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Abstract

This report describes how to solve the general nonlinear
programming problem by means of a subroutine called VMCON. VMCON uses
an algorithm proposed and first implemented by M. J. D. Powell, based
on earlier work of S-P Han. Powell's algorithm solves a sequence of
positive definite quadratic programming subproblems. Each solution
determines a direction in which a one-dimensional minimization is
performed.

In developing this code, we have left Powell's basic
algorithm unchanged. Changes in Powell's original implementation were
made to make the program easier to use and maintain and to incorporate
some recently developed LINPACK subprograms. The current
implementation contains extensive in-line documentation; an interface
subroutine, VMCON1, with a simplified calling sequence; and print

options to aid the user in interpreting results.
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Introduction

This report is addressed primarily to the person who wishes
to solve a real problem by use or optimization methods but who is
unsure of how to proceed. Several difficulties confront such a
person. He must select an optimization routine, develop a
mathematical model of the real problem in the form required by this
routine, master numerous programming details, and ultimately interpret
the program output.

A mathematical optimization subroutine does not directly
enable a user to solve a real problem. A link must be created between
the problem and the subroutine. This link, which we have called an
application program, interfaces to the problem through a mathematical
model and to the subroutine through a programming language. Figure 1
illustrates this relationship.

(REAL PROBLEM

APPLICATION PROGRAM WHICH

USES OPTIMIZATION METHODS

MATHEMATICAL OPTIMIZATION

SUBROUTINE

Figure 1. Solution of an Optimization Problem

" RCA David Sarnoff Research Center

Princeton, New Jersey
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This report discusses how to create the link to a particular
optimization subroutine, named VMCON. VMCON uses an algorithm
proposed and first implemented by M. J. D. Powell of Cambridge

University [1, 2], based on earlier work of S-P Han [3]. Powell's
algorithm solves a sequence of positive definite quadratic programming
subproblems. Each solution determines a direction in which a one-
dimensional minimization is performed.

Methods based on The solution of quadratic subproblems
represent only one class of techniques for solving the general
nonlinear programming problem. Other approaches include penalty
function methods, generalized reduced gradient methods, and augmented
Lagrangian or multiplier methods. No one method nor one class of
methods can be expected to solve all problems accurately and
efficiently; each method has particular strengths and weaknesses.
Some feeling for the variety of methods that have been proposed and
implemented can be obtained by study of a recent survey paper of
Lasdon and Waren [4].

Recent tests [5] have shown methods based on qtimAratic
approximation to be especially efficient in terms of the number of
function and gradient evaluations required. Powell's algorithm as
implemented in the Harwell Library Subroutine VF02AD was included in
these tests.

The test results and some direct experience in using
Subroutine VF02AD motivated us to develop the implementation reported
here. We have left Powell's original algorithm unchanged. We have,
however, changed his implementation to make the program easier to use
and maintain and to incorporate some recently developed LINPACK
subprograms. The current implementation contains extensive in-line
documentation; an interface subroutine, VMCON1, with a simplified
calling sequence; and print options to aid the user in interpreting
results.

-2-



Mathematical Problem

The general nonlinear programming problem, often called the
nonlinear constrained optimization problem, can be stated as

minimize f(x)

subject to (1)
c.(x) = 0, i=1,...,k,

c (x) >_ 0, i=k+1,...,m,

where the objective function, f, and the constraint functions, c , are

functions of n variables. Subroutine VMCON solves problems of this
form, where the functions f and ci are assumed to be continuously
differentiable. Some thoughts about how to formulate such problems
will be given in the next section.

Unconstrained problems and linearly constrained problems are

included in the general form (1) and can be solved with Subroutine
VMCON. However, methods specifically designed to solve these simpler
problems will generally be more efficient. Programs are available for
the following special cases:

OBJECTIVE
PROBLEM FUNCTION CONSTRAINTS

Unconstrained General None
Linear Programming Linear Linear
Quadratic Programming Quadratic Linear
Linearly Constrained General Linear

