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Abstract

An implicit LU-scheme developed by the second au-
thor is medified and extended 1o three dimensions. The
resulting scheme is applied to the solution of the steady
compressible Euler and Navier-Stokes equations in the
framework of a finite-velume discretization technique.

The approach can be viewed as a deferred-correciion
solution method, where the implict operator only ap-

roximates the corresponding flux jacobians to first order
in space, whereas the central-differenced explicit operators
are chosen to be second order accurate on a sufficient
smooth grid system. However, the LU-factors have the
property of diagonal dominance and therefore are well
condilioned allowing a relaxation type solution of the
steady equalion set.

Results will be presented for some viscous and inviscid
subsonic, transonic and hypersonic flow problems.

Introduction

Most of the methods for numerical solution of the
steady-state compressible conservation laws are based on
time-marching integration procedures.

In implicit schemes the time coordinate it mostly wsed
as a means to provide some sort of diagonal dominance
in the coefficient matrices which result alter discretization
of the implicit operator chosen,

In advanced explicit methods time and space discreti-
zation have been separated to allow the application of ef-
ficient integration schemes developed for ordinary
differential equations. Especially the class of cone step
multistage schemes, proposed and developed by Jameson
[1] for systems of partial differential equatiohs have been
proven to perform extremely effective for solving the Euler
equations. The original stability limits have been extended
constderably by tailoring corresponding integration coefTi-
cients and by introducing some implicitness through a re-
sidual averaging procedure [2] . Also for the solutions of
the Navier-Siokes equations these types of explicit schemes
are very promising lines of development.

. Withoul using the time coordinate in implicit schemes
diagonal dominance can also be assured by suitable im-
plicit operators, which in general however possess a worse
discretization error compared to thal the method is de-
signed. This feature Jeads almost automatically to an ap-
proximate Newton-iteration method, where the stable
implicit operator only approximates the true jacobians to
some lower order.

Copyright © American Institute of Acronautics and
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in this context there are some reasons considering ap-
proximale LU decomposition schemes as promising
methods for the numerical solution of the three-dimen-
sionat Euler and Navier-Stokes equations. In contrast to
the allernate direction approach for approximate factori-
zation of the corresponding three-dimensional implicit un-
factored operator, methods based on LU decompositions
do not exhibit in three dimensions the known instability
problem for the linear hyperholic model equation. In
ADI-type schemces the three-dimensional unfactored im-
plicit operator is approximated by a product of three one-
dimensional operators each of them being aligned with a
specific coordinate direction. it is just the aplitting of the
implicit operator into three factors, however , which causes
the mentioned instability for the delta-form version of the
algorithm. Nevertheless ADI-type approximate factoriza-
tion schemes can be made working well in three dimen-
sions as was demonstrated by Pulliam and Steger {3,4] for
Beam-Warming type schemes [5] . It was shown that
conditional stability can be achieved by adding some arti-
fictal dissipation.

The development of an LU decomposition scheme is
based on a somewhal different idea. Since the classical
direct LU decomposition of the unfactored implicit opera-
tor is too expansive for multi-dimensional problems one
has lo resorl to incomplcte or approximate LU decompo-
siton methods. In the latler concept a particular approxi-
mation to the unfaclored implicit is chosen such that the
desired LU representation directly will result. Hence for
any dimensions only two factors appear which additionally
possess the advantage to be easy invertible. Mostly this
objeciive can be achicved by an apprepriate lower order
analogue of the original operator. Decause for triangular
matrices inversion Is done in fact by simple forward and
backward sweeps across the field these methods resemble
the Symmetric Over-Relaxation (880OR) approach.

Several approximate 1.U factorization schemes for hy-

bolic equations have heen proposed in the past. Steger
Fg; has pointed out the possibility of a relaxation LU-type
solution of the inviscid conservation laws using his flux-
split scheme. An interesling combination of an ADE-type
scheme with an approximate LU scheme was presented
by Obayashi and coworkers [7,8] .They inverted the one-
dimensional ADl-factors by LU decomposition using a
flux splitting concept.

In analyzing possible LU decompositions for hyper-
bolic equations Jameson and Turkel [9] found out that



ractors have to be diagonal dominant.
well conditloned LU f devised which enables cach

Consequen od was
factor 10 b: %srﬁ@mmt From that property sta-
bifity of the factored block trisngulac system for any
mber of space dimensions was deduced. In the foltow-
s variant of the LU scheme, cafled LU-SSOR scheme
g » oposed by Jameson and Yoon [10]. It was con-
;‘;g{ ll‘::: in comparison to the LU implicit scheme the
- LU-SSOR variant performs worse, alse if combined
ne—; a multi grid method. Recently this conclusion was
e the same authors{11,12]). Corresponding im-

i b
":::::,e:u of the scheme were rendered possible by
_L’b,ndonins time-marching and changing the scheme to

an approximate Newton iteration approach operating on
the steady state equations. On a variant of this scheme is
reported in the course of this study.

