FIOB8WNRAS. 1417 ~. 273G}

Mon. Not. R. astr. Soc. (1968) 141, 27—41.

SOLUTION OF RADIATIVE TRANSFER PROBLEMS
USING THE INVARIANT S, METHOD
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Summary

'The discrete ordinate difference equations of radiative transfer for a slab in the
form presented by Carlson and by Lathrop & Carlson can be written in a form
consistent with principles of invariance. It is shown that this permits solution
of the equations, without the need for iteration in scattering problems, by a
method which converges in the limit to that of Rybicki & Usher. The new
method is economical to use, both in respect of storage and of computing time,
and may be preferable to that of Rybicki & Usher in problems with anisotropic
phase functions.

The mathematical structure of the equations and its implications are
briefly discussed. Specimen numerical results are provided for diffuse reflec-
tion from an isotropically scattering homogeneous slab and compared with
results published by other investigators.

1. Introduction. Many different methods have been proposed for the numerical
solution of the equation of radiative transfer. These methods involve discretization
of the angle variables and possibly of space variables as well. One of the best known
of these techniques is the method of discrete ordinates as described, for example, in
Chandrasekhar’s monograph (1950). In that work, the discretization was applied
only to the angle variables, from which, in the case of a plane-parallel atmosphere, a
system of simultaneous ordinary differential equations could be obtained. These
differential equations could be solved by classical methods to obtain an approximate
solution. One disadvantage of this analytical work is that it cannot be easily general-
ized to treat non-uniform media. More difficulties arise when one tries to treat
problems in curvilinear coordinate systems.

A numerical version of the discrete ordinates technique which has been much
used in reactor neutronics calculations is that of B. G. Carlson and his collaborators.
A survey of this work is given for example by Carlson (1963) and Lathrop & Carlson
(1967). The differential operator of radiative transfer can be written as a divergence
and so, by integrating the radiative transfer equation over a small but finite volume
in the space of the independent variables and making use of a mean value theorem
for integrals, one can construct difference equations that clearly conserve flux.
These difference equations can be formulated for quite general non-uniform media
and for arbitrary curvilinear coordinate systems. They can be solved in a stable
manner, by a method which requires an iterative procedure whenever the medium
both scatters and absorbs radiation. This iteration converges satisfactorily if the
optical thickness of the medium is not too high and the albedo for single scattering
is not too close to unity. Otherwise the iteration may converge very slowly and it is
hard to obtain a good solution.
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Invariance methods have not usually been considered in this context, which is
somewhat surprising since they are only the expression of a conservation relation
for finite partitioning of a physical system. Most discussions of principles of in-
variance (e.g. Chandrasekhar 1950; Mullikin 1964) lead to a system of non-linear
integro-differential equations on which attention is subsequently focused. In the
words used by Preisendorfer (1965), principles of invariance are ‘apparently
abiogenetic ’. Preisendorfer goes on to show that this is not so, and that the prin-
ciples of invariance are a natural property of the reflection and transmission
operators associated with subdivisions of the region of interest. Since Carlson’s
difference equations are known to be conservative, we might expect to see invariance
principles deduced from them in the way that Preisendorfer has suggested. This
conjecture was one of the sources of inspiration for the work described in this paper.

With any numerical method, it is important to know what discretization errors
can be tolerated in order to obtain a result with specified minimum accuracy.
Hitherto, the numerical analysis of Carlson’s difference equations has hardly
progressed beyond a qualitative demonstration of stability. This has largely been
because of the complexity of their structure. We have sought to overcome this by
rewriting the equations in what we call ¢ invariant Sy, ’ form. The method of doing
this is set out in Section 2 for the case of a plane-parallel slab. The result can be
expressed in matrix form and the non-zero submatrices can be interpreted as
approximations to reflection and transmission operators for the elementary slab
zones into which the system has been decomposed. The structure of the matrix
facilitates the desired analysis and enables us to construct a simple direct method of
solution that turns out to converge, in the limit of vanishingly small zone thickness,
to the equations recently put forward by Rybicki & Usher (1966). In th1s way we
need no longer iterate the solution for scattering problems.

The full analysis of our method is too lengthy to produce in a single paper, and we
have therefore contented ourselves with a sketch of the results obtained, and a brief
account of a solution for a simple problem.