A solution of the general nonlinear programming problem can

be characterized mathematically, and some understanding of this theory
is necessary to use Subroutine VMCON effectively. In particular, one
must appreciate the role of Lagrange multipliers in characterizing a

solution. Let the Lagrangian function be defined as

m
L(x,A) = f(x) - a c (x), (2)

i=1

where the m parameters, Xi, are called the Lagrange multipliers. If
x is to be a solution of the general nonlinear programming problem,
then it is necessary that here exist an associated set of values of
the Lagrange multipliers, AX, such that

-3-



V L(x* A*) = Vf(x*) - A.Vc.(X*) = 0, (3a)
* i=1

A. > 0, i=k+1,...,m, (3b)

* 

*

A.c.(x ) = 0, i=,...,, (3c)

c.(x*) = 0, i=1,...,k, (3d)

*

c.(x ) > 0, i=k+1,...,m, (3e)

provided that an additional regularity condition is imposed on the
constraints. This condition, called the constraint qualification, may
be defined in several different ways [6]. It is not easy to check in
practice, however, and no attempt is made to do so in Powell's
algorithm.

The necessary conditions shown in (3) are known as the Kuhn-
Tucker conditions. Condition (3a), which states that the gradient of
the Lagrangian must vanish, is a generalization of the condition in
the unconstrained case that the gradient of the objective function
must be zero. Condition (3b) states that each Lagrange multiplier
corresponding to an inequality constraint must be nonnegative. No
such requirement need be satisfied by the Lagrange multipliers that
correspond to equality constraints. Condition (3c), called the
complementarity condition, shows that at the solution, a constraint is
satisfied at equality, or the associated Lagrange multiplier is zero,
or both conditions hold. Finally, Conditions (3d) and (3e) ensure
that the solution is feasible, i.e., that it satisfies all the
constraints.

Powell's algorithm is an iterative method designed to
converge to a point that satisfies these first-order necessary
conditions. Theoretical results that define sufficient conditions for
a solution of the general nonlinear programming problem are also
available [6]. These results are not discussed in this report because
Powell's algorithm does not attempt to satisfy sufficiency conditions.

In addition to their use in characterizing the necessary
conditions (3), the Lagrange multipliers provide information about the
sensitivity o' the solution to perturbations in the constraints. In
particular, Ai gives the rate of change of the objective function, f,
with respect to a change in the ith constraint [7]. The
complementarity condition (3c), which states that Ai= 0 if
ci(x*) > 0, illustrates this result for an inequality constraint that
is strictly satisfied. In this case, the constraint can be perturbed
without changing the objective function.
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Problem Formulation

As mentioned earlier, the person who wishes to use
optimization methods to solve a real problem must construct a
mathematical model in the form required by the chosen optimization
program. For Subroutine VMCON, that form was defined in the preceding
section. The task of problem formulation is obviously highly
dependent on the specific application being considered. Because

optimization methods are used to solve problems from a variety of
application areas, one cannot discuss the process of problem
formulation in the detail required for any specific application.
Nevertheless, some general remarks may be useful.

One needs to consider first the primary purpose in using
optimization methods for real applications. The most obvious purpose
is to find the the minimum of a well defined constrained function
accurately and efficiently. This is appropriate for the designer of
an optimization subroutine. It is, however, unduly restrictive where
real problems are to be solved. Few real problems are so simple or so
well formulated and understood that they can be solved simply by
minimizing a single function of n variables, even when one allows the
solution to be constrained. In an applications environment, then, the
primary purpose in using optimization methods is to enhance one's
understanding of the real problem that is being modelled, not to
compute optimal answers. Viewed in this context, a mathematical
optimization program is a sophisticated tool to be used in an
applications program for the solution of a real problem. Insights
gained by using optimization methods with a particular mathematical
model imbedded in an application program will often lead to a revision
of the model that better approximates the real problem under
consideration. Ultimately, the precise minimum may be of interest.

The first steps in actually formulating a real problem so
that it can be studied by the use of optimization methods do not
depend upon the particular optimization subroutine which is to be
used. They depend only upon the problem to be solved. As an aid in

comprehending and evaluating the ideas that follow, the reader should
have some particular problem or class of problems in mind. For
example, one might choose to think of engineering design problems.

First, one should carefully enumerate the properties that a useful
solution of the problem would possess. When this list is completed,

it will contain the potential candidates for the objective function
and the inequality constraint functions that must be supplied to any
subroutine for constrained optimization. Next, one should list all
those quantities upon which these desired characteristics depend.
This list will contain the items that may ultimately be associated

with optimization variables, i.e., with the vector x in the
mathematical problem (1).