Finally it shoufd be mentioned that the scheme devel-
oped in [3] was applied by Buratynski and Caughey [13]
to cascade flow problems.Subsequenily an extension lo
three-dimensional turbomachinery flow problems was
presented by Yokola and Caughey [14].

Quite recently a dilferent approximate LU factoriza-
tion scheme, proposed by Pan and Lomax [15], was ap-
plied to the Navier-Stokes equations, They use
central-differencing for both implicit and explicit operators
and tried to optimize the LU {actors according to a Yinear
analysis. Convergence could be improved by an explicit
eigenveclor annihilation procedure.

Governin; uations

The proper starting point for a finite-volume approach
is the integra formulation of the steady state conservation
laws

[ As+ Byads =o. (1)
h)

There § s the surface bounding a fixed volume in
space, whereas A represents a certain properly convected
with the mass velocity v and B denotes a flux associated
with A, Il not noticed otherwise a bar below a quantity
indicates a vector and a double har a tensor or matrix.

From eq{l) the specific conservation laws for
mass,mommentum and energy are recovered by substituting
for A and B the following quantities

continuity A=p . B=0
momentum A=py ' B=g {2)
energy v Aspe, B=-grtg

fn usual notation p .y +q are introduced as the mass
density, the mass velocity véctor and the heat flux vector,
whereas g denotes the stress fensor , and e Lhe mass-
specific internal energy. The mass-specific lotal energy
& in defined as ¢, = ¢ + Va{vy) .

To assure the genera) applicability of the numerical
method the conservation laws have to be expressed in
terms of a generalized curvilinear coerdinate system
{xtxt x% = (£ 7, which is related Lo the base carte-
sian coordinate frame (x,x¥ x¥) = (xp.z) by some
mapping. The normal surface vector ad¥ of a surface el-

ement belonging 1o a coordinate surface x* s const. can
be wrilten as

as* = n® as® = ast, 4™

where dS% denotes the cartesian components of the nor-
mal surface vector and g* a cariesian base vector point-
ing into the direction x* . The components of the normal
surface vector can be expressed in terms of transformation

quantities via dS% = Vg % . There Vg defines the
determinant of the jacobian of transformation

{ 3(x, p, 2)/8(£,n, ) | and B (= dx*/dx™) denotes an
element of the hybrid metric tensor. As an example the
continuity equation can be written in terms of vector
components as

To get a direct finite-volume discretization for an elemen-
lar{ volume dV , bounded by successive surface elements
dS% and d5% belonging to the general cootdinate surface
x* | the mean value theorem of integral calculus has (o be
applied , resulting in

3

J-pv"'d&':. = ZAk{pv"‘ sty =0 3)
k=l

5

Here, for the moment, the delta opetator should be
understood as A, [MéS8 ) =[..1, - (..].. It is
noted that the refation represents an exact equality and the
order of the discretization_error i3 determined by the defi-
nition of the mean value /7 and by the accuracy in evalu-
ating the components of the normal surface vector 85% .

The above procedure teading to a finite-volume dis-
cretization of the continuity equation can be repeated an-
alogeously for the equations of momentum and energy.
Dropping below the bars indicaling 2 mean value one gets,
after splitting the stress tensor in a viscous and a pressure
contribution g = —-pJ + g , the following equations

3
O Aullovy™ +p87 - CETI 8571 8" =6 (4
k=l
3 ’
Y Balll P+ p W~ TV 4 ™) 85K = 0. (5)
k=l
The static pressure is denoled by p and the coeflicient
C) (= 1) will be redefined below in terms of similarity pa-
rameters if dimensionless quantities are introduced. The

system of cquations (3-5) is closed by assuming a perfect
gas

p=(x-l)pe (6)

and the validity of T'ourier’s law of heat conduction,

"= - Cre, Bug™" Y



Above C; is deflned as the ratlo A /¢, , where A de-
notes the coefficient of heat conduction and ¢, the specific
heat at constant volume. Further necessary relations are
provided by assuming a Newtonian fluid.

g = (—poy 407 ) g 8" (8a)

55 = Luvl B8T +u DT B+ ) B (80)

Here the applied tensor notation indicates a partial
derivative by a comma, c.g. v = d"fdx", The tem-
perature dependence of the dynamic viscosity 4 is taken
accoeding to Sutherland’s formula.

The equations (3) to (8b) can be converted to a di-
mensionless representation by defining

xMa,
RGL

32 ~
x"‘Ma
C = e J:'_)

2:!

RCL Pr Ew

The similarity parameters introduced are the Mach
number Ma,, . the Reynolds number Re, and the Prandtl
number Pr.

R
1]

Vol
Vol [ (HoalPoa)
c,_fl,,//l_

=
)
=
o

There L denotes a characteristic length, ¥, = (1yvl )17
the magnitude of freesiream velocity , £, the speed of
sound at infinity and ¢, the specific heat at constant
pressure,

The replacement of dependent and independent vari-
ables by their dimensionicss counterparts would be con-
sistent astuming the following relations. (To avold any
misunderstandings the quantities in their right dimensions
are denoted for the moment by a tilde and conditions at
infinity are indicaled here and in the following by the sub-
script oo ).

