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Abstract

In this paper, the cubic and quintic diffusion equation under stochastic non homogeneity is solved using
Wiener- Hermite expansion and perturbation (WHEP) technique, Homotopy perturbation method (HPM) and
Pickard approximation technique. The analytic solution of the linear case is obtained using Eigenfunction
expansion .The Picard approximation method is used to introduce the first and second order approximate
solution for the non linear case. The WHEP technique is also used to obtain approximate solution under dif-
ferent orders and different corrections. The Homotopy perturbation method (HPM) is also used to obtain
some approximation orders for mean and variance. Using mathematica-5, the methods of solution are illus-

trated through figures, comparisons among different methods and some parametric studies.
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1. Introduction

The study of random solutions of partial differential
equations was initiated by Kampe de Feriet in 1955 [1].
In his valuable survey on the theory of random equations,
Bharucha-Reid showed how a stochastic heat equation of
Cauchy type can be solved using the stochastic integrals
theory[2]. In 1973, Lo Dato V. [3] considered the sto-
chastic velocity field and the Navier-Stokes equation and
discussed the mathematical problems associated with it.
Becus A. Georges [4] introduced a general solution for
the heat conduction problem with a random source term
and random initial and boundary conditions. Many au-
thors investigated the stochastic diffusion equation under
different views, see [5-11].

El-Tawil M. used the Wiener-Hermite expansion to-
gether with perturbation theory (WHEP technique) to
solve a perturbed nonlinear stochastic diffusion equation
[12]. The technique has been then developed to be ap-
plied on non-perturbed differential equations using the
homotopy perturbation method and is called Homotopy
WHEP [13,14]. El-Tawil M. and Noha A. El-Molla.[15]
solved the quadratic and cubic non-linear stochastic dif-
fusion equation using Pickard approximation and homo-
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topy WHEP technique [16].

The diffusion equation with cubic and quintic nonlin-
ear losses and stochastic non homogeneity are solved
using different techniques, mainly the Pickard approxi-
mation, the WHEP technique and HPM. The main goal
of the paper is to compare among these different tech-
niques. Some statistical moments are obtained, mainly
the ensemble average, covariance and variance of the
solution processes. In Sections 2.1 and 3.1, the Pickard
approximation technique is used in solving the cubic and
quintic nonlinear diffusion problems respectively. WHEP
technique is processed in Sections 2.2 and 3.2, while
HPM is used in Sections 2. 3 and 3. 3. Some compari-
sons are illustrated in different sections.

2. The Cubic Nonlinear Stochastic Diffusion
Equation

Let us consider the following stochastic nonlinear-diffusion
equation with cubic nonlinear losses, &-u’:

6u(x,t) ~ ou

a

(x,t) € (O,L)X(0,00), u(O,t) =0,u (L,t) =0

—e-u’ +o-n(x);
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and u(x,0)=¢(x). (1)

Where ¢ is a deterministic scale for the nonlinear
term. The in homogeneity term o -n(x;®) is space white
noise scaled by o .

Three methods are used in the next subsections, mainly
the Pickard approximations, the WHEP technique and
Homotopy perturbation method.

2.1. Using Pickard Approximation

In this technique, the linear part of the differential op-
erator is kept in the left hand side of the equation
whereas the rest of the nonlinear terms are moved to the
right part. The successive Pickard approximations are
processed according to letting the L.H.S. as the n+1
approximation for the solution process depending on the
n" approximation in the R.H.S, n>0 Following this
routine and applying it on to (1), we get the following
iterative equations:

u,y _%_ L)
o ae on(ue)=0 2)
u, (O,x) = go(x), U, (t,O) =u, (t,L) =0
2
Ou,,y 07Uy, —on(x;0)=—¢u,,n>0,
ot o’ (3)
n+1(0 x) (/)(x)’ n+1(t O) n+1(t’L):0

Using Eigen function expansion, the following general
solutions are got

2
uy (t,x) = iTnoe_( . ) sin%x+ ilno (t)sin%x 4)

n=0 n=0
where
. =2—“jn(x)sinﬂx dx, (5)
o\ L
nr 2
1, ()= je_[T] (t_r)F"o (r)dr (6)
0
Also

m=0
(7)
where
(1)= 2—Gjn(x)sinmx dx
Nyl L 0 L
9L (8)
——gj.uj (t,x)sin@x dx
L) L
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mn

¢ ~CE )
n+1 J‘e Fn+l (T) dT (9)
0

L
T, =%_(|;(p(x)sin%x dx. (10)

If the convergence of the process is insured, one can
obtain the solution as

u(t,x)=limu, (1,x) (11)

n—o

One can notice that all order of approximations are
stochastic processes. The ensemble average of the zero
order approximation is obtained as

2
uy (1X)=3T, A7 sin“Fx. o (12)

n=0

The covariance of u, is given by

Cov(u0 (t,x,),u, (t,xz))

nm
n=0 m=0

g o A RGN

n mmn
sin—x, sin—ux,
L
(13)
where
L
.[ 1n—xs1n—xdx (14)
0
The variance is
4% 2 & L A2 ()
o, (t,x)= O; PIDIP A J.e(Lj dr
0 L n=0m=0 0
(15)

nm
’ -[7] (=) nmn mn
Ie dr |sin—xsin—x.
L L

The following results for the first order approxima-
tion are obtained:

(16)

where
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g (0)T' = (1) 3422 (t,x)i 1, (1)sin “x