2. The DSN equations of Carlson for a slab. We describe first the basic difference
equations that we are to examine. A full derivation in the general case is given by
Carlson (1963) and Lathrop & Carlson (1967) and we refer the reader to those papers
for details. We wish to find an approximate solution for the specific intensity I(x, )
at depth x travelling in a direction making an angle whose cosine is p with the
normal in the positive x-direction, where, for o< u<1, 0<x<xN§41,

(1 2 o] 165, ) = o1~ 1B+ he) [ e, G, ) i)
(2.1)
| b 2 o) 25 1) = o) [5 — (B + ble) [ Do, = 1) ) )

for intensities in the positive and negative x-direction respectively. (‘This is not the
usual convention in astrophysical work, but it is less confusing to have positive
directed intensities in the same sense as x increases.) The functions o(x), w(x), B(x)
and p(x, p, p’) are prescribed (in general, piecewise continuous) functions of their
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arguments, subject to the conditions
B(x)>o0, o(x)z0, o<w(®)<1, o<x<xyni1 (2.2)
and
+1 L
[ pemide =1, (mi<ps

(2.3)
p(x, py u') = o0. O<X<XN+1

Together with equation (2.1) and the functions just described, we require boundary

values I(o, p), I(xn41, — ), o< u<1 to complete the specification of our problem.

By using the procedure outlined in Section 1, and fully described in the

references cited above, we replace equations (2.1) by a system of difference equa-

tions. We divide the region o = x;<x<xy41 into NN cells or layers by planes

X = x4, 1 = 2,3,..., N, where x;<x; whenever 1<j. We also choose m discrete
directions o< p1< ... <pp<1 with which we associate quadrature weights
€1,. .., cm. At each plane we can define column vectors
_un,l— _un,—l—
upt = o, up = . , n=12,...,N+1, (2.4)
| Un, m | | Un,—m |
where
unyj = I(xnr I‘Lj)’ uni_j = I(xn, —’Lj)' (2'5)

From now on, we shall not need to refer to intensities by the symbol 7, and we shall
reserve I for the unit matrix of appropriate order in the remainder of the paper. If
M denotes the diagonal matrix

M = [pbyj] (2.6)
and ¢ the corresponding matrix of quadrature weights, the total flux in positive
directions is defined by

aFnt = 27| Mcuy*|| = 2m|junt||F, (2.7)
where the expression |u]| is the vector norm defined by
e]| = 'Zl |1 (2.8)
J=
The net flux in the positive direction is given by
mFy, = 7T(Fn+—Fn_) (29)
in the usual way. The modified norm ||...||r requires premultiplication of the

vector by the matrix ¢cM = Mc before using equation (2.8). This operation is the
discrete equivalent of multiplication by x and integration over o < < 1. In terms of
this matrix notation, the difference equations replacing equation (2.1) become
— Mup™+ Mug 1%+ Tot1/2Un+1/2"
= Tpt+1/2{(1 — Wn+1/2)bnt1/2 + wns1ja[Prrr2 T eUnt2T + Pyt cUn127] ),
(2.10)
—Muny1™+ Mup™+ Tn1/2Un+1/2”

= Tps1/2{(1 — wn11/2)bn+1/2 + Fwni1/2[ Prr12 UL T+ Prtrse T CUR 12 7]
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for each layer xy<x<xy41, # = 1,2,..., N. Subscripts n, n+ 1 associate vectors
with the bounding planes x5, x54+1. Subscripts #z+ 4 associate quantities (scalar or
vector) with cell averages. For example, we write

Tn+1
Tatl/2 = f o(x) dx = ont1/2(Xn+1— %n) (2.11)

Tn

defining op+1/2. On the right hand side of equation (2.10), by41/2 is a vector with m
components each equal to some mean value of B(x) for the cell. The matrices
pn+1/2tt, pus1jet, ete. of order m x m, are symmetric and we have

P12t = purre™,  PatietT = ParyeT, (2.12)
where

P(%, i, pg) = Puyrsett,
B piy —pg) = Prvr2’™, | O< ST
P(®, — iy ) = Pavre™, | O<py<I

P, — poy — ) = Potre ", |

for some x in x,, < x < xp+1/2. As we have said, matrix products with a factor ¢ imply
integration over u; thus, if u>o,

P12t CUuny1e™ R J:P(x, gy — ) (%, —p') dp. (2.13)
The normalizing condition (2.3) may be written
%jﬁl (P +pit)ep = 1, 1<i<m (2.14)
or, since the matrices are symmetric and equation (2.12) holds

b alpy™+py™) = 1, 1<j<m. (2.15)

The last relation shows that
Ie(ptt+p DI = 1, (2.16)

where the matrix norm used here is subordinate to the vector norm (2.8), namely

4] = max Zl | 4], (2.17)
i =

(Varga 1962, p. 15). A second relation can be obtained by interchanging plus and
minus signs in the superscripts of equations (2.15) and (2.16).