Xt m I Vo= P e K )
p = 0l P = plpa

T = TIT, u = plp,

g™ = G (Pt VK )

Numerical Method

For the numerical solution of the steady conservation
laws the implicit LU-SSOR scheme [11.12] is adopted.
Some key features of the method together with some fur-
ther developments are presented below.

For the approximate solution of the steady state con-
servation laws (3-5) a second-order cell-centered finite-vo-
lume scheme is applied. Such a scheme is derived by
defining the fluxes at the cell faces from simple algebraic
mean values of the conserved vasriables, which are as-

sumed to be placed al the cell centers. The vector of con-
served variables ¢ (which should not be confused with the
heat flux vector introduced above) is defined as

g=o.ov . ovT . pv7  pe,)T

The numerical method is most casily presented in symbolic
form.

Defining the discrete residual of (3-5) resulting from a fin-
ite-volume discretization as

A(E~E ~Ep)+8;(F~F ~Fp)
+8,(G -0, - Gp) ®

where E,F,G and E,, F,, G, represent the inviscid and
viscous flux vectors into the general coordinate directions
x1,x? and x? , respectively. For control of nonlinear in-
stabilities any central differenced scheme has to be pro-
vided by suitable dissipation operators which are indicated
by lower indices D .

Then a Newton-iteration would read

R=

AR
(5, 88 +8 =0 (10)

Here the upper index indicates the jteration count and
Sq" is defined as Sq" = g™l - . In general the
computation and invérsion of of the functional matrix
3R / dq is too costly, so that an approximate form has to
be found such that the inversion is easy and stable. A
choice which haa been found beneficial [9] resembles that
of flux-vector splitting. Because the particular construction
only affects the implicit operator a rather crude choice
fulfills the requirements for diagonal dominance of the
coeflicient matrices.

For definition of the functional matrix some jacobians
of the different lux vectors are needed.

of AE, AEp
T
OF _ 9F, 3o
g= ) g= 34 fowm ag
il oG, 3Gp
(= 3 , = 3 Cp= 3

Then an appropriate approximalion to the functional
matrix in eq.(10) couid be

~

oR
(T‘f)= Ded + D, B+ D C 11

The experience shows that in principle only the inviscid
flux jacobians have 10 be considered for definition of the
implicit operalor, also for viscous calculations. Although
robustness and stability may be improved for severe
problems by including into the impficit operator an ap-
proximation to the artificial dissipation operator and by
parts the physical viscous flux jacobians , for a further
discussion the basic scheme (11) is sufficient.



difference operators Dy etc. are written as a sum
of n1;:‘te order forward (&g} am‘ backward (V,) difference

operator.

- +

Dpd =8¢ d”™ + Ve 4 (12

Now the particuiar flux jacobians 4+ and 4- etc.

are defined in such a way that they possess only non-ne-
galive and non-positive eigenvalues

4t =1 (d L) (13a)

rq 2 max ([A40) (13b)
That is achieved by defining 7, as a value which has to
be oqual or greater than the spectral radius of 4

By sweeping forward and backward through the fietd
the resulting_relations can be combined similar to a SSOR
method [12] and it turns out that the implicit operator in
¢q.(11) can be approximately factorized into a product of
a strictly lower triangular matrix L. a diagonal matrix

and an upper triangular matrix {/ . Hence the basic
scheme can be writien as

(LD'Y)s¢" = - " (14)

with
L=V dv+ 9,80+ Y, A - -
D= (retra+rchl
U= 84 408,848 C 4+ B0+
Now stability should be enhanced providing diagonal

dominance for each factor [9]). Consider as an example
the L-factor for which rearrangement will allow to write :

as)

L = (ratratrd [fJJ - 'f1(4+’11)1—|.j,l
~ (B raldprn
~ ¢+ red hjaa

ft is evident that diagonal dominance is only assured
if the quantities r, ,, and rg,_,,, etc. are redefined such
that they are equal and simultaneously the maximum of
both original values defined after eq.(13b). That is

ra = max (ry ik 0 TA -1 gk )on',
A gk = T4
TA=I = 4

Corresponding seltings following for the U-factor sug-
gest also a modified diagonal mateix D,

Q="Ari+ri+rg 40t 42400

In fact inversion of the scheme (14) is sccomplished
by sweeping along diagonal planes 1+J+K = const
across the domain, Then during the inversion process all
variables needed from the off-diagonals are already up-
dated, allowing a variation of the straightforward proce-
:lure. In inverting the modified L-factor we obtain from

14):

(ra+ratr) ‘.’u.t 5§a‘.;.ﬁ = —-R" + di!'-u,t 6§5-u,¢
+ Fhia 810
+ Clact SGupit

To avoid the explicit evaluation of jacobian matrices

the intermediate flux states can be approximated by a
Taylor series expansion

- QE+ _
Er =(E*r+ ai @ — 9" + O(lég 1%

O

E+ =£‘+_§+n = d+5§ + 0(‘65[’)
Now the scheme (14) is inverted by the following steps :

8uu = — Blyu + SEX o + SFL_iu + 5G4t

$qus = Difh 53, (16)

Sqia = Db (G0 — 8B jn — 8Enias — 8Gan)

where
S§Et = Et @ - Et(g"
SEt = Et(7) - Et(¢)

In comparison to the straightforward inversion of
scheme (14) no degradation in performance was observed
with the cost-cective relaxation-type inversion (16).