+ 3,qu (t,x)z

n=0m=0

M

1, (1)1, (t)sin%x

. mm
sin—x 18
7 (18)

+ii§%( Y (0, (1)sin "

mn In

(19)

L 20)
sin = x dx
Cov(u1 (t,xl),u1 (t,x2 ))
= i iElnI ()1, (¢ )sinﬂx1 sinﬂx2
n=0m=0 L L
—i{ e ( j F, (7 )d‘[}m%x2
S EI, (1)sin ™, @1)
m=0
w |t ,[MJZ(,,,) mmn
-> _[e L EF, (r)dz [sin—x,
m=0{ o ' L
iElnl (¢)sin—x,
n=0
+iE]n (t)sm—n)c1 - EI, (t)sin—x,
n=0 m=0
where £ denotes the ensemble average operator and
Az
El (t)=[e EF, (7)dr (22)
0
EL (1)1, (1)
‘(%]Z(f—fl) ‘(%JZ(’—TZ) (23)

e EF, (1))F, (7,)dzdr,

In which
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EF, (2)F, (%)

=422- _[sm—xsin—xdx
0
dectt . nm . mm 3
- ”smfyg sin=—=x, En(xy)uy (7,,x, ) dxydx,
00

L
”sin%x3 siannx4 En(x,)uy (7, ) dxydx,

2

00
452 6. omm mn 3 3
. “smfyg sin— T Euy (7, %, )ug (75, %, ) dyydx,
00
24
where
En(x)ug (t,y)

. i i iE” (x)1,, ()1, ()1, (t)sin%x

n=0m=01=0

.mn . In
sin— xsin—x
L L

In which

_ j j j . ?]2“"‘)e‘(%f""z)e‘[%"f("’“ 27)
000

And
Euy (7,,% )uy’ (7,,%,)

=4 ['[1»x3]¢3 [Tz’x4]+3¢3 [Tl’x3]¢[72=x4]
z Z EI, (7, )ImO (7,)sin nln X, sin?x4

n=0 m=0

+3¢’ [Tzsx4]¢[71»x3]z ZE[no (Tl)lmo ()

n=0m=0
. hm . mn
SIN ——X; SIN—— X3
l l
2 2 o0 o0
+9¢° [11.x,]0 [72.%,] 2 2 EL, (7)1, (72)
n=0m=0
. nm .. mn
Sln7x3 SIHTX4

+3¢ [%’%]ii

n=0m=

[Ms
[Ms

El (7)1, () 1, (%)

o
Il
=)

k=0
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7 7+
I, (z’z)sm7x3 sin—

3¢ (0,0 X 3 S B (2)1L, (2)1, (5)

n=0m=01=0 k=0

. Im . kn
Xy 51n7x4 SIHTX4

.omn .
X, 8in—— X, sin

Zj: El, (7))

ImO (11)1,0 (TZ)I,(0 (12)51n7x3 sin n;n X,

. nm In .
I, (Tz)sm7 7x3 51n7x4

Ms

+9¢[7px3]¢[fz»x4]ii

n=0m=0

-~
Il
o

3
a

SEESTTE ()1, ()1, ()

mn . In
— X, sin—x,

(28)
In which
2
B(t,x) = iTnoei(T] tsin%x, (29)
n=0
EIH0 (Tl)]mo (71)
2 g (mP ey () (30)
:%Imiie (Lj . 3)6 [ Lj . 4)dr3dz'4
Elno ( )Im0 (7,)
2
2% {5 e w) {7 e Y dr, ey
EI, ( )1 (rz)
g _(nm 7”1752171 32
Inmfjle[] ( )(24)d13dr4 ¢

(7, )F}{O (74)drydr,drydz,,
(33)

EF, (73 )Fmo (74)F

l

() F, (75) drydz,drdz,, (34)
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EF;zo (1-3)Fmo (T4)F}0 (TS)EcO (T6)E)0 (17)
F, (7)drdr,drdrdr,de, (36)

where
EF, (%) F,, (74) F, (z5) Fy, (%)

knxzdxdx

nmn mmn In
sin — x, sin—x, sin—x, sin
L

.omn . kn
x1 sm x, sin—x, sin—ux, dx,dx,
L L

mmn
—X, sm

xzdxdx

(37

Using mathematica-5, the previous huge computations
were performed and the following sample results are
obtained:

Figures 1 and 2 illustrates the change of the first order
mean and variance under the change of some illustrated
parameters.

mean — u, M= 1, one term series, x= 0.5

05-\_ ;

N —

05 02 &4~ 06 08 ! oy
| * —e=10
e=100

—e= 1000

s A 4

ok | 4
2.5} nh o/

Figure 1. The change of the mean of first order approxima-

tion u; with time 7 at x = 0.1 with different ¢ values, (L =1,

M=1,6=1, ®(x) =x).

—"'nf

variance —u, M=1, ;
0.02 |

0.015 |
0.01 !
0.005 | f)

051 15 2

Figure 2. The change of the variance of the first order ap-
proximation u; with time 7 and space variable x at x = 0.5 at
different ¢ values, (L=1, M =1, 6 =1, ®(x) =x).
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One can notice that the mean diminishes with time for
all & while the variance decreases with the increase of .

Following similar computation procedure, the follow-
ing results for the second order approximations of the
mean is illustrated in Figures 3, 4, 5 and 6.

mean — u, e=10 M=1. x= 0.1
0 '

0.15!

e=0
e=10
e=50
e=100

0.17

0.05!

