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Abstract 
 
In this paper, the cubic and quintic diffusion equation under stochastic non homogeneity is solved using 
Wiener- Hermite expansion and perturbation (WHEP) technique, Homotopy perturbation method (HPM) and 
Pickard approximation technique. The analytic solution of the linear case is obtained using Eigenfunction 
expansion .The Picard approximation method is used to introduce the first and second order approximate 
solution for the non linear case. The WHEP technique is also used to obtain approximate solution under dif-
ferent orders and different corrections. The Homotopy perturbation method (HPM) is also used to obtain 
some approximation orders for mean and variance. Using mathematica-5, the methods of solution are illus-
trated through figures, comparisons among different methods and some parametric studies. 
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1. Introduction 
 
The study of random solutions of partial differential 
equations was initiated by Kampe de Feriet in 1955 [1]. 
In his valuable survey on the theory of random equations, 
Bharucha-Reid showed how a stochastic heat equation of 
Cauchy type can be solved using the stochastic integrals 
theory[2]. In 1973, Lo Dato V. [3] considered the sto-
chastic velocity field and the Navier-Stokes equation and 
discussed the mathematical problems associated with it. 
Becus A. Georges [4] introduced a general solution for 
the heat conduction problem with a random source term 
and random initial and boundary conditions. Many au-
thors investigated the stochastic diffusion equation under 
different views, see [5-11]. 

El-Tawil M. used the Wiener-Hermite expansion to-
gether with perturbation theory (WHEP technique) to 
solve a perturbed nonlinear stochastic diffusion equation 
[12]. The technique has been then developed to be ap-
plied on non-perturbed differential equations using the 
homotopy perturbation method and is called Homotopy 
WHEP [13,14]. El-Tawil M. and Noha A. El-Molla.[15] 
solved the quadratic and cubic non-linear stochastic dif-
fusion equation using Pickard approximation and homo-

topy WHEP technique [16]. 
The diffusion equation with cubic and quintic nonlin-

ear losses and stochastic non homogeneity are solved 
using different techniques, mainly the Pickard approxi-
mation, the WHEP technique and HPM. The main goal 
of the paper is to compare among these different tech-
niques. Some statistical moments are obtained, mainly 
the ensemble average, covariance and variance of the 
solution processes. In Sections 2.1 and 3.1, the Pickard 
approximation technique is used in solving the cubic and 
quintic nonlinear diffusion problems respectively. WHEP 
technique is processed in Sections 2.2 and 3.2, while 
HPM is used in Sections 2. 3 and 3. 3. Some compari-
sons are illustrated in different sections. 
 
2. The Cubic Nonlinear Stochastic Diffusion 

Equation 
 
Let us consider the following stochastic nonlinear-diffusion 
equation with cubic nonlinear losses, : 3u 
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   and   ,0 .u x x                 (1) 

Where   is a deterministic scale for the nonlinear 
term. The in homogeneity term  ;n x    is space white 
noise scaled by  . 

Three methods are used in the next subsections, mainly 
the Pickard approximations, the WHEP technique and 
Homotopy perturbation method. 
 
2.1. Using Pickard Approximation 
 
In this technique, the linear part of the differential op-
erator is kept in the left hand side of the equation 
whereas the rest of the nonlinear terms are moved to the 
right part. The successive Pickard approximations are 
processed according to letting the L.H.S. as the 1n   
approximation for the solution process depending on the 

approximation in the R.H.S,  Following this 
routine and applying it on to (1), we get the following 
iterative equations: 

thn 0n 
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Using Eigen function expansion, the following general 
solutions are got 
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If the convergence of the process is insured, one can 
obtain the solution as 

   , lim ,n
n

u t x u t x
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One can notice that all order of approximations are 
stochastic processes. The ensemble average of the zero 
order approximation is obtained as 
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The covariance of  is given by 0u
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The variance is 
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The following results for the first order approxima-
tion are obtained: 
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where E denotes the ensemble average operator and 
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Using mathematica-5, the previous huge computat
w

 1 and 2 illustrates the change of the first order 
m

 

ions 
ere performed and the following sample results are 

obtained: 
Figures
ean and variance under the change of some illustrated 

parameters. 
 

 
Figure 1. The change of the mean of first order approxima-
tion u1 with time t at x = 0.1 with different ε values, (L = 1, 
M = 1, σ = 1, Φ(x) = x). 
 

 

Figure 2. The change of the variance of the first order p- a
proximation u1 with time t and space variable x at x = 0.5 at 
different ε values, (L = 1, M = 1, σ = 1, Φ(x) = x). 
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One can notice that the mean diminishes with time for 
all ε while the variance decreases with the increase of ε. 