Artificial Dissipation Model

As mentioned previously including physical viscous
and artificial dissipative operators implicitly wifl support
the stability of the scheme in some cases.

The explicitly added dissipation fluxes £, etc. are de-
fined as a combination of first and third order operators,
a construction introduced by Jameson et al [1]. This par-
ticular adaptive dissipation model proved to produce sol-
utions of flows with discontinuilies without osciilations. In
principle the dissipation tux has the form

Ep = S(e¥+e" av, )64

where &, is a central difference operator and €® and £®
are adaptive coeflicicnts. The scaling factor § is chosen 1o
be proportional to the spectral radius of the corresponding
inviscid flux jacobians. The coefficient € of the third or-
der operator provides background dissipation for smaooth
regions of the flow and will be switched off in the vicinity
of shocks, which are essentially captured by a pressure
sensor included in the definition of the coefficient €.



Dy = £ max{y . Vi)
B = max( 0.4k — ‘-’ﬁln »
i T arsVpp

hown laler the sensor y should be modified

at st‘::c:i 3::-; where the pressure jump is no mere O(1).

i ipation
I lf,a;r?ei:s :.o vestrict the implicit dissipation operator 10

at most second order the jacobian 4p is simply approxi-
mated by

4h = a5t + a0

resulting into the implicit representation

DE' = ;4589 = (5" (ghdp - E " (4hsplq

Here the quantities 4, and 4; are adjustable coeficients
and E}/? etc. denote a shifling operator whereby the su-
perscript defines the index shift and the subscript the cor-
responding direction. Because the implicit dissipation flux
jacobjans e#[, etc. have diagonal form they do niot affect the
overall deinition of the LU factors (15} and therefore
correspending modifications are smoothly fitled into the
algorithm. [t is noted that inclusion of the implicit dissi-
pation operator will maintain diagonal dominance for
each factor.

Obvicusly the particular construction of smoothing
operators will influence the performance of each central
differenced scheme. Variations and alternatives were dis-
custed recently by Swanson and Turkel [16], while Pul-
fiam [17]} pointed out the connections and the equivalence
of an upwind scheme with a central difference scheme en-
hanced by an appropriate dissipation model,

Implicit Viscous Operator

For Navier-Stokes caiculations the implicit factors is
enhanced by a thin-layer approximation for the viscous
Muxes in an attempt lo reduce the operation count.

Assuming the { — direction emanating from the body
the corta?onding thin-tayer viscous flux G7% and its ja-
cobian ('t will only have derivatives in that direction.
However a direct implementation will nol preserve diag-
onal dominance to the implicit LU factors. Therefore an
operator is chosen similar (o that developed above ap-
proximating the dissipation flux. In principle the change
of the viscous flux vector 8G7 = (GTLp™ - (GTL)*™ can
be represented as

a8
TL . L = g0 [
sGI = ¢ltsq ga([ag g1

To get an appropriaie jacobian it is assumed that the
functional 38/dq is independent of position, which pro-
duces a balanced operator.

of
SCTLx o 7L ! g d
A

and therelore we get

DHEGTE™) = 8, T 8,(8g).

However the simplified jacobian 72~ has not diag-
onal form as was the case for the corresponding dissi-
paticn jacobians 4f. Concerning the additional arithmetic
operations involved for inverting the 5x5 block matrices ,
that situation - although working fine - ist not optimal.
Therfore future developments will be directed on possibil-
ities for repiacing the functional matrix by a suitable diag-
onal approximation.

Boundary Conditions
Finaily some remarks concerning the treatment of im-

plicit and explicit boundary conditions.

For problems with subsonic in- or outflow far field
boundaries condilions resulting from the locally one-di-
mensional Riemann invariants are applied expliciily. This
treatment has proven to damp out disturbances reflecting
at the outer boundary. For supersonic conditons at inflow
boundaries corresponding free siream values are fixed
whereas at outflow boundaries a consistent first order ex-
trapolation to all dependent variables is used. At the body
the pressure is oblained by an approximation to the nor-
mal momentumn equation. For viscous calculations the
viscous coniribulion is neglected resuiling into dp/on =m0
, which should be a sufficient conditon for high speed
flows,

On the implicit side for all convection terms the change
in the dependent variables of the fictious boundary cells is
assumed to be zero, which is equivalent to a Dirichiet
boundary condition. For the implicit dissipation operator
and the corresponding viscous thin-layer operator a zero
flux conditon is implemented. Concerning the dissipation
terms this treatment is also consistent with those boundary
condilions required for the explicit side.