0.1 0.2 03 04
Figure 3. The change of the mean of second order approxi-
mation u, with time 7 at x = 0.1 with different ¢ values, (L =

L,M=1,06=1, ®(x)=x).

e=10 M=1, x= 0.1

mean — u,— u,— u,

0.1 02 03 04 05

Figure 4. The change of the mean of zero, first and second
order approximation (u, uy, u,) with time ¢ at x = 0.1, ¢ = 10,
L=1,M=1,06=1, D(x) =x).

n(ljc%m — U, U -, e=50 M=1, x= 0.1

0.15
0.1}

0.05]

t

01 02 03 04 05
Figure 5. The change of the mean of zero, first and second

order approximation (ug, u,, u,) with time 7 at x = 0.1, ¢ = 50,
L=1,M=1,06=1, ®(x)=x).

mean — i, — i, — u, e=100 M=1, x= 0.1
0.2 =

0.15
0.1

0.05 u—e=100

w,—e=100

—0.05

Figure 6. The change of the mean of zero, first and second
order approximation (ug, u;, u,) with time 7 at x = 0.1, ¢ =
100, L=1,M=1,0=1, ®(x) =x).
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2.2. Using WHEP Technique

Since Meecham and his co-workers [25] developed a
theory of turbulence involving a truncated Wiener-Her-
mite expansion (WHE) of the velocity field, many au-
thors studied problems concerning turbulence [26-27]. A
lot of general applications in fluid mechanics was also
studied in [28]. Scattering problems attracted the WHE
applications through many authors [29]. The nonlinear
oscillators were considered as an opened area for the
applications of WHE as can be found in [30]. There are a
lot of applications in boundary value problems [31] and
generally in different mathematical studies [32].

The application of the WHE aims at finding a trun-
cated series solution to the solution process of differen-
tial equations. The truncated series composes of two
major parts; the first is the Gaussian part which consists
of the first two terms, while the rest of the series consti-
tute the non-Gaussian part. In nonlinear cases, there exist
always difficulties of solving the resultant set of deter-
ministic integro-differential equations got from the ap-
plications of a set of comprehensive averages on the sto-
chastic integro-differential equation obtained after the
direct application of WHE. Many authors introduced
different methods to face these obstacles. Among them,
the WHEP technique was introduced in [33] using the
perturbation technique to solve perturbed nonlinear
problems.

The WHE method utilizes the Wiener-Hermite poly-
nomials which are the elements of a complete set of sta-
tistically orthogonal random functions [34]. The Wiener-
Hermite polynomial H' (4,,t,,---,) satisfies the fol-
lowing recurrence relation:

HY (1,,,+1,)
=H" (t,,,1,,).H" (1, (38)

_Z le(l,z,'

m=1

ty)-8(t, 1), i=2
where
H =1,
HY (1) =n(1),
H? (1,6,)=H" (1,)-H" (1,) = 8(1,.1,),
HY (1,6,,6,) =H (1,,,)- H (1,) - H" (1,)
3(t,—1,)-H" (,)-8(1, - 1,), (39)
HY (1,4,,1,,1,)= HY (1,,0,,6,)- H" (1,)
—H( (1,8,)-8(8 ~1,)
H® (,1,)-8(1, - 1,)
H (1.1,)-8(1, ~1,).
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In which n(?) is the white noise as noted with the fol-
lowing statistical properties

En(t)zO,
En(t,)-n(t,)=8(t, —1,),

Where ¢ (-) is the Dirac delta function and. The Wie-
ner-Hermite set is a statistically orthogonal set, i.e.

(40)

EHY . HY =0 Vi#]. (41)

The average of almost all H functions vanishes, par-
ticularly,
HY =0 for i>1. (42)

Due to the completeness of the Wiener-Hermite set,
any random function G(#;®) can be expanded as

G(1:0)= G (1)+ j G (10 HO (1)
(43)

+J' J'G(” (4, 6,)H? (4, ¢,) dt,dt, +---

—00 —00

Where the first two terms are the Gaussian part of
G(t; a)) .The rest of the terms in the expansion represent
the non-Gaussian part of G(f;@). The average of
G(tow) is:

pe = EG(;0)= G (1) (44)
The covariance of G( ,a)) is
Cov( ,

=E(G( /“o(t))(G ¢ (7))
:JG (t;t ) ( t,) dz, (45)

+2ij (t:1,,,)

—00 —00

G (31,1, ) dr,dr,

The variance of G(t; a)) is

VarG(t,w)=E(G(t; o

(@) - s (1))
_ T[G“)(’;’l ) ar (46)

+2j [ (t:1,,1, )Tdtldtz

The WHEP technique can be applied on linear or
nonlinear perturbed systems described by ordinary or
partial differential equations. The solution can be modi-
fied in the sense that additional parts of the Wiener-
Hermite expansion can always be taken into considera-
tions and the required order of approximations can al-
ways be made depending on the computing tool. It can
be even run through a package if it is coded in some sort

3 e—8
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of symbolic languages. The technique was successfully
applied to several nonlinear stochastic equations, see
[20-25].