Following similar computation procedure, the follow-
ing results for the second order approximations of the 
mean is illustrated in Figures 3, 4, 5 and 6. 

 

 

Figure 3. The change of the mean of second order approxi- 
mation u  with time t at x = 0.1 with different ε values, (L  2

1, M = 1, σ = 1, Φ(x) = x). 
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Figure 4. The change of the mean of zero, first and secon  
order approximation (u , u , u ) with time t at x = 0.1, ε = 10, 

d
0  1 2

(L = 1, M = 1, σ = 1, Φ(x) = x). 
 

 

Figure 5. The change of the mean of zero, first and seco  
order approximation (u , u , u ) with time t at x = 0.1, ε = , 

nd
500 1 2

(L = 1, M = 1, σ = 1, Φ(x) = x). 
 

 

Figure 6. The change of the mean of zero, first and seco  
order approximation (u , u , u ) with time t at x = 0.1, ε  

 [25] developed a 

nd
 =0 1 2

100, (L = 1, M = 1, σ = 1, Φ(x) = x). 

2.2. Using WHEP Technique 
 
S
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ince Meecham and his co-workers
eory of turbulence involving a truncated Wiener-Her- 

mite expansion (WHE) of the velocity field, many au-
thors studied problems concerning turbulence [26-27]. A 
lot of general applications in fluid mechanics was also 
studied in [28]. Scattering problems attracted the WHE 
applications through many authors [29]. The nonlinear 
oscillators were considered as an opened area for the 
applications of WHE as can be found in [30]. There are a 
lot of applications in boundary value problems [31] and 
generally in different mathematical studies [32]. 

The application of the WHE aims at finding a trun-
cated series solution to the solution process of differen-
tial equations. The truncated series composes of two 
major parts; the first is the Gaussian part which consists 
of the first two terms, while the rest of the series consti-
tute the non-Gaussian part. In nonlinear cases, there exist 
always difficulties of solving the resultant set of deter-
ministic integro-differential equations got from the ap-
plications of a set of comprehensive averages on the sto-
chastic integro-differential equation obtained after the 
direct application of WHE. Many authors introduced 
different methods to face these obstacles. Among them, 
the WHEP technique was introduced in [33] using the 
perturbation technique to solve perturbed nonlinear 
problems. 

The WHE method utilizes the Wiener-Hermite poly-
nomials which are the elements of a complete set of sta-
tistically orthogonal random functions [34]. The Wiener- 
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In which n(t) is the white noise as noted with the fol-
lowing statistical properties 

           (40) 
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Applying WHEP technique, the deterministic kernels 
can be represented in first order approximation as: 
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 0 (0) (0)
0 1 ,u u u    

 1 (1) (1)
0 1 .u u u    

     

             

0 02
0 0

2

0 0 0
0 0 0

,

,0 0, , 0 and 0, ,

u t x u

t x

u t u t L u x x

 


 
  

  (52) 

           

       

          

0 02
301 1

02

0 0 0
1 1 1

, ,
,

,0 0, , 0 and 

u t x u t x
u t x

t x

u t u t L u

       

0, 0,x

20 1
0 0 1

0

  3 , , d ,
x

u t x u t x x   

 

       (53) 



         
       

1 12
0 1 0 1, ; , ;

0,

u t x x u t x x 

   

12

1 1 1
0 1 0 1 0 1

δ

,0; 0, , ; 0 and 0, ;

x x
t x

u t x u t L x u x x

   
 

  

(54) 
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           1 0.x 

1 12
1 1 1 1

2

2
0 1

0 0 1

2
1 1

0 1 0 1 1
0

1 1 1
1 1 1 1 1

, ; , ;

3 , , ;

3 , ; , ; d

,0; 0, , ; 0 and 0, ;

x

u t x x u t x x

t x

u t x u t x x

u t x x u t x x x

u t x u t L x u x

 


 

   

   

 


(55) 

The algorithm of solution is evaluating  and
first using the separation of variables and t
tion expansion respectively and then computing the other 
two kernels independently using the Eigenfunction
pansion. The final results are: 

, ,              (56) 

1d     

eco ec-

             (59) 

The following are some sample r
 
2.2.1. First Order Approximation and Different  

Corrections Results 
Figures 7 and 8 illustrate the change of the first order 
mean and variance under different correction l

We can notice the stable results for the different cor-
rections. 