Results

A desirable feature of the pumerical method developed in
the last section would be the support from a mulli grid
method. Although the code can cun in a mutti grid mode
all results presented are obtained by single grid computa-
tions. Up till now no serious effort was directed to the
question how the LU factors have to be modified to get
good muli grid smoothing pecformance. However the
feature of proiongating the current solution to the next
finer mesh was utilized to get an appropriate initial guess
on the final mesh system.

In addition by inpul option the code can be forced to work
with the inviscid or viscous equation set. in the case of the
Navier-Stokes equations the laminar or turbulent flow op-
tton may be chosen and the order of approximation of the
viscous stress tensor can be specified . In this respect the
thin-layer, the full thin-fayer and the full viscous approxi-
mation of the Navier-Stokes equations are available. The
turbulent flow modelling is based on the purely algebraic
turbulence modet of Baldwin and Lomax {18].

With the method developed some flow problems have
been investigated belonging to quite different speed re-
gimes. As the first example a viscous flow simulation past
a sphere at low Mach numbers is presented,



Sphere Flow

It is well known that besides the simple geometrical
shape of a sphere the flow around such 2 geometry has a
complex structure which depends heavily an the Rey-
nolds-number as the important viscous similarity parame-

For various values of the Reynolds-number the flow
arountd a sphere can be classified into four regimes (Fig.
1), where the decision upon the corresponding range is
made according to the behaviour of the drag coeflicient
as function of the Reynolds-number [19]. In the subcrit-
ical regime the drag is nearly independent of Reynoids-
aumber and extends up 1o Rep 5 310° |, where the
Reynolds-number is based on the diameter of the sphere,
The critical regime is characterized by a sharp drop of the
drag coefficient reaching a minimum at Rep £ 3-10Pwhich
serves as the distinguished point separating the critical
from the supercritical regime. With increasing Reynolds-
number { Rep > 3.7-10° ) also the drag coeflicient increases
slowly in the supercritical regime reaching an almost as-
ymptatic state, taken as a critera for the beginning of the
transcritical range. 1L is clear that this observed behaviour
can be directly correfated with the properties of laminar
and turbulent flow and the phenomena of transition from
the laminar to the full turbulent state.

Two flow cases are considered in detail. According lo
the experiments studies of Achenbach [19] the chosen
subcritical case is a purely faminar flow with a Reynolds-
number of 1,62:10° , whilst the transcritical case consid-
ered (Rep = 5109 is found to be a mostly turbulent flow
where natural transttion frem laminar to turbulent flow
behaviour is observed approximately at ¢ = 60¢.

For the laminar flow (Rep = 1.62-10%) considered a
spherical grid system of 65 x 65 x 49 nodes was applied,
where the mesh system in radial direction consisted of 49
poinis with a resolution for the first cells adjacent to the
sphere surface A=27-10~* This is based on a definidon of
the sphere diameter D = 1. The outer boundary is placed
15 diamelers away [rom the sphere.

The grid system generaled for the transcritical case
consisted of 65 points in radial direction with a minimum
grid spacing at the sphere surface of A = 5.10-¢ and an
outer boundary placed 12.5 diameters away from the
sphere. Both surface meshes were idenlical and defined to
be equally spaced by 64 x 64 intervals. )

For both flow cases a lateral symmetry condition was
assumed in an aitempt to reduce the computational costs
without restricting too much the flow physics simulated.

Laminar Flow Resulis: The Jaminar flow simulation
is based on the parameters Rey = 1.62-10° and Ma =0.3.
After 500 iterations on the finest grid the L, norm of
conlinuity equation was reduced by more than 3 decades
. On a fairly fow error level { Ly = 5:-10-7 } no further
convergence was obtained. A closer Jook on the results
during some stages of the iteration process showed a
clearly unsteady wake behaviour which agrees qualitatively
with the experimental findings. In an investigation on the
wake structure of lows past spheres Taneda [20] reports
on a progressive wave motion of the sphere wake for the
range 10% < Rep, £ 3.8:10° . The wave can be described
by a plane containing the streamwise axis through the
centre of the sphere. Thereby the plane rotates slowly and
irregularly about that axis. At Reynolds-numbers ranging
from 3.8-10° to 10% the sphere wake formes a pair of
sireamnwise line vortices at a short distance from the
streamwise axis. Also this vortex pair rotates siowly and

randomly about that axis. In all ranges mentioned the
sphere wake is not axisymmetric. To illustrate somewhat
the complex wake flow a sketch of the vortex structure in
lzhe range 3.8-10° 5 Re, < 109 (after [207) is shown in Fig.