If we consider equations (2.10) together with boundary conditions giving u;™,
un+1~, wWe see that we have too many unknowns. We need auxiliary equations to
express #p41/2%, Un+1/2” in terms of the remaining vectors to resolve the difficulty.
These auxiliary equations must embody some assumption about the physical shape
of the radiation field in a cell. This is, of course, unknown. We therefore suppose
that #y1/21, #n+1/2~ may be expressed as a weighted mean of the interface intensities

(I = Xp+12Dunt + Xpv1ptunat = upsase™,

~ ~ o ~ (2.18)
(I—Xn+1/2 )un+1 +Xn+1/2 Up = Un+1/2
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where the Xy 1/2 are diagonal m x m matrices. Standard choices (Carlson 1963) are
Xn+172 = 31 (‘ diamond ’ scheme) and Xy41/2 = I (“ step ’ scheme). Other choices
of an intermediate character are possible (Grant 1968).

Methods of solving the complete system of equations (2.10) and (2.18) are
described in the papers by Lathrop & Carlson already cited. The solution is explicit
if scattering is absent; otherwise it is necessary to iterate. These methods do not lend
themselves to mathematical analysis. We shall describe a transformation of the
equations which eliminates the need to iterate for a scattering medium and allows
us to obtain a greater understanding of the structure of our approximations.

3. The invariant DSN equations. In order to exhibit the structure of the
equations we need to consider each cell independently as a slab in its own right and
to exhibit the dependence of its radiation field on the sources incident from neigh-
bouring cells in the slab. Since, for example, u,* refers to the common interface of
two cells, it will appear in the equations for both. In order to separate these equa-
tions we need to define vectors Uy1/2 associated with each cell alone. These vectors
have dimension 6 m and may be partitioned in the form

U n+1/2" Un™ Un+1~
Unt12 = s Upiet = lugnat |, Uptp™ = |us™ ,
Upt1/2” Un+1/2t Un+1/2”

n=r12...,N (31)

This structure has been chosen so that for each vector the first m rows refer to input,
the next m rows to output, and the last m rows to central intensities in either direc-
tion. The continuity of flux at an interface is expressed by the identity

I . . 4
U2t

U,12f, n=1,...,N (3.2)

or

I . . 4
Uprigm=|. . .| Upszpe, =

i

I..., V. (3-3)

These identities involve the fluxes incident on the boundary for » = 1 in the case of
equation (3.2) and # = N in the case of equation (3.3). It is convenient to include

such fluxes by introducing fictitious cells associated with suffices 1 and N+ £ for
which

Uit = |luat|, Unigie™ = |uvi™ (3-4)

are prescribed. (The corresponding vectors Uy2~ and Uyyg/s™ are irrelevant.) We
now write equations (2.10) and (2.18) in terms of the vectors Uy11/5F, Upy1/2~ and
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combine the equations with equations (3.2) and (3.3). The result is
I . .
I—Xpr0™ Xpgaet ~1 Ujpi1/2™
-M M Ta+1/2[d — twnt1/2pnr1/2t ]
—-. - . Ugut12™
$Tn+1/20n+1/2 Pnt1/2tC
I .
= Uyt +mprp(i—wprie)l - |, 2=12,...,N (3.5)
bn+1/2

for the plus direction. The corresponding equation for the minus direction has the
same matrix structure, plus and minus being interchanged, whilst the first term on
the right hand side contains U, 3/~

Assuming, for the moment, that the necessary matrix inverses exist, straight-
forward but tedious manipulation, which has been relegated to the Appendix, shows
that the cell vector Uy1/2 satisfies the equation

— Ap12Un-172+ Uns172— Buv12Unvsie = Zptaye, : (3.6)

forn = 1,2,..., N. The matrices 4,+1/2, Bn+1/2 only couple the relevant intensities
incident on the cell boundary to Upyy1/2. This can be seen by examining their block
structure; in terms of 3m x 3m blocks we may write

