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An implicit LU-scheme developed by the second au- 
thor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh modified and extended to three dimensions. The 
raulting scheme i s  applied lo the solution of the steady 
compressible Euler and NavierStoke quations in the 
framework of a finite-volume discretization technique. 

The approach a n  be viewed as a dderred-correaion 
solution method, where the implicit operator only ap- 
proximates the corresponding flux jacobians to fin1 order 
in space. whereas the mlraldiKerenced explicit operators 
are chosen to he second order accurate on a suficient 
smooth grid system. However. ulc LU-factora have the 
property of diagonal dominance and therefore are well 
conditioned allowing a relaxation type solution of the 
steady quation sd. 

R e u l h  will be praentcd for some viscow and inviscid 
subsonic. lransonic and hypersonic flow problems. 

Illtd* 

Most of the methods for numerical solution of the 
steadyjlate comprasible consmation laws are based on 
time-marching integration procedures. 

In implicit schema the llme coordinate is mostly wed 
as a means to provide some sort of diagonal dominance 
in  the cocfiarnt matrice which rauit aRer discrimtion 
of the implicit operator chosen. 

In advanced explicit methods time and space discr i -  
zation have been separated to ailow the appiiestion of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd. 
fiaenl integration schema developed for ordinary 
diKerential quations. Espcdany Ule class of one step 
multistage schema, proposed and developed by Jamaon 
[ I ]  for systems of partial diKerential qua l i oh  have been 
proven to perform exlremdy eTeclivc for solving the Euler 
quations. The  original stability nmib have bem extended 
considerably by tailoring corresponding integration coefi- 
cimls and by introducing some implicitnus through a re- 
sidual averaging procedure [2].  Also for the solutions of 
the NavierStokes quations thae type of explicit schema 
are very promising lines of dwdopment. 

without using the time coordinate in implicit schema 
diagonal dominance can also be assured by suitable im- 
plicit operaton. which in general however possess a worse 
discrizallon error compared to that the method is de- 
signed. T h i s  feature leads almost automatically to an ap- 
PrOXlmale Newton-iteration mdhod. where the stable 
implicit operator only approximates the Lrue jacobians lo 
some lower order, 
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In this context there are some reasons cansidering ap- 
proximale LU decomposition schema an promising 
methods for the numerical solution of the threedimm- 
aional Euler and Navier-Stoke quatiom. In contrast to 
the allemale direction approach for approximate factori- 
zation of the corraponding three-dimensional implidt un- 
fadored operator, methods based on LU decompositions 
do not exhibit in chree dimensions the known 'uutability 
problem for the linear hyperbolic m& 
ADI-type schemes the threedimensional ux:? zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 
plicit operator i s  approximated by a produd of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthree one- 
dimensional operators each of them being aligned with a 
specific coordinate direction. it i s  just the splitting o f  the 
implicit operator into three factors. however ,which cawen 
the mentioned instability for the delta-form vcmlon of the 
algorithm. Neverlhdns ADI-type approximale f ado r ia -  
tion schema can be mads working wdl in thrm dimen- 
sions as was demonstrated by Pulliam and Stcgs [3C] for 
Beam-Warming type schema [5] . It WM shown that 
conditional stability can be achieved by adding some a d -  
fidal dissipation. 

The developmmt of an LU decomposition scheme b 
based on a somewhat d l k e n t  idea. Since the dvslcal 
d i m t  L U  decomposition of the unfaaored implldt opra. 
tor i s  too expansive-for multi-dimensional problems one 
has to raort to incomplete or approximate LU decompo- 
siton methods. In the latter concept a particular approxi. 
mation lo the unradored implicit i s  chosen such that the 
desired LU reprcrmtation directly will ruuk  Hence for 
any dimensions only two factors appear which additionally 
posses the advantagc to be easy invertible. Mostly lhis 
objective can he achieved by an appropriate lower order 
analogue of thc original operator. Because for biangular 
malrica inversion i s  done in fact by simple rorward and 
backward swecpr across the field these methods resemble 
the Symmelric Over-Rclaxation (SSOR) approach. 

Several approximate 1.U factorization schema for hy- 
boiic quations have hem proposed in the pasL Sleger 

p" 61 has pointed out the possihility of a relaxation LU-lype 
solution of the inviscid consmation laws using his flux- 
split scheme. An interesting combination d an ADI-typs 
scheme with an approximate LU scheme was presented 
by Ohayaihi and coworkers [7.R] .They invcrlcd the one- 
dimensional ADI-factors hy LU decomposition using a 
flux splitting concept. 

I n  analyzing possible L U  decompositions for hyper- 
bolic quation.r Jameson and Turkel [9] found out that 



rill zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd w  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALU f.don zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhave zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAla bo dl.lonal dornhunL 
-fly, ,,,&xi w n  dcvbsd whkh aubla  ad^ - la zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh p r u l  domlnln~ From th.1 poprty a- 

,,,,- d imdons  v m  dcduccd. In h e  follow- - provd by J a y n  and Yoon [IO]. It wan con- 
dud4 thal in cornpartson 10 the LU Implicit scheme the 
nN LUSSOR variant #Oms Wonc. atso K Combined 

a multi grid mahod. R W l b  Ih is  conclusion was 
revis& by the same authon[11.12]. Gnaponding im- 
provmmls of the scheme were rendered possible by 
abandoning time-marching and chanpng the scheme 10 
an approximate N m o n  iteration approach operating on 
the steady stale equations. On a variant of this scheme is 

"y d h e  fa& Moa d+ s- rm . n Y  

$&ant d the LU uheme. caw LUSSOR d K m e  

,*,,d In the course of this study. 

