the computation on a subregion spawn new

processes to handle the refined region. Then a computing system that executes these processes on

available processors is required. This provides Indirect load balancing, but the communication

system must be very rich because locality of communication will, in general, be lost.

-- r

4.30

The FEARS project (see Zave and Rheinboldt [1979] and Zave and Cole [1983]) was an adap-

tive finite element system which spawned processes to take advantage of parallelism. Refinement

was based on a continuous monitoring of the errors and is discussed in detail in Babuska and

Rheinboldt [1977]. The subregions, whether refined or not, were organized independently in the

spirit of substructuring. As was discussed in section 3, this allows for independent parallel com-

putation on the subregions; however, the linear system thai connects the subregions was solved

sequentially. As reported in Zave and Cole [1983],the sequential solution process requires 70 to

90 percent of the time and thus reduces the overall speedup and efficiency of the process dramat-

ically. Simulations were performed for several computer systems including ZMOB and variations

of Cm'. The results of this study are reported in Zave and Cole[1983] and indicate that the

majority of the time is spent in communication or waiting.

Adaptive computation m a multigrid setting for three dimensional problems was the basis

of a study by Gannon and Van Rosendale[1984a]. Based on ideas introduced in Van

Rosendale [1983a], they also used dynamically spawned pr_ to provide a framework for the

extraction of parallelism. They went on to define an architecture to take advantage of the

parallelism. The architecture, which is similar to Cedar (Gajski, et al. [1983]), consists of dusters

of processing elements with local memory; the clusters are connected via a cross bar message

switching network. Preliminary simulation studies indicate that the system would have a very

high level of eificiency due to the fact that over 95 percent of the communication takes place

within the clusters.

A relatively new technique for solving partial differential equations that appears to be

appropriate for vector and parallel computers is the spectral method (see e.g. Gottlieb and

Orszag [1977]and Voigt, et al.[1984]). In the spectral method, a discrete representation of the solu-

tion u(x) of the differential equation Lu = f is approximated by

n

(4.18) u_(x) =)" akCk(X)
k=O

4.31

where the Ck are given functions and (4.18)is evaluated at appropriate points xj. In order to

obtain an approximate solution un, expressions for the derivatives of Unare required based on the

form of L. If the xj and ¢k are appropriately chosen, un(xj) and its derivatives may be evaluated

using the FFT. Thus any of the methods alluded to in section 3 could be used in a vector or

parallel environment. The un(xj) values can be obtained using an appropriate direct or iterative

method so again the techniques discussed previously become relevant. Spectral methods are being

used extensively on vector computers; see Orszag and Patera[1981a,b, 1983] for the Cray and

Bokhari, Hussaini, Lambiotte and Orszag [1982] for the Cyber 200. These are only representative,

and many more references may be found in the bibliography given in Gottlieb, et al.[1984].

There appear to be no studies of the use of spectral methods on parallel computers.

5.1

5. Applications

An increasing number of papers have appeared in the last several years describing the

use of parallel or vector computers in a variety of application areas. In this section, we

will summarize a sampling of this literature without giving extensive details.

The major application area has been fluid dynamics calculations of various kinds.

Several early papers described the use of the Illiac IV, some before it was operational. For

example, Carroll and Weatherald [1967]discussed the possible application of the Solomon

computer - the predecessor, which was never built, of the Illiac IV - to hydrodynamics

problems and general circulation weather models in particular; Reilly [1970] considered a

Monte Carlo method for the Boltzmann equation; and Ogura, et al. [1972] reviewed the

theoretical efficiency of the Illiac IV for hydrodynamics calculations. Wilhelmson [1974]

and Erickson and Wilhelm_son [1976] considered convection problems and in particular

the Benard-Rayleigh problem; they used Dufort-Frankel differencing on the diffusion

terms, a scheme of Lilly for the convection terms, a fast Fourier method for the Poisson

equation, and leap-frog differencing in time. One of the main thrusts of their work was a

proper balancing of computation with disk to main memory transfers. Davy and

Reinhart [1975] discussed the application of the Illiac IV to a chemically reacting, inviscid

hypersonic flow problem, using MacCormack's method with shock capturing. McC_lley

and Zaher[1974] reported on the solution of diffusion type equations in a problem that

arises in planetary entry.

There were also a number of early papers addressing fluids problems on the TI-ASC

and CI)C STAR-100. Boris [1976a] applied his flux-corrected transport (FCT) algorithm to

continuity type equations on the TI-ASC and concluded that the FCT method is "fully

vectorizable". Lambiotte and Howser[1974] compared the AD1 method, Brallovskaya's

5.2

method [1965], and Graves' Partial Implicitization method [1973] on the CDC STAR-100

for the driven cavity problem and concluded that both Brailovskaya's method and Graves'

method vectorize well and were the fastest on the STAR even though the ADI method

was the fastest on a serial machine. Weilmunster and Howser [1976]considered a boun-

dary layer/shock interaction calculation governed by the full Navier-Stokes equations in

2 dimensions. They reported speed-ups of as much as 65 to 1 on the STAR over a

corresponding program on a CDC 6600.

Giroux[1977] described the conversion of the HEMP code to the CDC STAR-100.

HEMP models two-dimensional deformations, motions and interactions of materials as

they are subjected to force fields; it uses an explicit finite difference scheme. Giroux dis-

cussed in some detail the many issues in a successful implementation of this procedure on

the STAR. The final program showed a speed-up of as much as a factor of 5 over the

CDC 7600. Soil, et al. [1977]reported on the conversion of the GISS general circulation

model to the STAR. Preliminary runs of part of the code showed a speed-up of about an

order of magnitude over the IBM 360/95.

More recent work has concentrated primarily on the use of the Cyber 200 and Cray

series of machines, as well as some parallel arrays. Before describing these developments,

we note that there have also been a few recent papers dealing with the older machines.

For example, Lomax and Pulliam [1982](see also Pulliam & Lomax[1979])report on compu-

tations for the unsteady Reynolds-averaged Navier-Stokes equations on the Illiac IV. We

also note that there have recently been a number of conference proceedings or anthologies

devoted wholly or partly to applications. These include the Los Alamos workshop on

vector and parallel computing (Buzbee and Morrison [1978]),applications of the Cray-1 at

the Daresbury Laboratory in England (Burke, et al.[1982]),a symposium on applications of

the Cray-1 (Cray Research, Inc.[1982]),three symposia on applications of the Cyber 205

5.3

(Control Data Corp. [1982], Gary[1984], and Numrich [1985]), and a compilation of articles

dealing with a variety of machines but especially the Cray-1 (Rodrigue[1982]). Several of

the articles in these sources will be covered in the sequel. We also mention that the book

by Gentzsch [1984b] on vectorization contains an entire chapter and an extensive bibliog-

raphy on applications in fluid dynamics.

Strikwerda [1982] has used the CDC STAR-100 and Cyber 203 for solving the

compressible Navier-Stokes equations to obtain laminar flow in converging/diverging

nozzles with suction slots. A time-split differencing was used involving three different

splittings, one for the parabolic (viscous) terms and two for the hyperbolic (inertial)

terms, one for each space direction. Only two dimensional or axisymmetric problems

were handled. The program was coded in SL/1 (Knight and Dunlop [1983])using 32-bit

arithmetic, which was found to give suitable accuracy. For a particular sample calcula-

tion for a two dimensional slotted nozzle, the number of grid points was 12,000 and the

number of time steps to convergence was 40,000. The CPU timing for this problem was

1.1 × 10-s seconds per time step per grid point on the Cyber 203.

Bokhari, Hussaini, Lambiotte and Orszag [1982]treat the Navier-Stokes equations for

three dimensional viscous compressible flow, including compressible shear flows at high

Reynolds number, for the Cyber 203 by a mixed spectral/finite difference method, using

the one and two dimensional FFT codes developed by Korn and Lambiotte [1979] and

Lambiotte [1979] as well as techniques for computing derivatives described in Bokhari,

Hussaini and Orszag [1982].

Deiwert and Rothmund [1983] use the Cyber 205 for the three dimensional Navier-

Stokes equations modeling boattalled afterbodies which are at moderate angles of attack

and which contain a centered propulsive jet. There were 2.16,000 grid points and a data-

base of 5XlO 6 words. Fornberg [1983] describes the computation of steady viscous flow past

5.4

a circular cylinder on the Cyber 205 for Reynolds numbers up to 400. Wu, et a1.[1983]

report on a direct turbulence simulation which requires solving the time-dependent

Navier-Stokes equations in 3 dimensions. On a two pipeline, 2 million word Cyber 205,

they obtain for a 64×64×64 mesh a computation rate of over 100 MFLOPS using 32-bit

arithmetic.

Hankey and Shang[1982] (see also Shang, et al.[19809 consider three dimensional

Navier-Stokes codes for aerodynamics computations on the Cyber 200 and the Cray-1.

Results are given for wind tunnel diffusers, missiles at high angles of attack, self-excited

oscillatory flows, etc. Kumar, et a1.[1982] report on similar problems for the three-

dimensional Navier-Stokes equations on the Cyber 203, including scram-jet inlet and

combustor analyses. Rudy [1980] reports on a two-dimensional aerodynamics code for the

Cray-1 in which a vectorization of about 85 per cent is attained. This holds the megaflop

rate to slightly over 10.

Transonic flow is an important area of aerodynamics which has received considerable

attention. Hotovy and Dickson [1979] used a three color ordering of the nodes in connec-

tion with a relaxation scheme to solve the two-dimensional small disturbance equation on

the CDC STAR-100. They give timing comparisons for this "checkerboard" method on

the STAR and an SLOR code on a CDC Cyber 175. On various runs on a 101 x 41 grid, the

STAR was 2.5 to 3 times faster although the checkerboard method required over twice the

number of iterations to converge. On a finer (200 x 80) grid, about 4 times as many itera-

tions were required for the checkerboard method and the STAR was less than twice as

fast as SLOR on the Cyber 175.

Redhed, et al.[1979] treated the three-dimensional small disturbance equation of

transonic flow on the CDC STAR by using a red-black ordering of grid lines in the

cross-flow plane and applying line SOR to all the red columns and then all the black

5.5

ones. This yields a vector length of half the number of grid points in the cross-flow

plane. On a model problem with a relatively coarse mesh, 64x28x20, they reported a

speed-up of a factor of 3.4 over a standard line relaxation code running on a Cyber 175.

Ha.fez and South [1979] and South, et al.[1980a,b] consider relaxation methods for the

full potential equation of transonic flow in both two and three dimensions on the CDC-

STAR with comparisons with the CDC 7600 and Cyber 175as well as the Cray-1. They

conclude that point and block SOR using red/black ordering is almost fully vectorizable

for this problem. In a subsequent paper, Hafez and Lovell [1983]consider line SOR where

m lines are given one color followed by m lines of the other color. They found experi-

mentally that m=2 gives the best results. In earlier work, Keller and Jameson [1978] had

used the CDC-STAR for the small disturbance equation of transonic flow using a new

explicit method. However, they achieved only a speed-up of a factor of 1.8 over line

overrelaxation running on a Cyber 175.

Melson and Keller [1983]treat the three dimensional full potential equation in non-

conservative form by finite difference methods and in conservative form by finite

volumes. Using a test case with a 192x32x32 grid and a two color point relaxation scheme

(Zebra II, South, el al.[1980b])they report a computation rate of 26 IvIFLOPS on the Cyber

203. However, the convergence rate was poor compared with an SLOR algorithm; for

related work see Yu and Rubbert [1982]. Eberhardt, et al.[1984] have studied the mapping

of a three-dimensional, implicit, approximate factorization algorithm for the Euler or

Navier-Stokes equations onto a two processor Digital Equipment Corp. VAX system that

is a reasonable model of a Cray X-MP. They note the importance of careful memory

management in a shared memory system and conclude that the algorithm can be imple-

mented on a two processor system with a speed up of 1.9.

5.6

Kascic [1984b] discusses the implementation on the Cyber 205 of a vortex method for

the Euler equation for an incompressible inviscid homogenous fluid. The emphasis is on

carefully utilizing the architecture and instruction set of the 205. Woodward [1982]con-

siders various schemes for hydrodynamic problems on different machines and makes a

number of worthwhile observations; for example, logical operations are generally slow on

vector computers and compress, merge, and mask operations are slow on the Cray-1 since

they must be implemented by software. Cox [1983] describes the use of the CDC Cyber

205 on an ocean model. A problem with 18×150×195 = 5 •106 grid points required approxi-

mately 4 seconds per time step, about 4 times faster than the T1-ASC previously used.

There have also been a number of papers dealing with reservoir simulation. Nolen,

et al. [1979] give comparisons between the CDC STAR-100 and the Cyber 203 for a model

problem. Six different three-dimensional grid sizes were used with the number of unk-

nowns ranging from 2000 to 8000, and tests are reported on the solution of linear equa-

tions of these sizes, corresponding to one time-step for the time dependent problem. The

algorithms considered for the solution of the linear systems are the D4 method of _'Gaus-

sian elimination based on the ordering scheme of Price and Coats[1974], and line, 2-line,

and plane SOR. For the SOR methods, red/black orderings of the grid points are used in

such a way that for line SOR the vector length is on the order of rim/2, where n and m

are the number of grid points in the x and y directions. Similar orderings are used for

2-line and plane SOR, giving smaller vector lengths. Run times on the STAR and 203 are

reported for the six grid sizes for the D4 and line-SOR methods; the 203 is somewhat fas-

ter on these problems with speedup factors ranging from about 1.15 to 1.5. The only com-

parison reported for a scalar machine is for Gaussian elimination on a 2000 unknown

problem where the 203 was about 14 times faster than a CDC 6600. Additional comparis-

ons between the 203, 205, and Cray-1 are given in Stanat and Nolen [1982]. For the prob-

5.7

lems reported on, the 205 was a factor of about 2.5 to 3.5 times faster than the 203. The

above work and more recent developments are reviewed in Kendall, et al.[191M],which

gives comparisons of Cyber and Cray times for various aspects of the algorithms, and also

discusses architectural differences that influence implementation decisions.

Also for problems in reservoir simulation, Killough [1979] considered comparisons

between the IBM 370/168,with and without an attached IBM 3838array processor, and

the Cray-1. His primary benchmark problem used a three dimensional rectangular grid

with 35mu19 x5 (= 3325) grid points and 29 production wells. A production code for the

370/168 was converted and vectorized for the Cray-1 and showed a factor of 12

improvement over the 168. Other papers dealing with reservoir simulation include Buz-

bee, et al.[1979],Wallis and Grisham [1982]and Kendall, et al.[1983]

Gentzsch [191Ma,c]providesan interesting benchmark study thai includes a variety of

production codes for fluid dynamics problems such as the two dimensional magnetohydro-

dynamic equations, the Navier-Stokes equations, and two-and three-dimensional Euler

equations. Results are given for a variety of computers including the Cray-lS, Cyber 205,

STAR-100, ICL-DAP, Denelcor HEP and a number of scalar machines. One significant

result is that hand coding to improve vectorization improved performance by factors of

2.5 to 5.4 on the Cyber 205 and 1to 3.3 on the Cray-lS.

Numerical weather prediction has historically provided one of the major applications

of fluid dynamics on high performance computers dating back at least to the ENIAC (see

Platzman [1979]). Probably the first weather simulation work with a vector processor was

done on the TI-ASC at the Geophysical Fluid Dynamics Laboratory; the mathematical

approach and the vectorization of the algorithm are described in the review by

Welsh [1982].

5.8

The present state of the art for numerical weather prediction is outlined in Cul-

len [1983]. Current models for global forecasts use a horizontal grid resolution of 150km

with 15 levels in the vertical direction. Such models require approximately three minutes

of Cray or Cyber 200 time for each day of forecast and the average useful forecast period

is about four days. Local models for tracking specific meteorological phenomena may

have resolution down to 1 km or less. The numerical models tend to be finite differences

in the vertical direction and in time and either finite differences or spectral in the hor-

izontal direction. There are at least three other excellent reviews of this field, oriented

primarily toward the Cray. William.son [1983]and Williamson and Swartztrauber [1984]

discuss the derivation of the underlying equations, the numerical algorithms, and the

implementation on the Cray. Both papers contain extensive bibliographies.

Kasahara[1984] reviews many of the decisions that went into the development of compu-

tational models and provides some performance figures for the Cray. This paper contains

over one hundred references.

Parallel arrays have also been considered for numerical weather prediction. For

example, Kopp [1977] and Nagel[1979] report on the use of the SMS201, an array of 128

lntel 8080 microcomputers, for weather problems. They describe a stratified three-

dimensional problem in which there are 2000 mesh points at each of three levels and six

unknowns per grid point.

Another major application area for vector and parallel computers is structural

analysis. Noor et al. [1983] discuss the role of high performance computing systems for

analysis based on the finite element method concluding that parallelism will play a

significant role but suggesting that the full impact will not be reached until software such

as programming languages and compilers improves.

5.9

Early research on structural analysis applications on vector computers focused on the

generation of the elemental stiffness matrix (Noor and Hartley [1978]),and on the solution

of the global stiffness matrix system by direct methods (Noor and Fulton [1975], Noor and

Voigt [1975], and Noor and Lambiotte [1978]). These studies indicated that the traditional

goal in structural analysis of striving for matrices with small bandwidths led to rela-

tively inefficient programs on the STAR-100 because of short vector lengths. The advent

of the Cray with its superior performance on short vectors led to renewed interest in the

structural analysis community.

A careful study of the effectiveness of the Cray-I for a structural optimization

problem, using an aircraft wing design as motivation, has been done by Venkayya, et

al.[1983]. Stresses and displacements are computed and then compared with values

representing an acceptable design envelope. Using optimization techniques the process is

repeated until satisfactory values are obtained. All modules of the algorithm were stu-

died and those that contributed significantly to the solution time were vectorized. /ks

expecled, the most time consuming module was the linear equation solver. The resulting

code, which was fined tuned using assembly language, was, on average, 74 times faster

than a scalar Fortran code on the Cray for a wing whose discretizations yielded stiffness

matrices with 756 to 5280 equations and half-bandwidths of 45 to 105. Another series of

applications reported by Goudreau, et al. [1983] involves the study on the Cray-1 of the

deformation of large cylindrical cannisters subjected to external loads.

NASTRAN, a large structural analysis program, has been vectorized and is opera-

tional on the Cray. The results of this effort for the MacNeal Schwendler Corporation

version of the program are reported in Gloudoman and Hodge[1982],Gloudoman [1984land

Gloudoman, et al.[1984]. Timing comparisons with a scalar machine (that unfortunately is

not identified) are given. The impact of sparse matrix operations is discussed in McC_r-

5.10

mick [1982].

Improvements in the Cyber 200 over the STAR-100 have brought about renewed

interest in the Cyber 200 for structural analysis. For example, Robinson, et al. [1982] con-

siders implementation of SPAR on the Cyber 203. A different application involves the

study of fiber reinforced composite materials that are used in aircraft. At issue is the

damage caused by delamination, or the separation of individual layers, in the presence of

holes or discontinuities. In particular, Raju and Crews [1982] have conducted a three

dimensional analysis of a four ply laminate with a circular hole, which involved approx-

imately 7000 grid points and a 20 million word database. A very recent study of a more

complicated composite led to a system of 100,000 equations with a half bandwidth of

2700 and a total database of 70 million words. This problem was solved on a two pipeline

Cyber 205 with 16 million words of memory at an overall computation rate in excess of

150 MFLOPS.

We next consider a number of miscellaneous application areas. Chang [1982] treats an

acoustic wave propagation problem and gives comparisons between a Cray-lS, a Cyber

203, and a Cyber 730. On a series of 6 test problems, the largest of which had vector

lengths of 591, the 203 and the Cray were, respectively, 67 to 118and 142to 187times as

fast as the 730. The 730, however, had to use disk while the 203 and Cray did not. The

state of the art in the dimensional modeling of acoustic phenomena of interest to seismol-

ogists is reviewed by Johnson [1984]. This paper contains a discussion of system and pro-

gramming considerations and gives some performance results. For example, a two dimen-

sionai problem requiring more than ten hours on a Digital Equipment Corp. VAX with an

attached Floating Point Systems, Inc. FPS-100 required only eleven minutes on a Cyber

205. Day and Shkoller [1982]describe a three dimensional code for earthquake analysis

which was first developed for the IUiac IV and then converted to a Cray-1. They report

5.11

that the Cray code ran 75 times faster than its implementation on a UNIVAC 1100/81.

McDonald [1980] used a Chebyshev explicit iteration on an equation of the form

Au + _'Vu =f with doubly periodic boundary conditions and where _ is a function of x

and y. This equation arises, for example, in plasma physics. The differential equation is

discretized by the usual 5-point star for the Laplacian and centered difference quotients

for the first derivatives, and the domain is taken to be a rectangle. Timings from runs on

a TI-ASC are given for various grid sizes and compared with an ADI iteration. Although

ADI required fewer iterations, the superior vectorization properties of the Chebyshev

iteration resulted in considerably faster running times.

The design of VLSI devices is another area that is making increased use of high per-

formance computers. This application is reviewed in the article by Fichtner, et a1.[1984].

The significant equations are presented and the numerical methods are discussed including

implementation considerations for the Cray. The paper includes over eighty references to

other literature on integrated circuit design.

Molecular dynamics problems have been solved on the Cray, Cyber and ICL DAP

computers. Bowler and Pawley [1984]give a detailed analysis of implementing simulations

of phase transitions at the atomic level. They explain how to utilize the architectural

features of the DAP and present some representative results. Berendsen, et al.[1984] pro-

vide a performance comparison of the Cray 1,the Cyber 203 and 205, the DAP and several

scalar computers on some relatively simple molecules. For example, a simple protein in

water required approximately 30 hours of Cray or Cyber time. Projections for more com-

plex molecules range up to 109 hours of CPU time, making these among the most demand-

ing computational problems.

Other papers dealing with applications include Termille [1982]on a Cyber 203 code

for modeling atmospheric chemical reactions, Liles, et a1.[1984] on a thermal-hydraulics

5.12

program designed to study internal flows in nuclear reactors on the Cray, and Boris and

Winsor [1982]on reactive flow problems on the TI-ASC.

There have also been a number of studies of the potential solution of partial

differential equations on new, or as yet unbuilt, architectures. As previously mentioned,

Dennis and Weng[1977] consider a dataflow architecture for numerical weather predic-

tions. They use as a model the 4th order GISS code (Kalnay-Rivas, et a1.[1976])with a

nominal goal of a speed-up by a factor of 100 over a 360/95, and describe the computation

on a hypothetical dataflow machine. In another study, Dennis[1984a] investigated an

implicit algorithm for the solution of the three dimensional Navier-Stokes equations.