Apyipe = [;EZ::Z; ], By = [ $E2;Zii;] (37)

The corresponding partition of the source vector X 1/2 is written
Snt1/2t
Zpt1/2 = [ "
nl/ zn+1/2_

as in equation (A.9).
Each block T or R can itself be partitioned into 7 x m blocks so that

. 1 . . . .
T6j)=|. T6j) .| Raj)=|. RGi) |- (3)
Te(t,7) . . Re(3,7)
Thus Aut1/2 only couples the vector u,+ and Byy1/2 couples the vector #4117~ as
required.
If we write out the equations in detail, we find, for example
—T(n+ 1, n)Un+1/2_— R(n, n+ I)Un+3/2_ = Zpt1/2h, (39)
which is equivalent to the three equations
— un++un+ = o’
—T(n+1, n)unt +upat—R(n, n+ Dunyi™ = Zpt1eh (3.10)
—Te(n+1, n)un*+uptij2t— Re(n, n4- 1)1~ = 2, na1/2t

The first of these equations expresses the continuity of flux as in equation (3.1). The
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last equation shows that #,41/2 can be simply written in terms of the incident fluxes
on the boundary. It is clear that we can in fact dispense with this equation for the
purposes of computation and deal only with the boundary fluxes. The auxiliary
equations (2.18) can then be invoked to obtain the omitted central intensity vectors
if they are needed.

In this case, equations (3.6) remain valid but the vectors Upy1/2, Uptasot,
U 4172~ must now be interpreted as of dimension 4m, 2m, 2m respectively, since

Upt Up+1~
Ujyret = [uniﬁ]’ Untie™ = [ Z;:i ] (3.11)

are both of dimension 2m. We shall use the same notation for the truncated vectors
and operators for the sake of economy, as no confusion is likely to arise. Again
equation (3.7) will be valid with the interpretation

T(i,j):[: Téj)], R(z’,j)=[: R(Z:’].)], j=it1.  (3.12)
Finally

+ = * - = *
zn+1/2 [Zn+1/2+:| ’ zn+1/2 [2n+1/2_] . (3-13)

4. Solution of the invariant DSN equations. 'The system (3.6) can be solved in a
particularly rapid and economical fashion by exploiting its block tridiagonal struc-
ture. Assuming for the present that all the required inverses exist, we define a set of

4m x 4m matrices Cpi1/2, Dyiaj2 and Epqa/, # = 1,2,..., N using the recursive
system
Ci2 = o,

Dyi1j2 = [I-Ans12Cn-12]74,

Cn+1/2 = Dni1/2But1/2, (1)

Eni12 = DytijpAnsae.
We also define vectors Vy41/2, of dimension 4m, by way of the system

Vig = Uiz = [U1/2+];

Vasiz = Env12Vn-1/2+ Dys12Zn41/2, (4-2)
for n = 1,2,..., N, where Uy,e* denotes the 2m-dimensional form of the first of
‘equations (3.4). Then the solutions Up41/2 can be computed from the system

Un+sj2 = [UN-I.-S/Z—],
Un+12 = Cpi1/2Un+3/2 + Ve, (4-3)
for n = N,N—1,..., 1 in succession. Here Uy.3/2~ is defined by the 2m-dimen-

sional form of the second of equations (3.4).

For the most economical implementation of these equations, it is worthwhile to
decompose them into m-dimensional form, thus making best use of the sparseness
of the matrices. At the same time one obtains much physical insight by so doing.
We shall use heavy type to denote 2m x 2m blocks into which the C, D, and E
matrices can be decomposed. These 2m x 2m blocks will themselves be decomposed

3
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into m x m blocks, which will appear in light type. Thus it is easy to verify the
decomposition

_[. R@n+1) e
Coiie = [ T(n,n+1)]’ Eniape = [R(n+1,n) it

I R
e

(4-4)

into 2m x 2m matrices. The circumflex accents are used to imply modification by
multiple reflection of unimbedded cell matrices. The six 2m x 2m matrices given in
the decomposition (4.4), with a suitable reinterpretation of the symbols used, appear
in the work of van de Hulst (1963), p. 61. In the next stage of decomposition we
find that

. R(1,n)T(n,n+1 . . I ]