Finally it should be mentioned that the scheme dnrel- 
oped in [9] was applied by Buralynski and Caughcy [I31 
lo cascade flow problems.bubsqumlly an extension lo 
threedimensional turbomachinery flow problems was 
prcsrnted by Yokob and Caughey Cl41. 

Quite recenlly a dimerent approximate LU factorira- 
tion scheme, proposed by Pan and Lomax [IS]. wa5 ap- 
plied to the Navier-Stoka equations. They use 
-baldilTerencing for both implicit and explicit operators 
and cried lo optimize the LU k t o r a  according to a linear 
analysis. Convergence could be improved by an explicit 
eignvedor annihilation procedure. 

G o w n i m  hUalioM 

' t h e  proper rlarling point for a finite-volume approach 
i s  the inlegra formulation of the steady slate conservation 
faws 

J(A. + E).@S = o. (1) 

S 

There S i s  the surface bounding a fixed volume in 
space. whereas A repmenk a certain properly convected 
with the mass velonty y and B denotes a flux associated 
with A. If no1 noticcd otherwise a bar below a quantity 
indicates a vector and a douhle har a tensor or mavix. 

From q.U) the specific consmation laws for 
mass,momenlum and energy are recovered by substituting 
lor A and E the following quantitia 

continuity : A E ~  , E r g  
momentum : A = p y  , B i g  (2) 
energy : A 3 P( . ,~ ,  , E = - g.r + 9 

In usual nolation p , y ,g  are introduced as the mass 
density. the maw velocity vector and the heat flux vector. 
whereas g denotes the stress lmsor , and e Ihe mass- 
specific internal energy. The mawspecific tohI eoagy 
em, ii denned as elor = c + l /&j j  . 

To assure the general applicability of the numerical 
method the conservation laws have io be expressed in 
terms of a generalized curvilinear coordinate system 
(L', XI,  x')  a (f, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq .  0 which is related lo the base carle- 
sian coordinate frame ( x " , x ~ . . x " )  = (ryj) by some 
mapping. The normal surface vector d S  of  a surface el. 

where dS$ denotes the cartaian mmpnmto  of the nor- 
mal surface vector and a carlcrian base vector pint- 
ing into the direction xJyThe componrnls of Ue normal 
surface vector can be erprased in t m n s  oftransformation 
quantitia r ia dS:. = <fie . 'Ihere 6 dd inn  the 
determinant of the jacobian of transformation 

1 ~ ( x . Y .  z)/d(f, 0-0 1 and a?. ( 9  dr'/dr? dmotes an 
element of  the hybrid metric tensor. As an example the 
continuity equation can be wrillen in t m n s  of vector 
componenls as 

s 

To gel a direct finite-volume discretization for an elmen- 
tar volume dV . bounded by rucmsive surface elemenls 

X I ,  the mean value theorem of i n w r a l  calculus has to be 
applied ,resulting in 

dS- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl and dS$ belonging lo the general coordinate surface 

Here. ror the motpcnt. the delta operator should be 
understood as A" pdS$]  = [ ... zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI+ - [...I-. It i s  
noted that the relation reptaenls an exact quality and the 
order of the discrelizatio~error is determined by the defi- 
nition ofthe mean valuepr and by the accuracy in cvslu- 
ating the componenls of the normal surfaw vmor  dS$ . 

' t he  above procedure leading to a finite-volume dis- 
metization ofthe continuity equation can be repeated an- 
alogmusly for lhe equations of mommlum and energy. 
Dropping below thc bars indicaling LI mean value one gets. 
afler splitting the stress tenso! in a viscous and a pressure 
conlribution g = -p! + , t he  following quations 

T h e  rlatic prossure i s  denolcd by p and the coetlicienl 
C, ( = I )  will be redefined bclow in terms of similarily pa- 
ramelcrs i f  dimenrionlcw quanlitin are introduced. The 
system of equations (3.5) ir closed by assuming a perfect 
gar 

p = ( ~ - l ) p e  (6) 

and the validity of Fourier's law or heat conduction. 
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AM= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC, h zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdellned zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.( the ratio zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe. , d u e  A d e  
n o ~ l  the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd i e n t  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof h u t  mnduaion and e, the spslfic 
h a t  a1 Donstrnl volume. Furcha nca r rny  rdationa are 
ptovidcd by assuming a Newtonian fluid. 

Here the applied tensor nolation indicates a partial 
derivative by a comma, e.& vf 3 dV/bx', The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtcm- 
perature dependence of the dynamic viscosity P is taken 
according to Sutherlands formula. 

The equations (3) lo (8b) can be converted to a di- 
mensionless represenlation by dclininE 

The similarity parametem introduced are the Mach 
number M g  . the Reynolds number Re, and the Prandll 
number Pr. 

- " 
There L denotes a characteristic length. V, = (!yyI-)"' 
the magnitude of freestream velodly , e., Ihc speed of 
sound at  infinity and e,., the spefific heat at conalant 
pressurn. 

The replacunm of depend& and independent vari- 
ablu by their dimensionlar counterpsrU would be Don- 
5islent assuming the following relations. (ro avoid m y  
misunderstandings the quantities In their rig411 dimensions 
are denoted for the moment by a tilde and conditions a1 
infinity are Indicated here and in the following by lhe sub. 
script m ). 

Numeric4 Mahod 

For h e  numerical solution of the steady consmation 
laws the implicit 1.U-SSOR scheme [11.12] Is adapled. 
Some key features of the method togcth~r with some fur. 
her developmen(s are prnmted below. 