The first order solution can be obtained when consid-
ering only the Gaussian part of the solution process, i.e
u(1,x) can be expanded as:

u(t,x) _— (t,x)+ju(1) (t,x; X, )H(l) (x, ) dx,. (47)
0

Substituting in the original Equation (1) and taking the
necessary averages, we get the following two sets of de-
terministic equations:

(0) 2 (0)
Ou (t,x) = Ou —8[u(0)(1,x)]2

D= ox

X

—3eu'” (t,x)j[u(l) (t,x;x, )]2 dy, (48)

) (1.0)= 0.4 (1.L) = 0 and 1) (0.) = ().

ou (t,x; X, )
ot
o (,x;x,)

- 4_35@(0) (t’x)T u (%%,

ox?

i)

~3eu (t,x; X, )I[u(l) (t,x; X, )]2 dx, + GS(X—xl ),

0
O t,0;x,)=0,u"(1,L;x,) = 0 and u"" (0, x;x,) = 0.
(49)
Applying WHEP technique, the deterministic kernels
can be represented in first order approximation as:

u® =ul” +&u®, (50)

u()—u(1)+e u() (&)

Substituting in the previous set of Equations (48) and
(49), we get the following four sets of equations:

6u(()0) (t,x) ~ 62u(()0)
o o (52)
u(()o) (t,O) = O,u(()o) (t,L) =0 and u(()o) (O,x) = qa(x),

aul(o)(t,x) azul(o)(t,x) © 3
e ()]

=3 (1) [ (6.6) [, (53)

0

u® (£,0)= 0,1 (£,L) =0 and u{* (0,x) = 0,

Gu(()l) (t,x;xl) _ 82u(()1) (t,x;xl)
o
u(()l) (£,0;x,) = O,u(()l) (#,L;x;)=0 and ugl) (0,x;x,)=0,

+0-8(x-x) (54)
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12 M. A. EL-TAWIL ET AL.

Gul(l) (t,x; xl) 3 62u1(1) (t, X; xl)
o A

—3[u(()0) (t,x)}2 -u(()l) (t, X3 X, )

_ 3u(()‘) (t,x;x,) j [u(()l) (t,xx, )T‘bﬁ

0

ul(') (2,0;x,)=0, ul(') (¢,L;x;)=0 and ul(') (0,x;x,)=0.

(55)

The algorithm of solution is evaluating " and u"

first using the separation of variables and the Eigen func-
tion expansion respectively and then computing the other
two kernels independently using the Eigenfunction ex-
pansion. The final results are:

Eu(x,t) =l (x,0)+ &-u® (x,1), (56)

Var u(t,x) = I[uél) (2,x;x, )]zdx1

0

+25J.u(()1) (¢,x; xl)ul(o) (#,x;x,)dx, 57)
0

X 2
+ gz.f[ul(l) (1,x;x, )] dx,
0
The result can be made better using the second correc-
tion as the following formula:
u® = u(()o) +& -ul(o), (58)
=)+ o0l (59)

The following are some sample results.

2.2.1. First Order Approximation and Different
Corrections Results
Figures 7 and 8 illustrate the change of the first order
mean and variance under different correction levels.
We can notice the stable results for the different cor-
rections.

mean — u, — i — U~ U,
0.2

0.15
0.1

0.05

i = f
0.1 02 03 04 05 06 0.7

Figure 7. Mean comparison between first order with zero,
first, second and third corrections at e =50 at x=0.1, (L =1,
M=1,6=1, ®(x) =Xx).
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2.2.2. Second Order Approximation and Different
Corrections Results

Figures 9 and 10 illustrate the change of the second or-

der mean and variance under different correction levels.

2.2.3. Mean and Variance Comparisons between First
and Second Order Approximations with
Different Corrections Results

Figures 11 and 12 illustrate in a comparative way, the

mean and variance under first and second orders with

some correction levels.

e=50 M=1, x= 0.1

var — ”It}_ H” = H”— H”

0.01 |
0.008
0.006 |

0.004 |

0.002 | ty- e =50

Figure 8. Variance comparison between first order with
zero, first, second and third corrections at x = 0.1 at ¢ = 50,
L=1,M=1,06=1, D(x) =x).

mean — a,— u, — U e=50 M=1, atx= 0.1

0.2
0.15|

0.1 u,—e=350

u,—e=50

0.05

0.1 0.2 03 04 0.5

Figure 9. Mean comparison between second order with zero,
first and second corrections at x=0.1, ¢ =50, L=1,M =1,
o=1, ®(x) =x).

e=50 M=1, x= 0.1

Var — u,— u, — i,
0.000014 |
0.000012 |
0.00001 |
810 |
6'10° |
410 |
210¢ |

u,—~e=350

u,—e=350

- — —-u,.,—e=50

Figure 10. Variance comparison between second order with
zero, first and second corrections at x = 0.1, ¢ =50, (L =1,
M=1,06=1, ®(x) =x).

0OJDM



M. A. EL-TAWIL ET AL. 13

mean — u, —u, —u,~t, —t,~u, e=30 M=1, x= 0.1

0.15 |
0.1 |

0.05 |

0.2 0.4 0.6 0.8 1 !
Figure 11. Mean comparison between first order with zero,
first, second and third corrections, second order with first
and second corrections at x=0.1ate=30,(L=1,M=1,06=
1, ®(x) =x).

var—u, —u, —u, e=30 M=1, x= 0.1

0.000012 |
0.00001 |
8§10 |
6710 |
410° |
210 |

02 04 06 08 1
Figure 12. Variance comparison between first order with

zero, first and second corrections at x=0.1at¢=30 (L =1,
M=1,6=1, ®(x) =Xx).