 

(0)
0u

he Eigen 
 (1)

0u  
func-

 ex-

         0 0
0 1, ,Eu x t u x t u x t    

     

       

   

21
0 1 1

0

1 0
0 1 1 1

0

2
12

1 1 1
0

 , , ; d

2 , ; , ;

, ; d

x

x

x

Var u t x u t x x x

u t x x u t x x x

u t x x x





   



   







 (57) 

The result can be made better using the s nd corr
tion as the following formula: 

     0 0 0
0 1 ,u u u                 (58) 

       1 1 1 1
0 1u u   1 . u  

esults. 

evels. 

 

Figure 7. Mean comparison between first order with zero, 
first, second and third corrections at ε = 50 at x = 0.1, (L = 1

 = 1, σ = 1, Φ(x) = x). 

2.2.2. Sec

, 
M

ond Order Approximation and Different 
Corrections Results 

igures 9 and 10 illustrate the change of the second or-
der mean and variance under different correction levels. 
 
2.2.3. Mean and Variance Comparisons between First 

and Second Order Approximations with     
Different Corrections Results 

Figures 11 and 12 illustrate in a comparative way, the 
mean and variance under first and second orders with 
some correction levels. 

 

F

 

Figure 8. Variance comparison between first order with 
 first, second and third corrections at x = 0.1 at ε = 
, M = 1, σ = 1, Φ(x) = x). 

zero, 50, 
(L = 1

 

 

Figure 9. Mean comparison between second order with zero, 
first and second corrections at x = 0.1, ε = 50, (L = 1, M = 1, 
σ = 1, Φ(x) = x). 

 

 

Figure 10. Variance comparison between second order with 
zero, first and second corrections at x = 0.1, ε = 50, (L = 1
M = 1, σ = 1, Φ(x) = x). 

, 
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Figure 11. Mean comparison between first order with zero, 
first, second and third corrections, second order with first 
and second corrections at x = 0.1 at ε = 30, (L = 1, M = 1, σ = 
1, Φ(x) = x). 

 

 

Figure 12. Variance comparison between first order with 
zero, first and second corrections at x = 0.1 at ε = 30 (L = 

(HPM) 

In homotopy Perturbation method (HPM) [18-21], a pa-
rameter 

1, 
M = 1, σ = 1, Φ(x) = x). 

 
2.3. Using Homotopy Perturbation Technique 

 

 0,1p  


is embedded in a homotopy function 
  , :v r p 0,1    which satisfies 

 (60) 

Where is an initial approximation to the solution 
of the equation: 

         0,H v p L v L u p A v f r         0

0u  

    0,A u f r r              (61) 

With boundary condition 

,
u

B u 0, r
n

 
   

             (62) 

ch 
on 

nea N,B is a boundary operator, f(r) is a 

 introdu
 , 

In which A is a nonlinear differential operator whi
can be decomposed into a linear operator R and an

r operator li
known analytic function and Г is the boundary of Φ .the 
homotopy ces a continuously deformed solution 
for the case 0p     0 0R v L u  , which is the 

he basic idea original equati f the homotopy 
method which is to deform continuously a simple 
le
st

mption of the (HPM) method is that the 
solution of the original equation can b
po

on .this is t o
prob-

m (and easy to solve)into the difficult problem under 
udy. 

The basic assu
e expanded as a 

wer series in p as: 
2 3

0 1 2 3v v pv p v p v            (63) 

Now, setting p = 1, the approxim
tained as: 

ation solution is ob-

0 1 2 3
1

lim
p

u v v v v v


            (64) 

The rate of convergence of the method depends 
greatly on the initial approximation 0u  which is con-
sidered as the main disad tage of M. The idea of 
imbedded parameter can be utilized to solve nonlinear 
problems by imbedding this parameter to the problem 
and then forcing it to be unity in the obtained approxi-
mate solution if convergence can be assured .it is a sim-
ple

van

 Equation (1), we can get the fol-
lowing results w. r. t homotopy perturbation

HP

 technique which enables the extension of the appli-
cability of the perturbation method from small value ap-
plications to general ones. 

Applying HPM on
: 

    3A u R u u                 (65) 

    2

2

, ;u t x u
R u

t x

 
 

 
          (66) 

  3N u u                      (67) 

   ;f r n x                   (68) 

The homotopy function takes the following form: 

         0, 0H p R R z p A f r           (69) 

Or equivalently, 

       3
0 0 ; 0R R z p R z n x            (70) 

Where z0 is an initial solution .The approximate solu-
tion can then be obtained using 

2
0 1p p    3

2 3p          (71) 

Now, setting p = 1, the approximation solution is ob-
tained as: 

0 1 2 3
1

lim
p

u     


          (72) 

Using equation (86) in equation 
equal powers of p in both sides 
ge

(85) and equating the 
of the equation, one can 

t the following results: 