For the approximate solution of the steady slate con. 
servation laws (3.5) a second-order cell-centered finite-vo- 
lume scheme is applied. Such a scheme is derived by 
defining h e  fluxes at the cell faca from slmple algebraic 
mean values of the consmtd  variabla, whEh are as' 

v 

sumed to be plwed at the cdl centma. Thc vtdor dew- 
id variabla p (which should not be conhed rHh th. 
h u t  flux veetor introduced above) is d d d  

The numerical method is most easily pramled in symbolic 
form. 
DeBning Ihe discrete residual of (3-5) ruulting from a tin. 
ite-volume discrelilatlon as 

where &.E, C and E.. F,, G. represent the inviscid and 
viscous flux vectors into the general coordinate directions 
X I ,  x' and x' , respectively. For control of nonlinear in- 
slabilitia any cenLral dillkenced scheme has to be pro- 
vided by suilable dissipation operaton which are indicated 
by lower indices D . 
Then a Newlon-iteration would read 

Here Ihe upper index indicates the iteration count and 
69" i s  defined as 69" - 9"' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-g . In ,genud the 

computation and inversion of of e funcllonal malrix 
d& 131 is too cosdy. so that an approximate form hm Lo 
be found such that the inversion is easy and stable. A 
choirr which has been found beneficial [9] ruembla  that 
of flux-vector splitting. Because the parlicular construction 
only atTccecw the implicit operator a rather crude choice 
fulfills the requirements for diagonal dominance of the 
coellicient matrices. 

For delinition of the functional matrix some jacobians 
of the ditTeren1 flux vecton are needed. 

Then an appropriate approximation to the functional 
mmix in cq.( lO) could he 

The experience shows that in principle only the inviscid 
flua jacobians have to be considered for dtfiniUon of Ihe 
implicit operator. also for viscous calculations. Although 
robusmas and stability may be improved for swae 
problems by including into the implicil operator an a p  
proximation to the artificial dissipation operator and by 
parts Ihe physical viscous flux jacobians , for a furlher 
discussion the basic scheme ( I  I )  is sulliaenL 
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m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAduTnace zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAopa.(on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~IC. are wrltten zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas a wm 
or mt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAor& forward (A,) and backward (V() dill- 
opamn. 

Drd = Ar4- + ~ ( 4 ,  (12) 

Nor the parlleular flux jacobians d+  and 4- c(e. 
de(ined in such a way that they posdesa only non-ne- 

and non-positive ugmvalues 

d =  + ( 4  + rd) (1 3.) 

rA 2 max ( l A A l  ) 036) 

mat i d  achieved by ddining rA as a value which has lo 
be qua l  or greater than the spectral radius of 

In fad inversion of Ihe &me (14) L -mpll.hd 
by Sweeping a l o q  diar~onal plana I + J + K  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmnd. 
a- the domain. Then during the invarion pl- dl 
variables needed from the olTdlagonab M alnady up- 
dated. allowing a variation of the straightrotward pr'oa- 
dure. In i n v d n g  the modified L-factor we obtain from 
(14): 

To avoid the explicit evaluation of jacobian malricrs 
the intermediate flux states can be approximated by a 
Taylor series expansion 

B~ swamping forward and backward through the field 

[I21 and it turns out that the implicit operator in 
eq.(l 1) a n  be approximately factorized into a produd or 

$lri#y lower triangular matrix C , a diagonal melrix 
D an upper triangular malrix y . Hence the basic 

the ,suiting relations can be combined similar to a SSOR be+ 5. =(E+Y+-(f-g") + O(ldp1') zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a i +  =i+-r+" = 4+6i + O(16qI') 

- 

Now the scheme (14) is inverted by the follorving steps : 
& , ~ e  a n  be writlen as 

In comparison to the suaightfoorward invmlon or 
scheme (14) no degradation in performane wan observed 
with the costslF~ctivc relaxation-type inversion (16). 

Artificial Dissipation Model 
As mentioned previously including physical viscous 

and artificial dissipative operators implicilly will support 
~~ 

the stability of the scheme in some cas& 
The explicitly added dissipation fluxes Eo etc. are de- 

fined as a combination af firs1 and third order operaton. 
a construction introduced by Jameson et a1 [I]. T h i s  par- 
ticular adaptive dissipation model proved to produce 601- 

utions of flows with discontinuities without oscillations. In 

It i s  evident that diagonal dominance Is only assured 
if the quanLitin ?,, u,L and rA elc. arc redefined such 
that they are q u a l  and simuluneously the maximum of 
both original values defined afler q.(i3b). That i s  

principle the dissipation nux has the form 
'i = Inax ( ' A  iJ.k * ' A  1-1 J,k )o"i 

- 
' A  i J,k : = ' A  

' A  ,-I J.k ' = '.i 
€0 = S ( c"' + 6"' ArVf )6a 

where 6 is a central dilFcerencc operator and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP, and @ 
are adadlive coellicicnu. +he scaling factor S is chosen to 
be proportiona! lo the cpecual radlus of rhe corruponding 
inviscid flux jacobians. The coeficient d'' of the third or- 
der operator provides background dissipation for smooth 
regions of the flow and will be switched off in the vicinity 
of  shocks. which are asentially caplured by a pressure 
sensor included in the definition of  the coeflicimt P,. 

Corresponding settings rollowing for the lJ.facior SUP 
E a t  also a modified diagonal makir D. 

v P = 'I1 ( .;+.A'+ .i+,a'+,; +.;, & 
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v zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

,eu~ling into the implicit repratnution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a,/? = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA46 = [ E;" (466r) - $'* (4&)19 

Hm the quantitia at and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 a n  adjuslable cdic ienu 
and Uc. denote a shilling operator whereby the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsu- 
pnampt delinu the index shin and the subscript the cor- 
raponding direction. Because the implicit dissipation flux 
jacobians 6 e(e have diagonal form thy do not allect the 

corresponding modifications are smooudy filled into the 
algorithm. It i s  noted that inclusion of the implicit dissi- 
pation operator will mainlain diagonal dominance for 
each fador. 