2.3. Using Homotopy Perturbation Technique
(HPM)

In homotopy Perturbation method (HPM) [18-21], a pa-
rameter p €[0,1] is embedded in a homotopy function
v(r,p):#x[0,1] > R which satisfies

H(v.p)=[L(v)=L(m)]+ p[A(v)= 1 (r)]=0 (60)

Where u, is an initial approximation to the solution
of the equation:

A(u)—f(r)zO,re¢ (61)
With boundary condition
B(u,a—ujzo,re¢ (62)
on

In which 4 is a nonlinear differential operator which
can be decomposed into a linear operator R and anon
linear operator N,B is a boundary operator, f(r) is a
known analytic function and I is the boundary of ® .the
homotopy introduces a continuously deformed solution
for the case p=0, R(v)—L(u,)=0, which is the
original equation .this is the basic idea of the homotopy
method which is to deform continuously a simple prob-
lem (and easy to solve)into the difficult problem under
study.

Copyright © 2011 SciRes.

The basic assumption of the (HPM) method is that the
solution of the original equation can be expanded as a
power series in p as:

V=V, +pv +p2v2+p3v3+--- (63)

Now, setting p = 1, the approximation solution is ob-

tained as:
u=£ig}v=v0+vl+v2+v3+--- (64)

The rate of convergence of the method depends
greatly on the initial approximation u, which is con-
sidered as the main disadvantage of HPM. The idea of
imbedded parameter can be utilized to solve nonlinear
problems by imbedding this parameter to the problem
and then forcing it to be unity in the obtained approxi-
mate solution if convergence can be assured .it is a sim-
ple technique which enables the extension of the appli-
cability of the perturbation method from small value ap-
plications to general ones.

Applying HPM on Equation (1), we can get the fol-
lowing results w. . t homotopy perturbation:

A(u)=R(u)+eu’ (65)

_Ou (t,x;0) 0%u

N(u)=eu’ 67)
f(r)=o-n(x;0) (68)

The homotopy function takes the following form:
H(w,p)=[R(0)-R(z,)]+ p[ A(0)-f(r)]=0(69)
Or equivalently,
R(w)-R(z,)+ p[R(zO)+ga)3 —o-~n(x;a))] =0 (70)
Where z, is an initial solution .The approximate solu-
tion can then be obtained using
O =, + po, +p o, + plog+-- (71)

Now, setting p = 1, the approximation solution is ob-
tained as:

u=£12}a)=a)0+a)l+a)2+a)3+--~ (72)

Using equation (86) in equation (85) and equating the
equal powers of p in both sides of the equation, one can
get the following results:

i) R(@,)=R(z,),in which one may consider the fol-
lowing simple solution:

W, =2y, 2, (t,O)z zZ, (t,L)zO,

and z, (0,x) = ¢(x) (73)

0OJDM
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i) R(w)=0-n(x;0)-R(w,)—cw; 9
@,(,0)=a,(1,L) =0, and &, (0,x) =0
iii) R (o, ) = -3cw, o, 75)
@, (2,0)=w,(1,L)=0,and @, (0,x) =0
iv) R(w,) = —3g<a)oa)l + @ a)z) 6)
@, (2,0) =, (1,L)=0,and @, (0,x) =0
vi) R(w,) = —g(a)l +6w,0,0, +30; a)z) an

w,(2,0)=w,(1,L)=0,and @, (0,x) =0

As before we have many choices in guessing the initial
approximation together with its initial conditions which
greatly affects the consequent approximation .the choice
@, 1is a design problem which can be taken as follows:

w, (t,x) = iAneﬂ”’ sin%x
n=0

B (78)
A, I ¢ sm —xdx
0

One can notice that the selected value function satis-
fies the initial and boundary conditions and it depends on
the parameter S, which is totally free .One can also no-
tice that 8, selection could control the solution conver-
gence.

The first order approximation can be obtained using
Eigen function expansion as follows:

U (t,x0) =0, + 0 = o, +ijn] (t)sin%x
n=0

where

J (2 je(_nn] - G, (r)dr
0

(79)
Gnl (t) = ZZ[[G'H(X;CU)—R(@O)—.S(US] dx
The ensemble average is
H (t,x; a)) =@, + i Ej, (t)sin%x
n=0
where
e (80)

:—j[ @, +‘9a)0]sin%xdx

"l

The covariance is obtained from the following final
expression

Copyright © 2011 SciRes.

Cov( t x),

txz))

O mn (¢ . nm . mn
sin—ux, _[sm—xsm—x dx
L L L

0

n=1 m=1

i Juu
00

81)

The variance can then be obtained from equation (81)
by setting x; =x, =x.

Any higher order approximations can be obtained in a
similar way. The following sample results using the same
data in the cubic case.

Computing the consequent errors Er, by using the
following expression

Er._,; = |mean, —mean,_,|,i = 2,3,4 (82)

We obtain the following results. Figures 13 illustrates
different mean approximations using homotopy method
(HPM) with computing their corresponding decreasing
errors in Figure 14.

Figures 15 illustrates different variance approxima-
tions using homotopy method (HPM) with computing
their corresponding decreasing errors in Figure 16.

mean — i e=1 b=-1, x=0.5

Homotopy — 0
0.8 LNy

[ Homotopy — 1

A N
0.6 \ Homotopy — 2

— Homotopy — 3

0.4/ \ Homotopy — 4
0.2

f

Figure 13. The mean at different homotopy orders, cubic
case.

Error mean —u =1 b=-1, x=05
0.12 }
01 Error—0

- — Error—1
0.08 !