Se it turns out that the flow structure also for laminar
flow is highly complex. Therefore the numerical simulation
of such a flow requires a high spatial resolution of the so-
lution domain and simultaneously a high lime accuracy to
resolve adequately all existing flow scales and modes. The
method used for the present simulations is based on an
approach neglecting the correct lime scales. Therefore
from the results only the resolution of the main features
of the flow can be expected,

Fig. 3a-c show for three different iteration stages the
pressure distribution around the sphere in the symmetry
plane. From the figures it is obvious that severe separation
processes are taking place on the rear side, indicating a
sweeping motion of the wake flow. The influence on the
stagnation region is apparently weak.

A better understanding of the flow structure for the
depicted solution stales is depicted in Fig. 4 by corre-
sponding velocity vector fields, The strongly changing ve-
locity fieids show no well established recirculation bubbles
at the rear side but a confuse structure with at least two
stagnation points on the back which may be an indication
for leaving line vortices.

A comparison belween experiments and theory in
terms of the wall pressure distribution around a3 sphere is
presented in Fig. 5. Because of the asymmeiric flow
structure on the rear side we have depicted the spread of
the results in that region by inserting the extrema at des-
tinct circumferential angle @. The figure shows clearly that
the computational results fluctuate around the measure-
ments of Achenbach [19).

What effect the wake flow structure has on wall stress
vectors at the rear side is illustrated in Fig. 6. There the
wall stress vectors are shown on the lefthand-side and the
direction of these vectors alone on the righthand-side.
From this picture complex systems of separation lines can
casily be detected giving an kmpression of the random be-
haviour of the flow in that region.

The comparison to the experimental skin-friction re-
sults of Achenbach is made in Fig. 7. In order to provide
a meaningful comparison the representation of the the-
oretical resulls is restricted to the data along the meridians
of the symmetry plane. This choice is easily explained by
the complex patlern of the wall stress vectors seen in Fig.6.

It can be stated that in the atiached flow region the agree-
ment is rather good, if one remembers that the exper-
imental dala arc obtained by an indirect method which is
calibrated by a well known method of jaminar boundary
layer theory [19].

Turbulent Flow Resulls: The case considered is de-
scribed by the parameters Rep = 5106 and Ma=01.
Laminar to turbulent transition was fixed at ¢ = 60°,

According to the presentation of Iaminar results the
corresponding turbulent pressure distribution in the sym-
metry plane is depicted in Fig. 8. ILis recognized that the
structure is much more organized and up to @ < 120°
nearly axisymmeltsic. Comparison of experimental and
theoretical wall pressure data is made in Fig. 9. The the-
orelical resuils are concentrated in a more narrow band



indicating a nearly axisymmetric behaviour. However, the
pressure level on the rear side is predicted too high.

Looking on the velocity vector field (Fig. 10), an al-
most perfect vortex loop appears. Up to now it is an open
questior, i the sofution with continuing iterations will be-
come similar random as in the laminar case. However, the
experiments of Taneda [20] indicate a well organized and
more steady wake flow for high Reynolds-numbers - an
observation also available from the numerical simulation.

In Fig. 11 the skin (riction results are depicted, showing
an agreement qualitative in nature between experiments
and simulation. Although the transition from laminar to
turbulent flow was fixed at ¢ = 60* a strong upstream ef-
fect resulted. Also the separation at the rear side is pre-
dicled too fate compared lo the experimental data. Up lo
now no serjous investigations were conducted to study the
sensitivity of the skin friction peak level on the posilion of
the transition point. In accordance to the skin friction data
the wall stress vectors for the turbulent case show a nearly
axisymmetric behaviour (Fig. 12).

Hemisphere-Cylinder Flow

An interesting three-dimensional problem belonging to
the transonic speed range is the flow around a hemisphere
cylinder at incidence, Quite recently extensive theoretical
studies facing this problem were conducted by Ying et al
[21,22). 1n the earlier work [21] the problem was con-
sidered mainly for Ma = 1.2 for various angles of attack
DS a< 19 and compared with available experimental
data {23,241 It turned out that these faminar flows exhibit
a broad variety of separation phenomena and associated
topological structures which was the reason to reinvestigate
the particular case Ma=1.2,0=19 in a more .de!ailed
manner [22]. In that study successively finer grids were
used to identify convergence of flow pattern. Interestingly
flow topology changed with grid refinement and became
asymmelric in the finest mesh used {101x100x81 points).

Also in the present study the particular laminar flow
case ( Mam 12, Rep=4.45-10° , o = 19* ) gerved as an
additiona! test case. The apherical type cootdinate system
used consisted of 4% points in the streamwise direction,
25 points in the circumferential direction for the half ptane
and 49 points normal to the body.

in Fig.13 and Tig.14 the static pressure and Mach
number distribution is shown together with an enlarged
map of the nose region. It is recognized that the bow and
leeside shock wave is well caplured . From the highly
structured Mach number field on the leeside just behind
the sphere-cylinder junction it can be deduced that a
complex interacting flow field has established. Although
not shown here, despite the relatively coarse mesh system
the experimentally ohserved ow! eyes and the primary and
secondary separation lines were well captured in the sim-
ulation. ’

In Fig. 15 the streamwise wall pressure distributions
on the feeside and the 90° -line are depicted. The present
results are close to those of Ying et al {217 for the leeside,
however show some remarkable differences on the 90°
-line. There the resulls of Ying et al deviate substantially
from the data of both experiments. The reasons for these
deviations are not clear, because the results of [21] are
based on a slightly more refined mesh.