Obviously the pSrticulsr conshcUon of smoothing 
optraton will influence the paformanrr of each cenlral 
di lkenmd scheme. Variations and altematina w e  dis- 
cussed rscntiy by Swan6011 and Turkd 116). while Put- 
liam [I71 'nted out the connstlom md (he equivalence 
of an u p x  d scheme with a cmlral dilTuatw scheme m. 
h a n d  by an appropriate dissipation model. 

overall d e # '  tnition of the LU fadon (IS) and ther&ore 

Imdidt V I  Owsatw 
For Navin-Stoka cslculations the im licit facton i s  

enhanced bv a thin-laver maorimadon k r  the viscous 
nuxes in anattempt to;edua the operation C O U ~ L  

Assuming the I -  dirmion emanating from the body 
the corra nding thin-kyer viscous flux C? and it. ja. 

H o w m r  a direct implementation win not prg"ve diag 
onal dominance to the implicit LU facton. Therc$oft an 
operator is chosen similar to that developed above a p  
proximating the dissipation flux. I n  principle the change 
or the viscous nux vector dGIL = (Cp)-.- (py can 
be repraenled as 

cobian E. p". wdl only have derivaliva in that d i rdon .  

To gU an appropriate jscobisn it n assumed tha Ihc 
is independent of position. which pro' functional dflld 

duca a b a l s 6 J  operator. 

HOWNU the simplified jsoohian = haa nol &s- 
onal form a, was the case for the corrapo- d i i -  
pation jmbiam 4b Concerning the additional arithmaic 
opcrationr involved for inverling the SxS block rrm(riaa . 
that situation . although working nm . M not op(imal. 
Thdorc future development. will be d i i  on pouibil- 
itia for repladm the funcUonal matria by a sullabk diag- 
onal approximation. 

Boundary Conditions 
Rnally some m a r k s  concerning the Lmbnmt dim- 

plidt and explicit boundary conditions. 
For problems with subsonic in- or oufflow far field 

boundaria conditions raulting from the IoUOy onedl- 
mensional Riemann invariant. are applied explidtly. T h i s  
lrealment has proven to damp out diirhuua rdleaing 
at the outer boundary. For supnsonic conditons at idlow 
boundarie corresponding free stream valura M fixed 
whereas at oufflow boundaria a consistent fmt or& ex- 
lrapolation to all dependent variable6 is d. At the body 
the presrure i s  obtained by an approximation to the nor- 
mal momentum quation. For vixow calculations the 
viscous contribution ii neglected reuleng into 8pldn 0 
, which should be a sullkienl codi ton for high speed 
nom. 

On the implicit side for all convection tcmu the change 
in the dependent variable of the naious bounds & i s  
assumed to be zero. which is quivalent to a%rkhlel 
boundary condition. For the implicit dissipation opaator 
and the correponding viscous thin-layer operator a zero 
flux conditon i s  implemented. Concerning the diss'ption 
tums this lreatment is also consistent zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwith thw boundary 
conditions rquirnl for the explicit side. 

- R* 

A dairahle feature of the ~mcr ica l  muhod developed in 
the last s d o n  would be the support from a multi grid 
muhod. Although the code can tun in a multi grid modc 
all resulu p r a m t d  arc obtained by single grid computa- 
tions, Up till now no serious Nor1  was dirrcCed to the 
quation how the LU facton have to be modined to get 
good mulG grid smoothing performance. Howevu the 
fwtun of  prolongating the current solution to the next 
liner mah was utilized to get an appropriate initial guess 
on the final meh system. 
In addition by input option the code can be f o r d  lo work 
with the inviscid or viscous quation set. I n  the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcade ofthe 
Navia.Stoka quations the laminar or turbulent flow op- 
tion may be choscn and the order of approximation of the 
viscous stsas tensor can be qxctfied . In this "p" the 
thin-layer. the full thin-layer and the I\rll viscous approxl- 
mation of the Navier-Stokes quations are availabk. The 
turbulent flow modening is based on the unly algebraic 
turbulence model of flaldwin and Lomax fl81. 

With the method developed some flow problem have 
hem invatigatcd belonging to quite dilTmnt speed re 
gifnu. As the fin1 example a viscous (low simulation past 
a sphere at low Mach numhers i s  pramled. 
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* Flow zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
11 " well known zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthh.1 baldes the rimple zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgmmewul zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

'h.pa 0~ a sphere the flow around zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsuch a g~~comeCy hw a 
sLIydrc which depnda heavily on the Rey- 

nol&-numk .I the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAimpwtan~ VLcow rimilariv puamc- 
Lrr. 

For various values of the Reynolds-numba the now 
around a sphere can be classified into four regima (Rg. 
1). where the decision upon the corrapondlng range i s  
made according to the behaviour of the drag cocmdent 

function of the Reynolds-number [19]. In the subcrit- 
ical regime the drag i s  nearly indepmdent o f  Rynolda- 
number and extends up lo zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARe,S 3.1V . where the 
Reynolds-numbcr i s  based on the diameter of the sphere. 
The critical regime i s  characterized by a sharp drop of  the 
drag codlicient reaching a minimum at Re, $ 3 , Ihh i ch  

as the distinguished point separating thhe critical 
from the ~up~critical regime. With increasing Reynolds- 
number ( Re, 2 3.1.10' ) also the drag cocllicientincreases 
slowly in the supercritical reB'me reaching an almost as- 
ymptotic state. taken as a critera for the heginning of the 
transmitical range. I t  i s  clear that this observed behaviour 
cnn be diredy correlaled zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwith the properties of laminar 
and turbulent flow and the phenomena of transition from 
the laminar to the full turbulent state. 