Error - 2
0.05: - Error-3
0.04 |
0.02
— !

1 2 3 4 5

Figure 14. The error differences, cubic case.
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0.02}

aial varH - |

varH-2,e=0.1

0.01 varH-2,e=0.5

varH-2,e=1

0.005/

| 2 3 4 5
Figure 15. The variance (-1: first and-2: second) at different
&, HPM, cubic nonlinear case.

Error mean —u e=1 b=-1, x= 0.5
0.12 |

Error - 0

0.1}
0.08 |

- Error—1
I Error - 2
0.06 | - Error-3

0.04 |
0.02

Figure 16. The error difference of first and second error at
different &, cubic case.

2.4. Mean and Variance Comparisons of the
Solution of Stochastic Cubic Nonlinear
Diffusion Problem Using WHEP, Pickard
and HPM Methods with Different Orders
and Corrections

Figures 17, 18, 19 and 20 illustrate some useful com-
parisons among the three used methods in this paper.

3. The Quintic Nonlinear Stochastic
Diffusion Equation

Let us consider the following stochastic nonlinear-diffu-
sion equation
ou(t,x;0) %u

p :ax—z—g-u5+0'-n(x;a));

(1,x)€(0,0)x(0,L),u(,0)=0,u(t,L)=0  (83)
and u(0,x) = p(x).

Where ¢ is a deterministic scale for the nonlinear term.
Two methods are used in the next subsections, mainly
the Pickard approximations and the HPM technique.

3.1. Using the Pickard Approximation

The following results for the first order approximation

Copyright © 2011 SciRes.

are obtained

mean —u, — W —u, — U, — U, U, e=350, x= 0.1

0.3

0.25 | u,~ picard
0.2 w,— homotopy
! ",
0.15 n:: e=50
0.1 u,—e=30
13

u,—e=>50

0.05 |
A !

1 2 3 4

Figure 17. Mean comparison between Picard first order,
Homotopy first order and WHEP first order with zero, first,
second and third corrections atx=0.1, e=50, (L =1, M =1,
oc=1, ®(x) =x).

VAF — 1 = W= U = U = U= U e=30, M=1, x= 0.1
0.014 |
2t ; ——
0012 | u— picard
0.01} ~ w,~ homotopy
0.008 | Hy
—— u,—e=30
0.006 | e =30
0.004 | u—e=30

0.002 |

0.2 0.4 0.6

Figure 18. Variance comparison between Picard first order,
Homotopy second order and WHEP first order with zero,
first, second and third corrections at x =0.1, e=30, (L =1,
M=1,6=1, ®(x) =x).

Mean — i, — W, — i, — l, — U, e=50, x= 035
0.3 )

0.25 | u,~ picard
6—:2 :- \1'__ I'Il]['l'lﬂ'll]py

u;,_ e= 350
,,—e =350

0.15
0.1
0.05 |

1 2 3 4 :
Figure 19. Mean comparison between Picard second order ,
Homotopy fourth order and WHEP second order with zero,
first, second and third corrections at x=0.5, £¢=50, (L =1,
M=1,06=1, ®(x) =x).

Var — U, — W, — ty— U, — Uy, e=50, M=1, x= 0.1
0.04

0'035 1~ picard
0.02 | :: homotopy
0.01 j:'t:iﬂ

0.5 | 1.5 2

Figure 20. Variance comparison between Picard first order,
Homotopy second order and WHEP second order with zero,
first and second corrections at x=0.1, =50, (L=1,M =1,
=1, ®(x) =x).
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F,(1)= 2700 n(x)51nﬂx——g£[uo (t.x)] sin—xdx
(85)
where
[uo (t,x)]5
= . Nnm
o (x)+5u, (6,x)D°1, (t)sme
n=0
+104, (¢, x)iilno (¢)1,, (¢)sin—xsin—x
n=0m=0
+104; ( )Z,(:)Z,%),;I”O (O, (), (2) sin—x
sin@xsinl—nx (86)
L
+5'Ll140 (I’X)ZO Z()IZ];)]”o( ) mo( )'[10( ) ko( )
nm mmn T
sin— x sin— xsin— xsin—x
L L L
+z ZZZZI”O ( )IWlo ( )10 (t) o (t)IVo (t)
n=0m=0 /=0 k=0 v=0
.nm . omm . Im . Y
sin — x sin — xsin — x sin— x sin—x
L L
First order mean
o )
u, (6,x)=2T, e sin— x
n=0
> (87)
o |t _[ﬂ] (t-7)
+> je L H, (7)d7 |sin—=x
n=0| o
where
L
Hr, ()= %J.E[uo (t,x)]5 sin%x dx (88)

Eu, (Tl,x3 )ué (Tz,x4)

=@ [1,,%,]4° [, x,]+104° [7,, x, | & [r2,x4]i i:Eln0 (7)1, (rz)sinnT

n=0m=0

M

+10¢° [Tz,x4]¢3 [713x3]i

n=0m=0

ﬁMs

+25¢§4[T1,J€3]¢53 [Qﬂ@;]i

Copyright © 2011 SciRes.