R(1,n+1) = ( R(z, 7(l+ 1) ﬂ , T(myntr) = T(n’ n+1)|’ (45)
. R(1,n)T ] A 1 . i

R1H-1/2 = ( Rni_l/n;_llz ’ Tn+1/2 = ) Tn+1/2 ’ (4'6)
[ . 1 4 [ T "

R(n+1,n) = Rin+1,7) , T(n+1,m) = T(nn-tlr/,zn) . (4.7)

As a result of this decomposition, certain equations are found to be redundant. If
we write

\" + + .
Varyz = |72, Vet = vn+1/2+ y Vnye~ = | (498)
Vat1/2 Vot Vatis2

(using the fact that v,41/2 is always zero), we find that the actual computation can
be written as follows. With the initial conditions R(1, 1) = o and Vyet = uit we
form successively

Tn+2 = [I—R(n+ 1, n)R(1, n)] L,
Rpui12 = T(n+1, n)R(1, n)Tpi1/2,

R(1,n+1) = R(n, n+1)+ Rpy12T(n, n+1), (4"9),
T(n,n+1) = Tny12T(n, n+1),
and
Tnt12 = [I—-R(1, n)R(n+ 1, n)] 71,
Tn+1,n) = T(n+1, n)Tpivse,
R(n+ 1,n) = R(n+1, n)Tpi1ye,
with
Vaset = T+ 1, 0)Vpoyjet +[Snsret + RusreZas12],
Ve~ = R+ 1, 0)Vayjet + TunspSnr12 (4-10)
for n = 1,2,..., N, successively. Then we form
uns1t = R(1, n+ Dupri—+ Vet (4.11)
un= = T(n, n+ uns1~+ Vaiyja™
for n = N,N—1,..., 1, starting with the given value of #x41~. These equations
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show up the physical meaning of the 7 x m matrices. The notation has been chosen
so that 7" denotes transmission, and R reflection operators: for example T(n+ 1, 7)
is the transmission of the isolated layer for radiation in the positive direction
incident on the face #. The corresponding transmission operator T(n+1,7)
contains a factor 741/2” which, if expanded in a series,

Tuy12’ = I+ R(1, n)R(n+ 1, n)+ R(1, n)R(n+ 1, n)R(1, n)R(n+1,n)+ . . .,
can be seen to take account of multiple diffuse reflections of positively directed
radiation incident on face z between the layer (z+ %) and the composite layer be-
tween faces 1 and #z. We can construct equivalent interpretations for other operators.

We have omitted certain equations from the decomposition, namely those for
vn+1/2T and u,t. These are

Ons1/2t = Turap2' Va-12t + R(1, 0)Thi1/2Z0+1/27,
(and we remark that

Vaset = T(n+1, n)vpr172™+ Zps12™)
and
un™ = R(1, n)T(n, n+ 1)uns1”+vnt1/2t

The last equation can be shown to be equivalent to the first of equations (4.11).
To complete our description of the method of solution, we give a brief indication
of what happens as we let the cell thickness tend to zero. In the limit (4.9) gives

M) = T()= RET—) - THERE) + RATHIRE). (412)
The first of equations (4.10) gives
P20~ RET—+) - THEW )+ SO +RES6). (4.13)

The last of equations (4.11) gives
420 — P @RE-T—OW @)+ SOV D) (19)
and the second gives
ut(t) = R(ryu~(r)+ V(7). (4-15)

In these equations, which were first derived by other arguments by Rybicki &
" Usher (1966), we have

(7)) = ()M pt(r)e, () = MUI-}o(mptH(r)d],  (4.16)
with similar definitions for I'~*(r) and I'=(). Also
SH(r) = §7(r) = M1 - o(7)]B(). (4-17)
The remaining equations give essentially nothing new.
5. Numerical example. The explicit solution of the last section has been pro-
grammed in FORTRAN and used to solve a variety of simple problems to test the
capabilities of the method. For many problems one only wishes to know, say, the

mean intensity or net flux distributions and in such case a low order of angular
resolution is permissible, m = 2 or 3, say. If, however, one is interested in the
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angular distributions themselves, a larger value of m is needed. In the problem we
have used to illustrate the method, we have computed the intensity emerging from
an isotropically scattering finite atmosphere, with constant albedo for single
scattering. Solutions of this problem, in the form of the matrix

r = 3R(7)c7}, (5-1)

where R(7) is the matrix of equation (4.12), have been tabulated to six decimals by
Bellman et al. (1963) for a set of Gaussian division points with m = 7 and various
values of w, for slabs of optical thickness up to 20. Essentially they integrated equa-
tion (4.12) using a fixed step Runge-Kutta procedure; they do not quote a step size,
but taking account of exponential factors appearing in the solution suggests that
they must have taken Ar< }u1, where p; ~ 0-025 is the smallest cosine occurring for
m = 7. We have found this to be a necessary restriction when using the same method
of solving equation (4.12) ourselves.