Two flow cases are considered in detail. According to 
the experiments studia of Achmbach 1191 the chosen 
submitical case i s  a purely lamicar flow with a Reynolds- 
number of 1.62.101 , whilst the trnnscritical case consid- 
ered (Re,  = 5.106) i s  found lo be a mostly turbulent flow 
where natural uamilion from laminar to turbulent flow 
behaviour i s  observed approximatdy at @ 2 60'. 

For the laminar now (Re,= 1.62.101) considered a 
spherical grid system of 65 x 65 x 49 nodes was applied. 
where the mesh systm, in radial direction consisted of 49 
points with a resolution for the fint cells adjacmt to the 
sphere turface A=l.IO-' T h i s  i s  based on a definition o f  
the sphere diameter D - 1. The outer boundary i s  placed 
15  diameters away from the sphere. 

The grid system generated for the transcritical case 
consisted of 65 points in radlal dlrection with a minimum 
gdd spacing a1 the sphere surface of A = 510d and an 
outer boundary placed 12.5 diameters away from the 
sphere. Both surface meshes were identical and defined to 
be equally spaced by 64 x 64 intervals. 

For both now cases a lateral symmelry condition was 
assumed in an anempl to reduce the compulational COSU 

without reskicling too much the flow physia simulated. 

Laminar Flow Results: The laminar flow simulation 
is based on the parameters ReD = 1.62.105 and Ma = 0.3. 
A h  SO0 iterations on the finat grid the L, norm of 
continuity equation was reduced by more than 3 decades 
. On a fairly low error level ( L, 2 SIO-' ) no further 
convergence was ohtained. A closer look on the results 
during some stages of the iteration process showed a 
clearly unsteady wake behaviour which agrees qualitatively 
with the experimental findings. in an investigation an the 
wake structure of flows part spheres Taneda [20] reports 
on a pro res& wave motion of the sphere wake for the 
range 18.3 Re, S 3.8.101 . The wave can be described 
by a plane containing the streamwise axis through the 
centre of the sphere. Thereby the plane robles slowly and 
irregularly about that axis. At Reynolds-numbers ranging 
from 3.8.101 to IO6 the sphere wake formes a pair of 
streamwise line vortices at a short distance from the 
streamwise axis. Also this vortex pair rotates slowly and 

randomly about that aria. In all r a m  mentiond the 
rphae wake is not axlsymmewic. To ilhnbscc snmahat 
the eomplex wake flow P sketch of the vortsx swmm in 
the range 3.8.10' 5 Re, S 10' ( a b  [Z'J L shorn in FiE. 
2. 

So it turns out that the flow smcturc also Tor lamlnar 
flow is highly complex. Therefore the numerical simulation 
of such a flow requira a high spatial resolution of the so- 
lution domain and sirnullanmusly a high h e  accuracy to 
resolve adequately all existing flow scala and moda. The 
method used for the present simulatioru i s  baaed on an 
approach neglecting the correct time scales. Therefore 
from the raub only the resolution of the main features 
of the flow can be expected. 

Fig. 3a-e show for three diflerent iteration slag- the 
pressure distribution around the sphere in the symmelry 
plane. From the figures it is obvious thal severe separation 
proeases are laking plaee on the rear side. indicating a 
sweeping motion of the wake flow. The influence on the 
stagnation region i s  apparently weak. 

A better underrtanding of the flow structure for the 
depicted solution smtes i s  depicted in Fig. 4 by corre. 
sponding velocity vector fields. The strongly changing ve- 
locity fields show no well established recirculation bubbles 
at the rear side but a confuse structure with at least two 
slagnation points on the back which may be an indication 
for l ~ v i n g  line vortices. 

A comparison between experiments and Lhmry in 
terms ofthe wall pressure diskibution around a sphere is 
pramted in Fig. 5. Decausc of the asymmetric flow 
structure on the rear side we have depicted the spread of 
the results in that region by insenins the extrema at des- 
tinct circumfermtial an@c @. The figure show clearly that 
the computational results fluctuate around the meaaun- 
m a l #  of Achmbach 1191. 

What erect the wake flow slrudure haa on wall s t r w  
V M O ~  a1 the rear side is illustrated In FIB. 6. Thwe the 
wall s t r a s  vectors are shown on the l hands ide  and the 
diredion of these veclon alone on the righthandside. 
From this picture complex syystms of separation lina can 
easily be delected giving an lmprasion of the random be- 
haviour ofthe flow in that region. 

The comparison to the experimental skimfriction re- 
sulb of Achenbach i s  made in Fig. 7. In order to provide 
a meaningful comparison the representation of the the- 
oretical results i s  restricted to the data along the meridians 
of the ryrnmelry plane. T h i s  choice i s  easUy explained by 
the complex pallern of the wall stress veCtOn a m  in Fig.6. 

I1 can he stated that in the attached flow rdon  the aplee- 

W 

.... ~. .. ~.~~~~ 
imcntal dala ar:oh$nrd hy an indirecl melhod w d h  i s  
ralihratcd by a *dl knoun method of laminar boundary 

Turbulcnr Flow Ruula: 'The case considered i s  de- 
scribed by the parameters Re, = S.lOs and Ma - 0.1. 
Laminar la turbulent transition was fixed at @ = 60.. 

According to thhe ptescnlalion of laminar results the 
corresponding lurbulcnt pressure distribution in the sym- 
mctry plane i s  depicted in Fig. 8. It i s  recognized that the 
structure i s  much more organized and up to @ < 120" 

theoretical wall pressure data i s  made in Fig. 9. The the. 
oretical results are conccntraled in a more narrow band 

nearly axisymmctric. Comparison or ex erimenbl and d 
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indkatfng a nudY ~ ~ ~ m ~ C  bduviour. H o m a .  the 
p-uw zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlevel on the m r  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASMC zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb predicted (00 hlgh. 