El, ( )mﬂ(rl)sin%

o-fo (t,x) +5u, (t,x)

>33 EL (1), (1), (1)1, (1)

n=0m=01=0 k=0

(89

. nm . ommo .

sin — x sin — x sin — x sin— x
L L L

Cov(ul(t xl) ul(t X, ))

—ZZE] ()1, (1 )smn—;x1 sm%x2

n=0m=0

—Z[Ie( J v EF, (t )dz-Jsin%x2

n=0

)dz’)]

~iE[n( s1n—x1 [Ie[ )

n=0

sinn—Lnx1 : iEIn1 (t)sin%x2

n=0
+:Z;(:)Elnl (t)smf)c1 Z:Eln1 (¢ )sin%x2
(90)
where

En(x)ug (t,y)

[ZT e["n] smT } ZsmTyEn( )1, (1)

n=0

I, (t)IVO (t)sin%ysin%y sin%[y

smk—” sin-2
L 7 L 4

T . mn
x, sme4

. mn
X smT X,

. nm . T
my 1 3 4
( ) . (TZ)S nTx SIHTX
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R . . .l . km
+5p[7,,x, | #[ 72, %, ]2 Z D 2EL (7)1, (7)1, (7)1, (z’z)sm%x4 sm%x4 sanx4 sin=-x,

X
Il
=)
]
=)
]
=)
=
Il
=)

R - . . D . kn
+50¢2 [Tl,x3]¢4 [z’z,x4]z z ZZEIHO (Tl)]mo (TI)I,O (71)]k0 (z’z)sm%x3 sm—ml7t X, sm7nx3 51n7x4
=0
o e . . D . kn
+50¢° [0, [0, ]S S S EL (2)1,, (7)1, ()1, (fz)sm%% sm$x4 sm7nx4 sin“x,
+100¢° [Tl,x3]¢3 [Tz,x4]i i iiElno (z’l)lmo (11)1,0 (Tz)lko (z’z)sin%x3 siann)% Sin177t)c4 sin%xz;

56 (0,5 | X S OSSN EL (5)1,, (5)1, (7)1 ()1, ()1, (72)

sinﬂx sinﬂx sin—x, sin—x, sinﬂx sinﬂx

/ 3 / 4 4 / 4 / 4 / 4
+50¢3[Tlvx3]¢[72’x4]zZzzzzﬂrzo(Tl)lmo(71)110(Tz)lko(fz)[vo(rz)[wg(72)
sinﬂx sinm—nx sinhtx sin—x sinEx sinw—nx

/ 3 ! 3 / 4 4 ! 4 ! 4
+100¢2[Tnxs]¢2[fzax4]ZZZkZZZE1 (7 )mﬂ( )IIO(TI)IkO(TZ)I (Tz)] (Tz)
=0v=0 w=0

sinn—nx sinﬂx sin htx sin—x sinﬁx sinﬂx
/ 3 / 3 / 3 4 / 4 / 4
+25¢[71’x3]¢[72»x4]zZ;ZZZZZEI% (Tl)lmo (71)110 (Tl)lko (Tl)lvo (Tz)lwo (72)120 (12)1% (Tz)

. Am . mm . .k . VT . WR . Zm . qm
sin — x; sin — x; sin — x;, sin — x, sin — x, sin—x, sin—x, sin—x,
/ l I I I I /

. MM . mm_ . km . vm . wm . zm . qm
sin— x, sin — x, sin— Xx; sin — x, sin — x; sin— x, sin— x, sin—x,
/ / /- / / / / /

© o0

SIS SN (5, (7)1, (5) L, (21, (7)1, ()1, (7)1, (7)1, (7)1, ()

n=0m=0 /=0 k=0 v=0 w=0 z=0 ¢g=0

<
[
o

sin ™ x sin 7% x, sin =~ x smknx sin 2% x, sin 2% x, sin %y, sin 2% x sinh—nx sinj—nx
e e e e e e e
92)
In which
El, (Tl)lm (71)110 (Tl)lkg (Tl)]v (Tl)lwo (Tl)
e e AT e 5 e A7 o (oo ©3)
000000

v

El, (TI)ImO (1'1)11O (TI)IkO (Tz)lvo (Tz)lwo (Tz)lzo (Tz)lqo (72)

i Te(";‘jzmme[”;“j%u)e(’;f(nrs>e[";)2<rzrﬁ>e[‘;‘)z<rzr7>
00000

EF, (7y)F, (1'4)1[7,0 (TS)Fk0 (rﬁ)F,O (7,)F o (7y)dr,dr,dr,drdr,dzg
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e EF, (r3)Fm0 (r4)
F (Ts)on (Tg)FO (7,)drdr,drydr dr,drydr,dr,

(z5)F, (76) F, (77) (94)

95)

T
£ (r2-712)

Flo (TS)FkO (TG)FVO (77)Fw0 (Tx) on (79)[:;10 (TIO)Fho (Tll)

Figures 21 and 22 illustrate the change of the mean
and variance under the nonlinear scale parameter.

3.2. Using HPM Technique

Applying HPM on Equation (38), one can get the fol-
lowing results w. r. t homotopy perturbation:

A(u):R(u)+€u5 (96)
ou(t,x;0) _62_u

R(u)=—= = 97)
N(u)=euw’ (98)
f(r)=c-n(x0) (99)

The homotopy function takes the following form:
s,p)=[R(s)=R(qy) ]+ p[A(s)~f(r)]=0 (100)

Or equivalently,

R(s)—R(q0)+p[R(so)+£s5 —G-n(x;a)):|:0 (101)

Where z, is an initial solution .The approximate solu-
tion can then be obtained using

S=S0+pS1+p2S2+p3S3+“' (102)

mean—u, M= 1,one term series, x= 0.1
0.2
0.15
0\ _
0.1 ‘ \ ——e=0
005 ' M\ e=10
‘ =
= - e=100
02 —~0F 06 08 1 RS
—0.05 | 7 — e= 1000
o1/
2/

Figure 21. The change of the mean of the first order ap-
proximation u; with time 7 at x = 0.1 For different ¢ values,
L=1,M=1,06=1, D(x)=x).