The Fortran version of the algorithm was rewritten in Val and this code was used to out-

line a hypothetical machine capable of 1000 MFLOPS. Meyer [1977]studied the possibility

of solving the nonlinear Poisson equation Au = f(u)on a hypothetical array of processors.

GaUopoulos and McEwan [1983]describe the use of a simulator for the MPP for the solu-

tion of the shallow water equations for weather prediction. They conclude that the MPP

is suitable for such numerical problems, even though it was designed for image processing.

Fox[1984] discusses a variety of applications on a parallel system with the hypercube

interconnection and concludes that reasonable efficiency requires the ratio of communica-

tion time to computation time be kept near unity.

A.1

Epilogue

We have attempted to describe, perhaps too briefly, much of the work which has

been done on the use of parallel and vector computers for partial differential equations.

Two themes which occured often, sometimes in conjunction, were decomposition of a

problem into independent portions, and reordering of the unknowns in order to enhance

such a decomposition. We expect these two themes to be even more prevalent in algo-

rithm development in the future.

It should be clear by now that the differences between vector computers and parallel

computers can have a profound effect on the selection of algorithms. In particular, we

have shown that computational complexity, the basis for algorithm selection for decades,

is still relevant for vector computers because each computation costs some unit of time;

however, it is much less relevant for parallel computers for two reasons. First, parallel

computers can support extra computation at no extra cost ff the computation can be

organized properly. Secondly, parallel computers are subject to new overhead costs

required, for example, by communication and synchronization that are not reflected by

computational complexity. The value of doing extra computation at no extra cost seemed

to be recognized by many early researchers in the field who dealt with models consisting

of an unbounded number of processors. However, now that parallel systems are available,

the research community appears to be focused on analyzing existing algorithms rather

than exploring new algorithms for a parallel computing environment. For whatever rea-

son, there have been very few truly new algorithms developed as a i-esult of the oppor-

tunities offered by parallelism.

In the near term, it now seems clear that supercomputers from the major vendors

will consist of a relatively small number (4, 8, 16, etc.) of powerful vector computers.

This is the case with the Cray X-MP, the Cray 2, the Cray 3, the Cyberplus, the ETA

A.2

GF-10 and the Denelcor HEP. The effective utilization of these machines will require

decomposition of the problem into a small number of large, relatively independent parts,

and vectorization of the individual parts. The longer term impact of VLSI in the

development of highly parallel architectures of thousands of individual processors

remains to be seen, although prototypes of such machines are being built. In between

these two extremes there are a number of small, new companies offering parallel systems

consisting of tens to hundreds of processors each with VAX like performance. It is sim-

ply too early to speculate on how these systems will influence algorithm selection and

development.

Thus, all one can say with any certainty is that large scale computing of the future

will certainly be highly parallel in one form or another. Even if a single standard paral-

lel system were to exist, there would still be considerable work to be done in the

development of efncient numerical algorithms. The likely plethora of different parallel

architectures in at least the foreseeable future makes this development more interesting.

An especially challenging question is that of software portability across different parallel

architectures, a task that will only be feasible when the foundations of parallel computa-

tion are much better understood than at present.

B.I

BIBLIOGRAPHY

The literature on the parallel solution of partial differential equations

is scattered throughout a variety of sources: archival journals in numerical

analysis, in computer science, and in a number of engineering disciplines;

conference proceedings covering a variety of emphases ranging from numerical

analysis to computer architecture to applications such as resevoir simulation;

anthologies; and a large number of (as yet) unpublished departmental

reports. One of the most important sources is the proceedings of the annual

international conferences on parallel processing, listed in the bibliography

as Proc. 19xx Int. Conf. Par. Proc. and available through the IEEE Computer

Society Press. Certain other conference proceedings and anthologies which

have been published in book form we list under the name of the editor (or

editors) and then list individual articles with a pointer back to the whole

volume; for example, the reference

Brandt, A. [1981]. "Multigrid Solvers on Parallel Computers", in

Schultz [1981], pp. 39-83

refers to the article by Brandt in the volume listed under Schultz [1981].

Absar, I. [1983]. "Vectorization of a Penalty Function Algorithm for Well

Scheduling, in Gary [1984], pp. 361-370.

Adams, L. [1982]. "Iterative Algorithms for Large Sparse Linear Systems on

Parallel Computers," Ph.D. Thesis, University of Virginia; also published as

NASA CR-166027, NASA Langley Research Center.

Adams, L. [1983]. "An M-Step Preconditioned Conjugate Gradient Method for

Parallel Computation," Proc. 1983 Int. Conf. Par. Proc., pp. 36-43.

Adams, L. [1985]. "M-step Preconditioned Conjugate Gradient Methods," SIAM J.

sci. Star. Comp. To Appear.

Adams, L. and Crockett, T. [1984]. "Modeling Algorithm Execution Time on

Processor Arrays," Computer 17, No. 7, pp. 38-43.

Adams, L. and Jordan, H. [1984]. "Is SOR Color-Blind?" ICASE Report No. 84-

14, NASA Langley Research Center.

Adams, L. and Ortega, J. [1982]. "A Multi-Color SOR Method for Parallel

Computation," Proc. 1982 Int. Conf. Par. Proc., pp. 53-56.

Adams, L. and Voigt, R. [1984a]. "A Methodology for Exploiting Parallelism 2n

the Finite Element Process," in Kowalik [1984], pp. 373-392.

Adams, L. and Voigt, R. [1984b]. "Design, Development and Use of the Finite

Element Machine," in Parter [1984], pp. 301-321.

Agerwala, T. and Arvind. [1982]. "Data Flow Systems," Computer 15, No. 2, pp.
10-13.

B.2

Ahmed, H., Delosme, J. and Mort, M. [1982]. "Highly Concurrent Computing

Structures for Matrix Arithmetic and Signal Processing," Computer 15, No. i,

pp. 65-82.

Amdahl, G. [1967]. "The Validity of the Single Processor Approach to

Achieving Large Scale Computing Capabilities," AFIPS Conf. Proc. 30, pp. 483-

485.

Anderson, G. and Jensen, E. [1975]. "Computer Interconnection Structures:

Taxonomy, Characteristics, and Examples," ACM Comp. Surveys 7, pp. 197-213.

Arnold, C. [1982]. "Performance Evaluation of Three Automatic Vectorizer

Packages," Proc. 1982 Int. Conf. Par. Proc., pp. 235-242.

Arnold, C. [1983]. "Vector Optimization on the CYBER 205," Proc. 1983 Int.

Conf. Par. Proc., pp. 530-536.

Arnold, C. [1984]. "Machine Independent Techniques for Scientific

Supercomputing," Proc. COW,CON 84, IEEE Comp. Sci. Conf., pp. 74-83.

Arnold, C., Parr, M. and Dewe, M. [1983]. "An Efficient Parallel Algorithm

for the Solution of Large Sparse Linear Matrix Equations," IEEE Trans. Comput.

C-32, pp. 265-273.

Arvind and Bryant, R. [1979]. "Parallel Computers for Partial Differential

Equations Simulation," Proc. Scientific Computer Information Exchange Meeting,

Livermore, CA, 1979, pp. 94-102.

Arvind and Kathail, V. [1981]. "A Multiple Processor Data Flow Machine that

Supports Generalized Procedures," 8th Annual Sym. Comp. Arch., May, pp. 291-

302.

Arya, S. and Calahan, D. [1981]. "Optimal Scheduling of Assembly Language

Kernels for Vector Processors," 19th Allerton Conf. on Comm. Control and

Computers. University of Illinois.

Askew, S. and Walkden, F. [1984]. "On the Design and Implementation of a

Package for Solving a Class of Partial Differential Equations," in Paddon

[1984], pp. 107-114.

Avizienis, A., Evcegovac, M., Lang, T., Sylvain, P. and Thomasian, A. [1977].

"An Investigation of Fault-Tolerant Architectures for Large Scale Numerical

Computing," in Kuck, et al. [1977], pp. 159-183.

Axelsson, O. [1984]. "A Survey of Vectorizable Preconditioning Methods for

Large Scale Finite Element Matrix Problems," Center for Numerical Analysis

Report No. CNA-190, University of Texas at Austin.

Babuska, I. and Rheinboldt, W. [1977]. "Computational Aspects of Finite

Element Analysis," Mathematical Software III, J. Rice (Ed.) Academic Press,

New York, pp. 223-253.

B.3

Backus, J. [1978]. "Can Programming Be Liberated From the yon Neumann

Style? A Functional Style and Its Algebra of Programs," Comm. ACM 21, pp.
613-641.

Baer, J.-L. [1980]. "Supercomputers," Computer Systems Architecture, Computer

Science Press, Los Alamitos, CA.

Baer, J.-L. [1984]. "Computer Architecture," Computer 17, No. i0, pp. 77-87.

Ballhaus, W. [1984]. "Computational Aerodynamics and Supercomputers," Proc.

COMPCON 84, IEEE Comp. Soc. Conf., pp. 3-14.

Bank, R. and Dupont, T. [1981]. "An Optimal Order Process for Solving

Elliptic Finite Element Equations," Math. Comp. 36, pp. 35-51.

Bank, R. and Sherman, A. [1978]. "Algorithmic Aspects of the Multi-Level

Solution of Finite Element Equations," Center for Numerical Analysis Report

No. CNA-144, University of Texas at Austin.

Barkai, D. and Brandt, A. [1983]. "Vectorized Multigrid Poisson Solver for

the CDC Cyber 205," Appl. Math. & Comp. 13, pp. 215-228.

Barkai, D., Moriarty, K., and Rebbi, C. [1984a]. "A Highly Optimized

Vectorized Code for Monte Carlo Simulation of SU(3) Lattice Gauge Theories,"

Comp. Phys. Comm. 32, pp. i-9.

Barkai, D., Moriarty, K., and Rebbi, C. [1984b]. "A Highly Optimized

Vectorized Code for Monte Carlo Simulation of SU(3) Lattice Gauge Theories,"

Proc. 1984 Inf. Conf. Par. Proc., pp. 101-108.

Barkai, D., Moriarty_ K., and Rebbi, C. [1984c]. "A Modified Conjugate

Gradient Solver for Very Large Systems," in Numich [1985].

Barlow, J. and Ipsen, I. [1984b]. "Parallel Scaled Givens Rotations for the

Solution of Linear Least Squares Problems," Department of Computer Science

Report No. YALEU/DCS/RR-310, Yale University.

Barlow, R. and Evans, D. [1982]. "Synchronous and Asynchronous Iterative

Parallel Algorithms for Linear Systems," Comput. J. 25, pp. 56-60.

Barlow, R., Evans, D., and Shanehchi, J. [1984]. "Sparse Matrix Vector

Multiplication on the DAP," in Paddon [1984], pp. 147-155.

Barnes, G., Brown, R., Katz, M., Kuck, D., Slotnick, D. and Stoker, R.

[1968]. "The llliac IV Computer," IEEE Trans. Comput. C-17, pp. 746-757.

Batcher, K. [1974]. "STARAN Parallel Processor System Hardware," AFIPS Conf.

Proc. 43, NCC, pp. 405-410.

Batcher, K. [1979]. "MPP - A Massively Parallel Processor," Proc. 1979 Int.

Conf. Par. Proc., p. 249.

Batcher, K. [1980]. "Design of a Massively Parallel Processor," IEEE Trans.

Comput. C-29, pp. 836-840.

B.4

Baudet, G. [1977]. "Iterative Methods for Asynchronous Multiprocessors," in

Kuck, et al. [1977], pp. 309-310.

Baudet, G. [1978]. "Asynchronous Iterative Methods for Multiprocessors," J.

ACM 25, pp. 226-244.

Behie, G. and Forsyth, P. [1984]. "Incomplete Factorization Methods for Fully

Implicit Simulation of Enhanced Oil Recovery," SIAM J. Sci. Star. Comput. 5,

pp. 543- _I.

Benes, V. [1962]. "Heuristic Remarks and Mathematical Problems Regarding the

Theory of Connecting Systems," Bell Syst. Tech. J. 41, pp. 1201-1247.

Benes, V. [1965]. "Mathematical Theory of Connecting Networks and Telephone

Traffic," Academic Press, NY.

Berendsen, H., van Gunsteren, W. and Postma, J. [1984]. "Molecular Dynamics

on CRAY, CYBER and DAP," in Kowalik [1984], pp. 425-438.

Berger, M., 01iger, J. and Rodrigue, G. [1981]. "Predictor-Connector Methods

for the Solution of Time Dependent Parabolic Problems on Parallel Processors,"

in Schultz [1981], pp. 197-202.

Berger, P., Brouaye, P. and Syre, J. [1982]. "A Mesh Coloring Method for

Efficient MIMD Processing in Finite Element Problems," Proc. 1982 Int. Conf.

Par. Proc., pp. 41-46.

Berzins, M., Buckley, T. and Dew, P. [1984]. "Path Pascal Simulation of

Multiprocessor Lattice Architectures for Numerical Computations" in Paddon

[1984], pp. 25-33.

Bhavsar, V. and Gujar, U. [1984]. "VLSI Algorithms for Monte Carlo Solutions

of Partial Differential Equations," in Vichnevetsky and Stepleman [1984], pp.

268-276.

Bhavsar, V. and Isaac, J. [1982]. "Design and Analysis of Parallel Algorithms

for Monte Carlo Techniques," Proc. 10th IMACS World Congress on Systems

Simulation and Scientific Computation, vol. I, IMACS, pp. 323-325.

Bhuyan, L. and Agrawal, D. [1984]. "Generalized Hybercube and Hyberbus

Structures for a Computer Network," IEEE Trans. Comput. 33, pp. 323-333.

Bini, D. [1984]. "Parallel Solution of Certain Toeplifz Linear Systems," SIAM

J. Comp. 13, pp. 368-476.

Biringen, S. [1983a]. "A Numerical Simulation of Transition in Plane Channel

Flow," AIAA Paper No. 83-47, January, Reno, NV.

Biringen, S. [1983b]. "Simulation of Late Transition in Plane Channel

Flow," Proceedings of the Third International Conference on Numerical Methods

in Laminar and Turbulent Flow," August, Seattle, WA.

Birkhoff, G. and Schoenstadt, A. (Eds.) [1984]. "Ellipti¢ Problem Solvers,"

Academic Press, NY.

B.5

Biskeborn, J. [1983]. "A Multiprocessor Implementation of CSP," Computer

Science Department Report, University of Colorado.

Boisseau, J., Enselme, M., Guinraud, D., and Leed, P. [1982]. "Potential

Assessment of a Parallel Structure for the Solution of Partial Differential

Equations," Rech. Aerosp.

Bojanczyk, A., Brent, R. and Kung, H. [1984]. "Numerically Stable Solution of

Dense Systems of Linear Equations using Mesh-Connected Processors," SIA_ T.

Sci. Star. Comput. 5, pp. 95-104.

Bokhari, S. [1979]. "On the Mapping Problem," Proc. 1979 Int. Conf. Par.

Proc., pp. 239-248.

Bokhari, S. [1981]. "On the Mapping Problem," IEEE Trans. Comput. C-30, pp.

207-214.

Bokhari, S. [1984]. "Finding Maximum on an Array Processor with a Global

Bus," IEEE Trans. Comput. C-33, pp. 133-139.

Bokhari, S., Hussaini, M., Lambiotte, J. and Orszag, S. [1982]. "Navier-

Stokes Solution on the CYBER-203 by a Pseudospectral Technique," Second IMAC

International Symposium on Parallel Computation, Nov. 9-11, 1982, Newark, DE,

pp. 305-307.

Bokhari, S., Hussaini, M . and Orszag, S. [1982]. "Fast Orthogonal

Derivatives on the STAR," Comput. Math. Appl. 8, pp. 367-377.

Boley, D. [1978]. "Vectorization of Block Relaxation Techniques: Some

Numerical Experiments." Proc. 1978 LASL Workshop on Vector and Parallel

Processors, Los Alamos, NM.

Boley, D., Buzbee, B. and Parter, S. [1978]. "On Block Relaxation

Techniques," Mathematics Research Center Report No. 1860, University of

Wisconsin.

Boney, L. and Smith, R. [1979]. "A Vectorlcation of the Hess-McDonnel-Douglas

Potential Flow Program NUED for the STAR-100 Computer," NASA TM-78816, NASA

Langley Research Center.

Book, D., (Ed.). [1981]. "Finite Difference Techniques for Vectorized Fluid

Dynamics Calculation," Springer-Verlag, New York, NY.

Boris, J. [1976a]. "Flux-Corrected Transport Modules for Solving Generalized

Continuity Equations," Naval Research Laboratory Report No. 3237.

Boris, J. [1976b]. "Vectorized Tridiagonal Solvers," Naval Research

Laboratory Report No. 3048.

Boris, J. and Winsor, N. [1982]. "Vectorized Computation of Reactive Flow," in

Rodrigue [1982], pp. 173-215.

B.6

Bossavit, A., [1982]. "On the Vectorization of Algorithms in Linear Algebra,"

Proc. 10th IMACS World Congress on Systems Simulation and Scientific

Computation, vol. i, IMACS, pp. 95-97.

Bouknight, W., Denenberg, S., Mclntyre, D., Randall, J., Sameh, A. and

Slotnick, D. [1972]. "The llliac IV System," Proc. IEEE 60, pp. 369-379.

Bowler, K. and Pawley, G. [1984]. "Molecular Dynamics and Monte Carlo

Simulations in Solid-State and Elementary Particle Physics," Proc. IEEE 72,

pp. 42-55.

Bradley, P., Dwoyer, D. and South, J. [1984]. "Vectorized Schemes for Conical

Flow Using the Artificial Density Method." AIAA Paper No. 84-0162, January.

Bradley, P., Siemers, P. and Weilmuenster, K. [1982]. "Comparison of Shuttle

Flight Pressure Data to Computational and Wind-Tunnel Results," Journal of

Spacecraft and Rockets 19, pp. 419-422.

Brailovskaya, I. [1965]. "A Difference Scheme for Numerical Solution of the

Two-Dimensional Non-stationary Navier-Stokes Equations for a Compressible

Gas," Soviet Physics Doklady i0, pp. 107-110.

Brandt, A. [1977]. "Multigrid Adaptive Solutions to Boundary Value Problems,"

Math. Comp. 31, pp. 333-390.

Brandt, A. [1981], "Multigrid Solvers on Parallel Computers," in Schultz

[1981], pp. 39-83.

Brent, R. and Luk, F. [1982]. "Computing the Cholesky Factorization Using a

Systolic Architecture," Computer Science Technical Report No. TR 82-521,

Cornell University.

Brent, R. and Luk, F. [1983]. "A Systolic Array for the Linear Time Solution

of Toeplitz Systems of Equations," J. of VLSl and Computer Systems i, pp. 1-
22.

Brode, B. [1981]. "Precompilation of Fortran Programs to Facilitate Array

Processing," Computer 14, No. 9, pp. 46-51.

Broomell, G. and Heath, J. [1983]. "Classification Categories and Historical

Development of Circuit Switching Topologies," Comp. Surveys 15, pp. 95-134.

Browne, J. [1984a]. "Parallel Architecture for Computer Systems," Physics

Today 37, No. 5, pp. 28-35.

Browne, J. [1984b]. "TRAC: An Environment for Parallel Computing," Proc.

COMPCON 84, IEEE Comp. Soc. Conf., pp. 294-299.

Bucher, I. and Jordan, T. [1984a]. "Linear Algebra Programs for Use on a

Vector Computer with a Secondary Solid State Storage Device," in Vichnevetsky

and Stepleman [1984], pp. 546-550.

Bucher, I. and Jordan, T. [1984b]. "Solving Very L_rge Elliptic Problems on a

Supercomputer with Solid State Disk," J. Comp. Phys. 55, pp. 340-345.

B.7

Buneman, O. [1969]. "A Compact Non-lterative Poisson Solver," Institute for

Plasma Research Report No. 294, Stanford University.

Buning, P. and Levy, J. [1979]. "Vectorizatlon of Implicit Navier-Stokes

Codes on the CRAY-I Computer," Dept. of Aeronautics and Astronautics.,

Stanford University.

Burke, P., Davies, B. and Edwards, D. (Eds.) [1982]. "Some Research

Applications on the CRAY-1 Computer at the Daresbury Laboratory, 1979-81,"

Daresbury Laboratory, England.

Burke, P. and Delnes, L. [Eds.] [1982]. Proceedings of the International

Conference on Vector and Parallel Processors in Computational Science,

Chester, England, August, 1981. Comp. Phys. Comm. 26, 1982, pp. 217-488.

Burroughs Corp. [1979]. "NAS Facility Feasibility Study," Final Report,

Contract No. NAS2-9897.

Butler, T., Cloutman, J. and Ramshaw, J. [1981]. "Multidimensional Numerical

Simulation of Reactive Flow in Internal Combustion Engines", Prog. Energy

Combust. Sci. 7, pp. 293-315.

Buzbee, B. [1973]. "A Fast Poisson Solver Amenable to Parallel Computation,"

IEEE Trans. Comput. C-22, pp. 793-796.

Buzbee, B. [1981], "Implementing Techniques for Elliptic Problems on Vector

Processors," in Schultz [1981], pp. 85-98.

Buzbee, B. [1983a]. "Vectorization of Algorithms for Solving Systems of

Elliptic Difference Equations," in Noor [1983], pp. 81-88.

Buzbee, B. [1983b]. "Two Parallel Formulations of Partlcle-ln-Cell Models,"

Los Alamos National Laboratory Report N_. LA-UR-83-413.

Buzbee, B. [1983c]. "Remarks for the IFIP Congress _83 Panel on How to Obtain

High Performance for High-Speed Processors," Los Alamos National Laboratory

Report No. LA-UR-83-1392.

Buzbee, B. [1984a]. "Gaining Insight from Supercomputing," Proc. IEEE 72, pp.

19-21.

Buzbee, B. [1984b]. "Application of MIMD Machines," Los Alamos National

Laboratory Report No. LA-UR-84-2004.

Buzbee, B., Boley, D. and Parter, S. [1979]. "Applications of Block

Relaxation," Proc. 1979 AIME Fifth Symposium on Reservoir Simulation.

Buzbee, B., Ewald, R. and Worlton, J. [1982]. "Japanese Supercomputer

Technology," Science 218, No. 17, pp. 1189-93.

Buzbee, B., Golub, G. and Nielson, C. [1970]. "On Direct Methods for Solving

Poissones Equation," SIAM J. Numer. Anal. 7, pp. 627-656.