It is mentioned that the above results were obtained in
300 iterations and a error norm reduction of the residuals
of continuity equation of aimost 3 decades.

Hypersonic Flow Past a Reentry Vehicle

The last cxample presented is the hypersonic flow past
a complete recentry vehicle. At the same feee stream con-
ditions { Ma = 8 , @ = 30°) a viscous and an inviscid cal-
cilation was perfermed in order to identify the effect of
viscosity on the overall flowfield. For both compulations
the fluid was assumed to behave as a perfect gas. Addi-
tionally, in the viscous case a laminar flow opposed to an
adiabatic vehicle wall was assumed.

The task of computing the flow around a complete
complex vehicle is not trivial and begins with the challenge
of generating an appropriate mesh system. For the geom-
etry at hand which is one of the proposed designs for the
european HERMES space shuule it appeared advanta-
geously to adopt a one-block wrapped-around coordinate
system. Such a coordinate system is of spherical type at the
nose and therefore possesses a singular line emanating
from the very nose. However also at the nose extreme
conditions caused by the bow shock have to be expected,
so that the singular line problem has to be treated care-
fully. Moreover in hypersonic flow past biunt bodies at
high incidence the shock layer at the windward side be-
comes thin whereas at the leeward side the bow shock gets
far away. Therefore it is desirable to have a coordinate
systern which approximately follows the outermost shock
wave in an aitempt to waste only a small fraction of mesh
points available. Clearly this fact pays only for schemes as
the present one which are capturing all shocks in the sol-
ution domain. Besides this point of view the underlying
coordinate system should be - at least in regions adjacent
to walls - approximately orthogonal 1o prevent large dis-
cretization error effects. Also the mesh should allow to be
applied for space marching computations. For that pur-
pose the mesh system should be constructed of planar
cross sections. To meet all these requirements various grid
generation techniques have been combined,

ALl the nose an spherical-type mesh system was gener-
ated using an algebraic approach. In front of the cockpit
the mesh was forced to be planar in cross sections x =
const. for over the remaining part of the vehicte. There
a hyperbolic mesh generalion procedure was applied.
However in the hyperbolic approach, where the mesh is
generated by marching«outwards from the body, no con-
trol is given to meet an outer specified shape. Therefore the
hyperbolic mesh was marched beyond the specified boun-
dary and then the grid points were redistributed along the
coordinate direction normal to the body. Distortions gen-
erated by this procedure were smoothed out by an dliptic
mesh peneration method. Hence in regions nearby the ve-
hicle the mesh is expected to be approximately orthogonal
and simultaneously the mesh is within a specified outer
contour.

Such an approach is very lime consuming and could only
be accomplished in collaboration with Stephan Leicher at
Dornier company. A more detailed description together
with hypersonic flow results will be given in a forthcoming

paper.

Fig. 16 shows the surface mesh around HERMES ve-
hicle generated by the procedure described above. The grid
system consists of 97 points in axial and 129 points in cir-
cumferential direction for the half vehicle. [t is noted that
the mesh at the nose singular point is made equidistant in
the circumferential direction in order to facilitate the
treatment at the singular line. Also at wing leading edges
and at the wing-winglet junction the grid is refined ac-
cordingly. Fig. 17 depicts the strucure of the surface mesh



at the bottom and the top side. The generated coordinate
system (129 points in circumferential snd 65 points in
normal direction) for an Euler computaton in different
cross sections is shown in Fig. 12. It is recognized that the
mesh system (ollows the expected bow shock.

Fig. 19 depicts the Mach number and pressuce dis-
tribution in the symmetry plane together with a detailed
map of the nose region. The solutions presented show the
bow and the canopy shock wave properly resolved, and
any perturbations originaling from the geometric singular -
ity at the nose lip are almost not visible,

Before entering the discussion and comparison of in-
viscid and viscous computations some remarks concerning
convergence of the solutions. For the inviscid case the re-
sidual error reduction measured by the drop of the L,
form was 3 orders of magnitude in the finest mesh,
achieved in 350 iterations. For the viscous computation
only 200 iterations were possible in the moment of writing
and therefore the results {although the corresponding resi-
dual norm was reduced by 2 decades) should be looked

as preliminary in nature.

in Fig. 20 for a distinct cross seclion (x =7.8m) viscous
and jnviscid results are compared. Fig. 20a and Fig. 20b
show the Mach number distribution for viscous and invis-
cid flow. Obviously the solution in the outer part of the
shock layer is almost identical but show remarkable dif-
ferences in the vicinity of the vehicle, Whereas the jnviscid
simulation depicts a cross flow shock wave above the wing
and above the cargo bay corresponding eflects are strongly
smoothed in viscous flow. Also the development of vortex
separation over the cargo bay is noted.