The formulation process, up to this point, could be very

qualitative. To proceed further, however, one must start to think
quantitatively. For each item in the list of properties possessed by

P useful solution, one must attempt to find a computable measure, i.e.,



some mathematical function, by which that property can be judged. The
measure is most useful if it is monotone in the sense that as its
value decreases (or increases), the property is judged to be more
desirable. This is the most difficult part of the formulation
process. Perhaps some of the desirable properties cannot be
characterized mathematically, or some of the factors that influence
the solution cannot be quantified. Even if neither of these
difficulties arise, it may be best to ignore, at least initially, some
of the desirable properties or some of the factors that influence the
solution. One should attempt to formulate the simplest model that has
a reasonable chance of adequately describing the real problem being
considered. An unduly complicated model is more difficult to solve
and as a result may not lead to increased understanding of the real

problem. Most of the skills required to construct useful mathematical
models come from one's formal education and practical experience in

the application area of interest. One can also profit by studying
some cases in which mathematical models of real problems have been

constructed so that optimization methods can be applied [8, 9].

At this point in the formulation process, one has a set

S = {si(x)} of math' atical functions. Each s (x) measures one aspect
of the quality of solution to the real prolem of interest. The
objective and ine.aality constraint functions of (1) will be
constructed from this set. Equality constraints will be considered
later. The form of (1) is somewhat restrictive in that only one of
the sj(x) can be selected for the objective function; i.e., only one
function can be minimized, and the others must be regarded as
constraints. Note that it is no restriction to think only of
minimizing si(x) because, if a maximum is desired, one could use the
function -si(x). Assume that the jth function is selected for
minim''ation, i.e., that f(x) = s.(x) in (1). Now, the constraint
functions ci(x) of (1) for i j can be defined by introducing
constants ti such that

ci(x) = s(x) - t> 0.

Inequalities of the opposite sense can be handled easily by using the
negative of si(x). Each constant, ti, sets the level of the
associated quality measure that will be regarded as satisfactory in
attempting to solve the constrained problem. Some experimentation
with these constants may be necessary in solving the real problem.
The final step in formulating the problem is to identify any relations
among the optimization variables or functions of those variables which
result in equality constraints. Such functions can then be used

directly to define the equality constraints of (1).
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Overview of Powell's Algorithm

In this section, we provide enough information about
Power :'' algorithm to enable a user of VMCON to interpret the
subr output. A more complete description of the underlying

thec y -r.:>e found in Reference [1]. In the course of solving real
problem., one often inadvertently formulates incomplete mathematical
models. It is common, for example, to assume implicitly that certain
variables or functions will remain positive or not tend to infinity
when it is known from physical arguments that such will be the case
for the real problem. The conditions may not hold, however, if the
model is inadequate to describe the real problem. Thus, one must
understand enough about the optimization algorithm to be able to judge
whether the results produced by the subroutine are due to the nature
of the real problem, to the mathematical model, or perhaps to the
algorithm itself. Such judgments are often easier to make if one
requests subroutine output during the course of the solution rather
than waiting until the iterative process either converges or diverges.
The following description of Powell's algorithm provides some
background to help the user of Subroutine VMCON decide what output to
request.

An iterative procedure is used in VMCON to solve
Problem (1). Two major tasks are performed during each iteration.
First, a positive definite quadratic programming problem is solved;
then a one-dimensional minimization is performed, as illustrated in
the simple flow chart of Fig. 2.

The solution of the quadratic programming problem provides

estimates of the Lagrange multipliers and also determines a search

direction for use in the subsequent one-dimensional minimization. The
function that is minimized balances the two competing goals which
result from the desire to decrease the objective function while
reducing the amount by which the constraints fail to be satisfied.
The solution of this minimization problem produces a revised estimate

of the solution of (1).