B.8

Buzbee, B., Golub, G. and Howell, J. [1977]. "Vectorizations for the CRAY-I

of Some Methods for Solving Elliptic Difference Equations," in Kuck, et al.

[1977], pp. 255-271.

Buzbee, B. and Morrison, J. (Ed.). [1978]. Proc. 1978 LASL Workshop on Vector

and Parallel Processors, Los Alamos, NM.

Buzbee, B., Worlton, J., Michael, G. and Rodrigue, G. [1980]. "DOE Research

in Utilization of High Performance Systems," Los Alamos National Laboratory

Report No. LA-8609-MS.

Calahan, D. [1973]. "Parallel Solution of Sparse Simultaneous Linear

Equations," Proceedings of the llth Allerton Conference on Circuit and System

Theory, University of Illinois, pp. 729-738.

Calahan, D. [1975]. "Complexity of Vectorized Solution of Two-Dimenslonal

Finite Element Grids," Systems Engineering Laboratory Report No. 91,

University of Michigan.

Calahan, D. [1979a]. "A Block-Orlented Sparse Equation Solver for the CRAY-

i," Proc. 1979 Int. Conf. Par. Proc., pp, 116-123.

Calahan, D. [1979b]. "Vectorized Sparse Elimination," Proc. Sci. Computer

Information Exchange Meeting, Livermore, CA.

Calahan, D. [1980]. "Multi-level Vectorized Sparse Solution of LSI Circuits,"

Proc. IEEE Conf. on Circuits and Computers, Rye, NY, October, pp. 976-979.

Calahan, D. [1981a]. "Direct Solution of Linear Equations on the CRAY-I,"

CRAY Channels 3, pp. 1-5.

Calahan, D. [1981b]. "Performance of Linear Algebra Codes on the CRAY-I," SPE

Journal, pp. 558-564.

Calahan, D. [1981c] "Sparse Vectorized Direct Solution of Elliptic Problems,"

in Schultz [1981], pp. 241-245.

Calahan, D. [1982a]. "High Performance Banded and Profile Equation-Solvers

for the CRAY-I: The Unsymmetric Case," Systems Engineering Laboratory Report

No. 160, University of Michigan.

Calahan, D. [1982b]. "Vectorized Direct Solvers of 2-D Grids," Proc. 6th

Symp. Resevoir Simulation, pp. 489-506.

Calahan, D. [1983]. "Tasking Studies in Solving a Linear Algebra Problem on a

CRAY-class Multlprocessor," Supercomputer Algorithm Research Laboratory Report

No. SARL 2, University of Michigan.

Calahan, D. [1984]. "Influence of Task Granularity on Vector Multiprocessor

Performance," Proc. 1984 Int. Conf. Par. Proc., pp. 278-284.

Calahan, D. and Ames, W. [1979]. "Vector Processors: Models and

Application," IEEE Trans. Circuits and Syst. CAS-26, pp. 715-776.

B.9

Calahan, D., Ames, W. and Sesek, E. [1979]. "A Collection of Equation Solving

Codes for the CRAY-I," Systems Engineering Laboratory Report, University of

Michigan.

Calahan, D., Joy, W. and Orbits, P. [1976]. "Preliminary Report on Results of

Matrix Benchmarks on Vector Processors," Systems Engineering Laboratory

Report, University of Michigan.

Carey, G. [1981]. "High Speed Processors and Implications for Algorithms and

Methods," in Nonlinear Finite Element Analysis - Structural Mechanics, W.

Wunderlich, E. Stein and K. Bathe, (Eds.), Springer-Verlag, Berlin.

Carroll, A. and Wetherald, R. [1967]. "Application of Parallel Processing to

Numerical Weather Prediction," J. ACM 14, pp. 591-614.

Casasent, D. [1984]. "Acoustooptic Linear Algebra Processors -Architectures,

Algorithms and Applications," Proc. IEEE 72, pp. 831-849.

Caughey, D., Newman, P. and Jameson, A. [1978]. "Recent Experiences with

Three Dimensional Transonic Potential Flow Calculations," NASA TM 78733, NASA

Langley Research Center.

Caughey, D. [1983]. "Multigrid Calculation of Three-Dimensional Transonic

Potential Flows_" Appl. Math. & Comp. 13, pp. 241-260.

Chan, T. and Schreiber, R. [1983]. "Parallel Networks for Multigrid

Algorithms: Architecture and Complexity," Department of Computer Science

Report No. 262, Yale University.

Chandra, R. [1978]. "Conjugate Gradient Methods for Partial Differential

Equations," Ph.D. Thesis, Department of Computer Science , Yale University.

Chang, S. [1982]. "Borehole Acoustic Simulation on Vector Computers," Control

Data Corp. [1982].

Chapman, D. [1979]. "Computational Aerodynamics Development and Outlook,"

17th Aerospace Sciences Meeting, AIAA paper 79-0129.

Chazan, D. and Miranker, W. [1969]. "Chaotic Relaxation," J. Lin. Alg. Appl.

2, pp. 199-222.

Chen, A. and Wu, C. [1984]. "Optimum Solution to Dense Linear Systems of

Equations," Proc. 1984 Int. Conf. Par. Proc., pp. 417-424.

Chen, S. [1982]. "Polynomial Scaling in the Conjugate Gradient Method and

Related Topics in Matrix Scaling," Ph.D. Dissertation, Department of Computer

Science, Pennsylvania State University.

Chen, S. [1975]. "Speedup of Iterative Programs in Multi-Processing Systems,"

Ph.D. Thesis, Department of Computer Science, University of Illinois.

Chen, S. [1984]. "Large-Scale and High-Speed Multiprocessor System for

Scientific Applications: CRAY X-MP-2 Series," in Kowalik [1984], pp. 59-67.

B.10

Chen, S., Dongarra, J. and Hsuing, C. [1984]. "Multiprocessing Linear Algebra

Algorithms on the Cray X-MP-2: Experiences with Small Ganularity," J. Par.

and Dist. Comp. i, pp. 22-31.

Chen, S. and Kuck, D. [1975]. "Time and Parallel Processor Bounds for Linear

Recurrence Systems," IEEE Trans. Comput. C-24, pp. 101-117.

Chen, S., Kuck, D. and Sameh, A. [1978]. "Practical Parallel Band Triangular

Systems," ACM Trans. Math. Softw. 4, pp. 270-77.

Chen, S. and Sameh, A. [1975]. "On Parallel Triangular Solvers," Proc. 1975

Sagamore Conf. Par. Proc., pp. 237-38.

Chern, M. and Murata, T. [1983a]. "A Fast Algorithm for Concurrent LU

Decomposition and Matrix Inversion," Proc. 1983 Int. Conf. Par. Proc., pp. 79-

86.

Chern, M. and Murata, T. [1983b]. "Efficient Matrix Multiplication on a

Concurrent Data-Loading Array Processor," Proc. 1983 Int. Conf. Par. Proc.,

pp. 90-94.

Chima, R. and Johnson, G. [1983]. "Efficient Solution of the Euler and

Navier-Stokes Equations with a VectorizedMultiple-Grid Algorithm," AIAA Paper

83-1893.

Christ, N. and Terrano, A. [1984]. "A Very Fast Parallel Processor," IEEE

Trans. Comput. 33, pp. 344-350.

Clos, C. [1953]. "A Study of Non-Blocklng Switching Networks," Bell Syst.

Tech. J. 32, pp. 406-424.

Cocke, J. and Slotnlck, D. [1958]. "The Use of Parallelism in Numerical

Calculations," IBM Research Memorandum RC-55.

Collier, W., McCalllen, C. and Enderby, J. [1984]. "Tough Problems in

Reactor Design," in Paddon [1984], pp. 91-106.

Concus, P., Golub, G. and Meurant, G. [1982]. "Block Preconditioning for the

Conjugate Gradient Method," Computer Science Department Report, Stanford

University.

Con cus, P., Golub, G. and O'Leary, D. [1976]. "A Generalized Conjugate

Gradient Method for the Numerical Solution of Elliptic Partial Differential

Equations," in Sparse Matrix Computations, J. Bunch and D. Rose (Eds.),

Academic Press, New York, pp. 309-332.

Conrad, V. and Wallach, Y. [1977]. "Iteratlve Solution of Linear Equations on

a Parallel Processor System," IEEE Trans. Comput. C-26, pp. 838-847.

Control Data Corporation, [1979]. "Final Report. Feasibility Study for

NASF," NASA Contractor Report No. NAS2-9896.

Control Data Corporation, [1982]. Proceedings Symposium CYBER 205

Applications, Ft. Collins, CO.

B.I1

Cox, M. [1983]. "Ocean Modeling on the Cyber 205 at GFDL," in Gary [1984],

pp. 27-32.

Cray Research, Inc. [1982]. "Science, Engineering and the CRAY-I."

Proceedings of a Cray Research Inc. Symposium.

Csanky, L. [1976]. "Fast Parallel Matrix Inversion Algorithms," SIAM J.

Comput. 5, 618-623.

Cullen, M. [1983]. "Current Progress and Prospects in Numerical Techniques

for Weather Prediction Models," J. Comp. Phys. 50, pp. 1-37.

Cyre, W., Davis, C., Frank, A., Jedynak, L., Redmond, M. and Rideout, V.

[1977]. "WISPAC: A Parallel Array Computer for Large Scale System

Simulation," Simulation, No. ii, pp. 165-172.

Davy, W. and Relnhardt, W. [1975]. "Computation of Shuttle Non-equillbrium

Flow Fields on a Parallel Processor," NASA SP-347, NASA Ames Research Center,

pp. 1351-1376.

Day, S. and Shkoller, B. [1982]. "A 3-D Earthquake Model," Control Data Corp.

[1982].

Delwert, G. and Rothmund, H. [1983]. "Three Dimensional Flow Over a Conical

Afterbody Containing a Centered Propulsive Jet: A Numerical Simulation," AIAA

16th Fluid and Plasma Dynamics Conference. Also in Gary [1984], pp. 187-200.

Delosme, J.-M. and Ipsen, I. [1984]. "Efficient Parallel Solution of Linear

Systems with Hyperbolic Rotations," Department of Computer Science Report No.

YALEU/CSD/RR-341, Yale University.

Delosme, J.-M. and Morf, M. [1981]. "Scattering Arrays for Matrix

Computations," SPIE 25th Tech. Symp., San Diego, CA.

Delsarte, P., Genln, Y. and Kamp, Y. [1980]. "A Method of Matrix Inverse

Triangular Decomposition Based on Contiguous Principle Submatrices," J. Lin.

Alg. Appl. 31, pp. 194-212.

Delves, L., Samba, A. and Hendry, J. [1984]. "Band Matrices on the DAP," in

Paddon [1984], pp. 167-183.

Dembast, B. and Neves, K. [1977]. '!Sparse Triangular Factorlzatlon on Vector

Computers," in Exploring Applications of Parallel Processing to Power System

Analysis, Electric Power Res. Inst. Rep. EE 566-SR.

Demlnet, J. [1982]. "Experience with Multiprocessor Algorithms," IEEE Trans.

Comput. C-31, pp. 278-288.

Dennis, J. [1980]. "Data Flow Supercomputers," Computer 13, No. II, pp. 48-

56.

Dennis, J. [1982]. "High Speed Data Flow Computer Architecture for the

Solution of the Navler-Stokes Equations," Massachusetts Institute of

Technology Laboratory for Computer Science Report.

B.12

Dennis, J. [1984a]. "High Speed Data Flow Computer Architecture for the

Solution of the Navier-Stokes Equations," Computation Structures Group Memo

225, Massachusetts Institute of Technology Laboratory for Computer Science.

Dennis, J. [1984b]. "Data Flow Ideas for Supercomputers," Proc. COMPCON 84,

IEEE Comp. Soc. Conf., pp. 15-20.

Dennis, J., Gao, G. R., and Todd, K. [1984]. "Modeling the Weather with a

Dataflow Supercomputer," IEEE Trans. Comp. C-33, pp. 592-603.

Dennis, J. and Weng, K. [1977]. "Application of Data Flow Computation to the

Weather Problem," in Kuck, et al. [1977], pp. 143-157.

Deutsch, J. and Newton, H. [1984]. "MSLICE: A Multiprocessor Based Circuit

Simulator," Proc. 1984 Int. Conf. Par. Proc., pp. 207-214.

Diamond, M. [1975]. "The Stability of a Parallel Algorithm for the Solution

of Tridiagonal Linear Systems," Proc. 1975 Sagamore Conf. Par. Proc., p. 235.

Dodson, D. [1981]. "Preliminary Timing Study for the CRAYPACK Library" Boeing

Computer Services Internal Memorandum G4550-CM-39, Seattle, WA.

Dodson, D. and Lewis, J. [1982]. "Improving the Performance of a Sparse

Matrix Solver on the CRAY-I," CRAY Research Symposium, pp. 13-15.

Dongarra, J. [1978]. "Some Linpack Timings on the CRAY-I," Proc. 1978 LASL

Workshop on Vector and Parallel Processors, pp. 58-75.

Dongarra, J. [1983]. "Redesigning Linear Algebra Algorithms," E.D.F. Bulletin

de la Direction des Etudes Et Recherches, Serie C, No. i, pp. 51-59.

Dongarra, J. [1984]. "Performance of Various Computers Using Standard Linear

Equations Software in a Fortran Environment," Argonne National Laboratory

Report No. MCA-TM-23.

Dongarra, J. and Eisenstat, S. [1984]. "Squeezing the Most out of an

Algorithm in CRAY-FORTRAN," ACM Trans. Math. Softw. i0, pp. 221-230.

Dongarra, J., Gustavson, F. and Karp, A. [1984]. "Implementing Linear Algebra

Algorithms for Dense Matrices on a Vector Pipeline Machine," SIAM Rev. 26, pp.

91-112.

Dongarra, J. and Hinds, A. [1979]. "Unrolling Loops in FORTRAN," Softw.

Pract. Exper. 9, pp. 219-229.

Dongarra, J. and Hiromoto, R. [1984]. "A Collection of Parallel Linear

Equation Routines for the Denelcor HEP," PaTallel Computing i. To appear.

Dongarra, J. and Sameh, A. [1984]. "On Some Parallel Banded System Solvers,"

Argonne National Laboratory Report No. ANL/MCS-TM-27.

Dongarra, J., Sameh, A. and Sorenson, D. [1984]. "Implementation of Some

Concurrent Algorithms for Matrix Factorization," Argonne National Laboratory

Report No. ANL/MCS-TM-25.

B.13

Dorr, F. [1970]. "The Direct Solution of the Discrete Poisson Equation on a

Rectangle," SlAM Rev. 12, pp. 248-263.

Dressier, R., Robertson, S., and Spradley, L. [1982]. "Effects of Rayleigh

Accelerations Applied to an Innitially Moving Fluid." Materials Processing in

the Reduced Gravity Environment of Space, G. Rindone, (Ed)., Elsevier Science

Publishing Co.

Drummond, J. [i983]. "Numerical Study of a Ramjet Dump Combustor Flow Field,"

AIAA Paper No. 83-0421.

Drummond, J. and Weidner, E. [1982]. "Numerical Study of a Scramjet Engine

Flow Field," AIAA Journal 20, pp. 1182-1187.

Dubols, M. and Briggs, F. [1982]. "Performance of Synchronized Iterative

Processes in Multiprocessor Systems," IEEE Trans. Softw. Eng. SE-8, pp. 419-
431.

Dubois, P. [1982]. "Swimming Upstream: Table Lookups and the Evaluation of

Piecewlse Defined Functions on Vector Computers," in Rodrigue [1982], pp. 129-

151.

Dubois, P., Greenbaum, A. and Rodrlgue, G. [1979]. "Approximating the Inverse

of a Matrix for Use in Iterative Algorithms on Vector Processors," Computing

22, pp. 257-268.

Dubois, P. and Rodrigue, G. [1977a]. "An Analysis of the Recurslve Doubling

Algorithm," in Kuck, et al., [1977], pp. 299-305.

Dubois, P. and Rodrigue, G. [1977b]. "Operator splitting on the STAR without

Transposing," Lawrence Livermore National Laboratory Report No. UCID-17515.

Duff, I. [1977]. "MA28 - a Set of Fortran Subroutines for Sparse Unsymmetric

Linear Equations," AERE Report No. R8730, Harwell, England.

Duff, I. [1982a]. "The Solution of Sparse Linear Equations on the CRA¥-I,"

CRAY Channels 4, No. 3.

Duff, I. [1982b]. "The Solution of Sparse Linear Equations on the CRAY-I," in

CRAY Research, Inc. [1982], pp. 17-39.

Duff, I. [1984]. "The Solution of Sparse Linear Equations on the CRAY-I," in

Kowalik [1984], pp. 293-309.

Duff, I. and Reid, J. [1982]. "Experience of Sparse Matrix Codes on the CRAY-

i", Comp. Phys. Comm. 76, pp. 293-302.

Dugan, R., Durham, I. and Talukdar, S. [1979]. "An Algorithm for Power System

Simulation by Parallel processing," Proc. IEEE Power Eng. Soc. Summer Meeting.

Dungworth, M. [1979]. "The CRAY-I Computer System," in Jesshope and Hockney

[1979], vol. 2, pp. 51-76.

B.14

Durham, I., Dugan, R., Jones, A. and Talukdar, S. [1979]. "Power System

Simulation on a Multiprocessor," Proc. IEEE Power Eng. Soc. Summer Meeting.

Eastwood, J. and Jesshope, C. [1977]. "The Solution of Elliptic Partial

Differential Equations Using Number Theoretical Transforms with Applications

to Narrow or Computer Hardware," Comp. Phys. Comm. 13, pp. 233-239.

Eberhardt, D., Baganoff, D. and Stevens, K. [1984]. "Study of the Mapping of

Navier-Stokes Algorithms onto Multlple-Instruction/Multlple-Data-Stream

Computers," NASA TM-85945, Ames Research Center.

Eckert, J., Jr., Mauchly, J., Goldstein, H. and Brainerd, J. [1945].

"Description of the ENIAC and Comments on Electronic Digital Computing

Machines" Applied Mathematics Panel Report No. 171.2R, University of

Pennsylvania.

Eisenstat, S. and Schultz, M. [1981]. "Trends in Elliptic Problem Solvers,"

in Schultz [1981], pp. 99-114.

Engeli, H., Ginsburg, T., Ruthishauser, H. and Stiefel, E. [1959]. "Refined

Iterative Methods for Computation of the Solution and the Eigenvalues of Self-

adjoint Boundary Value Problems," Mitteilungen aus dem Institut fur Angewandte

Mathematik:8, Birkhauser Verlag, Basel, Stuttgart.

Enselme, M., Fraboul, C., and Leca, P. [1984]. "An MIMD Architecture System

for PDE Numerical Simulation," in Vichnevetsky and Stepleman [1984], pp. 502-
509.

Enslow, P. [1977]. "Multiprocessor Organization: A Survey," Comp. Surveys 9,

pp. 103-129.

Erhel, J. [1983]. "Parallelisation d'an Algorithme de Gradient Conjugue

Preconditionne," INRIA Report No. 189.

Erhel, J., Jalby, W., Lichnewsky, A. and Thomasett, F. [1983]. "Quelques

Progress en Calcul Parallele et Vectoriel," Coll. Inf. ser des Methodes de

Calcul Scientifique et Technique.

Erhel, J., Lichnewsky, A. and Thomaset, F. [1982]. "Parallelism in Finite

Element Computations," Presented at the IBM Symposium on Vector Computers and

Scientific Computing, Rome, 1982.

Erfcksen, J., [1972]. "Iterative and Direct Methods for Solving Poisson's

Equation and Their Adaptibility to ILLIAC IV," Center for Advanced Computation

Document No. 60, University of Illinois at Urbana - Champaign.

Ericksen, J. and Wilhelmson, R., [1976]. "Implementation of a Convective

Problem Requiring Auxiliary Storage," ACM Trans. Math. Softw. 2, pp. 187-195.

Ethridge, C., Moore, J. and Trujillo, V. [1983]. "Experimental Parallel

Microprocessor System," Los Alamos National Laboratory Report No. LA-UR-83-
1676.

B.15

Evans, D. [1979]. "On the Numerical Solution of Sparse Systems of Finite

Element Equations," in The Mathematics of Finite Elements & Applications III,

Mafelap 1978 Conference Proceedings, J. R. Whiteman (Ed), Academic Press, New

York, pp. 448-58.

Evans, D. (Ed.) [1982a]. "Parallel Processing Systems," Cambridge University

Press.

Evans, D. [1982b]. "Parallel Numerical Algorithms for Linear Systems," in

Evans [1982a], pp. 357-384.

Evans, D. [1983]. "New Parallel Algorithms in Linear Algebra," EDF - Bulletin

de la Direction Des Estudes et des Researches - Ser C, No. i, pp. 61-69.

Evans, D. [1984]. "Parallel S.O.R. Iterative Methods," Parallel Computing i,

pp. 3-18.

Evans, D. and Dunbar, R. [1983]. "The Parallel Solution of Triangular Systems

of Equations," IEEE Trans. Comput. C-32, pp. 201-204.

Evans, D. and Hadjidimos, A. [1980]. "A Modification of the Quadrant

Interlocking Factorisation Parallel Method," Int. J. Comput. Math. 8, pp. 149-

66.

Evans, D., Hadjidimos, A. and Noutsos, D. [1981]. "The Parallel Solution of

Banded Linear Equations by the New Quadrant Interlocking Factorisation

(Q.I.F.) Method," Int. J. Comput. Math. 9, pp. 151-62.

Evans, D. and Hatzopolous, M. [1979]. "A Parallel Linear Systems Solver,"

Int. J. Comput. Math. 7, pp. 227-38.

Evans, D. and Okolie, S. [1981]. "A Recursive Decoupling Algorithm for

Solving Banded Linear Systems," Int. J. Comput. Math. i0, pp. 139-152.

Evans, D. and Sojoodi-Haghighi, R. [1982]. "Parallel Iterative Methods for

Solving Linear Equations," Int. J. Comput. Math. ii, pp. 247-284.

Evans, D. and Yousif, N. "Asynchronous and Synchronous Iterative Methods for

Solving Linear Equations," To appear.

Faber, V. [1981]. "Block Relaxation Strategies," in Schultz [1981], pp. 271-

275.

Fadden, E. [1980]. "The AD-10: A Digital Computer Approach to Time Critical

Simulation," Proc. 4th Power Plant Dynamics, Control, and Testing Symposium.

Fadeeva, V. and Fadeev, D. [1977]. "Parallel Computations in Linear Algebra,"

Kibernetica, No. 6, pp. 28-40.