Lwking on the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvclodhl VeQw lk ld  (Fig. IO). an al- 
most pdm voTtCx Imp  a w .  Up lo now it Is an open 
quation, if the solution srih oonlinuing Itaaltons wiu zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbc- 
come similar random as in the laminar me.  However, the 
expcrimenla of Taneda [ml indicate a wed organlzed and 
more sleady wake flow for high Reynolds-numbera . an 
observation also available from the numerical simulation. 

In Fig. I I the skin friction results arc depicted, showing 
an agrment  qualitative in nature b a w m  experiments 
and simulation. Although the transition from laminar to 
turbulent flow was fixed a1 @ = 60' 6 strong upstream d. 
fecl reulted. Also the separation at the rear side i s  pre- 
dicted too late compared lo  the experimental data. Up to 
now no serious investigations were conducled to study the 
sensitivity of the skin lriction peak.levd on the position of 
the transition point. In accordance lo  the skin friction data 
the wall stress vectors for the turbulent case show a nearly 
arisymmelric behaviour (Fig. 12). 

lfemisphere-Cvlinder Flow 

An interesting three.dimensional problem belonging Io  
the transonic speed range is the flow around a hemisphere 
cylinder at incidence. Quite recently extensive theoretical 
sludia fadng this problem were conducled by Ying et a1 
[21,22]. In the earlier work 1211 the problem was con- 
sidered mainly for Ma P 1.2 for various angla of attack 
0 u 5 IP and compared with available cxperimenlal 
data C23.241. It turned out that these laminar now exhibit 
a broad variety of  separation phenomena and associated 
topological structures which was the reason to reinvestigate 
the particular case Mu = 1.2, u * 1P in a more detailed 
manner [22]. In that study successively finer grids were 
used to identify convergmce offlow auern. Inleratingly 
flow topology changed with grid rel!nement and became 
ssymrndrie in the f inat mesh used (101xIWx81 points). 

Also zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin the present study the pariicular laminar flow zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
cam ( Mu - 1.2. Re, P 4.45.IV , u - 1 9  ) a w e d  M an 
additional tat case. The sphmial type coordinate system 
used consisted of 49 points in the stramwise direction, 
25 points in the circumferential direction Tor the halfplane 
and 49 points normal to the body. 

In Fig.13 and rig.14 the static pressure and Mach 
number distribution i s  shown together with an enlarged 
map ofthe nose region. It i s  recognized that the bow and 
lceside shock wave is well captured , From the highly 
structured Mach number fidd on the Imide just behind 
the sphere-cylinder iunclion it can be deduced that a 
complex interacting flow field has atablished. Although 
not shown here. despite the relatively coarse mesh sysmn 
the cXPerimmtallY ohserved awl e y a  and the primary and 
secondary separation l ine were well captured in the sim- 
"l2tiO". 

In Fig. 15 the streamwise wall pressure distributions 
on the leeside and the 90" -line arc depicted. The praent 
m u l h  arc close to those of Ying et  al t2 iJ  for the Itnide, 

however show some remarkable dikences on the 90" 
-line. There the resulh o l  Ying et a1 deviate substantially 
from the data of bath experiments. T h e  reasons for thae 
deviations are not clear. because the resulh of [21] arc 
based on a slightly more relined mesh. 

It i s  mentioned that the above results were obtained in 
300 iterations and a error norm reduction of the residuals 
of continuity equation of almost 3 decada. 

- 

v 

H m o n i c  Flow Past a R a n w  Vchide 

The last example presented i8 the h m  tlor p u t  
a mrnplcle ramlry vehidc. At he sa- f~sa - mn- 
ditions ( Ma= 8 ,  u - 30.10 viacour and an invbdd sal. 
culalion w6s performed in order to i denw the disc of 
viscosity on the overall flowlldd. For both computations 
the nuid was a.uumed to behave as a pafea gas. Addi. 
tionally. in the viscous case a laminar flaw opposed to an 
adiabatic vehicle wall was assumed. 

The task of computing the flow around a complae 
complex vehicle is not trivial and begins with the challenge 
ofgenerating an appropriate m a h  sysmn. For the geom- 
etry at hand which is one of the proposed dalgna for the 
curopean IIERMES space shuttle it appeared advanta- 
geously to adopt a one-block wrapped-around coordinate 
syslein. Such a coordinate system i s  of spherical type at the 
nose and therefore possasa a singular h e  emanating 
from the very nose. llowever also at the nose extreme 
conditions caused by the bow shock have to bc expeaed. 
so that the singular line problem has to be treated care- 
fully. Moreover in hypmonic flow past blunt bodia at 
high incidence the shock layer at the windward side be- 
coma thin whereas at the leeward aide the bow shock gets 
far away. Therefore it ia desirable to have a coordinate 
s y s h  which approximately follow the outanosl shod 
wave in an aUempl to waste only a small fraction of m a h  
points available. Clearly this fact pays only for schema M 

the praent one which are capturing all shocks In the sol- 
ution domain. Ba ida  this point of view the underlying 
coordinate system should be . at least in rqjons adjacent 
to walls - approximaldy orthogonal to prevent large dis- 
crclilation error eiTech. Also the m a h  should allow to be 
applied for space marching computations. For that pur- 
pose the mesh system should be constructed of planar 
cross sections. To meet all lhae rqulremenla various grid 
generation techniques have bem combined. 