Copyright © 2011 SciRes.

EF, (,)F,, (%)

ny

o (7n)drdr,drdr dr,drdr,dr,dz, dz,,

Now, setting p = 1, the approximation solution is ob-
tained as:
u=lims=s,+5 +5, +5; +-- (103)

p—1

Using Equation (102) in equation (101) and Equating
the equal powers of p in both sides of the equation, one
can get the following results:

i) R(sy)=R(q,), in which one may consider the fol-

lowing simple solution:

So =40 Yo (tao) =4, (t’L) =0,

and q, (O,x) = ¢(x) (104)

i) R(s,) =0 -n(x;0)—R(s,)—é&s; (105)
(t 0) =S (t,L) =0, and s, (0,x) =0

iii) R(s,) = —5¢&s, 5, (106)
S, (t,O) =5, (t L) 0,and s, (O,x) =0

V) R(sy)= —5e(sys, +25057) (107)
S5 (t,O) (t, )=O, and s, (O,x)=0

vi) R(s,) = —5e(sys, +250s; +45y5,5,) (108)

5,(2,0)=s,(¢,L)=0,and s,(0,x)=0

As before we have many choices in guessing the initial
approximation together with its initial conditions which

variance —u, M=1,
0.002

x= 0.1

0.0015 |

0.001

0.0005 |

05 I 15 2

Figure 22. The change of the variance of the first order
approximation #; with time 7 and space variable x at dif-
ferent ¢ values, (L=1, M =1, 6 =1, ®(x) =x).
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greatly affects the consequent approximation. The choice
s, 1s a design problem which can be taken as follows:

s, (6, x) = i A,e"" sin %x
7 (109)
A :I¢(x)sin%xdx

n
0
First order approximation can be obtained using
Eigenfunction expansion as follows:

U (t,x55) =5, +5, = 5, +§1Knl (t)sinnL—nx

n=0
where
(e
K, (t)—je L M, (z’) dr (110)
0
2 L
Mn] (t) =z'([|:o-.n(xgs)—R(s0)—gs§:| dx
The ensemble average is:
H (ta)C;S) =5,+ i:EK,,1 (t)Sin%x
where "
t [*ITHJZ(t_T)
EK, (t)=[e' ") EM, (7)dr (111)

2% . Nm
EM, (1) :TQ[R(SO)+As§Jsme dx

The covariance is obtained from the following final
expression

Cov(u(l) (t, X, ),u(l) (t,x2 ))

467 & & . nm . mm L mn . mn
sin—x, sin—ux, | | sin— xsin—x dx
2 ZZ JA I 2(_.‘ I I j

L n=1 m=1 0

(112)

The variance can then be obtained from Equation (112)
by setting x; = x, = x.

Any higher order approximations can be obtained in a
similar way. The following sample results using the same
data in the cubic case.

3.3. Mean and Variance Comparisons of the
Solution of Stochastic Quintic Nonlinear
Diffusion Problem Using Pickard and HPM
Methods with Different Orders and
Corrections

Figures 23, 24 and 25 illustrate the change of the mean

Copyright © 2011 SciRes.

and variance for Picard and HPM approximations.
4. Conclousion

Comparisons among results of the computations of mean
illustrates that the results of three methods are very close
from each other, but in variance the results of HPM and
WHEP are semi-simillar while some results of Pickard
are different in magnitude, may be due to the inability of
computing high order approximations. It seems that the
WHEP technique is more complex, in computations
sense, than HPM which is more general since it can be

u — picard, e = 30

+= 0.1 —w—Homotopy, e =0

mean — i, — w,
w,— Homotopy, e = 10
w,— Homotopy, e = 30

w,— Homotopy, e = 50

Figure 23. Mean comparison between Picard first order at ¢
=30 and HPM first order at different & values, (1, w') at x
=01,L=1,M=1,6=1, ®(x) =x).

mean — u, — W, — W,— W, — W, e=10, x= 0.1

u — picard, e = 10

0.65’\ '

w,— Homotopy, e = 10
w,— Homotopy, ¢ = 10
w,— Homotopy, e = 10

w,~ Homotopy, e = 10

Figure 24. Mean comparison between Picard first order
and HPM first, second, third and fourth order at ¢ = 10, (ul,
whw, whwhatx=01,L=1,M=1,06=1, ®(x)=x).

var —u — u,— W, — w, e=10, x= 0.1
'? m—
0.002 ¢ =
| -
| -~
0.0015 |
u,~ picard
0.001 | u— picard, —e = 10
| w,— Homotopy
- w,— Homotopy
0.0005 .
. — ‘
0.5 1 1.5 2

Figure 25. Variance comparison between Picard zero and
first order, HPM first and second order, (u°, ', w', w’) at x
=01,e=10,(L=1,M=1,0=1, O(x) =x).
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applied to a non-perturbative problems as well as pertur-
bative ones. The WHEP technique has the advantage of
making different corrections for each order of approxi-
mation. The HPM seems easier in computations sense
but it is very sensitive to initial guess solution. Symbolic
computations with higher computations abilities will lead
to better approximate solutions in the future.
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