Farmwald, P. [1984]. "The S-I Mark IIA Supercomputer" in Kowalik [1984], pp.

145-155.

Feierbach, G. and Stevenson, D. [1979]. "The ILLIAC IV," in Jesshope and

Hockney [1979], vol. 2, pp. 77-92.

B.16

Feilmeier, M. (Ed.), [1977]. "Parallel Computers - Parallel Mathematics,"

Int. Assoc. for Mathematics and Computers in Simulation.

Feilmeier, M. [1982]. "Parallel Numerical Algorithms", in Evans [1982a], pp.

285-338.

Feilmeier, M., Joubert, G. and Schendel, U. (Eds.). [1984]. "Parallel

Computing 83: Proceedings of the International Conference on Parallel

Computing," -th Holland_ New York.

Felippa, C. [1981]. "Architecture of a Distributed Analysis Network for

Computational Mechanics," Computers and Structures 13, pp. 405-413.

Feng, T. [1981]. "A Survey of Interconnection Networks," Computer 14, No. 12,

pp. 12-27.

Fichtner, W., Nagel, L., Penumalll, R., Peterson, W., and D'Arcy, J. [1984].

"The Impact of Supercomputers on IC Technology Development and Design," Proc.

IEEE 72, pp. 76-112.

Field, J., Kapauan, A. and Snyder, L. [1983]. "Pringle: A Parallel Processor

to Emulate Chip Computers," Computer Science Department Report No. CSD-TR-433,

Purdue University.

Flanders, P., Hunt, D., Reddaway, S., and Parklnson, D. [1977]. "Efficient

High Speed Computing with the Distributed Array Processor," in Kuck, et al.

[1977], pp. i13-128.

Floating Point Systems [1976]. "AP-120B Array Processor Handbook," Floating

Point Systems Reference Manual 7259-02.

Flynn, M. [1966]. "Very High Speed Computing Systems," Proc. IEEE. 54, pp.

1901-1909.

Flynn, M. [1972]. "Some Computer Organizations and Their Effectiveness," IEEE

Trans. Comput. C-21, pp. 948-960.

Foerster, H., Steuben, K and Trottenberg, U. [1981]. "Nonstandard Multigrid

Techniques Using Checkered Relaxation and Intermediate Grids," in Schultz

[1981], pp. 285-300.

Fong, K. and Jordan, T. [1977]. "Some Linear Algebraic Algorithms and Their

Performance on the CRAY-I." Los Alamos National Laboratory Report No. LA-

6774.

Fornberg, B.[1981]. "A Vector Implementation of the Fast Fourier Transform

Algorithm," Math. Comp. 36, pp. 189-191.

Fornberg, B. [1983]. "Steady Viscous Flow Past a Circular Cylinder," in Gary

[1984], pp. 201-224.

Foster, C. [1976]. "Content Addressable Parallel Processors," van Nostrand

Reinhold.

B.17

Fox, G. [1984]. "Concurrent Processing for Scientific Calculations," Proc.

COMPCON 84, IEEE Comp. Sci. Conf., pp. 70-73.

Fox, G. and Otto, S. [1984]. "Algorithms for Concurrent Processors," Physics

Today 37, No. 5, pp. 50-59.

Franklin, M. [1978]. "Parallel Solution of Ordinary Differential Equations,"

IEEE Trans. Comput. C-25, pp. 413-470.

Friedman, A. and Kershaw, D. [1982]. "Vectorized Incomplete Cholesky

Conjugate Gradient (ICCG) Package for the CRAY-I Computer," Laser Program

Annual Report UCRL-500021-81, Lawrence Livermore Nat. Lab., Livermore, CA.

Fuller, S., Jones, A. and Durham, I. [1980]. "CMU Cm* Review," Computer

Science Department Report AD-A050135, Carnegle-Mellon University.

Fuller, S. and Oleinick, P. [1976]. "Initial Measurements of Parallel

Programs on a Multi-Minlprocessor," Proc. 13th IEEE Computer Soc. Int. Conf.,

pp. 358-363.

Fuller, S., Ousterbout, J., Raskin, L., Rubinfeld, P., Sundhu, P., and Swan,

R. [1978]. "Multi-Microprocessors: An Overview and Working Example," Proc.

IEEE 66, No. 2, pp. 216-228.

Gajski, D. [1979]. "Solving Banded Triangular Systems on Pipelined Machines,"

Proc. 1979 Int. Conf. Par. Proc., pp. 308-319.

Gajski, D. [1981]. "An Algorithm for Solving Linear Recurrence Systems on

Parallel and Pipelined Machines," IEEE Trans. Comput., C-30, pp. 190-206.

Gajski, D., Kuck, D., _awrie, D. and Sameh, A. [1983]. "Cedar - A Large Scale

Multiprocessor," Proc. 1983 Int. Conf. Par. Proc., pp. 524-529.

Gajskl, D., Lawrie, D., Kuck, D. and Sameh, A. [1984]. "Cedar," Proc. COMPCON

84, IEEE Comp. Soc. Conf., pp. 306-309.

Gajski, D., Sameh, A. and Wisnlenski, J. [1982]. "Iteratlve Algorithms for

Tridiagonal Matrices on a WSI-Multiprocessor," Proc. 1982 Int. Conf. Par.

Proc., pp. 82-89.

Galil, Z. and Pauli, W. [1983]. "An Efficient General-Purpose Parallel

Computer," J. ACM 30, pp. 286-299.

Gallopoulos, E. [1984]. "The Massively Parallel Processor for Problems in

Fluid Dynamics," Proc. Vector and Parallel Processors in Computational Science

II Conference, Oxford, England.

Gallopoulos, E. and McEwan, S. [1983]. "Numerical Experiments with the

Massively Parallel Processor," Proc. 1983 Int. Conf. Par. Proc., pp. 29-35.

Gannon, D. [1980]. "A Note on Pipelining a Mesh Connected Multiprocessor for

Finite Element Problems by Nested Dissection," Proc. 1980 Int. Conf. Par.

Proc., pp. 197-204.

B.18

Gannon, D. [1981]. "On Mapping Non-Uniform PDE Structures and Algorithms onto

Uniform Array Architectures", Proc. 1981 Int. Conf. Par. Proc., pp. 100-105.

Gannon, D. and Panetta, J. [1985]. "Restructuring SI_LE for the CHIP

Architecture," Parallel Computing 2. To appear.

Gannon, D., Snyder, L., and Van Rosendale, J. [1983], "Programming

Substructure Computations for Elliptic Problems on the CHiP System," in Noor

[1983], pp. 65-80.

Gannon, D. and Van Rosendale, J. [1982], "Highly Parallel Multigrid Solvers

for Elliptic PDE_s: An Experimental Analysis," ICASE Report No. 82-36, NASA

Langley Research Center.

Gannon, D. and Van Rosendale, J. [1984a]. "Parallel Architectures for

Iterative Methods on Adaptive, Block Structured Grids," in Birkhoff and

Schoenstadt [1984], pp. 93-104.

Gannon, D. and Van Rosendale, J. [1984b]. "On the Impact of Communication

Complexity in the Design of Parallel Numerical Algorithms," IEEE Trans.

Comput. C-33, pp. 1180-1194.

Gao, Q-S. and Wang, R-Q. [1983]. "Vector Computer for Sparse Matrix

Operations," Proc. 1983 Int. Conf. Par. Proc., pp. 87-89.

Gary, J. (gd.) [1984]. "CYBER 200 Applications Seminar," Proceedings of

Seminar held at NASA Goddard Space Flight Center, October, 1983, NASA-CP-2295.

Gary, J. [1977]. "Analysis of Applications Programs and Software Requirements

for High Speed Computers," in Kuck, et al. [1977], pp. 329-354.

Gary, J., McCormick, S., and Sweet, R. [1983]. "Successive Overrelaxation,

Multigrid, and Preconditioned Conjugate Gradients Algorithms for Solving a

Diffusion Problem on a Vector Computer," Appl. Math. & Comp. 13, pp. 285-309.

Gautzsch, M., Weiland, G. and Muller-Richards, D. [1980]. "Possibilities and

Problems with the Application of Vector Computers," German Research and

Testing Establishment for Aerospace.

Gehringer, E., Jones, A. and Segall, Z. [1982]. "The Cm* Testbed," Computer

15, No. i0, pp. 40-53.

Gelenbe, E., Lichnewsky, A. and Staphylopatis, A. [1982]. "Experience with

the Parallel Solution of Partial Differential Equations on a Distributed

Computing System," IEEE Trans. Comput. C-31, pp. 1157-1165.

Gentleman, W. [1975]. "Error Analysis of the QR Decomposition by Givens

Transformations," Lin. Alg. & Appl. i0, pp. 189-197.

Gentleman, W. [1978]. "Some Complexity Results for Matrix Computations on

_arallel Processors." J. ACM 25, pp. 112-115.

B.19

Gentleman, W. [1981]. "Design of Numerical Algorithms for Parallel

Processing," Presented at the Parallel Processing Conference at Bergams,

Italy.

Gentleman, W. and Kung, H. [1981]. "Matrix Triangularization by Systolic

Arrays," Proc. SPIE 298, Real-time Signal Processing IV, pp. 19-26.

Gentzsch, W. [1983]. "How to Maintain the Efficiency of Highly Serial

Algorithms Involving Recursions on Vector Computers," Proc. Conf. Vector and

Parallel Methods in Scientific Computing, Paris.

Gentzsch, W. [1984a]. "Benchmark Results on Physical Flow Problems," in

Kowalik [1984], pp. 211-228.

Gentzsch, W. [1984b]. "Vectorization of Computer Programs with Applications

to Computational Fluid Dynamics," Heyden & Son, Philadelphia, PA.

Gentzsch, W. [1984c]. "Numerical Algorithms in Computational Fluid Dynamics

on Vector Computers," Parallel Computing i, pp. 19-33.

George, A. [1972]. "An Efficient Hand-Oriented Scheme for Solving n by n Grid

Problems," Proc. 1972 FJCC, AFIPS Press, Montvale, NJ, pp. 1317-1321.

George, A. [1973]. "Nested Dissection of a Regular Finite Element Mesh," SIAM

J. Numer. Anal. i0, pp. 345-363.

George, A. [1977]. "Numerical Experiments Using Dissection Methods to Solve n

by n Grid Problems," SIAM J. Numer. Anal. 14, pp. 161-179.

George, A. and Liu, J. [1981]. "Computer Solution of Large Sparse Positive

Definite Systems," Prentice Hall, Englewood Cliffs, NJ.

George, A., Poole, W. and Voigt, R. [1978a]. "A Variant of Nested Dissection

for Solving n by n Grid Problems," SIAM J. Numer. Anal. 15, pp. 662-673.

George, A., Poole, W. and Voigt, R. [1978b]. "Analysis of Dissection

Algorithms for Vector Computers," Comput. Math. Appl. 4, pp. 287-304.

Gilmore, P. [1971]. "Numerical Solution of Partial Differential Equations by

Associative Processing". Proc. 1971 FJCC, AFIPS Press, Montvale, NJ, pp. 411-
418.

Ginsburg, M. [1982]. "Some Observations on Supercomputer Computational

Environments," Proc. 10th IMACS World Congress on Systems Simulation and

Scientific Computation, vol. I, IMACS, pp. 297-301.

Giroux, E. [1977]. "A Large Mathematical Model Implementation on the STAR-100

Computer," in Kuck, et al. [1977], pp. 287-298.

Gloudeman, I. [1984]. "The Anticipated Impact of Supercomputers on Finite

Element Analysis," Proc. IEEE 72, pp. 80-84.

B.20

Gloudeman, J., Hennrich, C. and Hodge, J. [1984]. "The Evolution of

MSC/NASTRAN and the Supercomputer for Enhanced Performance," in Kowallk

[1984], pp. 393-402.

Gloudeman, J. and Hodge, J. [1982]. "The Adaption of MSC/Nastran to a

Supercomputer," Proc. 10th IMACS World Congress on Systems Simulation and

Scientific Computation, vol. I, IMACS, pp. 302-304.

Gnoffo, P. [1982]. "A Vectorized, Finite-Volume, A_aptive-Grid Algorithm for

Navler-Stokes Calculations", in Numerical Grid Generation, J. Thompson, (Ed.),

Elsevier Science Publishing Co.

Goke, R. and Lipovskl, G. [1973]. "Banyan Networks for Partitioning on

Multlprocessor Systems," Proc. ist Ann. Symp. Computer Arch., pp. 21-30.

Golub, G. and Mayers, D. [1983]. "The Use of Preconditioning Over Irregular

Regions," Numerical Analysis Project Report No. NA-83-27, Stanford University.

Goodyear Aerospace Corp. [1974]. "Application of STARAN to Fast Fourier

Transforms," Report GER 16109, May.

Gostelow, K. and Thomas, R. [1980]. "Performance of a Simulated Dataflow

Computer," IEEE Trans. Comput. C-29, pp. 905-919.

Gottlieb, A. [1984]. "Avoiding Serial Bottlenecks in Ultraparallel MIMD

Computers," Proc. COMPCON 84, IEEE Comp. Soc. Conf., pp. 354-359.

Gottlieb, A., Grlshman, R., Kruskal, C., McAuliffe, K., Rudolph, L. and Snir,

M. [1983]. "The NYU Ultracomputer - Designing an MIMD Shared Memory Parallel

Computer," IEEE Trans. Comput. C-32, pp. 175-189.

Gottlleb, A., Lubachevsky, B. and Rudolph, L. [1983]. "Basic Techniques for

the Efficient Coordination of Very Large Numbers of Cooperating Sequential

Processors," ACM Trans. Program. Lang. Syst. 5, pp. 164-189.

Gottlieb, A. and Schwartz, J. [1982]. "Networks and Algorithms for Very-

Large-Scale Parallel Computation," Computer 15, No. i, pp. 27-36.

Gottlieb, D., Hussaini, M. and Orszag, S. [1984]. "Theory and Applications of

Spectral Methods," in Volgt, et al. [1984], pp. 1-54.

Gottlleb, D. and Orszag, S. [1977]. "Numerical Analysis of Spectral

Methods: Theory and Applications," CBMS Regional Conference Series in Applied

Mathematics 26, SLAM, Philadelphia.

Gottlleb, D. and Turkel, E. [1976]. "Boundary Conditions for Multistep Finite

Difference Methods for Time Dependent Equations," J. Comp. Phys. 26, pp. 181-

196.

Goudreau, G. L., Bailey, R. A., Hallquist, J. 0., Murray, R. C. and Sackett,

S. J. [1983]. "Efficient Large-Scale Finite Element Computations in a Cray

Environment," in Noor [1983], pp. 141-154.

B .21

Graham, M. [1976]. "An Array Computer for the Class of Problems Typified by

the General Circulation Model of the Atmosphere," Ph.D. Thesis, Department of

Computer Science, University of Illinois at Urbana - Champaign.

Graves, R. [1973]. "Partial Implicitization," J. Comp. Phys. 13, pp. 439-444.

Grear, J. and Sameh, A. [1981]. "On Certain Parallel Toeplitz Linear System

Solvers," SIAM J. Sci. Stat. Comput. 2, pp. 238-256.

Greenbaum, A. and Rodrigue, G. [1977]. "The Incomplete Choleski Conjugate

Gradient Method for the STAR (5 point Operator)," Lawrence Livermore National

Laboratory Report.

Grit, D. and McGraw, J. [1983]. "Programming Divide and Conquer on a

Multiprocessor," Lawrence Livermore National Laboratory Report No. UCRL-88710.

Grosch, C. [1978]. "Poisson Solvers on a Large Array Computer," Proc. 1978

LASL Workshop on Vector and Parallel Processors, pp. 98-132.

Grosch, C. [1979a]. "Performance Analysis of Tridiagonal Equation Solvers on

Array Computers," Department of Mathematical and Computing Sciences Technical

Report No. TR 79-4, Old Dominion University, Norfolk, VA.

Grosch, C. [1979b]. "Performance Analysis of Poisson Solvers on Array

Computers," in Jesshope and Hockney [1979], vol. 2, pp. 147-181.

Grosch, C. [1980]. "The Effect of the Data Transfer Pattern of an Array

Computer on the Efficiency of Some Algorithms for the Tridiagonal and Poisson

Problems," Presented at the Conference on Array Architectures for Computing

in the 80"s and 90"s, Hampton, Va.

Guililand, R. [1981]. "Solution of the Shallow Water Equations on the

Sphere," J. Comp. Phys. 43, pp. 79-94.

Gurd, J. and Watson, I. [1982]. "Preliminary Evaluation of a Prototype

Dataflow Computer," Proc. IFIP World Computer Congress, North Holland, pp.

545-551.

Hackbusch, W. [1978]. "On the Multigrid Method Applied to Difference

Equations," Computing 20, pp. 291-306.

Hackbusch, W. and Trottenberg, U. (Eds.) [1982]. "Multigrid Methods,"

Springer-Verlag, Berlin.

Hafez, M. and Lovell, D. [1983]. "Improved Relaxatiom Schemes for Transonic

Potential Calculations," AIAA Paper 83-0372.

Hafez, M. and Murman, E. [1978]. "Artificial Compressibility Methods for

Numerical Solution of Transonic Full Potential Equation," AIAA llth Fluid and

Plasma Dynamics Conference, Seattle, WA.

Hafez, M. and South, J. [1979]. "Vectorization of Relaxation Methods for

Solving Transonic Full Potential Equations," Flow Research Report, Flow

Research, Inc., Kent, WA.

B.22

Halada, L. [1980]. "A Parallel Algorithm for Solving Band Systems of Linear

Equations," Proc. 1980 Int. Conf. Par. Proc., pp. 159-160.

Halada, L. [1981]. "A Parallel Algorithm for Solving Band Systems and Matrix

Inversion," CONPAR 81, Conf. Proc., Lecture Notes in Computer Science III, W.

Handler, (Ed.), Springer-Verlag, pp. 433-440.

Halin, H., Buhrer, R., Halg, W., Benz, H., Bron, B., Brundiers, H., Isaccson,

A., and Tadian, M. [1980]. "The ETHM Multiprocessor Project: Parallel

Simulation of Continuous System," Simulation 35, pp. 109-123.

Handler, W., Hofmann, E. and Schneider, H. [1976]. "A General Purpose Array

with a Broad Spectrum of Applications," in Informatik-Fachbrichte Berlin-

Heidelbergs, Springer-Verlag.

Hankey, W. and Shang, J. [1982]. "Vector Processors and CFD," in Cray

Research, Inc. [1982], pp. 49-66.

Happ, H., Potte, C. and Wirgan, K. [1978]. "Parallel Processing for Large

Scale Transient Stability," Proc. IEEE Can. Conf. Comm. Power, pp. 204-207.

Harding, A. and Carling, J. [1984]. "The Three-Dimensional Solution of the

Equations of Flow and Heat Transfer in Glass-Melting Tank Furnaces: Adapting

to the DAP," in Paddon [1984], pp. 115-133.

Hatzopoulos, M. [1982]. "Parallel Linear System Solvers for Tridiagonal

Matrices," in Evans [1982a], pp. 389-394.

Hayes, L. [1974]. "Comparative Analysis of Iterative Techniques for Solving

Laplace's Equation on the Unit Square on a Parallel Processor." M. S. Thesis,

Department of Mathematics, University of Texas at Austin.

Hayes, L. and Devloo, P. [1984]. "An Overlapping Block Iterative Scheme for

Finite Element Methods, Department of Aerospace Engineering and Engineering

Mechanics, University of Texas at Austin.

Haynes, L., Lau, R., Siewiorek, D. and Mizell, D. [1982]. "A Survey of

Highly Parallel Computing," Computer 15, No. i, pp. 9-24.

Heller, D. [1974]. "A Determinant Theorem with Applications to Parallel

Algorithms," SIAM J. Numer. Anal. ii, pp. 559-568.

Heiler, D. [1976]. "Some Aspects of the Cyclic Reduction Algorithm for Block

Tridiagonal Linear Systems," SIAM J. Numer. Anal. 13, pp. 484-496.

Heller, D. [1978]. "A Survey of Parallel Algorithms in Numerical Linear

Algebra," SIAM Rev. 20, pp. 740-777.

Heller, D. and Ipsen, I. [1983]. "Systolic Networks for Orthogonal

Decompositions," SIAM J. Sci. Stat. Comput. 4, pp. 261-269.

Heller, D., Stevenson, D. and Traub, J. [1976]. "Accelerated Iterative

Methods for the Solution of Tridiagonal Linear Systems on Parallel Computers,"

J. ACM 23, pp. 636-654.

B.23

Hellier, R. [1982]. "DAP Implementation of the WZ Algorithm", Comp. Phys.

Comm. 26, pp. 321-323.

Hemker, P., Kettler, R., Wesseling, P. and de Zeeuw, P. [1983]. "Multigrld

Methods: Development of Fast Solvers," Appl. Math. & Comp. 13, pp. 311-326.

Hendry, J. and Delves, L. [1984]. "GEM Calculations on the DAP," in Paddon

[1984], pp. 185-194.

Hertzberger, L., Gosman, D., Kieft, G., Por, G., Schoorel, M. and Wiggers, L.

[1981]. "FAMP System," Comp. Phys. Comm. 22, pp. 253-260.

Hestenes, M. and Stiefel, E. [1952]. "Methods of Conjugate Gradients for

Solving Linear Systems," J. Res. Nat. Bur. Standards Sect. B, 49, pp. 409-436.

Hibbard, P. and Ostlund, N. [1980]. "Numerical Computation on Cm*," Proc.

1980 Int. Conf. Par. Proc., pp. 135-136.

Higbie, L. [1978]. "Speeding Up FORTRAN (CFT) Programs on the CRAY-I," CRAY

Research Inc. Pub. 2240207.

Hintz, R. and Tote, D. [1972]. "Control Data STAR-100 Processor Design,"

Proc. COMPCON 72, IEEE Comp. Soc. Conf., pp. 1-4.

Hiraki, K., Shimada, T. and Nishlda, K. [1984]. "A Hardware Design of the

SIGMA-l, A Data Flow Computer for Scientific Computations," Proc. 1984 Int.

Conf. Par. Proc., pp. 524-531.

Hobbs, L., Theis, D., Trimble, J., Titus, H., and Highberg, D., [1970].

"Parallel Processor Systems: Technologies and Applications," Spartan Books.

Hockney, R. [1965]. "A Fast Direct Solution of Poisson's Equation Using

Fourier Analysis," J. ACM 12, pp. 95-113.