   0 0) ,i R R z  in which one may consider the

lowing sim

 fol-

ple solution: 

0 0 ,z      0 0,0 , 0,z t z t L   

   0and  0,z x x                         (73) 
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      (74) 



2

ny choices in guessing the initial 
approxima her with its initial conditions which 
greatly affects the con

     
   

3
1 0 0) ;

,0 , 0, and 0

ii R n x R

t t L

    

 

   

   1 1 1 , 0x
 

 


2 0 1

2

) 3

,0

iii R

t

  



 
      (75) 

    

2

2 2, 0, and 0, 0t L x  

   2 2
3 0 1 0 2) 3iv R        

     3 3 3,0 , 0, and 0, 0t t L x    
      (76) 

   3
4 1) 6vi R     

 
0 1 2 0 2

4 4 4

3

,0t

   

 



    , 0, and 0, 0t L x 
      (77) 

As before we have ma
tion toget

sequent approximation .the choice 

0  is a design problem which can be taken as follows: 

 

 

0
0

0

π
, si

π
sin d

nt
n

n

L

n

n
t x A e x

L

n
A x x x

L
















 

n

       (78) 

One can notice that the selected value function satis-
fies the initial and boundary conditions and it depends on 
the parameter βn which is totally free .One c
tice that βn selection could control the solution conver-
gence. 

The first order approximation can be obt
Eigen function expansion as follows: 

an also no-

ained using 

     
1

1
0 1 0

0

π
, ; sinn

n

n
u t x j t x

L
   





     

where 

 
 

 

     

2πnt t   

1 1

1

0

0 0
0

e d

2
; d

L
n n

L

n

j t G

G t n x R x
L

 

   

 
 

    



 3 

   (79) 

The ensemble average is 

     

 
 

 

   

1 10
0

π
, ; sin

where

nu
n

n
t x Ej t x

L
  





 

2

1 1

π

0

e d
nt t
L

n nEj t EG


 
   

  
  (80) 

1

3
0 0

0

2 π
sin d

L

n

n
EG t R x x

L L
     

covariance is obtained from the following final 
expression 

The 

        

   
2 2

1 2

1 1
1 2

2

1 22
1 1 0

π

1 2
0 0

, , ,

4 π π π π
sin sin sin sin d

  d d

L

n m

n mt t t t

Cov u t x u t x

n m n m
x

e eL L

x x
L L L LL

  



 

 

 

        

 
  

 
 




 

 

(81) 

The variance can then be obtained from equation (81) 
by setting x1 = x2 = x. 

Any higher order approximations can be obtai
similar way. The following sample results using the same 
data in the cubic case. 

Computing the consequent errors  by using the 
following expression 

x x  

   
  

ned in a 

 iEr

1, 1 , 2,3, 4i i i iEr mean mean i        (82) 

We obtain the following results. Figures 13 illustrates 
different mean approximations using homotopy method 
(HPM) with computing their corresponding decreasing 
errors in Figure 14. 

Figures 15 illustrates different variance approxima-
tions using homotopy method (HPM) with computing 
their corresponding decreasing errors in Figure 16. 

 

 

Figure 13. The mean at different homotopy orders, cubic 
case. 

 

 

Figure 14. The error differences, cubic case. 
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Figure 15. The variance (-1: first and-2: second) at different 
ε, HPM, cubic nonlinear case. 

 

 

Figure 16. The error difference of first and second error at 
different ε, cubic case. 

 
2.4. Mean and Variance Comparisons of the  

Solution of Stochastic Cubic Nonlinear  
Diffusion Problem Using WHEP, Pickard 
and HPM Methods with Different Orders 
and Corrections 

 
Figures 17, 18, 19 and 20 illustrate some useful com-
parisons among the three used methods in this paper. 
 
3. The Quintic Nonlinear Stochastic     

et us consider the following stochastic nonlinear-diffu- 
sion equation 

Diffusion Equation 
 
L

   

         
   

2
5

2

, ;
; ;

, 0, 0, , ,0 0, ,

and 0, .

u t x u
u n x

t x
t x L u t u t L

u x x


  



 
    

 
    



 0   (83) 

Where ε is a deterministic scale for the nonlinear term. 
Two methods are used in the next subsections, mainly 
the Pickard approximations and the HPM technique. 

rd Approximation 

he following results for the first order approximation 

 

 
3.1. Using the Picka
 
T

are obtained 

 

F
H

ig  between Picard first order, 
omotopy first order and WHEP first order with zero, first, 

 

ure 17. Mean comparison

second and third corrections at x = 0.1, ε = 50, (L = 1, M = 1, 
σ = 1, Φ(x) = x). 