At the nose an spherical-type mah system WM gener- 
ated using an algebraic approach. In front of the &pit 
the mesh was forced lo be planar in crou S ~ O M  x - 
const. for over the remaining part of the vehicle. There 
a hyperbolic mah generation procedure WM applied. 
l lowevn in the hyperbolic approach. where the mah i s  
generated by marching*outwards from the body. no con- 
trol i s  given to meet an ouier specified shape. Therefore the 
hyperbolic mesh was marched beyond the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAapsined boun- 
dary and then the grid points were redistributed along the 
coordinate direction normal lo  the body. Distortions gen- 
erated by this procedure were smoothed out by an elliptic 
m a h  generation method. llence in regions nearby the vc- 
hick the mesh i 5  expected to be approximatdy orthogonal 
and simullaneourly the mesh is within a specified outer 
contour. 
Such an approach is very time consuming and could only 
be accomplished in collahoration with Stephan Ldcher at 
Dornier company. A more detailed description together 
with hypersonic flow results will be given In a forthcoming 
paper. 

Fig. 16 shows the surface mesh around HERMES ve- 
hicle gencratcd by the procedure danibed above. The grid 
system consists of97 points in axial and 129 points in cir- 
cumferential direction for the hallvehicle. It is noled that 
the mesh at the nose singular point i s  made equldistaet in 
the circumferential direction in order to facilitate the 
trealment at the singular line. Also at wing leading edges 
and at the wing.winglet junction the grid ia rdined ac- 
cordingly. Fig. 17 depicts the strucure ofthe surfan m a h  
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.t ~hc zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbottom and the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtop zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsi&. The gamatcd mordlnaw 
~ ( c m  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(129 paid in &cwnfumlw md 65 poinu zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh 

 on) for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan Eulu computation In dUTuen1 
sections ii shown In fig. 18. It II recognized thal the 

mesh sptem followa the expbaal bow ah&. 

Fig. I9  d e p i a  the Mach numba and pressure dla- 
vibution in the symmelry plane together with a delailed 
map ofthe nose region. The solutiona presented show the 
bow and the canopy shock (y(IyC properly resolved. and 
any perturbstions originating from the geometric aingular- 
ity 

~ e r o r e  atering the discussion and comparison of in- 
viscid and viseour computations some :marks concerning 
convqma orthe solutions. For the inviscid ease the re- 
sidual mor reduction measured by the drop of the 

in the h e a t  mesh. 
in 3% iterations. For the VISCOUS computation 

only 200 iterations were possible in the momenl of writing 
t h d O r e  the I ~ U I L I  (although the corr-ponding resi- 

dual was reduced by 2 decades) should be looked 
as preliminary in nature. 

in ~ i ~ .  20 for a distinct cross section (x = 7 . h )  viscous 
and inviscid resulu are compared. Fig. 20a and Fig. 20b 
show he Mach number distribution lor viscous and invis- 
cid flow. Obviously the solytion in the outer part of the 

layer is almosl idmllcal but show remarkable dif- 
ferm- in the vicinity afthe vchide. Whereas the inviscid 
simulation depicu a cross flaw shock wave above the wing 
and above U c  cargo bay corresponding elTecla are strongly 
smoothed in viscous flow. Also the denlopmen1 of votiex 
separation over the cargo bay is noted. 

The mentioned e&ta are more ronounced at  a sta- 
tion downskcam (fig. 21). Here J a c h  number distrib- 
utions are compared in a cross seaion containing the 
upward directed wing panel. named from now on as win- 
glet. Additionally to the cross flow phmomana obsmed 
in fig. 20, a1 x - 12.7 the flow field exhibits zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 shock wave 
at the winslei leading edges. Also the cross flow shock 
above the wlng is now first aligned diagonal to the v d c a l  
fuselage wall and than experience a deviation of approx- 
imately 90 dcgree. This topology is known from supersonic 
corner flowa where the lower shock fronl is obsmed to 
be parallel to the flal plate. A closer look on the results 
(Fig. 22) reveals the unrealistic prediction of the inviscid 
simulation. Fig. 22cshowa above the wing a Mach number 
in the ordct of 15 which occurs simultaneously with very 
low pressure and densily valuea. 

In this rap& much more realistic appcars the viscous 
flow behaviour (Fig. 22a.b). There the maximum Mach 
number is 1hown to be in the order of the free stream va. 
lue. Also jet l o n y a  known from comer flow aludia seem 
lo be captured. More exlreme flow conditions are expected 
lo exist in the end cross sections, presented in Fig. 23 and 
Fig. 24. 

In Fig. 25 the direction of wail stress veclors on the 
HERMES vehicle are presented as a preliminary result. 
Obviously shock induced separation occurs above the 
wing, above the cargo bay and in fronl of the cockpit as 
a result of the canopy shock. Separation induced by corner 
flow particularities may exist. 

However these various flow phmornma have to be 
analyzed carefully in great detail in order lo draw conclu- 
sions being valuable for future design development. 

the n- tip are almost not visible. 

wsa 3 o r d m  of magnitude 

C m  

An improved LU scheme for rolution of thrrc-d'unm- 
sional Euler and Navia-Sloks equations hsa baa, pn- 
SCnlUl. 

The robuslnar achieved was dcmonrtratcd by the 
ability of treating flow problems of quite dUTermt velocity 
scales without any major changes to the method. It WM 
shown chat the numerical radu obtained are in ruvon- 
able to close agreemen\ 10 the experimental d a h  available. 
The hypmonic flow simulation raulla look reliable and 
further development of the method to include real gar 
conditions are in progress. 