Hockney, R. [1970]. "The Potential Calculation and Some Applications,"

Methods Computational Phys. 9, pp. 135-211.

Hockney, R. [1977]. "Super-Computer Architecture," Proc. Infotech State of

the Art Conf. on Future Systems.

Hockney, R. [1979]. "The Large Parallel Computer and University Research,"

Cont. Phys. 20, pp. 149-185.

Hockney, R. [1982a]. "Optimizing the FACR (i) Poisson Solver on Parallel

Computers," Proc. 1982 Int. Conf. Par_ Proc., pp. 62-71.

Hockney, R. [1982b]. "Poisson Solving on Parallel Computers," Presented at

the IBM Symposium on Vector Computers and Scientific Computing, Rome.

Hockney, R. [1982c]. "Characterization of Parallel Computers and Algorithms,"

Comp. Phys. Comm. 26, pp. 285-291.

B.24

Hockney, R. [1983a]. "Characterization of Parallel Computers," Proceedings of

World Congress on System Simulation and Scientific Computation, International

Association for Mathematics and Computers in Simulation, vol. l, pp. 269-271.

Hockney, R. [1983b]. "Characterizing Computers and Optimizing the FACR(1)

Poisson Solver on Parallel Unicomputers," IEEE Trans. Comp. C32, pp. 933-941.

Hockney, R. [1984a]. "Performance of Parallel Computers," in Kowalik [1984],

pp. 159-176.

Hockney, R. [1984b]. "Optimizing the FACR(1) Poisson-Solver on Parallel

Computers," in Paddon [1984], pp. 45-65.

Hockney, R. and Jesshope, C. [1981]. "Parallel Computers: Architecture,

Programming and Algorithms." Adam Hilger, Ltd., Bristol.

Holland, J. [1959]. "A Universal Computer Capable of Executing an Arbitrary

Number of Sub-Programs Simultaneously," Proc. European Joint Comp. Conf. pp.

108-113.

Hord, R. [1982]. "The llliac IV: The First Supercomputer," Computer Science
Press.

Hoshino, T. Kawai, T., Shirakawa, T., Higashino, J., Yamaoka, A., Ito, H.,

Sato, T., and Sawada, K. [1983]. "PACS: A Parallel Microprocessor Array for

Scientific Calculations," ACM Tran. on Comp. Sys. l, pp. 195-221.

Hoshino, T., Shirakawa, T., Kamimura, T., Kageyama, T., Takenouochi, K. Abe,

H., Sekiguchi, S., Oyanagi, Y., and Toshio, K. [1983]. "Highly Parallel

Procesor Array "PAX".for Wide Scientific Applications," Proc. 1983 Int. Conf.

Par. Proc., pp. 95-105.

Hotovy, S. and Dickson, L. [1979]. "Evaluation of a Vectorizable 2-D

Transonic Finite Difference Algorithm," AIAA Paper 79-0276.

Housors, E. and Wing, O. [1984]. "Pseudo-Conjugate Directions for the

Solution of the Nonlinear Unconstrained Optimization Problem on a Parallel

Computer," J. Optimization Theory and Applications 42, pp. 169-180.

Huang, J. and Wing, O. [1979]. "Optimal Parallel Triangulation of a Sparse

Matrix," IEEE Trans. Circuits and Syst. CAS-26, pp. 726-732.

Huang, K. and Abraham, J. [1982]. "Efficient Parallel Algorithms for

Processor Arrays," Proc. 1982 Int. Conf. Par. Proc., pp. 271-279.

Huang, K. and Abraham, J. [1984]. "Fault-Tolerant Algorithms and Their

Application to Solving Laplace Equations," Proc. 1984 Int. Conf. Par. Proc.,

pp. 117-122.

Huff, R., Dawson, J. and Culler, G. [1982], "Plasma Physics on an Array

Processor," in Rodrigue [1982], pp. 365-396.

Hunt, D. [1979]. "Application Techniques for Parallel Hardware," in Jesshope

and Hockney [1979], pp. 205-219.

B.25

Hunt, D., Webb, S. and Wilson, A. [1981]. "Applications of a Parallel

Processor to the Solution of Finite Difference Problems," in Schultz [1981],

pp. 339-344.

Hwang, K. [1982]. "Partitioned Matrix Algorithms for VLSI Arithmetic

Systems," IEEE Trans. Comput. C-31, pp. 1215-1224.

Hwang, K. and Briggs, F. [1984]. "Parallel Computer Architecture," McGraw

Hill, to appear.

Hwang, K. and Cheng, Y.-H. [1980]. "VLSI Computing Structures for Solving

Large Scale Linear Systems of Equations," Proc. 1980 Int. Conf. Par. Proc.,

pp. 217-227.

Hwang, K., Su, S. and Ni, L. [1981]. "Vector Computer Architecture and

Processing Techniques," Advances in Computers 20, pp. 115-197.

Hyafil, L. and Kung, H. [1974]. "Parallel Algorithms for Solving Triangular

Linear Systems with Small Parallelism," Department of Computer Science Report,

Carnegie-Mellon University.

Hyafil, L. and Kung, H. [1975]. "Bounds on the Speed-ups of Parallel

Evaluation of Recurrences," Proc. Second USA - Japan Comp. Conf., pp. 178-182.

Hyafil, L. and Kung, H. [1977]. "The Complexity of Parallel Evaluation of

Linear Recurrences," J. ACM 24, pp. 513-521.

IBM Corp. [1978]. "Vector Processing Subsystem (VPSS) Programmers Guide," IBM

Ref. Manual GC24-3715-0.

Inouye, M. (Ed.). [1977]. "Future Computer Requrements for Computational

Aerodynamics," Workshop at NASA-Ames, Conf. Publ. No. 2032.

Ipsen, I. [1984]. "A Parallel QR Method Using Fast Givens" Rotations,"

Department of Computer Science Report No. RR 299, Yale University.

Jameson, A. and Turkel, E. [1979]. "Implicit Schemes and LU Decompositions,"

Math. Comp. 37, pp. 385-397.

Jennings, A. [1966]. "A Compact Storage Scheme for the Solution of Symmetric

Linear Simulataneous Equations," Computer Journal 9, pp. 281-285.

Jess, J. and Kees, H. [1982]. "A Data Structure for Parallel L/U

Decomposition," IEEE Trans. Comput. C-31, pp. 231-239.

Jesshope, C. [1977]. "Evaluation of llliac: Overlap, Non-Overlap," Institute

for Advanced Computation Newsletter vol. i, pp. 4-5.

Jesshope, C. [1980a]. "The Implementation of the Fast Radix 2 Transforms on

Array Processors," IEEE Trans. Comput. C-29, pp. 20-27.

Jesshope, C. [1980b]. "Some Results Concerning Data Routing in Array

Processors," IEEE Trans. Comput. C-29, pp. 659-662.

B.26

Jesshope, C. and Craigie, J. [1979]. "Some Principles of Parallelism in

Particle and Mesh Modelling," in Jesshope and Hockney [1979], vol. 2, pp. 221-

236.

Jesshope, C. and Hockney, R. (Eds.). [1979]. "Infotech State of the Art

Report: Supercomputers, vol. 1 & 2," Maidenhead: Infotech Int. Ltd.

Johnson, J. [1983]. "ETA Leaves Home," Datamation 29, No. i0, pp. 74-86.

Johnson, O. [1981]. "Vector Function Chainer Software for Banded

Preconditioned Conjugate Gradient Calculations," Advances in Computer Methods

for Partial Differential Equations - IX, Proc. lOth IMACS World Congress on

Systems Simulation and Scientific Computation, vol. i, IMACS, pp. 243-245.

Johnson, O. [1984]. "Three-Dimensional Wave Equation Computations on Vector

Computers," Proc. IEEE 72, pp. 90-95.

Johnson, O. and Edwards, M. [1981]. "Progress on the 3D Wave Equation Program

for the CDC Cyber 205," Seismic Acoustics Lab., Fourth year Semi-Annual Prog.

Rep., vol. 7, pp. 11-15.

Johnson, O. and Lewitt, M. [1982]. "PPCG Software for the CDC CYBER 205," in

Control Data Corp. [1982].

Johnson, 0., Micchelli, C. and Paul, G. [1983]. "Polynomial Preconditioners

for Conjugate Gradient Calculations," SIAM J. Numer. Anal. 20, pp. 362-376.

Johnson, O. and Paul, G. [1981a]. "Optimal Parametrlzed Incomplete Inverse

Preconditioning for Conjugate Gradient Calculations," IBM Report RC 8644,

Yorktown Heights, NY.

Johnson, O. and Paul, G. [1981b]. "Vector Algorithms for Elliptic Partial

Differential Equations Based on the Jacobi Method," in Schultz [1981], pp.

345-351.

Johnsson, L. [1984a]. "Highly Concurrent Algorithms for Solving Linear

Systems of Equations," in Birkhoff and Schoenstadt [1984], pp. 105-126.

Johnsson, L. [1984b]. "Odd-Even Cyclic Reduction on Ensemble Architectures

and the Solution of Tridiagonal Systems of Equations," Department of Computer

Science Report No. YALEU/CSD/RR-339, Yale University.

Jones, A., Chansler, R., Durham, I., Feller, P., Scelza, D., Schwans, K., and

Vegdahl, S. [1978]. "Programming Issues Raised by a Multi-Microprocessor,"

Pro¢. IEEE 66, No. 2, pp. 229-237.

Jones, A. and Gehringer, E. (Eds.) [1980]. "The Cm* Multlprocessor Project:

A Research Review," Computer Science Department Report CMU-CS-80-131,

Carnegie-Mellon University.

Jones, A. and Schwartz, P. [1980]. "Experience Using Multiprocessor

Systems: A Status Report," Computing Surveys 12, pp. 121-165.

B.27

Jordan, H. [1978]. "A Special Purpose Architecture for Finite Element

Analysis," Proc. 1978 Int. Conf. Par. Proc., pp. 263-66.

Jordan, H. [1978]. "The Finite Element Machine Programmer's Reference

Manual," Department of Computer Science Report No. CSDG 78-2, University of

Colorado, Boulder.

Jordan, H. [1981]. "Parallelizing a Sparse Matrix Package," Computer Systems

Design Group Report No. CSDG 81-1, University of Colorado, Boulder.

Jordan, H. [1983]. "Performance Measurements on HEP - A Pipelined MIMD

Computer," Proc. 10th. Ann. Int. Symp. Conp. Arch.

Jordan, H. [1984]. "Experience with Pipellned Multiple Instruction Streams,"

Proc. IEEE 72, pp. 113-123.

Jordan, H. and Podsiadlo, D. [1980]. "A Conjugate Gradient Program for the

Finite Element Machine," Department of Computer Science Report No. CSDG,

University of Colorado, Boulder.

Jordan, H. and Sawyer, P. [1979]. "A Multimicroprocessor System for Finite

Element Structural Analysis," in Trends in Computerized Structural Analysis

and Synthesis, A. Noor and H. McComb (Eds.), Pergamon Press, New York, NY, pp.
21-29.

Jordan, H., Scalabrin, M. and Calvert, W. [1979]. "A Comparison of Three

Types of Multlprocessor Algorithms," Proc. 1979 Int. Conf. Par. Proc., pp.
231-38.

Jordan, T. [1974]. "A New Parallel Algorithm for Diagonally Dominant Trl-

diagonal Matrices," Los Alamos National Laboratory Report.

Jordan, T. [1979]. "A Performance Evaluation of Linear Algebra Software in

Parallel Architectures," in Performance Evaluation of Numerical Software, L.

Fosdick. (Ed.), North Holland, pp. 59-76.

Jordan, T. [1982a], "A Guide to Parallel Computation and some CRAY-I

Experiences," in Rodrigue [1982], pp. 1-50.

Jordan, T. [1982b]. "CALMATH: Some Problems and Applications," in Cray

Research, Inc. [1982], pp. 5-8.

Jordan, T. [1984]. "Conjugate Gradient Preconditioners for Vector and

Parallel Processors," in Birkhoff and Schoenstadt [1984], pp. 127-i39.

Jordan, T. and Fong, K. [1977]. "Some Linear Algebraic Algorithms and their

Performance on the CRAY-I," in Kuck, et al. [1977], pp. 313-316.

Kalnay, E. and Takocs, L. [1982]. "A Simple Atmospheric Model on the Sphere

with 100% Parallelism," NASA-Goddard Modeling and Simulation Facility Research

Review [1980-81], pp. 89-95.

B.28

Kalney-Rivas, E., Bayliss, A. and Storch, J. [1976]. "Experiments with the

Fourth Order GISS Model of the Global Atmosphere," Proc. Conf. on Simulation

of Large-Scale Atmospheric Processes, Hamsburg, Germany.

Kamath, C. and Sameh, H. [1984]. "The Preconditioned Conjugate Gradient

Algorithm on a Multiprocesor," in Vichnevetsky and Stepleman [1984], pp. 210-

217.

Kaneda, Y. and Kohata, M. [1982]. "Highly Parallel Computing of Linear

Equations on the Matrix-Broadcast Memory Connected Array Processor System,"

Proc. 10th IMACS World Congress on Systems Simulation and Scientific

Computation, vol. i, IMACS, pp. 320-322.

Kant, R. and Kimura, T. [1978]. "Decentralized Parallel Algorithms for

Matrix Computations," Proc. 5th Annual Symp. Comp. Arch., pp. 96-100.

Kapauan, A., Wang, K., Gannon, D., Cuny, J. and Snyder, L. [1984]. "The

Pringle: An Experimental System for Parallel Algorithm and Software Testing,"

Proc. 1984 Int. Conf. Par. Proc., pp. 1-6.

Kapur, R. and Browne, J. [1981]. "Block Tridiagonal Linear Systems on a

Reconfigurable Array Computer," Proc. 1981 Int. Conf. Par. Proc., pp. 92-99.

Kapur, R. and Browne, J. [1984]. "Techniques for Solving Block Tridiagonal

Systems on Reconfigurable Array Computers," SlAM J. Sci. Stat. Comp. 5, pp.

701-719.

Kasahara, A. [1984]. "Recent Mathematical and Computational Developments in

Numerical Weather Prediction," in Parter [1984], pp. 85-126.

Kascic, M. [1978]. "A Direct Poisson Solver on STAR," Proc. 1978 LASL

Workshop on Vector and Parallel Processors.

Kascic, M. [1979a]. "Vector Processing on the CYBER 200," in Jesshope and

Hockney [1979], pp. 237-270.

Kascie, M. [1979b]. "Vector Processing on the CYBER 200 and Vector Numerical

Linear Algebra," Proc. 3rd GAMM Conf. on Numeric Mathematics in Fluid

Dynamics.

Kascic, M. [1983a]. "Anatomy of a Poisson Solver," Proc. Parallel 83 Conf.,

Berlin.

Kascic, M. [1983b]. "Syntactic and Semantic Vectorization: Whence Cometh

Intelligence in Supercomputing?" Proc. 1983 Summer Computer Simulation Conf.,

Vancouver.

Kascic, M. [1984a]. "A Performance Survey of the CYBER 205," in Kowalik

[1984], pp. 191-210.

Kascic, M. [1984b]. "Vorton Dynamics: A Case Study of Developing a Fluid

Dynamics Model for a Vector Processor," Parallel Computing i, pp. 35-44.

B.29

Kascic, M. [1984c]. "Interplay between Computer Methods and Partial

Differential Equations: Iterative Methods as Exemplar," in Vichnevetsky and

Stepleman [1984], pp. 379-382.

Kashiwagi, H. [1984]. "Japanese Super-Speed Computer Project," in Kowallk

[1984], pp. 117-125.

Keller, J. and Jameson, A. [1978]. "Preliminary Study of the Use of the STAR-

i00 Computer for Transonic Flow Calculations," AIAA paper 78-12.

Kendall, R., Morrell, G., Peaceman, D., Silliman, W. and Watts, J. [1983].

"Development of a Multiple Application Reservoir Simulator for Use on a Vector

Computer," SPE Paper 11483, SPE Middle East Oil Tech. Conf., Bahrain.

Kendall, R., Nolen, J. and Stanat, P. [1984]. "The Impact of Vector

Processors on Petroleum Resevoir Simulation," Proc. IEEE 72, pp. 85-89.

Kenichi, M. [1981]. "A Vector-Oriented Finite-Difference Scheme for

Calculating Three-Dimensional Compressible Laminar and Turbulent Boundary

Layers on Practical Wing on Figurations," AIAA Paper 81-1020.

Kershaw, D. [1982], "Solution of Single Tridlagonal Linear Systems and

Vectorization of the ICCG Algorithm on the CRAY-I," in Rodrigue [1982], pp.
85-89.

Killough,J. [1979]. "The Use of VectorProcessorsin ReservoirSimulation,"

Proc. SPE SymposiumResevoirSimulation,Denver.

Kimura, T. [1979]. "Gauss-Jordan Elimination by VLSI Mesh-Connected

Processors,"in Jesshopeand Hockney [1979],Vol. 2, pp. 271-290.

Kincaid, D., Carey, G., Oppe, T., Sepehenoori, K., and Young, D. [1984].

"Combining Finite Element and Iterative Methods for Solving Partial

Differential Equations on Advanced Computer Architectures," in Vichnevetsky

and Stepleman [1984], pp. 375-378.

Kincaid, D. and Oppe, T. [1983]. "ITPACK on Supercomputers," in Numerical

Methods, A. Dold and B. Eckman (Eds.), Springer-Verlag, New York, 1983, pp.

151-161.

Kincaid, D., Oppe, T. and Young, D. [1982]. "Adapting ITPACK routines for Use

on a Vector Computer," in Control Data Corp. [1982].

Kincaid, D., Oppe, T. and Young, D. [1984]. "Vector Computations for Sparse

Linear Systems," Center for Numerical Analysis Report No. CNA 189, University

of Texas at Austin.

Kincaid, D. and Young, D. [1983]. "Adapting Iterative Algorithms for Solving

Large Sparse Linear Systems for Efficient Use of the CDC CYBER 205," in Gary

[1984], pp. 147-160.

Knight, D. [1983]. "A Hybrid Explicit-Implicit Numerical Algorithm for the

Three-Dimensional Compressible Navier-Stokes Equations," AIAA 21st Aerospace

Sciences Meeting, January, Reno, Nevada. AIAA Paper No. 83-0223.

B.30

Knight, J. and Dunlop, D. [1983]. "On the Design of a Special Purpose

Scientific Programming Language," Softw. Pract. Exp. 13, pp. 893-907.

Knight, J., Poole, W. and Voigt, R. [1975]. "System Balance Analysis for

Vector Computers," Proc. 1975 ACM National Conference, pp. 163-168.

Knott, J. [1983]. "A Performance Analysis of the PASLIB Version 2.1 SEND and

RECV Routines on the Finite Element Machine," NASA Contractor Report 172205,

NASA Langley Research Center.

Kober, R. and Kuznia, C. [1978]. "SMS - A Multiprocessor Architecture for

High Speed Numerical Computations," Proc. 1978 Int. Conf. Par. Proc., pp. 18-
23.

Kogge, P. [1973]. "Maximal Rate Pipelined Solutions to Recurrence Problems,"

Proc. First Ann. Symp. on Comp. Arch., pp. 71-76.

Kogge, P. [1974]. "Parallel Solution of Recurrence Problems," IBM J. Res.

Dev. 18, pp. 138-148.

Kogge, P. [1981]. "The Architecture of Pipelined ComPuters," McGraw Hill Book

Company, New York, NY.

Kogge, P. and Stone, H. [1973]. "A Parallel Algorithm for the Efficient

Solution of a General Class of Recurrence Equations," IEEE Trans. Comput. C-

22, pp. 786-793.

Konrad, V. and Wallach, Y. [1977]. Iterative Solution of Linear Equations on

a Parallel Processor System," IEEE Trans. Comput. C-26, pp. 838-847.

Kopp, H. [1977], "Numerical Weather Forecast with the Multi-Microprocessor

System SMS201". In Feilmeler [1977], pp. 265-268.

Korn, D. and Lambiotte, J. [1979]. "Computing the Fast Fourier Transform on a

Vector Computer," Math. Comp. 33, pp. 977-992.

Kowalik, J. [1983]. "Preliminary Experience with Multlple-Instructlon Multiple

Data Computation," in Noor [1983], pp. 49-54.

Kowalik, J. (Ed.) [1984]. "Proceedings of the NATO Workshop on High Speed

Computations," West Germany, NATO ASI Series, vol. F-7, Springer-Verlag,
Berlin.

Kowalik, J. and Kumar, S. [1982]. "An Efficient Parallel Block Conjugate

Gradient Method for Linear Equations," Proc. 1982 Int. Conf. Par. Proc., pp.
47-52.

Kowalik, J., Kumar, S., Kamgnia, E. [1984]. "An Implementation of the Fast-

Givens Transformations on a MIMD Computer," Appl. Math. Polish Academy of

Science, to appear.

Kowalik, J., Lord, R. and Kumar, S. [1984]. "Design and Performance of

Algorithms for MIMD Parallel Computers," in Kowallk [1984], pp. 257-276.

B.31

Kuck, D. [1976]. "Parallel Processing of Ordinary Programs," Advances in

Computers 15, Academic Press, NY., pp. 119-179.

Kuck, D. [1977]. '_ Survey of Parallel Machine Organization and Programming,"

ACM Computing Surveys 9, pp. 29-59.

Kuck, D. [1978]. "The Structure of Computers and Computation," John Wiley and

Sons, New York, NY.

Kuck, D., Budnick, P., Chen, S., Davis, E., Han, J., Kraska, P., Lawrie, D.,

Muraoka, Y., Strehendt, R. and Towle, R. [1973]. "Measurement of Parallelism

in Ordinary Fortran Programs," Proc. Sagamore Conf. Parallel Processing, pp.

23-36.

Kuck, D. and Gajski, D. [1984]. "Parallel Processing of Sparse Structures,"

in Kowalik [1984], pp. 229-244.

Kuck, D., Lawrie, D. and Sameh, A., [Eds.) [1977]. "High Speed Computer and

Algorithm Organization," Academic Press, New York, NY.

Kuck, D., McGraw, J. and Wolfe, M. [1984]. "A Debate: Retire FORTRAN?"

Physics Today 37, No. 5, pp. 66-75.

Kuck, D., Sameh, A., Cytron, R., Veidenbaum, A., Polychronopoulos, C., Lee,

G., McDaniel, T., Leasure, B., Beckman, C., Davies, J., and Kruskal, C.

[1984]. "The Effects of Program Restructuring Algorithm Change and

Architecture Choice on Program Performance," Proc. 1984 Int. Conf. Par. Proc.,

pp. 129-138.