A positive definite quadratic programming problem is a
problem of form (1), where f is a positive definite quadratic function
and where the constraints are linear fu.ictions. The quadratic
function in Powell's algorithm is obtained by approximating the
Lagrangian function (2), and the constraints for the quadratic
programming problem are obtained by linearizing the constraints of (1)
about the current solution estimate, x '. Here, and below, a
superscript is used to denote the iteration on which a quantity is
computed.
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Initialize

j=1

Determine a search direction, 6, and Lagrange

multiplier estimates, ,,i=1,...,m by
solving a quadratic programming problem

Convergence criterion
satisfied ?

N Yes

SExit

Determine a new solution estimate, x], by
approximately minimizing a function of one

variable which depends upon both the
objective function and those constraints

which are not satisfied

j = j + 1

Figure 2. Simplified Flow Chart of Algorithm Used in VMCON

The quadratic programming problem to be solved at each

iteration can be reduced to the form

minimize Q() = f(xj-1) + 6 Tf(xj-1)+ (1/2)6TB(x-l, x1-1)6

subject to (Li)

VcT (xj-1) 6 + c(xj-1) = 0, i=1,...,k,
I I

VcT (xj-1)6 + c (xjl~) > 0, i=k+1,...,m.
I I

The solution of (4) on the jth iteration is denoted below by 63, a3d
the Lagrange multipliers generated by solving (4) are denoted by Xi,
i:1,...,m. A quadratic approximation in x of the Lagrangian about

xi-1 has the form
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Q(x) L(xJ- 1 , 1 -1) + (x - x~i)Tv L(x3~ 1 , xj1)
x

+ (1/2)(x - xi~l)Tv L(xil 1 ,a j-1 )(x - x ~1).
xx

(5)

The simplified form of Q(6) in (4) follows from (5) by first

expressing L(x,X) as given by (2), by expressing V L(x,X) similarly,
and then by making use of the constraint relations to simplify the
first two terms. Finally, one identifies B(xJ- 1 , 0-1 ) as an
approximation to V L(xJ-l, -1) and sets 6 = x - xi-1. As indicated
by the notation, the matrix B changes from iteration to iteration.
The initialization of this matrix and the strategy used to revise it
will be discussed later.

One should note the qualitative relations between the
solution of the quadratic programming problem and the necessary
conditions (3) of the general problem. Condition (3a) states that the
gradient of the Lagrangian for the general problem must vanish at a
solution. The simplified form of Q(6) is an approximation to the
Lagrangian, as shown above. To the extent that this approximation is
valid and that linear approximations to the constraints are valid, the
solution of the quadratic programming problem approximates the
solution of the general problem. Powell [2) points out the need to
supplement this basic idea with some technique that tends to force
convergence from poor starting approximations. The one-dimensional
minimization is introduced for this purpose.

The form of the function that is minimized

search on the jth iteration is

k

4(z) =_$(x,p) = f(x) + X Ic (x)I

i=1
m

+ y min (C,c (x)) I,

i=k+1

in the line

(6)

where x = x + 6i andpyi >0.

The latter two terms

constraint violations.

in (6) are weighted sums

The weights used in VMCON are

for the first iteration and

y = max[I jI |,(1 + ixi)]

on subsequent iterations. This
theoretical results on convergence
experiments performed by Powell [1,

choice of weights
derived by Han [3]
2].

of the absolute

is motivated by

and by numerical

An iterative procedure
uses ko determine an approximate

Ref. [1J. A maximum limit

based on quadratic approximations is
minimum of (6). Details are given in

of ten steps is allowed for the
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minimization in this implementation of VMCON. Powell's original
implementation had a limit of five. Little change in efficiency was
noted in solving several test problems with the increased limit, and a
problem of premature termination of the algorithm was eliminated. The
value of the solution estimate to be. used for the next iteration is
defined as xi = xi- + ai6J, where ac is the value of a determined by
the linear search procedure above.