The mentioned effects are more pronounced at a sta-
tion downstream (Fig. 21). Here Mach number distrib-
utions are compared in a cross section containing the
upward directed wing panel, named from now on as win-
glet. Additionally to the cross flow phenomana observed
in Fig. 20, at x = 12.7 the flow field exhibits & shock wave
at the winglet leading edges. Also the cross flow shock
above the wing is now first aligned diagonal to the vertical
fuselage walil and than experiences a deviadon of approx-
imately 90 degree. This lopology is known from supersenic
corner flows where the lower shock front is observed to
be parallel (o the fiat plate. A closer look on the resulls
{Fig. 22) reveals the unrealistic prediction of the inviscid
simutation. Fig. 22¢ shows above the wing a Mach number
in the order of 15 which occurs simultaneously with very
low pressure and density vafues,

In this respect much more realistic appears the viscous
flow behaviour (Fig. 22a,b). There the maximum Mach
number i3 shown to be in the order of the free stream va-
lue. Also jet tongues known from corner llow studies seem
to be captured. More extreme flow conditions are expected
tf(_) exii‘t in the end cross sections, presented in Fig. 23 and
Fig. 24.

In Fig. 25 the direction of wall siress vectors on the
HERMES vehicle are presented as a preliminary result.
Obviously shock induced separation occurs above the
wing, above the cargo bay and in front of the cockpit as
a result of the canopy thock. Separation induced by corner
flow particularities may exisl.

However these various flow phenomena have to be
analyzed carefully in great detail in order to draw conclu-
sions being valuable for future design development.

Conclusi

An improved LU scheme for soluticn of three-dimen-
sional Eufer and Navier-Stokes equations has been pre-
sented.

The robustness achieved was demonsirated by the
ability of treating flow problems of quite different velocity
scales without any major changes to the method. It was
shown that the aumerical resulls obtained are in reason-
able to close agreement to the experimental data available.
The hypersonic flow simulation resuils look reliable and
further devefopment of the method to include real gas
conditions are in progress.

From the numerical point of view it appears highly
desirable to combine efficiently the LU scheme with a
muld grid method. However,as a side condition such a
scheme has to work also for complex problems at hyper-
sonic speeds.
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Fig. 2: Vortex structure of sphere wake flow in the range
3.8-10° € Re,, < 10° after Taneda [203

Fig. 3: Static pressure distributions at different iteration
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( Rep = 1.62.10°5 Ma = 0.3, laminar flow )
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Fig. 11 : Wall stress vectors on sphere rear side
( Rep = 5105, Ma = 0.1, turbulent flow )
lefl: magnitude and direction, right: direction
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Fig. 14 : Mach number distribution in symmeitry plane of

hemisphere-cylinder
(Ma=1.2.Re;, = 4.45- 10, @ = 19° laminar flow)
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Fig. 19 Pressure {(a) and Mach number (h) distribution
in symmetry plane of HERMES space shuttle
(Ma = 8 .0 =30° inviscid flow }

®

Fig. 20 : Mach number distribution in cross section x =

17

7.8 m of HERMES space shuttle for viscous (a)
and inviscid (b) flow
(Ma = 8, a=10° Re = 10%/m)



Fig. 20 : (cont.) Pressure distribution in cross section x =

;.8 m of HERMES space shuttde for inviscid (c)
ow

(Ma= 8,0=30°)

{a)

()
Fig. 21 : Mach number distribution (a,b} and pressure distribution (<)
in cross section x = 12.7m
of HERMES space shuttle for viscous (a) and inviscid (h,c) low
(Ma = 8, a=230° Re = |10/ m)
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Fig. 22 : Mach number distribution {(a,c) and cross flow
velocity ficld (h) in cross section x = 12,7 m of
HERMES space shuttle for viscous (ab) and
inviscid (¢} flow
(Ma = 8 = 230° Re=105/m)

()

Fig. 23 : Mach number disiribution in cross section x =

19

15.3 m of IERMES space shuttle for inviscid
{a) and viscous (b) flow
(Ma = 8. a=210° Re = 10%m)
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Fig. 23 : {(cont.) Mach number distribution in cross section
x = 15.3 m of HERMES space shutlle for in-
viscid (a) and viscous (b) llow
(Ma = 8, a=130°% Re = 108/m)
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Fig. 24 : Mach number distribution (a,c) and cross flow

velocity ficld (b} in cross section x = {$.3 m of

HERMES space shuttle  for viscous (b,c) and
inviscid (a) ftow

(Ma = &, a=20°Re = 10%/m)



L laminar low )

Fig. 25 ; Direction of wall stress vectors on 1IFRMES space shuttle
(Ma = B, g 30° Re = 11%/m
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