Kuck, D. and Stokes, R. [1982]. "The Burroughs Scientific Processor (BSP),"

IEEE Trans. Comput. C-31, pp. 363-376.

Kuhn, R. and Padua, D. [1981]. "Parallel Processing," IEEE Computer Society

Press.

Kumar, A., Graves, R. and Weilmuenster, K. [1980]. "User's Guide for

Vectorized Code EQUIL for Calculating Equilibrium Chemistry on Control Data

STAR-100 Computer," NASA Tech. Memo. 80192, NASA Langley Research Center.

Kumar, A., Rudy, D., Drummond, J. and Harris, J. [1982]. "Experiences with

Explicit Finite Difference Schemes for Complex Fluid Dynamics Problems on

STAR-100 and CYBER 203 Computers," in Control Data Corp. [1982].

Kumar, S. [1982]. "Parallel Algorithms for Solving Linear Equations on MIMD

Computers," Ph.D. Thesis, Computer Science Department, Washington State

University.

Kumar, S. and Kowalik, J. [1984]. "Parallel Factorization of a Positive

Definite Matrix on an MIMD Computer," Proc. 1984 Int. Conf. Par. Proc., pp.

410-416.

Kung, H. [1976]. "Synchronized and Asynchronous Parallel Algorithms for

Multi-processors," Algorithms and Complexity, pp. 153-200.

B.32

p

Kung, H. [1979]. "Let's Design Algorithms for VLSI Systems," Proc. Conf. Very

Large Scale Integration, California Institute of Technology, pp. 65-90.

Kung, H. [1980]. "The Structure of Parallel Algorithms," Advances in

Computers 19, M. Yovitts (Ed.), Academic Press, pp. 65-112.

Kung, H. [1982]. "Why Systolic Architectures?" Computer 15, No. i, pp. 37-

46.

Kung, H. [1984]. "Systolic Algorithms," in Parter [1984], pp. 127-140.

Kung, H. and Leiserson, C. [1979]. "Systolic Arrays (for VLSI)," Sparse

Matrix Proc. (1978), I. Duff and G. Stewart, (Eds.), SIAM, pp. 256-282.

Kung, H., Sproull, R. and Steele, G. (Eds.), [1981]. "VLSI Systems and

Computations," Computer Science Press, Rockville, MD.

Kung, H. and Stevenson, D. [1977], "A Software Technique for Reducing the

Routing Time on a Parallel Computer with a Fixed Interconnection Network," in

Kuck, et al. [1977], pp. 423-433.

Kung, H. and Yu, S. [1982]. "Integrating High-Performance Special-Purpose

Devices into a System," Presented at the IBM Symposium on Vector Computers and

Scientific Computing, Rome.

Kung, S.-Y., Arun, K., Bhuskerio, D. and Ho, Y. [1981]. "A Matrix Data Flow

Language/Architecture for Parallel Matrix Operations Based on Computational

Wave Concept," in H. Kung, et al. [1981].

Lambiotte, J. [1975]. "The Solution of Linear Systems of Equations on a

Vector Computer," Ph.D. Dissertation, University of Virginia.

Lambiotte, J. [1979]. "The Development of a STAR-100 Code to Perform a 2-D

FFT." Proc. Lawrence Livermore Lab. Conf. Sci. Compt.

Lambiotte, J. [1983]. "Efficient Sparse Matrix Multiplication Scheme for the

CYBER 203," in Gary [1984], pp. 243-256.

Lambiotte, J. and Howser, L. [1974]. "Vectorization on the STAR Computer of

Several Numerical Methods for a Fluid Flow Problem." NASA TN D-7545, Langley

Research Center.

Lambiotte, J. and Voigt, R. [1975]. "The Solution of Tridiagonal Linear

Systems on the CDC STAR-IO0 Computer," ACM Trans. Math. Softw. i, pp. 308-329.

Larson, J. [1984]. "Multitasking on the CRAY X-MP-2 Multiprocessor," Computer

17, No. 7, pp. 62-69.

Law, K. [1982]. "Systolic Systems for Finite Element Methods," Department of

Civil Engineering Report No. R-82-139, Carnegie-Mellon University.

Lawrence Livermore National Laboratory. [1979]. "The S-I Project," Lawrence

Livermore National Laboratory Report No. UCID-18619.

B.33

Lawrie, D., Layman, T., Baer, D. and Randall, J. [_1975]. "Glypnir - A

Programming Language for llliac IV," Comm. ACM 18, pp. 157-164.

Lawrie, D. and Sameh, A. [1983]. "Applications of Structural Mechanics on

Large-Scale Multiprocessor Computers," in Noor [1983], pp. 55-64.

Lawrie, D. and Sameh, A. [1984]. "The Computation and Communication

Complexity of a Parallel Banded System Solver," ACM Trans. Math. Softw. 10,

pp. 185-195.

Leca, P., and Roy, P. [1983]. "Simulation Numerique de la Turbulence sur un

systeme Multi-Processor," First. Int. College on Vector and Parallel Methods,
Paris.

Lee, J. [1980]. "Three-Dimensional Finite Element Analysis of Layered Fiber-

Reinforced Composite Materials," Computers and Structures, 12, p. 319.

Lee, R. [1977]. "Performance Bounds in Parallel Processor Organizations," in

Kuck, et al. [1977], pp. 453-455.

Leuze, M. [1984a]. "Parallel Triangularization of Substructured Finite

Element Problems," ICASE Report No. 84-47, NASA Langley Research Center.

Leuze, M. [1984b]. "Parallel Triangularization of Symmetric Sparse Matrices

by Gaussian Elimination," To appear.

Leuze, M. and Saxton, L. [1983]. "On Minimum Parallel Computing Times for

Gaussian Elimination," Congressus Numerantium 40, pp. 169-179.

Levesque, J. and Brode, B. [1981]. "Efficient Fortran Techniques for Vector

Processors," Pacifica-Sierra Research Corp., Seminar Workbook.

Levine, R. [1982]. "Supercomputers," Sci. Amer. 246, January, pp. 118-135.

Lichnewsky, A. [1982]. "Sur la Resolution de Systems Lineares Issus de la

Method des Elements Finis Par une Multiprocessors," INRIA Report No. 119.

Lichnewsky, A. [1983]. "Some Vector and Parallel Implementations for Linear

Systems Arising in PDE Problems," Presented at the SIAM Conference on Parallel

Processing for Scientific Computing, Norfolk, VA, November.

Lichnewsky, A. [1984]. "Some Vector and Parallel Implementations for

Preconditioned Conjugate Gradient Algorithms," in Kowalik [1984], pp. 343-359.

Liles, D., Mahaffy, J. and Giguere, P. [1984]. "An Approach to Fluid

Mechanics Calculations on Serial and Parallel Computer Architectures," in

Parter [1984], pp. 141-160.

Lincoln, N. [1982]. "Technology and Design Tradeoffs in the Creation of a

Modern Supercomputer," IEEE Trans. Comput. C-31, pp. 349-362.

Lincoln, N. [1983]. "Supercomputers = Colossal Computations + Enormous

Expectations + Renowned Risk," Computer 16, No. 5, pp. 38-47.

B.34

Lindt, B. and Agerwala, T. [1981]. "Communication Issues in the Design and

Analysis of Parallel Algorithms," IEEE Trans. Softw. Eng. SE-7., pp. 174-188.

Lipitakis, E. [1984]. "Solving Elliptic Boundary Value Problems on Parallel

Processors by Approximate Inverse Matrix Semi-Direct Methods Based on the

Multiple Explicit Jacobi Iteration," Comp. Math. i0, pp. 171-184.

Lipovski, G. and Dory, K. [1978]. "Developments and Directions in Computer

Architecture," Computer ii, No. 8, pp. 54-67.

Lipovskl, G. and Tripathi, A. [1977]. "A Reconfigurable Varistructure Array

Processor," Proc. 1977 Int. Conf. Par. Proc., pp. 165-174.

Liu, J. [1978]. "The Solution of Mesh Equations on a Parallel Computer,"

Department of Computer Science Report CS-78-19, Waterloo University.

Logan, D., Maples, C., Weaver, D and Rathbun, W. [1984]. "Adapting Scientific

Programs to the MIDAS Multiprocessor System," Proc. 1984 Int. Conf. Par.

Proc., pp. 15-24.

Lomax, H. [1981]. "Some Prospects for the Future of Computational Fluid

Dynamics," AIAA Comp. Fluid Dyn. Conference, June.

Lomax, H. and Pulliam, T. [1982], "A Fully Implicit Factored Code for

Computing Three Dimensional Flows on the llliac IV," in Rodrigue [1982], pp.
217-250.

Lord, R., Kowalik, J. and Kumar, S. [1980]. "Solving Linear Algebraic

Equations on a MIMD Computer," Proc. 1980 Int. Conf. Par. Proc., pp 205-210.

Lord, R., Kowalik, J. and Kumar, S. [1983]. "Solving Linear Algebraic

Equations on an MIMD Computer," J. ACM 30, pp. 103-117.

Lorin, H. [1972]. "Parallelism in Hardware and Software," Prentice-Hall.

Lubachevsky, B. and Mitra, D. [1984]. "Chaotic Parallel Computations of Fixed

Points of Nonnegatlve Matrices of Unit Spectral Radius," Proc. 1984 Int. Conf.

Par. Proc., pp. i09-i16_

Luk, F. [1980]. "Computing the Singular Value Decomposition on the llliac

IV." ACM Trans. Math. Softw. 6, pp. 524-539.

Lundstrom, S. and Barnes, G. [1980]. "A Controllable MIMD Architecture,"

Proc. 1980 Int. Conf. Par. Proc., pp. 19-27.

MacCormack, R. and Stevens, K. [1976]. "Fluid Dynamics Applications of the

ILLIAC IV Computer,,' in Computational Methods and Problems in Aeornautical

Fluid Dynamics, Academic Press_ New York, pp. 448-465.

Madsen, N. and Rodrigue, G. [1975]. "Two notes on Algorithm Design for the

CDC STAR-100," Lawrence Livermore National Laboratory, Tech. Memo. 75-I.

B.35

Madsen, N. and Rodrigue, G. [1976]. "A Comparison of Direct Methods for

Tridiagonal Systems on the CDC STAR-100." Lawrence Livermore National

Laboratory, Preprlnt UCRL-76993, Rev. i.

Madsen, N. and Rodrlgue, G. [1977]. "Odd-Even Reduction for Pentadiagonal

Matrices," in Feilmeister [1977], pp. 103-106.

Madsen, N., Rodrigue, G. and Karush, J. [1976]. "Matrix Multiplication by

Diagonals on a Vector/Parallel Processor," Inf. Proc. Letts. 5, pp. 41-45.

Mag6, G. [1979]. "A Network of Microprocessors to Execute Reduction

Languages," Int. J. Comp. and Info. Sci. 8, pp. 349-385 and 435-471.

Mag6 G. [1980]. "A Cellular Computer Architecture for Functional

Programming," Proc. COMPCON Spring, IEEE Comp. Soc. Conf., pp. 179-187.

Mag6, G. and Pargas, R. [1982]. "Solving Partial Differential Equations on a

Cellular Tree Machine," Proc. 10th IMACS World Congress on Systems Simulation

and Scientific Computation, vol. i, IMACS, pp. 368-373.

Malcolm, M. and Palmer, J. [1974]. "A Fast Method for Solving a Class of

Tridiagonal Linear Systems," Comm. ACM 17, pp. 14-17.

Maples, C., Weaver, D., Logan, D. and Rathbun, W. [1983]. "Performance of a

Modular Interactive Data Analysis System (MIDAS)," Proc, 1983 Int. Conf. Par.

Proc., pp. 514-519.

Maples, C., Weaver, D., Rathbun, W. and Logan, D. [1984]. "The Operation and

Utilization of the MIDAS Multlprocessor Architecture," Proc. 1984 Int. Conf.

Par. Proc., pp. 197-206.

Martin, H. [1977], "A Discourse on a New Supercomputer, PEPE," in Kuck, et al.

[1977], pp. 101-112.

McCormick, C. [1982]. "Performance of MSC/NASTRAN on the CRAY Computer," in

Cray Research, Inc. [1982], pp. 88-98.

McCulley, L. and Zaher, G. [1974]. "Heat Shield Response to Conditions of

Planetary Entry Computed on the ILLIAC IV," Unpublished manuscript under

NASA/Ames Contract No. 6911.

McDonald, B. [1980], "The Chebyshev Method for Solving Non-Self-Adjolnt

Elliptic Equations on a Vector Computer," J. Comp. Phys. 35, pp. 147- 168.

McGlynn, D. and Scales, L. [1984]. "On Making the NAG Run Faster," in Paddon

[1984], pp. 73-89.

McGregor, J. and Salana, M. [1983]. "Finite Element Computation with Parallel

VLSI," Proc. 8th ASCE Conf. Elec. Comp., University of Houston, pp. 540-553.

Mead, C. and Conway, L. [1979]. "Introductlon to VLSI Systems," Addison-

Wesley, Reading, PA.

B.36

Mehrotra, P. and Pratt, T. [1982]. "Language Concepts for Distributed

Processng of Large Arrays," Proc. of Symp. on Principles of Distributed

Computing, Ottawa, Canada, pp. 19-28.

Meijerink, J. and van der Vorst, H. [1977]. "An Iterative Solution Method for

Linear Systems of Which the Coefficient Matrix is a Symmetric M-Matrix."

Math. Comp. 31, pp. 148-162.

Meijerink, J. and van der Vorst, H. [1981]. "Guidelines for the Usage of

Incomplete Decompositions in Solving Sets of Linear Equations as They Occur in

Practical Problems," J. Comp. Phys. 14, pp. 134-155.

Melhem, R. [1983a]. "An Abstract Systolic Model and Its Application to the

Design of Finite Element Systems," Institute for Computational Mathematics and

Applications Technical Report No. ICMA-83-66, University of Pittsburgh.

Melhem, R. [1983b]. "Formal Verification of a Systolic System for Finite

Element Stiffness Matrices," Institute for Computational Mathematics and

Applications Technical Report No. ICMA-83-56, University of Pittsburgh.

Melhem, R. and Rhelnboldt, W. [1982]. "A Mathematical Model for the

Verification of Systolic Networks," Institute for Computational Mathematics

and Applications Technical Report No. ICMA-82-47, University of Pittsburgh.

Melson, D. and Keller, J. [1983]. "Experiences in Using the CYBER 203 and

CYBER 205 for Three-Dimensional Transonic Flow Calculations," AIAA 21st

Aerospace Sciences Meeting, January, AIAA Paper 83-0500. Also in Control Data

Corp. [1982].

Mendez, R. [1984]. "Benchmark on Japanese - American Supercomputers -

Preliminary Results," IEEE Trans. Comput. C-35, p. 374. An expanded version

appeared in the SIAM News 17, No. 2, March, 1984, p. 3.

Merriam, M. [1984]. "On the Factorizatlon of Block-Tridiagonals Without

Storage Constraints," SIAM J. Sci. Star. Comp. To appear.

Meurant, G. [1985]. "Vector Preconditioning for the Conjugate Gradient

Method," to appear.

Meyer, G. [1977]. "Effectiveness of Multiprocessor Networks for Solving the

Nonlinear Polsson Equation," in Kuck, et al. [1977], pp. 323-326.

Miller, R. [1974]. "A Comparison of Some Theoretical Models of Parallel

Computation," IEEE Trans. Comput. C-22, pp. 710-717.

Millstein, R. [1973]. "Control Structures in llliac IV Fortran," Comm. ACM

16, pp. 622-627.

Minsky, M. [1970]. "Form and Content in Computer Science," J. ACM 17, pp.

197-215.

Minsky, M. and Papert, S. [1971]. "On Some Associative, Parallel and Analog

Computations," Associative Information Techniques, E. Jacks (Ed.) Elsevier,
NY.

B.37

Miranker, W. [1971]. "A Survey of Parallelism in Numerical Analysis," SlAM

Rev. 13, pp. 524-547.

Miranker, W. [1977]. "Parallel Methods for Solving Equations," in

Feilmeister, [1977], pp. 9-16.

Miranker, W. [1979]. "Hierarchical Relaxation," Computing 23, pp. 267-285.

Miranker, W. and Liniger, W. [1967]. "Parallel Methods for the Numerical

Integration of Ordinary Differential Equations," Math. Comp. 21, pp. 303-320.

Missirlis, N. and Evans, D. [1984]. "A Second Order Iterative Scheme Suitable

for Parallel Implementation," in Vichnevetsky and Stepleman [1984], pp. 203-
206.

Miura, K. [1971]. "The Block Iterative Method for llliac IV," Center for

Advanced Computation Doc. 41, University of Illinois.

Miura, K. and Uchlda, K. [1984]. "FACOM Vector Processor VP-100/VP-200," in

Kowalik [1984], pp. 127-138.

Modi, J. and Clarke, M., [1984]. "An Alternative Givens Ordering," Numer.

Math. 43, pp. 83-90.

Montoya, R. and Lawrie, D. [1982]. "A Practical Algorithm for the Solution of

Triangular Systems on a Parallel Processing System," IEEE Trans. Comput. C-31,

pp. 1076-1082.

Moore, M., Hiromoto, R. and Lubeck, O. [1984]. "Experiences with the Denelcor

HEP," Parallel Computing i. To appear.

Moore, W. and Steiglitz, K. [1984]. "Efficiency of Parallel Processing in the

Solution of Laplace's Equation," in Vichnevetsky and Stepleman [1984], pp.
252-257.

Morf, J-M. and Delosme, J-M. [1981]. "Matrix Decompositions and Inversions

via Elementary Signature-Orthogonal Transformations," ISSM Int. Symp. Mini &

Microcomputers In Control and Measurements, San Francisco.

Morice, P. [1972]. "Calcul Parallele et Decomposition Dans la Resolution

d'equations Aux Derivees Partialles de Type Elliptique." IRIA, Rocquencourt,

France.

Morjaria, M. and Makinson, G. [1984]. "Unstructured Sparse Matrix Vector

Multiplication on the DAP," in Paddon [1984], pp. 157-166.

Moto-oka, T. (Ed.) [1982]. "Fifth Generation Computer Systems," North

Holland, New York.

Moto-oka, T. [1984]. "Japanese Project on Fifth Generation Computer Systems,"

in Kowalik [1984], pp. 99-116.

B.38

Muller-Wichands, D. and Gentzsch, W. [1982]. "Performance Comparisons Among

Several Parallel and Vector Computers on a Set of Fluid Flow Problems," DFVLR

Report IB 262-82 ROI, Goettingen.

Nagel, K. [1979]. "Weather Simulation with the Multi-Microprocessor System

SMS 701," Military Electronics Defense EXPO 78, Proceedings of the Conference,

Wisbaden, West Germany, Oct. 3-5, Interario, S.A. Geneva, pp. 60-67.

Neves, K. W. [1984]. "Vectorization of Scientific Software," in Kowallk

[1984], pp. 277-291.

Ni, L. and Hwang, K. [1983]. "Pipelined Evaluation of First-Order Recurrence

Systems," Proc. 1983 Int. Conf. Par. Proc., pp. 537-544.

Nievergelt, J. [1964]. "Parallel Methods for Integrating Ordinary

Differential Equations," Comm. ACM 7, pp. 731-733.

Nodera, T. [1984]. "PCG Method for Four Color Ordered Finite Difference

Schemes," in Vichnevetsky and Stepleman [1984], pp. pp. 222-228.

Nolen, J., Kuba, D. and Kasclc, M. [1979]. "Application of Vector Processors

to the Solution of Finite Difference Equations." Fifth Symposium on Resevolr

Simulation. Also in SPEJ., August 1981.

Nolen, J. and Stanat, P. [1981]. "Reservoir Simulation on Vector Processing

Computers," SPE paper 9649, SPE Middle East Oil Tech. Conf, Manama, Banrain.

Noor, A. (Ed.) [1983]. "Impact of New Computing Systems on Computational

Mechanics," The American Society of Mechanical Engineers.

Noor, A. and Fulton, R. [1975]. "Impact of the CDC-STAR-100 Computer on

Finite-Element Systems," J. Structural Div., ASCE. i01, no. ST4, pp. 287-296.

Noor, A. and Hartley, S. [1978]. "Evaluation of Element Stiffness Matrices on

CDC STAR-100 Computer," Computers & Structures 9, pp. 151-161.

Noor, A., Kamel, H. and Fulton, R. [1978]. "Substructuring Techniques -

Status and Projections" Computers and Structures 8, pp. 621-632.

Noor, A. and Lambiotte, J. [1978]. "Finite Element Dynamic Analysis on the

CDC STAR-100 Computer, "Computers and Structures i0, pp. 7-19.

Noor, A. K., Storaasli, O. O. and Fulton, R. E. [1983]. "Impact of New

Computing Systems on Finite Element Computations," in Noor [1983], pp. 1-32.

Noor, A. and Voigt, S. [1975]. "Hypermatrix Scheme for the STAR-100

Computer," Computers and Structures 5, pp. 287-296.

Norrie, C. [1984]. "Supercomputers for Superproblems: An Architectural

Overview," Computer 17, No. 3, pp. 62-74.

Norrie, D. [1984]. "The Finite Element Method and Large Scale Computation,"

Proc. 4th Int. Symp. on Finite Element Methods in Flow Problems, Tokyo,

University of Tokyo Press, North-Holland Publishing Co., pp. 947-954.

•B.39

Numich, R. (Ed.) [1985]. "Supercomputer Applications Symposium," Proceedings

of Symposium at Purdue University, October 31 - November i, 1984.

Oakes, W. and Browning, R. [1979]. "Experience Running ADINA on CRAY-I,"

Proc. ADINA Conf., Massachusetts Institute of Technology Report 82448-9, pp.

27-42.

O_Donnell, S., Gelger, P. and Schultz, M. [1983]. "Solving the Poisson

Equation on the FPS-164," Department of Computer Science Report No. 292, Yale

University.

Oed, W. and Lange, O. [1983]. "The Solution of Linear Recurrence Relations on

Pipelined Processors," Proc. 1983 Int. Conf. Par. Proc., pp. 545-547.

Ogura, M., Sher, M. and Ericksen, J. [1972]. "A Study of the Efficiency of

ILLIAC IV in Hydrodynamic Calculations." Center for Advanced Computation

Document No. 59, University of Illinois at Urbana - Champaign.

O_Leary, D. [1984]. "Ordering Schemes for Parallel Processing of Certain Mesh

Problems," SIAM J. Sci. Star. Comp. 5, pp. 620-632.