Upon completion of the line search, the information required

to revise the estimate of the second derivative of the Lagrangian is
available. The information is in the form of two differences

E = x - x0~ 1 and y = VoL(x , A) - VoL(xJ~ I ). (7)

The method used to revise the Hessian estimate is based on the BFGS
Quasi-Newton update formula

T T
B- B + - (8)BNEW B T T

which is widely used for unconstrained minimization. Here, the
superscripts indicating iteration dependence have been dropped for
simplicity. For the constrained problem, y is modified to ensure that
the revised matrix remains positive definite. The method suggested by
Powell [1,21 is to replace Y with

Oy + (1 - 6)BE , (9)

where 0 < 6 < 1 is defined by

1 & y > 0.25 B

0 =.(10)

_ _ _ _ T T
T TE TY < 0.2T B
BE-E Y

This completes the discussion of the estimation of VxxL(x,A)
except for the specification of the initial estimate, B(x0,X0). This
estimate is normally taken to be be the identity matrix. Because the

algorithm depends on the scaling of the initial Hessian estimate,
however, a constant multiple of the identity matrix may be preferable
for some problems. If better information is available for estimating
the Hessian initially (for example, information obtained by solving
closely related problems), its use may improve both the reliability
and the efficiency of the iterative algorithm.

As indicated in Fig. 2, a convergence test is made on each

iteration after the quadratic programming problem is solved. The
algorithm terminates if the condition

Vf(xi1)Toim+ x ci(x ')I (- (11)

i--
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is satisfied, where c is a user-supplied error tolerance. The first
term is the predicted change in magnitude of the objective function if
another line search is performed, and the second term is a measure of
the complementarity error, i.e., the amount by which necessary
condition (3c) fails to be satisfied. Thus, if the change in the
objective function and the complementarity error are sufficiently
small, xJ~1 is accepted as the solution of (1).

-11-



Use of Subroutines VMCON and VMCON1

In this section the programming details required for the use
of VMCON and VMCON1 are discussed. In eich of the subroutines
supplied, all floating-point variables are declared DOUBLE PRECISION
(REAL*8). The subroutines have been compiled with the IBM G1 and H
Extended Fortran compilers and have been tested on IBM Model 370/168
370/195, and 3033 processors. Modified versions of two Harwell
library programs, VE02AD [10] and LA02AD [11], are included. These
subroutines are used to solve the quadratic programming subproblems
described above and were modified to use some recently developed
LINPACK [12] and Basic Linear Algebra [13] subprograms. No changes
wLee made to the algorithms defined in Refs. [10] and [11].

Both VMCON and VMCON1 solve the general nonlinear
programming problem (1). VMCON1 provides an interface to VMCON with a
simplified calling sequence. Details regarding variable names and

calling sequences for both programs are provided by extensive comment
statements included in the Fortran code. These are also included
below.

To use either VMCON or VMCON1, the user must supply a
Fortran subroutine that computes f(x); Vf(x); c.(x); Vc.(x), i=1,... ,m
of (1) given the vector x; the number of variables, n; and the number
of constraints, m. Some consideration must be given to the proper
scaling of these functions. There is a somewhat artificial
restriction on the vector x. The subroutine used to solve the
quadratic programming subproblems requires that upper and lower bounds
be specified for the independent variables, x , i=1,...,n. The values
used in this implementation are set in Subroutine QPSUB as *10b. An
error indicator is set in VMCON if the solution of (1) is restricted
by one of these artificial bounds. The initial estimate of the second
derivative matrix discussed in the preceding section is related to the
scaling of f and Vf. Because the identity matrix is used as an

initial estimate unless an estimate is provided by the user, the
functions f and Vf should be scaled to have magnitudes near unity
Although it is not crucial to the performance of the algorithm, iL is

also advisable to scale the constraints and constraint gradients to be
of order one as an aid in interpreting intermediate subroutine output.

All additional information required to define the problem
and to control the execution of VMCON or VMCON1 is supplied through
the a,.gument list. No COMMON storage is used. For most problems,
VMCO 1 is recommended because it is simpler to use. If, however, one
desires to sp-cify an initial estimate of the second derivative matrix
or to specify an upper limit on the number of function evaluations
other than the limit of' 100*(n+1) used in VMCON1, then VMCON must be
called directly. The options for selecting intermediate subroutine
output are the same for both programs. The information discussed in

the preceding section is useful in determining what output to request.

A variable, INFO, is set by VMCON1 or VMCON and returned to
the user to indicate normal or abnormal termination. A brief

-12-



description of the conditions identified by INFO is included with the

in-line documentation below. The factors that result in values of 0,
1, or 2 for INFO are clear. The remaining cases require some

interpretation.