We can calculate the solutions required in two ways. Either we can use equation
(4.9) as it stands, or else we can solve a sequence of problems with #;+ having a single
non-zero element in, say, the moth position and with %41~ = o. This gives us a single
column of the matrix for each choice of g and fixed optical thickness. We used steps
of 005, and with the ‘ diamond ’ choice of weights in equation (2.18), we found that
the two procedures agreed to the number of figures printed out by the computer.
Our results agree closely with the tables given by Bellman et al., as the selected
results printed in Table I will confirm. The agreement is worst for small optical
thicknesses, about 1 part in 104 in the case w = 0'5, 7 = 0-2. In the case of w = 1,
T = §, the solutions agree to six digits.

We shall report other calculations that we have made in due course.

6. Discussion. We have described the invariant S, equations and shown how
they may be used to solve quite general plane-parallel problems. However, we need
more information about the numerical analysis of the method, and about its practical
convenience as a tool for astrophysicists. We need far more space for these matters
than is available here and we shall therefore give only the briefest outline of what is
known.

To begin with, we have indicated that the method of solution embodied in
equations (4.9)—(4.11) converges to the Rybicki~Usher equations (4.12)-(4.15).
These are equivalent to the original system (2.1), and it is also possible to confirm
that the difference equations (2.10) are consistent with equation (2.1). Next, it can
be shown that the solution of the system (4.9)—(4.11) exists under quite general
assumptions. It is in fact sufficient that

IR(n, n+1)+T(n,n+1)||r<1
[R(rn+1,n)+ T(n+1, n)||p<1,

where the modified norm, |4 |[r = |[((Mc)A(Mc)71|}, in the sense of equation (2.17),
and we have found these conditions to be satisfied in all the cases we have examined
so far, whatever the step size, for w < 1. The reflection operators defined in these
equations are always represented by non-negative matrices and so are the trans-
mission operators, provided the cell thickness Ar is restricted; it is sufficient that

Az < min {pg/[(1 — X)(1 — Jwputtea)]} = .
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TasLE I

Results of invariant Sn calculation of the matrix r of equation (5.1)

The matrix elements r;;=r(u;, py) are tabulated for values of x which are given below to five
decimal places:
i= 1 2 3 4 5 6 7
pt = 0'02545 ©0°-120923 0°-29708 0°50000 0°-702092 ©0°87077 0°97455
cos™! yyx~ 88-5° 82-6° 72°7° 60-0° 45°3° 29°5° 13-°0°
Asterisked elements are those showing the largest deviation from the results of Bellman et al.
(1963). The magnitude of this deviation is printed below each matrix.

Case (8) w = 0'5, 7 = 0°2, A7 = 0°05

Jli I 2 3 4 5 6 7

I 0-06570 0-02255 ©0°01101 ©0°'00681 ©0°00493 ©0°-°00401I ©0°00360
2  0°'11454 0-06755 ©0-°03860 o©0°02524 ©0°01873 ©0°0I543 ©0°0I302
3 0-12858 0-08872 0-052909 ©0-03518 ©0-°02628 o©0-02172 ©-01961
4 0°13381 0°09766 0°05921 ©0-0395I 0'02057 0°02447 ©0°022I0
5 013617 0-10187 ©0-06217 ©0°04157 o0-03115 ©0°02578 ©0°02330
6 o0-13732 010398 0'06366 ©0-04261 ©0°-03194 ©0°02644 ©0°02389g
7 0-13784*% ©0-10494 ©0°06433 ©0°-04308 0-03230 ©0°-°020674 ©0°-02417
Maximum deviation 7 x 1075,