O_Leary, D. and Stewart, G. [1984]. "Data-Flow Algorithms for Parallel Matrix

Computations," Computer Science Technical Report No. 1366, University of

Maryland.

O_Leary, D. and White, R. [1984]. "Multl-splittings of Matrices and Parallel

Solution of Linear Systems," SIAM J. Alg. Disc. Math. To appear.

O_Leary, D. and Widlund, O. [1979]. "Capacitance Matrix Methods for the

Helmholtz Equation on General Three Dimensional Regions," Math. Comp. 33, pp.

849-880.

Olelnick, P. [1978]. "The Implementation of Parallel Algorithms On an

Asynchronous Multiprocessor," Ph.D. Thesis, Department of Computer Science,

Carnegie-Mellon University.

Olelnlck, P. [1982]. "Parallel Algorithms on a Multlprocessor," UMI Research

Press.

Oleinick, P. and Fuller, S. [1978]. "The Implementation of a Parallel

Algorithm on C.mmp," Department of Computer Science Report No. CMU-CS-78-125,

Carnegle-Mellon University.

Orbits, D. [1978]. "A Cray-I Timing Simulator," Systems Engineering

Laboratory Report No. 118, University of Michigan.

Orbits, D. and Calahan, D. [1976]. "Data Flow Considerations in Implementing

a Full Matrix Solver with Backing Store on the CRAY-I," Systems Engineering

Laboratory Report No. 98, University of Michigan.

Orbits, D. and Calahan, D. [1978]. "A CRAY-I Simulator and its Application to

Development of High Performance Codes," Proc. LASL Workshop on Vector and
Parallel Procesors.

B.40

Orszag, S. and Patera, A. [ig81a]. "Subcritical Transition to Turbulence in

Planar Shear Flows," Transition and Turbulence, R. Meyer (Ed.), Academic

Press, New York, pp. 127-146.

Orszag, S. and Patera, A. [1981b]. "Calculation of Von Karman°s Constant for

Turbulent Channel FI_ " Phys. Rev. Lett. 47, pp. 832-835.

Orszag, S. and Patera, A. [1983]. "Secondary Instability of Wall Bounded

Shear Flows," J. Fluid Mech. 128, pp. 347-385.

Ortega, J. and Voigt, R. [1977]. "Solution of Partial Differential Equations

on Vector Computers," Proc. 1977 Army Numerical Analysis and Computers

Conference, pp. 475-525.

Ostlund, N, Hibbard, P. and Whiteside, R. [1982]. "A Case Study in the

Application of a Tightly Coupled Multi-Processor to Scientific Computations,"

in Rodrigue [1982], pp. 375-364.

Paddon, D. (Ed.) [1984]. "Supercomputers and Parallel Computation," Clarendon

Press, Oxford.

Paker, Y. [1977]. "Application of Microprocessor Networks for the Solution of

Diffusion Equations," Math. and Comput. Simul. 19, pp. 23-27.

Palmer, J. [1974]. "Conjugate Direction Methods and Parallel Computing,"

Ph.D. Dissertation, Dept. of Computer Science, Stanford University.

Pardey, G. and Thomas, G. [1982]. "The Implementation of Lattice Calculations

on the DAY," J. Comp. Phys. 47, pp. 165-178.

Pargas, R. [1982]. "Parallel Solution of Elliptic Partial Differential

Equations on a Tree Machine," Ph. D. Dissertation, Department of Computer

Science, University of North Carolina, Chapel Hill.

Parker, D. [1980]. "Notes on Shuffle/Exchange Type Switching Networks," IEEE

Trans. Comput. C-29, pp. 213-222.

Parker, Y. [1983]. "Multi-Microprocessor Systems," Academic Press, NY.

Parkinson, D. [1976]. "The ICL Distributed Array Processor DAP,"

Computational Methods in Classical and Quantum Physics," M. Hooper (Ed.), Adv.
Pub. Ltd.

Parkinson, D. [1982]. "The Distributed Array Processor (DAP)," Comp. Phys.

Comm. 28, pp. 325-336.

Parkinson, D. [1984]. "Experience in Exploiting Large Scale Parallelism", in

Kowalik [1984], pp. 247-256.

Parkinson, D. and Liddell, H. [1982]. "The Measurement of Performance on a

Highly Parallel System," IEEE Trans. Comput. C-32, pp. 32-37.

B.41

Parklnson, D. and Wunderlich, M. [1984]. "A Compact Algorithm for Gausslan

Elimination over GF(2) Implemented on Highly Parallel Computers," Parallel

Computing i, pp. 65-73.

Parter, S. (Ed.) [1984]. "Large Scale Scientific Computation," Academic

Press, Orlando, FL.

Parter, S. and Steuerwalt, S. [1980]. "On k-line and k x k Block Iteratlve

Schemes for a Problem Arising in 3-D Elliptic Difference Equations," SIAM J.

Numer. Anal. 17, pp. 823-839.

Parter, S. and Steuerwalt, M. [1982]. "Block Iterative Methods for Elliptic

and Parabolic Difference Equations," SIAM J. Numer. Anal. 19, pp. 1173-1195.

Patel, N. [1983]. "A Fully Vectorized Numerical Solution of the

Incompressible Navier-Stokes Equations," Ph.D. Dissertation, Mississippi State

University, December.

Patel, N. and Jordan, H. [1984]. "A Parallelized Point Rowwise Successive

Over-Relaxation Method on a Multiprocessor," Parallel Computing. To appear.

Paul, G. [1985]. "Design Alternatives of Vector Processors," J. Par. and

Dist. Comp. To appear.

Paul, G. and Wilson, W. [1978]. "An Introduction to VECTRAN and Its Use in

Scientific Applications Programming," Proc. of LASL Workshop on Vector and
Parallel Processors.

Pawley, G. and Thomas, G. [1982]. "The Implementation of Lattice Calculations

on the DAP," J. Comp. Phys. 47, pp. 165-178.

Pease, M. [1967]. "Matrix Inversion Using Parallel Processing," J. ACM 14,

pp. 757-764.

Pease, M. [1968]. "An Adaptation of the Fast Fourier Transform for Parallel

Processing," J. ACM 15, pp. 252-264.

Perrott, R. [1979]. "A Standard for Supercomputer Languages," in Jesshope and

Hockney [1979], pp. 291-308.

Peters, F. [1984]. "Parallel Pivoting Algorithms for Sparse Symmetric

Matrices," Parallel Computing i, pp. 99-110.

Peterson, V. [1978]. "Computational Aerodynamics and the NASF," NASA CR-2032,

pp. 5-30.

Peterson, V. [1984a]. "Impact of Computers on Aerodynamics Research and

Development," Proc. IEEE 72, pp. 68-79.

Peterson, V. [1984b]. "Application of Supercomputers to Computational

Aerodynamics," NASA TM-85965, Ames Research Center.

Peterson, W. [1983]. "Vector Fortran for Numerical Problems on CRAY-I,"

Comm. ACM 26, pp. 1008-1021.

B.42

Platzman, G. [1979]. "The ENIAC Computations of 1950 - Gateway to Numerical

Weather Prediction," Bull. Amer. Meteor. Soc. 60, pp. 302-312.

Poole, E. and Ortega, J. [1984]. "Incomplete Choleski Conjugate Gradient on

the CYBER 203/205," in Numich [1985].

Poole, W. and Voigt, R. [1974]. "Numerical Algorithms for Parallel and Vector

Computers: An Annotated Bibliography," Comp. Rev. 15, pp. 379-388.

Preparata, F. and Sarwate, D. [1978]. "An Improved Parallel Processor Bound

in Fast Matrix Inversion," Inf. Proc. Lefts. 7, pp. 148-150.

Preparata, F. and Vuillemin, J. [1980]. !'Optimal Integrated-Circuit

Implementation of Triangular Matrix Inversion," Proc. 1980 Int. Conf. Par.

Proc., pp. 211-216.

Preparata, F. and Vuillemin, J. [1981]. "The Cube-Connected Cycles: a

Versatile Network for Parallel Computation," Comm. ACM 24, pp. 300-309.

Price, H. and Coats, K. [1974]. "Direct Methods in Reservoir Simulation," J.

Soc. Pet. Eng. 14, pp. 295-308.

Pulliam, T. and Lomax, H. [1979]. "Simulation of Three-Dimenslonal

Compressible Viscous Flow on the llliac IV Computer," AIAA J. 18, pp. 159-167.

Pyle, L. and Wheat, S. [1983]. "A Kosloff/Basal Method 3D Migration Program

Implemented on the CYBER 205 Supercomputer," in Gary [1984], pp. 327-358.

Rajan, S. [1972]. "A Parallel Algorithm for High-Speed Subsonic Compressible

Flow Over a Circular Cylinder," J. Comp. Phys. 12, pp. 534-552.

Raju, I. and Crews, J. [1982]. "Three-Dimenslonal Analysis of [0/90]s and

[90/0]s Laminates with a Central Circular Hole," Composite Tech. Rev. 4, No.
4, pp. 116-124.

Ramamoorthy, C. and Li, H. [1977]. "Pipeline Architecture," Comp. Surveys 9,

pp. 61-102.

Raskin, L. [1978]. "Performance Evaluation of Multiple Processor Systems,"

Department of Computer Science Report No. CMU-CS-78-141, Carnegie-Mellon

University.

Ray, W. [1984]. "Cyberplus: A Multiparallel Operating System," Presented at

the Los Alamos Workshop on Operating Systems and Environments for Parallel

Processing, August 7-9, Los Alamos, NM.

Rea, G. [1983]. "A Software Debugging Aid for the Finite Element Machine,"

Computer Science Department Report, University of Colorado.

Reddaway, S. [1979]. "The DAP Approach," in Jesshope and Hockney [1979], vol.

2, pp. 309-329.

Reddaway, S. [1984]. "Distributed Array Processor, Architecture and

Performance," in Kowalik [1984], pp. 89-98.

B.43

Redhed, D., Chen, A. and Hotovy, S. [1979]. "New Approach to the 3D Transonic

Flow Analysis using the STAR-100 Computer," AIAA J. 17, pp. 98-99.

Reed, D. and Patrick, M. [1984a]. "A Model of Asynchronous Iterative

Algorithms for Solving Large Sparse Linear Systems," Proc. 1984 Int. Conf.

Par. Proc., pp. 402-409.

Reed, D. and Patrick, M. [1984b]. "Parallel Iterative Solution of Sparse

Linear Systems: Models and Architectures," ICASE Report No. 84-35, NASA

Langley Research Center.

Reid, J. [1971]. "On the Method of Conjugate Gradients for the Solution of

Large Sparse Systems of Linear Equations," Proc. Conf. Large Sparse Sets of

Linear Equations, Academic Press.

Reid, J. [1972]. "The Use of Conjugate Gradients for Systems of Linear

Equations Possessing Property A," SIAM J. Numer. Anal. 9, pp. 325-332.

Reilly, B. [1970]. "On Implementing the Monte Carlo Evaluation of the

Boltzmann Collision Integral on ILLIAC IV," Coordinated Science Laboratory

Report No. 1-140, University of Illinois at Urbana-Champaign.

Reiter, E. and Rodrigue, G. [1984]. "An Incomplete Choleski Factorization by

a Matrix Partition Algorithm", in Birkhoff and Schoenstadt [1984], pp. 161-

173.

Rieger, C. [1981]. "ZMOB: Hardware from a User's Viewpoint," Proc. IEEE

Comput. Soc. Conf. PAttern Recognition and Image Processing, pp. 399-408.

Robert, F. [1970]. "Methods Iteratives Serie-Parallel," C. R. Acad. Sci.

Paris 271, pp. 847-850.

Riganati, J. and Schneck, P. [1984]. "Supercomputing," Computer 17, No. i0,

pp. 97-113.

Robert, F., Charnay, M. and Musy, F. [1975]. "Iterations Chaotiques Serie-

Parallel Pour des Equations Non-Lineares de Point Fixe," Appl. Mate. 20, pp.

1-38.

Robinson, J. [1979]. "Some Analysis Techniques for Asynchronous

Multiprocessor Algorithms," IEEE Trans. Softw. Eng. SE-5, pp. 24-31.

Robinson, J., Riley, R. and Hartka, R. [1982]. "Evaluation of the SPAR

Thermal Analyzer on the CYBER-203 Computer," in Computational Aspects of Heat

Transfer and Structures, pp. 405-424.

Rodrigue, G. (ed.) [1982]. "Parallel Computations," Academic Press, New York.

Rodrigue, G., Giroux, E. and Pratt, M. [1980]. "Perspectives on Large-Scale

Scientific Computation," Computer 13, No. 12, pp. 65-80.

Rodrigue, G., Hendrickson, C. and Pratt, M. [1982]. "An Implicit Numerical

Solution of the Two Dimensional Diffusion Equation and Vectorization

Experiments." in Rodrigue [1982], pp. 101-128.

B.44

Rodrigue, G., Madsen, N. and Karush, J. [1976]. "Odd-even Reduction for

Banded Linear Equations," Lawrence Livermore National Laboratory Report No.

UCRL - 78652.

Rodrigue, G. and Wolitzer, D. [1984a]. "Incomplete Block Cyclic Reduction,"

Proc. 10th IMACS World Congress on Systems Simulation and Scientific

Computation, vol. I, IMACS, pp. 101-103.

Rodrigue, G. and Wolitzer, D. [1984b]. "Preconditioning by Incomplete Block

Cyclic Reduction," Math. Comp. 42, 1984, pp. 549-565.

Rogallo, R. [1977]. "An llliac Program for the Numerical Simulation of

Homogeneous Incompressible Turbulence," NASA TM-73203, Ames Research Center.

Ronsch, W. [1984]. "Stability Aspects in Using Parallel Algorithms," Parallel

Computing I, pp. 75-98.

Rosenfeld, J. [1969]. "A Case Study in Programming for Parallel Processors,"

Comm. ACM, 12, pp. 645-655.

Rudinski, L. and Pieper, G. [1979]. "Evaluating Computer Program Performance

on the CRAY-I," Argonne National Laboratory Report No. 79-9.

Rudolph, J. [1972]. "A Production Implementation of an Associative Array

Processor - STARAN," Proc. Fall Joint Comp. Conf., AFIPS Press, Montvale, NJ,

pp. 229-241.

Rudy, T. [1980]. "Analysis of a 2-D code on the CRAY-I," Lawrence Livermore

National Laboratory Report No. UCID-18549.

Ruschitzku, M., Chontensen, M., Ames, M., and Vichnevetsky, R. (Eds.).

[1984]. "Parallel and Large Scale Computers: Performance, Architecture,

Applications," North Holland, Amsterdam.

Russell, R. [1978]. "The CRAY-I Computer System," Comm. ACM 21, pp. 63-72.

Saad, Y. [1983a]. "Least Squares Polynomials in the Complex Plane with

Applications to Solving Sparse Non-Symmetric Matrix Problems," Department of

Computer Science Report No. RR-276, Yale University.

Saad, Y. [1983b]. "Practical Use of Polynomial Preconditionings for the

Conjugate Gradient Method," Department of Computer Science Report No. RR-282,

Yale University.

Saad, Y. and Sameh, A. [1981a]. "A Parallel Block Stiefel Method for Solving

Positive Definite Systems," in Schultz [1981], pp. 405-411.

Saad, Y. and Sameh, A. [1981b]. "Iterative Methods for the Solution of

Elliptic Difference Equations on Multiprocessors." CONPAR 81, pp. 395-411.

Saad, Y., Sameh, A. and Saylor, P. [1985]. "Parallel Iterative Methods for

Elliptic Difference Equations," SIAM J. Sci. Stat. Comp. To appear.

B.45

Salama, M., Utku, S. and Melosh, R. [1983]. "Parallel Solution of Finite

Element Equations," Proc. 8th ASCE Conf. Elec. Comp., University of Houston,
pp. 526-539.

Sameh, A. [1971a]. "llliac IV Applications," Proc. 9th Annual Allerton Conf.

Circuit System Theory, pp. 1030-1038.

Sameh, A. [1971b]. "On Jacobi and Jacobi-like Algorithms for a Parallel

Computer," Math. Comp. 25, pp. 579-590.

Sameh, A. [1977]. "Numerical Parallel Algorithms - A Survey," in Kuck, et al.

[1977], pp. 207-228.

Sameh, A. [1981]. "Parallel Algorithms in Numerical Linear Algebra,"
Presented at the CREST Conference.

Sameh, A. [1982]. "Solving the Linear Least Squares Problem on a Linear Array

of Processors," Proc. of the Purdue Workshop on Algorithmically-Specialized
Computer Organizations, Academic Press.

Sameh, A. [1983]. "An Overview of Parallel Algorithms in Numerical Linear

Algebra," EDF - Bull. de la Estudes et des Rech. Ser C, No. i, pp. 129-134.

Sameh, A. [1984a]. "A Fast Poisson Solver for Multiprocessors," in Birkhoff

and Schoenstadt [1984], pp. 175-186.

Sameh, A. [1984b]. "On Two Numerical Algorithms for Multiprocessors," in

Kowalik [1984], pp. 311-328.

Sameh, A. and Brent, R. [1977]. "Solving Triangular Systems on a Parallel

Computer," SlAM J. Numer. Anal. 14. pp. 1101-13.

Sameh, A., Chen, S. and Kuck, D. [1976]. "Parallel Poisson and Biharmonic

Solvers." Computing 17, pp. 219-230.

Sameh, A. and Kuck, D. [1977a]. "A Parallel QR Algorithm for Symmetric

Tridiagonal Matrices," IEEE Trans. Comput. C-26, pp. 147-153.

Sameh, A. and Kuck, D. [1977b]. "Parallel Direct Linear System Solvers - A

Survey," in Feilmeister [1977], pp. 25-30.

Sameh, A. and Kuck, D. [1978]. "On Stable Parallel Linear Syste_ Solvers," J.

ACM 25, pp. 81-91.

Sameh, A. and Taft, C. [1982]. "Preconditioning Strategies for the Conjugate

Gradient Algorithm on Multiprocessors," Presented at the 1982 Sparse Matrix

Symposium.

Saunders, V. R. and Guest, M. F. [1982]. "Applications of the Cray-I for

Quantum Chemistry Calculations," Comp. Phys. Comm. 26, pp. 389-395.

Sawchuk, A. and Strand, T. [1984]. "Digital Optical Computing," Proc. IEEE

72, pp. 758-779.

B.46

Schnendel, U. [1984]. "Introduction to Numerical Methods for Parallel

Computers," (translator, B. W. Conolly), Halsted Press.

Schnepf, E. and Schonauer, W. [1983]. "Parallelization of PDE Software for

Vector Computers," Proc. Parallel Computing 83, Berlin.

Schonauer, W. [1983a]. "The Efficient Solution of Large Linear Systems

Resulting from the FDM for 3-D PDE's on Vector Computers," Proc. First Intern.

Coll. on Vector and Parallal Computing in Scientific Applications, A.

Bassanut, (Ed.), Bull. de la Direction des Etudes et Recherches, Ser. C., no.

i, pp. 135-142.

Schonauer, W. [1983b]. "Numerical Experiments with Instationary Jacobi-OR

Methods for the Iterative Solution of Linear Equations," ZAMM 63, pp. T380-

T382.

Schonauer, W. and Raith, K. [1982]. "A Polyalgorithm with Diagonal Storing

for the Solution of Very Large Indefinite Linear Banded Systems on a Vector

Computer", Proc. 10th IMACS World Congress on Systems Simulation and

Scientific Computation, vol. I, IMACS, pp. 326-328.

Schonauer, W., Schnepf, E. and Muller, H. [1984]. "PDE Software for Vector

Computers," in Vichnevetsky and Stepleman [1984], pp. 258-267.

Schonauer, W., Schnepf, E. and Raith, K. [1983]. "The Redesign and

Vectorization of the SLDGL-Program Package for the Self-Adaptive Solution of

Nonlinear Systems of Elliptic and Parabolic PDE's., Conference of the IFFP

Working Group 2.5 on Numerical Software, Sweden.

Schonauer, W., Schnepf, E. and Raith, K. [1984]. "Modularization of PDE

Software for Vector Computers," ZAMM 64, pp. T309-T312.

Schreiber, R. [1984]. "Systolic Arrays: High Performance Parallel Machines

for Matrix Computation," in Birkholf and Schoenstadt [1984], pp. 187-194.

Schreiber, R. and Kuekes, P. [1982]. "Systolic Linear Algebra Machines in

Digital Signal Processing," Proc. USC Workshop on VLSI and Modern Signal

Processing, Los Angeles, Prentice-Hall.

Schreiber, R. and Tang, W. [1982]. "Vectorizing the Conjugate Gradient

Method," in Control Data Corp. [1982].

Schultz, M., (Ed.) [1981]. "Elliptic Problem Solvers," Academic Press, New

York, NY.

Schultz, M. [1984]. "Solving Elliptic Problems on an Array Processor System,"

in Birkhoff and Schoenstadt [1984], pp. 77-92.

Schwartz, J. [1980]. "Ultracomputers", ACM Trans. Program. Lang. Syst. 2, pp.

484-521.

Schwartz, J. [1983]. "A Taxonomic Table of Parallel Computers, Based on 55

Designs," Ultracomputer Note No. 69, Courant Institute, New York University.

B.47

Scott, R. [1981]. "On the Choice of Discretization for Solving PDE's on a

Multi-Processor," in Schultz [1981], pp. 419-422.

Seitz, C. [1982]. "Ensemble Architectures for VLSl - A Survey and Taxonomy,"

Proc. MIT Conf. on Advanced Res. in VLSI, Artech Books, pp. 130-135.

Seltz, C. [1984]. "Experiments with VLSI Ensemble Machines," J. VLSl and

Comp. Sys. To appear.

Seitz, C. and Matisoo, J. [1984]. "Engineering Limits on Computer

Performance," Physics Today 37, No. 5, pp. 38-45.

Sejnowski, M., Upchurch, E., Kapur, R., Charlu, D. and Lipovski, G. [1980].

"An Overview of the Texas Reconfigurable Array Computer," AFIPS Conf. Proc.,

1980, NCC, pp. 631-641.

Shah, A. [1980]. "Group Broadcast Mode of Interprocessor Communications for

the Finite Element Machine," Department of Computer Science Report CSDG-80-1,

University of Colorado.

Shanehchi, J. and Evans, D. [1981]. "New Variants of the Quadrant

Interlocking Factorization (QIF) Method," CONPAR 81 Conf. Proc. Lecture Notes

in Computer Science III, W. Handler, (Ed.), Springer-Verlag, pp. 493-507.