From the numerical point of view it appears highly 
dairable to combine eficienlly the LU scheme with a 
multi grid method. Howevcr,as a side condition such a 
scheme has to work also for complex problems at hyper- 
sonic speeds 
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Fig 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: Flow regimes of !he flow around a sphere ( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd e r  
~ 9 1 )  

Fig 2 : Vorler 5lrurtiire zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof sphere wake flow in llle range 
3.8.111' 5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARe, 5 IO6 aner Taneda [20] 

~ i ~ .  3 : sm(ic prn~ure distributions at direrent iteration 
slags i n  h e  symmetry plane 
( = I .62.IN. M a  = 0.3. laminar flow ) 
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, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Fig. 5 : Surfact zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAprerurc as fundion of angle @ 
( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARe, = 1.62.IV. Ma - 0.3. laminar flow ), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 measured rrom rmnt to rear stagnation point 

Fig. 4 : Velocity vector field at direrent iteration stages 
in the symmetry plane 
( Re,= l.62.lW. Ma - 0 . 3 ~  laminar flow ) 

Fig. 6 : Wall stress vectors zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAon sphere rear side 
( Re, 5 1.62.1W. M a  = 0.3. laminar flow ). 
le* magnitude and direction. right direction 
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Fig. 7 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: Skin-friction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas fundion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAor angle @ 
( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARe, - I.62.IOJ. M a  = 0.3. laminar flow ), 
@ measured from front to rear stagnation point 

Fig. 8 : Static pressure dirlrihutions in Ihe rymmrvy 
plane 
( Re,, I 5.10". Ma - 0.1. lurhulmt flnw ) 

Fig. 9 : Velocity vector field in Ihe symmelry plane 
( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARe,, = 5.10L. hla = 0.1. turbulent flow) 

5 

Fig. 

. . .. ..... . .. . 

'0. 30. 60. 90. 120. 1 %  180 

10 Surfarc prnrure as runction of angle @ 
( RP, = 5-  106. b h  = 0.1. turbulent now ), 
@ menrurrd from rronl io rear stagnation point 
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t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
L.W- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.h. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
*.*.I.ira zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc 

.. . . . . . 

, ... . . ..... zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
'0. 30. 60. 90. 120 150. 180 

Dd9: N n r R ( q k  

Fig. I3 : Prsrurc dir(rihstion in symmetry plane of hemi- 
sphcreqlindcr 
(Ma = I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.Z.Rc, = 4.45.1W. u - IVJaminar flow) 

Fig. 12 . Skin-friclion nr hnciion 01 angle 
( Re, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 .  IO'. hln = 0.1. Lurhulml flow ), 
Q mcariired rrom front LO rear slagnation point 

13 



Detdl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: Nose Region zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Fig. 14 ' Mach nirrrrhrr dislrihulion in symmevy plane zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAor 

I~rmirplierc.cyli,i~Icr 
( M a =  I.2.Rr,> = 4.45.1n5,a = I9'.larninar now) 

- 1 . 5 1 " " " '  " J  

Fig. 15 : Slreamwirc pressure dislributian of hemisphere- 
cylinder 
(Ma=  l , 2 , R ~ n = 4 . 4 S ~ l W , a =  19'Jarninar flow) 

Fig. 18 : Geometry of HERMES space shuttle 
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Fig. 17 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: Surface mesh zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI IERhlES spnce zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAshuttle (dirncnsion: 97x129) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I 3.6 m x = 1.2 m 

Fig. 18 : Coordinate ayrtcm in various cr-ms section. x = const 

( dimcnriont : !29x65 ) 
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x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 5.6 m 

x = 1 4 6 m  

x - 1O.Om 

x = 1 1 7 m  

Fig. 18 : (conl.) Coordinalc zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArystnn in various cross sections zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI = cnnsi. 
( dimensions : I29ah5 ) 
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/ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Fig. 19 : zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPressure (a) and Mach number (b) distribution Fs. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM : ~~~h disuibu(i,,n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin 401s sn,jon = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

7.8 m of HERMES space shuttle for viscous (a) 
and inviscid (b) flow 
( Ma = R , (I = 30'. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARe = IO'lm) 

in symmetry plane of HERMCS spa- shuule 
( M a  = 8 ,a = 30'. inviscid flaw ) 
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(4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA20 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(cont.) Pressure distrihution in cross section x = 

7.8 m of I IERMES space shuttle for inviscid (c) 
now 
( M a  = 8 , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa = 30") 

Fig. 21 : Mach numhcr distrihutian (a.h) and prnrurc dislrihiilion (c) 
in cross section I = 12.7 m 

of IIERMES space rliuttle for viscous (a) and inviscid (h.c) flow 
( M a  - 8 ,  a P 30°, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARr = l~Y/m) 
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I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

k) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Fig. 22 : zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhlacli nutiihcr Jirlrihuiion (a.c) and cross flow 

vclocily lirld (h) in cross section I = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA12.7 rn of 
IIERhlliS space rhutlle for viscow (a.6) and 
inviscid ( C )  now 
( Ma = R , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa = 30". RF 2 IO(/m) 

(a) 

Fig. 23 : Mach niimhcr dirlrihution in cross section x = 
12.3 rn or I IVRMKS space rhulUe for invisdd 
(a) and viscnw (b) flow 
( Ma = R , a = ?Oo. RP = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA106/m) 
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Fi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4 

23 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(coni.) Mach number dislribution in uosa sncion 
I 3 15.3 rn zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOT IIERMES rpaa shuttle for in- 
viscid (a) and viscous @) flow 
( Ma - 8 , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa = 30'. Re = Iod/m) 

Fig. 24 ' Mach niinihcr disirihulion (a,c) and moss flow 

vclocily lirld (h) in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmoss section x - 15.3 m of 
I l l R h l l 3  apncc shuttle for viscous @.c) and 
inviscid (a) flow 

( hln = 8 . a = ?no. RP i lf16/m) 
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Fig. 25 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: Direction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAor wall s b n s  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvectors an I I I (RMI3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArpacc slwUle 

( Ma = 8 .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA30', Re = lfir/m. Iaminnr flow ) 
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