Case (b) w = 10, 7 = 0°'5, A7 = 0°03

il I 2 3 4 5 6 7

I o 14060 0°'05279 ©0°02796 ©0°01809 ©0°0I34I ©°0II05 ©0°00QQ97
2 026809 0-18160 o©0°11922 ©0°08372 0°00438 ©0°05402 0°04913
3 0-32640 0°27406 0-20244 ©0°14933 ©0°11746 ©-09966 0-09I108
4 0°-°35546 0-32392 o©0°-25133 ©0°-18918 o©0-15017 ©0°12799 ©°'II72I
5 0-37046 0-35018 ©0°2%792 o0-21112 0°16829 ©0°14371 0°13173
6 0-37830 0-36400 o©0-°29210 ©0-22290 ©0°-17803 ©-15218 ©0°-13956
7 0-38196 0°37048 0°29879 0°-22846 ©0°18264 o©0-15619 ©0-14326*
Maximum deviation 5 x 1075,

Case (¢) w = 1°0, 7 = 5'0, AT = 0°05

jlt I 2 3 4 5 6 7

I 0°14356 0-05651 ©0-03300 ©0°-02407 ©0°'01982 o0-01760 ©0°01654
2 0°-28698 0°20539 ©-1§5155 ©°'I2I197 ©0°I0520 0°-09560 0°:09080
3 0-38522 0:34838 0-30397 ©0°26889 o0-24420 0°-22814 ©0°-21952
4 ©0°47303  0°47I91 0°45257 ©0°42753 0°40437 ©0-38668 0-37633
5 0°54754  o°'57219 0°57781  ©0°56848 o©0-55259 ©0°53721 0°52717
6 o0-:60235 0:64416 0-66870 ©0-67342 o0°66549 ©0°-°65364 0-64478
7 0°63364 0-68475 o0-72014 ©0°73352 ©0°-73089 0°-72164 ©0°71378

Maximum deviation < 10-8.

The bound 75 is infinite if X = 1 (‘ step ’ weighting), it can also be large if the
scattering phase function is strongly peaked in the forward direction. The trunca-
tion error is reduced by taking X = } and, for this case, we have taken Ar <2pu; as
our working restriction, although a larger cell thickness could be used without
destroying the positivity of the transmission operator. The numerical work of the
last section, which was done with Arx2u;, shows that this cell size gives quite
acceptable accuracy. This means that we could take A7~ 0-4 in the case m = 2, say,
provided this gave us sufficiently accurate results.

We have already mentioned that some of our matrix relations appear in treat-
ments of radiative transfer employing invariance techniques. We have therefore
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examined our difference equations for further evidence of invariance properties. It
is not difficult to show that principles of invariance appear as a consequence of the
matrix structure formulated in Section 3. This means that our difference equations
are consistent in two senses: they converge to the original differential equations in
the limit, and they satisfy invariance principles. This is a highly significant observa-
tion, for if our operators R(n, n+1), T(n, n+ 1), R(n+1, n), T(n+ 1, n) were exact
and the source vectors % were exact, then we should get, with exact arithmetic,
exact values of the solution vectors. However, the operators are only correct to first
order in cell optical thickness and possess a truncation error. This gives rise to
errors in the solution to which we must add arithmetical errors arising from matrix
manipulation. We can reduce the resultant error in principle either by taking thinner
cells, or by finding more accurate representations of the cell operators. In the former
case we increase both the storage required and the time of execution. In the latter
case, we may use imbedding methods to calculate the cell operators and source
vectors for multilayered cells. This is relatively fast and economical on storage and
should enable us to solve smaller problems with great accuracy or larger problems
with economy of storage. We are currently endeavouring to assess the practical
worth of this idea.

It is interesting to compare our method with the Riccati equation method of
Rybicki & Usher (1966) to which it converges. In our method, apart from basic cell
quantities, it is only necessary to store the vectors V4121, Vipt1/2~ and matrices
R(1,n+1) and T(n,n+1) for n = 1,2,..., N, requiring a total of 2m(m+1)N
numbers. The solutions can be stored separately or allowed to overwrite the V’s on
the reverse sweep. It is possible to arrange the calculation so that a minimum of
matrix multiplication is required. Taking the multiplication count as an estimator of
the time used, we find that we need approximately (973 + 5m2)N multiplications.
For the Rybicki-Usher method we need only store ¥ *(r) and R(7) on the forward
integration, a total of m(m+ 1)N numbers. Basic cell quantities amount to the same
as in our method. The work involved depends on the type of integration routine
employed and the step size permitted within the limits set by the accuracy desired.
For example, if a Kutta-Merson scheme is used, requiring five entries in the
auxiliary routine per step, we find that 5(43 + 7m2)N multiplications are required.
This is more than twice the number needed in our method for the same number of
steps. As we have seen, we may be able to use a larger step size without sacrificing
too much accuracy, since the Runge—Kutta step size is dictated by the most rapidly
varying term in the solution.