Shanehchi, J. and Evans, D. [1982]. "Further Analysis of the QIF Method,"

Int. J. Comput. Math. ii, pp. 143-154.

Shang, J., Bunlng, P., Hankey, W. and Wirth, M. [1980]. "Performance of a

Vectorized Three-Dimensional Navier-Stokes Code on the CRAY-I Computer," AIAA

J. 18, pp. 1073-1079.

Shaw, D. [1984]. "SIMD and MSIMD Variants of the NON-VON Supercomputer,"

Proc. COMPCON 84, IEEE Comp. Soc. Conf., pp. 360-363.

Shedler, G. [1967]. "Parallel Numerical Methods for the Solution of

Equations," Comm. ACM 10, pp. 286-291.

Shimada, T., Hiraki, K. and Nishida, K. [1984]. "An Architecture of a Data

Flow Computer and Its Evaluation," Proc. COMPCON 84, IEEE Comp. Soc. Conf.,

pp. 486-490.

Siegel, H. [1979]. "Intercommunication Networks for SIMD Machines," Computer

12, No. 6, pp. 57-65.

Siegel_ L., Siegel, H. and Swain, P. [1982]. "Performance Measurements for

Evaluating Algorithms for SIMD Machines," IEEE Trans. Soft. Eng. SE-8, pp.

319-331.

Siewiorek, D. [1983]. "State-of-the-Art in Parallel Computing," in Noor

[1983],pp. 33-48.

Slotnick,D., Borck, W. and McReynolds,R. [1962]. "The SOLOMONComputer,"
Proc. AFIPS,FJCC, 22, pp. 97-107.

B.48

Smith, B. [1978]. "A Pipelined, Shared Resource MIMD Computer," Proc. 1978

Int. Conf. Par. Proc., pp. 6-8.

Smith, R. and Pitts, J. [1979]. "The Solution of the Three-Dimensional

Viscous Compressible Navier-Stokes Equations on a Vector Computer," Advances

in Computer Methods for Partial Differential Equations-Ill, IMACS, pp. 245-

252.

Smith, R., Pitts, J. and Lambiotte, J. [1978]. "A Vectorization of the

Jameson-Caughey NYU Transonic Swept-wing Computer Program FLO-22-VI for the

STAR-100 Computer," NASA TM-78665, NASA Langley Research Center.

Snyder, L. [1982]. "Introduction to the Configurable Highly Parallel

Computer," Computer 15, No. i, pp. 47-56.

Soil, P., Habra, N. and Russell, G. [1977]. "Experience with a Vectorized

General Circulation Climate Model on STAR-100," in Kuck, et al. [1977], pp.

311-312.

Solomon, M. and Finkel, R. [1979]. "The Roscoe Operating System," Proc. 7th

Symp. Op. Sys. Princ., pp. 108-114.

Sorensen, D. [1984a]. "Buffering for Vector Performance on a Pipelined MIMD

Machine," Argonne National Laboratory Report No. ANL/MCS-TM-29.

Sorenson, D. [1984b]. "Analysis of Pairwise Pivoting in Gaussian

Elimination," Argonne National Laboratory Report No. ANL/MCS-TM-76.

South, J., Keller, J. and Hafez M. [1980a]. "Computational Transonics on a

Vector Computer," U. S. Army Numerical Analysis and Computers Conference, ARO

Rep. No. 80-3, August, pp. 357-368.

South, J., Keller, J. and Hafez, M. [1980b]. "Vector Processor Algorithms for

Transonic Flow Calculations," AIAA J. 18, pp. 786-792.

Srinivas, M. [1983]. "Optimal Parallel Scheduling of Gaussian Elimination

DAG_s, '' IEEE Trans. Comput. C-32, pp. 1109-1117.

Stanat, P. and Nolen, J. [1982]. "Performance Comparisons for Reservoir

Simulation Problems on Three Supercomputers," 6th SPE Symposium Reservoir

Simulation, also in Control Data Corp. [1982].

Stevens, K. [1975]. "CFD - A Fortran-Like Language for the llliac IV,"

Sigplan Notices, pp. 72-80.

Stevens, K. [1979]. "Numerical Aerodynamics Simulation Facility Project," in

Jesshope and Hockney [1979], vol. 2, pp. 331-342.

Stone, H. [1971]. "Parallel Processing with the Perfect Shuttle," IEEE Trans.

Comput. C-20, pp. 153-161.

Stone, H. [1973]. "An Efficient Parallel Algorithm for the Solution of a

Tridiagonal Linear System of Equations," J. ACM 20, pp. 27-38.

B.49

Stone, H. [1975]. "Parallel Tridiagonal Equation Solvers," ACM Trans. Math

Soft. i, pp. 289-307.

Stone, H. [1980]. "Parallel Computation," in Introduction to Computer

Architecture, Second Edition, H. Stone (Ed.), Science Research Associates,

Inc., pp. 363-425.

Storaasli, O., Peebles, S., Crockett, T., Knott, J. and Adams, L. [1982].

"The Finite Element Machine: An Experiment in Parallel Processing," Proc. of

Conf. on Res. in Structures and Solid Mech., NASA Conf. Pub. 2245, NASA

Langley Research Center, pp. 201-217.

Strikwerda, J. [1982]. "A Time Split Difference Scheme for the Compressible

Navier Stokes Equations with Applications to Flows in Slotted Nozzles," in

Rodrigue [1982], pp. 251-267.

Stringer, J. [1982]. "Efficiency of D4 Gaussian Elimination on a Vector

Computer," in Cray Research, Inc. [1982], pp. 115-121.

Sullivan, H. and Bashkow, T. [1977]. "A Large Scale Homogeneous Fully

Distributed Parallel Machine," Proc. 4th Annual Symp. Comp. Arch., pp. 105-
117.

Swan, R., Fuller, S. and Siewiorek, D. [1977]. "Cm* - A Modular Multi-

Microprocessor," Proc. AFIPS Nat. Computer Conf., AFIPS Press, Montvale, NJ,

pp. 637-644.

Swarztrauber, P. [1977]. "The Methods of Cyclic Reduction, Fourier Analysis

and the FACR Algorithm for the Discrete Solution of Poisson's Equation on a

Rectangle," SIAM Rev. 19, pp. 490-501.

Swarztrauber, P. [1979a]. "A Parallel Algorithm for Solving General

Trldiagonal Equations," Math. Comp. 33, pp. 185-199.

Swarztrauber, P. [1979b]. "The Solution of Tridiagonal Systems on the CRAY-

i," in Jesshope and Hockney [1979], vol. 2, pp. 343-358.

Swarztrauber, P. [1982], "Vectorizing the FFTs," in Rodrigue [1982], pp. 51-

83.

Swarztrauber, P. [1983]. "Efficient Algorithms for Pipeline and Parallel

Computers," in Noor [1983], pp. 89-104.

Swartztrauber, P. [1984]. "FFT Algorithms for Vector Computers," Parallel

Computing i, pp. 45-63.

Taft, C. [1982]. "Preconditioning Strategies for Solving Elliptic Equations

on a Multiprocessor," Computer Science Department Report, University of
Illinois.

Takahashi, Y. [1982]. "Partitioning and Allocation in Parallel Computation of

Partial Differential Equations," Proc. 10th IMACS World Congress on Systems

Simulation and Scientific Computation, vol. i, IMACS, pp. 311-313.

B.50

Temperton, C. [1979a]. "Direct Methods for the Solution of the Discrete

Poisson Equation: Some Comparisons," J. Comp. Phys. 31, pp. 1-20.

Temperton, C. [1979b]. "Fast Fourier Transforms and Polsson Solvers on CRAY-

i" in Jesshope and Hockney [1979], vol. 2, pp. 359-379.

Temperton, C. [1979c]. "Fast Fourier Transforms on CRAY-I," European Center

for Median Range Weather Forecasts Report No. 21.

Temperton, C. [1980]. "On the FACR(1) Algorithm for the Discrete Poisson

Equation," J. Comp. Phys. 34, pp. 314-329.

Temperton, C. [1984]. "Fast Fourier Transforms on the CYBER 205," in Kowallk

[1984], pp. 403-416.

Tennille, G. [1982]. "Development of a One-Dimensional Stratospheric Analysis

Program for the CYBER 203", in Control Data Corp. [1982].

Thompklns, W. and Halmes, R. [1983]. "A Minicomputer/Array Processor/Memory

System for Large-Scale Fluid Dynamic Calculations," in Noor [1983], pp. 117-

126.

Thurber, K. [1976]. "Large Scale Computer Architectures: Parallel and

Associative Processors," Hayden Book Co.

Thurber, K. and Wald, L. [1975]. "Associative and Parallel Processors,"

Comput. Surveys 7, pp. 215-245.

Tiberghien, J. (Ed.) [1984]. "New Computer Architectures," Academic Press,

Orlando, FL.

Tolle, D. and Siddall, W. [1981]. "On the Complexity of Vector Computations

in Binary Tree Machines," Inform. Process. Lett. 13, pp. 120-124.

Traub, J., (Ed). [1974a]. "Complexity of Sequential and Parallel Numerical

Algorithms," Academic Press.

Traub, J. [1974b]. "Iteratlve Solution of Trldiagonal Systems on Parallel or

Vector Computers," in Traub, [1974a], pp. 49-82.

Treleaven, P. [1979]. "Exploiting Program Concurrency in Computing Systems,"

Computer 12, No. i, pp. 42-50.

Treleaven, P. [1984]. "Decentralised Computer Architecture," in Tiberghien,

[1984].

Uhr, L. [1984]. "Algorithm Structured Computer Arrays and Networks," Academic

Press, 1984.

Unger, S. [1958]. "A Computer Oriented Towards Spatial Problems," Proc. IRE_

46, pp. 1744-1750.

B.51

Vajterslc, M. [1979]. "A Fast Parallel Method for Solving the Biharmonic

Boundary Value Problem on a Rectangle," Proc. First European Conference on

Parallel Distributed Processing, Toulouse, pp. 136-141.

Vajterslc, M. [1981]. "Solving Two Modified Discrete Poisson Equations in 7

Log N Steps on N_ Processors," CONPAR81, pp. 473-432.

Vajterslc, M. [1982]. "Parallel Poisson and Biharmonlc Solvers Implemented on

the EGPA Multlprocessor,!' Proc. 1982 Int. Conf. Par. Proc., pp. 72-81.

van der Vorst, H. [1981]. "A Vectorlzable Variant of Some ICCG Methods," SIAM

J. Scl. Stat. Comp. 3, pp. 350-356.

van der Vorst, H. [1983]. "On the Vectorization of Some Simple ICCG Methods,"

First Int. Conf. Vector and Parallel Computation in Scientific Applications,

Paris, 1983.

Van Rosendale, J. [1983a]. "Algorithms and Data Structures for Adaptive

Multlgrid Elliptic Solvers," Appl. Math. & Comp. 13, pp. 453-470.

Van Rosendale, J. [1983b]. "Minimizing Inner Product Data Dependencies in

Conjugate Gradient Iteration," Proc. 1983 Int. Conf. Par. Proc., pp. 44-46.

Van Scoy, F. [1977]. "Some Parallel Cellular Matrix Algorithms," Proc. ACM

Comp. Sci. Conf.

Varga, R. [1962]. "Matrix Iterative Analysis," Prentice Hall, Englewood

Cliffs, NJ.

Venkayya, V., Calahan, D., Summers, P. and Tischler, V. [1983]. "Structural

Optimization on Vector Processors," in Noor [1983], pp. 155-190.

Vichnevetsky, R. and Stepleman, R. (Eds.) [1984]. "Advances in Computer

Methods for Partial Differential Equations - V," Proc. of the Fifth IMACS

International Symposium, Lehigh Univ., June, 1984.

Volgt, R. [1977]. "The Influence of Vector Computer Architecture on Numerical

Algorithms," in Kuck, et al. [1977], pp. 229-244.

Voigt, R., Gottlleb, D. and Hussaini, M. (Eds.) [1984]. "Spectral Methods for

Partial Differential Equations," SLAM, Philadelphia.

Voitus, R. [1981]. "A Multiple Process Software Package for the Finite

Element Machine, Computer Science Dept. Rep., University of Colorado.

yon Neumann, J. [1966]. "A System of 29 States with a General Transition

Rule," Theory of Self-Reproducing Automata, A. Burks (Ed.), University of

Illinois Press, pp. 305-317.

Vrsalovlc, D., Siewiorek, D., Segall, A. and Gehringer, E. [1984].

"Performance Prediction for Multiprocessor Systems," Proc. 1984 Int. Conf.

Par. Proc., pp. 139-146.

B.52

Wagner, R. [1983]. "The Boolean Vector Machine," 1983 IEEE Conference Proc.

10th Annual Int. Symp. Comp. Arch., pp. 59-66.

, Wagner, R. [1984]. "Para_lel Solution of Arbitrarily Sparse Linear Systems,"

Dept. of Computer Science _ rt No. CS-1984-13, Duke University.

Wallach, Y. and Konrad, V. [1976]. "Parallel Solution of Load Flow Problems,"

Arch. Elektrotechnik 57, pp. 345-354.

Wallach, Y. and Konrad, V. [1980]. "On Block Parallel Methods for Solving

Linear Equations," IEEE Trans. Comput. C-29, pp. 354-359.

Wallis, J. and Grisham, J. [1982]. "Reservoir Simulation on the CRAY-I," in

Cray Research, Inc. [1982], pp. 122-139.

Wallis, J. and Grisham, J. [1982]. "Petroleum Reservoir Simulation on the

CRAY-I and on the FPS-164," in Proc. lOth IMACS World Congress on Systems

Simulation and Scientific Computation, vol. i, IMACS, pp. 308-310.

Wang, H. [1981]. "A Parallel Method for Tridiagonal Equations," ACM Trans.

Math. Softw. 7, pp. 170-183.

Wang, H. [1982a]. "On Vectorlzing the Fast Fourier Transform," BIT 20, pp.

233-243.

Wang, H. [1982b]. "Vectorization of a Class of Preconditioned Conjugate

Gradient Methods for Elliptic Difference Equations," IBM Scientific Center,

Palo Alto, CA.

Ware, W. [1973]. "The Ultimate Computer," IEEE Spect. i0, No. 3, pp. 89-91.

Watanabe, P., Flood, J. and Yen, S. [1974]. "Implementation of Finite

Difference Schemes of Solving Fluid Dynamic Schemes of Solving Fluid Dynamic

Problems on llliac IV," Coordinated Science Laboratory Report No. T-II,

University of Illinois.

Watson, I. and Gurd, J. [1982]. "A Practical Data Flow Computer," Computer

15, No. 2, pp. 51-57.

Watson, W. [1972]. "The TI-ASC, A Highly Modular and Flexible Super Computer

Architecture," Proc. AFIPS, 41, pt. i, pp. 221-228.

Watts, J. [1979]. "A Conjugate Gradient Truncated Direct Method for the

Iterative Solution of the Reservoir Simulation Pressure Equation," Proc. SPE

54th Annual Fall Technical Conference and Exhibition, Las Vegas.

Webb, S. [1980]. "Solution of Partial Differential Equations on the ICL

Distributed Array Processor," ICL Technical Journal, pp. 175-190.

Webb, S., McKeonn, J. and Hunt, D. [1982]. "The Solution of Linear Equations

on a SIMD Computer Using a Parallel Iterative Algorithm," Comp. Phys. Comm.

26, pp. 325-329.

B.53

Weidner, E. and Drummond, J. [1982]. "Numerical Study of Staged Fuel

Injection for Supersonic Combustion," AIAA Journal 20, pp. 1426-1431.

Weilmunster, J. and Howser, L. [1976]. "Solution of a Large Hydrodynamic

Problem Using the STAR-100 Computer," NASA TM X-73904, Langley Research
Center.

Welsh, J. [1982]. "Geophysical Fluid Simulation on a Parallel Compter," in

Rodrigue [1982], pp. 269-277.

Widlund, O. [1984]. "Iterative Methods for Elliptic Problems on Regions

Partitioned into Substructures and the Biharmonic Dirichlet Problem,"

Department of Computer Science Report No. I01, Courant Institute, New York

University.

Wilhelmson, R. [1974]. "Solving Partial Differential Equations using ILLIAC

IV." In Constructive and Computational Methods for Differential and Integral

Equations, A. Dold and B. Eckmann, eds., Springer-Verlag, New York, pp. 453-
476.

Wilkinson, J. [1954]. "The Calculation of the Latent Roots and Vectors of

Matrices on the Pilot Model of the ACE," Proc. Camb. Phil. Soc. 50, Pt. 4, pp.
536-566.

Williams, S. [1979]. "The Portability of Programs and Languages for Vector

and Array Processors," in Jesshope and Hockney [1979], vol. 2, pp. 381-94.

Williamson, D. [1983]. "Computational Aspects of Numerical Weather Prediction

on the Cray Computer," in Noor [1983], pp. 127-140.

Williamson, D. and _warztrauber, P. [1984]. "A Numerical Weather Prediction

Model - Computational Aspects," Proc. IEEE 72, pp. 56-67.

Wilson, E. [1983]. "Finite Element Analysis on Microcomputers," in Noor

[1983], pp. 105-116.

Wilson, K. [1982]. "Experience with an FPS Array Processor," in Rodrigue
[1982], pp. 279-314.

Wing, O. and Huang, J. [1977]. "A Parallel Triangulation Process of Sparse

Matrices_" Proc. 1977 Int. Conf. Par. Proc., pp. 207-214.

Wing, O. and Huang, J. [1980]. "A Computational Model of Parallel Solutions

of Linear Equations," IEEE Trans. Comput. TC-29, pp. 632-638.

Winsor, N. [1981]. "Vectorization of Fluid Codes," in Finite Difference

Techniques for Vectorized Fluid Dynamics Calculations, D. Book (Ed.),

Springer-Verlag, New York, NY, pp. 152-163.

Wittie, L. [1980]. "Architectures for Large Networks of Microcomputers,"

Workshop in Interconnection Networks for Parallel and Distributed Processing,
April, pp. 31-40.

Wittie, L. and van Tilboug, A. [1980]. "Micros, A Distributed Operating

System for Micronet, a Reconfigurable Network Computer," IEEE Trans. Comp. C-
29, pp. 1133-44.

B.54

Woodward, P. [1982]. "Trade-Offs in Designing Explicit Hydrodynamic Schemes

for Vector Computers," in Rodrigue [1982], pp. 153-171.

Worlton, J. [1981]. "A Philosophy of Supercomputing," Los Alamos National

Laboratory Report No. LA-8849-MS.

Worlton, J. [1984]. "Understanding Supercomputer Benchmarks," Datamation 30,
No. 14, pp. 121-130.

Wu, C., Ferziger, J., Chapman, D., and Rogallo, R. [1983]. "Navier-Stokes

Simulation of Homogeneous Turbulence on the CYBER 205," in Gary [1984], pp.
227-239.

Wulf, W. and Bell, C. [1972]. "C.mmp - A Multiminiprocessor," Proc. AFIPS

Fall Joint Comp. Conf., AFIPS Press, Reston, VA, pp. 765-777.

Wulf, W. and Harblson, S. [1978]. Reflections in a Pool of Processors,"

Department of Computer Science Technical Report, Carnegie-Mellon University.

Yasumura, M., Tanaka, Y., and Kanada, Y. [1984]. "Compiling Algorithms and

Techniques for the S-810 Vector Processor," Proc. 1984 Int. Conf. Par. Proc.,
pp. 285-290.

Young, D. [1971]. "Iterative Solution of Large Linear Systems," Academic
Press, New York.

Yousif, N. Y. [1983]. "Parallel Algorithms for Asynchronous Multiprocessors,"
Ph.D. Thesis, Loughborough University.

Yu, N. and Rubbert, P. [1982]. "Transonic Flow Simulations for 3D Complex

Configurations," in Cray Research, Inc. [1982], pp. 41-47.

Zakharov, V. [1984]. "Parallelism and Array Processing," IEEE Trans. Comput.
C-33, pp. 45-78.

Zave, P. and Cole, G. [1983]. "A Quantitative Evaluation of the Feasibility

of and Suitable Hardware Structures for an Adaptive Parallel Finite Element

System," ACM Trans. Math. Softw. 9, pp. 271-292.

Zave, P. and Rheinboldt, W. [1979]. "Design of an Adaptive Parallel Finite

Element System," ACM Trans. Math. Softw. 5, pp. 1-17.

i. Report No. 2. Gc_,ernm.ent Acce_,._ionNo. 3. Rrc_p,an!'l C4ulog No.

NASA CR- 172500

4 _,.e and Subtitle f_. Report Ollll

Solution of Partlal Differential Equations .January 1985

on Vector and Parallel Computers 8.Pado,mlngOr_nlzat_onCod=

7. Author(s) 8. PerformingOrgan;zationReportNo.

James H. Ortega and Robert G. Yolgt 85-1

10.WcxkUnit No.

g. Performing Organization NameandAddreu
Institute for Computer'Appllcatlons in Science

and Engineering 11. Contrector GrantNo.

Hall Stop 132C, NASA Langley Research Center NASI-17070; NASI-17130

Hampton, VA 23665 13.Typ,ofReportandPeriodCov,,ed

12. Sponsoring Agency Name and Addr_$ Contractor Report

National Aeronautics and Space Administration 14 SponlnringAgencyCode

Washington, D.C. 20546 505-31-83-01

15. Supplementary Notes

Langley Technical Monitor: J. C. South, Jr.

Final Report

16. AbstraCt

In this paper we review the present status of numerical methods for partial

differential equations on vector and parallel computers. A discussion of the

relevant aspects of these computers and a brief review of their development Is

included, with partlcular attention paid to those characteristics that influence

algorithm selection. Both direct and Iteratlve methods are given for elliptic

equations as well as explicit and implicit methods for Inltlal-boundary value

problems. The intent Is to point out attractive methods as well as areas where thls

class of computer architecture cannot be fully utilized because of either hardware

restrictions or the lack of adequate algorithms. A brief discussion of application

areas utilizing these computers is Included.

I?. Key Words ISuggested by Authorl$l} 18. DistributionStatement

linear algebra, elliptic equations, 59 - Mathematical & Computer Sciences

Inltlal-boundary value problems, vector (General)

computers, parallel computers, 64 - Numerical Analysis

pipellnlng, fluid dynamics Unclassified - Unlimited

19. S_urity Oa_if. (ofthisreport) 20. SecurityCla_if.(of this_) 21. No.of Pe_$ 22. _ica

Unclassified Unclassified 173 A08

F_ salebylhe Natio_lTechnicallnl_ationService. Sprin_lield.Vi,_im_ 22161 NASA-Langley, 1985