 

Figure 18. Variance comparison between Picard first order, 
omotopy second order and WHEP first order with zero, H

first, second and third corrections at x = 0.1, ε = 30, (L = 1, 
M = 1, σ = 1, Φ(x) = x). 

 

 

Figure 19. Mean comparison between Picard second order , 
Homotopy fourth order and WHEP second order with zero, 
first, second and third corrections at x = 0.5 , ε = 50, (L = 1, 
M = 1, σ = 1, Φ(x) = x). 

 

 

Figure 20. Variance comparison between Picard first order, 
Homotopy second order and WHEP second order with zero, 
first and second corrections at x = 0.1, ε = 50, (L = 1, M = 1, 
σ = 1, Φ(x) = x). 
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0 0
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(85) 

where 
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5 4
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First order mean 
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, sin d
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0 0 0 0
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0 0 0 0
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Figures 21 and 22 illustrate the change of the mean 
and variance under the nonlinear scale parameter. 
 
3.2. Using HPM Technique 
 
Applying HPM on Equation (38), one can get the fol-
lowing results w. r. t homotopy perturbation: 

    5A u R u u                (96) 

    2

2

, ;u t x u
R u

t x

 
 

 
         (97) 

  5N u u                     (98) 

   ;f r n x                  (99) 

The homotopy function takes the following form: 

 (100) 

Or equivalently, 

  (101) 

Where z0 is an initial solution .The approximate solu-
tion can then be obtained using 

     (102) 

 

         0, 0H s p R s R q p A s f r        

       5
0 0 ; 0R s R q p R s s n x         

2 3
0 1 2 3s s ps p s p s      

 

Figure 21. The change of the mean of the first order ap-
proximation u1 with time t at x = 0.1 For different ε values, 
(L = 1, M = 1, σ = 1, Φ(x) = x). 

Now, setting p = 1, the approximation solution is ob-
tained as: 

0 1 2 3
1

lim
p

u s s s s s


           (103) 

Using Equation (102) in equation (101) and Equating 
the equal powers of p in both sides of the equation, one 
can get the following results: 

   0 0) ,i R s R q  in which one may consider the fol-

lowing simple solution: 
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As before we have many choices in guessing the initial 
approximation together with its initial conditions w

 

hich 

 

Figure 22. The 
approximation u1 with time t and space variable x at dif-
ferent ε values, (L = 1, M = 1, σ = 1, Φ(x) = x). 

change of the variance of the first order 
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greatly affects the consequent approximation. The choice 

0s  is a design problem which can be taken as follows: 
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First order approximation can be obtained using 
Eigenfunction expansion as follows: 
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The ensemble average is: 
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inal 
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The covariance is obtained from the following f
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(112) 

The variance can then be obtained from Equation (112) 
by setting x1 = x2 = x. 

Any higher order approximations can be obtained in a 
similar way. The following sample results using the same 
data in the cubic case. 
 
3.3. Mean and Variance Comparisons of the  

Solution of Stochastic Quintic Nonlinear  
Diffusion Problem Using Pickard and HPM 
Methods with Different Orders and     

ge of the mean 

and variance for Picard and HPM approximations. 
 
4. Conclousion
 
Comparisons among results of the computations of mean 
illustrates that the results of three methods are very close 
from each other, but in variance the results of HPM and 
WHEP are semi-simillar while some resul
are different in magnitude, may be due to t
computing high order approximations. It seems that the 
WHEP technique is more complex, in computations 
sense, than HPM which is more general since it can be 
 

x x  
L L L LL

 

 

        
   

 



Corrections 
 
Figures 23, 24 and 25 illustrate the chan

 

ts of Pickard 
he inability of 

 

Figure 23. Mean comparison between Picard first order at ε 
= 30 and HPM first order at different ε values, (u1, w1) at x 
= 0.1, (L = 1, M = 1, σ = 

 

1, Φ(x) = x). 

 

Figure 24. Mean comparison between Pi
and HPM first, second, third and fourth order at ε = 10, (u , 
w1 2 3 4

card first order 
1

, w , w , w ) at x = 0.1, (L = 1, M = 1, σ = 1, Φ(x) = x). 

 

 
Figure 25. Variance comparison between Picard zero and 
first order, HPM first and second order, (u0, u1, w1, w2) at x 
= 0.1, ε = 10, (L = 1, M = 1, σ = 1, Φ(x) = x). 
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ba  
making different corrections for each order of approxi-
mation. The HPM seems easier in computations sense 
but it is very sensitive to initial guess s
computations with higher computations abilities will lead 
to better approximate solutions in the future. 
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