It is only fair to the Rybicki~Usher method to remark that it can be made much
faster in the special case of isotropic scattering, which is the case of all its applica-
tions so far. The right-hand side of the R-equation can be factorized, and all the
remaining equations expressed in terms of a vector X, which alone need be stored.
It then has a distinct advantage on storage over the invariant S, scheme.

The reader will notice that the equation (3.6) is similar in structure to the
equations solved by Feautrier (1964). This resemblance is superficial, in that no
obvious physical meaning can be attached to Feautrier’s matrices. Our method has
much more in common with that of Rybicki & Usher, as we have just pointed out.

Finally, we remark that the Carlson techniques are not restricted to plane-
parallel slabs. There seems no reason in principle why we should not apply a similar
analysis to the transfer equation in other coordinate systems, although the equations
will undoubtedly be much more complicated. We are currently working on this.
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APPENDIX

Cell operators. We begin with equations (3.5), which we may write in the form

Guiiptt - Gn+1/2+—] [Q ] [ .. ]
= - U
[— Grtyo~t G172~ Un+2 o Unp-1/2+ .0 n+3/2

+ Tp+172(1 — wnt1/2)Snt1/2, (A.1)

where the vectors have dimension 6m and the submatrices dimension 3m. The
inverse of the matrix on the left will be denoted by H, and its component submatrices
are

H++ = (G++)Y[- P+P—] 1,
H— = (G 1[I~ P=P+T,

H+ = H+tP+-, (A-2)
H~+ = H—P—+,
where
Pt= = Gt=(G—)l, Pt =G HGH)L
Thus comparing with equation (3.6), we see that
Hyp10ttQ . . H +-0
y _ [Hn+12 ] B _ [ n+1/2 ] A
w2 [Hn+1/2“+Q N i . Hpyp7Q (A:3)
and
H 4 H )Sn11
5 _ _ (Hp+1/2 nt1/277) S+ /2] A
w12 = Tkl = Oniare) [(Hn+1/2‘++Hn+1/z_)Sn+1/z ’ (A-4)
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. I
Spre=1| . |, O=1|. . .|
butis2 Coe

where

Setting
i . .
Gtt = | I-X+ X+ —I},
| -M M <Zt
Gt—={. . . ], (A.s)
| 7Y+ :
where
Z+ = [I-}opttc] = [- Y+,
Y+ = Jopto
we find

I . .
(Gt 1= | I-7A+Z+ TAYZ+ A+ ], (A.6)
I-7X*+AtZ+ —(I—-7XFTAYZ*) X+A*
where At = (M +7Z+X*)™1, and similarly for matrices with + and — superscripts
interchanged. It is now straightforward to show that
T(n+1,n) = Hyy1270, Rn+1,n) = Hyp12770
have the form of equation (3.8) with
Te(n+1,n) = [I—rt—r—t]71tt,
Tn+1,n) = (XN UT(n+1, n)— (I - X)), (A7)
Re(n+1,n) = r—+T¢(n+1,n),
R(n+1,n) = (X)) 1Ry(n+ 1, n),
where
rt— = T X+A+tY+,
tt = -7 X+A+Z+. (A.8)
The expressions for T(n, n+ 1), R(n, n+ 1) follow by interchanging plus and minus
superscripts. In the same way, we find that

[ Zp41/27
b = [ oz | A.
n+1/2 | e (A.9)
where
et = Zn+1/2+}
_Zc,n+1/2+
and

Ze,n+1/2T = Tu12(1 — wpg1y2)L — )Y (Spaa 0T+ Sha127),
Zn+1/2+ = (X"_)—lzc, n+1/2+,
Spt12t = XA byp1a)o,

with corresponding relations when plus and minus signs are interchanged.
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These equations may be physically interpreted by noting that equation (A.8)
defines first order approximations for diffuse reflection and transmission operators
for a slab of thickness 7.X* (in the case when X+ is a multiple of I). The inverse
matrices such as (/—r+—=*)"1 then account for the effect of multiple diffuse
reflections across the whole cell.
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