Values of 3 or 4 for INFO are most likely to occur because

the results produced by evaluating the user-supplied subroutine FCN

which computes f(x), Vf(x), ci(x), and Vci(x) are inconsistent. It

may be that subroutine FCN has been coded incorrectly and that the

algorithm has not been able to make substantial progress.

Alternatively, the solution may have proceeded to a point where noise
in the functions has produced difficulty. This noise could be due to

rouncoff errors or perhaps to limited precision in the computation of

the functions. The latter case can occur when the functions are

evaluated by solving differential equations or evaluating integrals

which attempt to satisfy a user-supplied error tolerance [14].

An INFO value of 5 is most likely to occur because there is
no feasible solution to the nonlinear problem (1). An illustration of

this case is given in the examples later in this report. However, i.t

is also possible that the linearized constraints in the quadratic

programming subproblem have no solution even though there does exist a

feasible solution to the nonlinear problem. If this difficulty is

suspected and the subroutine has terminated close to the starting

point, other initial solution estimates should be considered. It may

be, however, that the starting estimhate is reasonable but the

algorithm hac taken an inappropriately large initial step. This can

occur when the initial estimate of the second derivative matrix is

poor. Use of a better initial Hessian estimate, oftenn simply a

constant multiple of the identity matrix, may result in a more

reasonable initial step and ultimate convergence to a solution.

INFO is set to 6 if a singular matrix is encountered in

salving a quadratic programming subproblem or if the solution of the

subproblem is restricted by an artificial bound as discussed earlier

in this section.
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***** Use of Subroutine VMCON1 *****

SUBROUTINE VMCON1(FCN,N,M,MEQ,X,OBJF,FGRD,CONF,CNORM,LCNORM,
1 VLAM,TOL,IPRINT,NWRITE,INFO,WA,LWA,IWA,LIWA)
INTEGER N,M,MEQ,LCNORM,IPRINT,NWRITE,1NFO,LWA.LIWA
INTEGER IWA(LIWA)
DOUBLE PRECISION OBJF,TOL
DOUBLE PRECISION X(N),FGRD(N),CONF(M),CNORM(LCNORM,M),VLAM(M),
1 WA(LWA)
EXTERNAL FCN

C ** ****

C
C SUBROUTINE VMCON1
C
C THIS SUBROUTINE CALCULATES THE LEAST VALUE OF A FUNCTION OF
C SEVERAL VARIABLES SUBJECT TO LINEAR AND/OR NONLINEAR EQUALITY
C AND INEQUALITY CONSTRAINTS. MORE PARTICULARLY, IT SOLVES THE
C PROBLEM
C
C MINIMIZE F(X)
C
C SUBJECT TO C (X) = 0.0 , I = 1,...,MEQ
C I
C
C AND C (X) >= 0.0 , I = MEQ+1,...,M

C I
C
C THE SUBROUTINE IMPLEMENTS A VARIABLE METRIC METHOD FC'I
C CONSTRAINED OPTIMIZATION DEVELOPED BY M.J.D. POWELL.
C

C
C THE SUBROUTINE STATEMENT IS
C
C SUBROUTINE VMCON1(FCN,N,M,MEQ,X,OBJF,FGRD,CONF,CNORM,LCNORM,
C VLAM,TOL,IPRINT,NWRITE,INFO,WA,LWA,IWA,LIWA)
C
C WHERE

C
C FCN IS THE NAME OF THE USER SUPPLIED SUBROUTINE WHICH
C CALCULATES THE OBJECTIVE AND CONSTRAINT FUNCTIONS, AND THE

C GRADIENTS (FIRST DERIVATIVE VECTORS) OF THE OBJECTIVE AND
C CONSTRAINT FUNCTIONS. FCN SHOULD BE DECLARED IN AN EXTERNAL

C STATEMENT IN THE USER CALLING PROGRAM, AND SHOULD BE WRITTEN
C AS FOLLOWS
C
C SUBROUTINE FCN(N,M,X,OBJF,FGRD,CONF,CNORM,LCNORM,INFO)

C INTEGER N,M,LCNORM,INFO

C DOUBLE PRECISION OBJF
C DOUBLE PRECISION X(N),FGRD(N),CONF(M),CNORM(LCNORM,M)
C --------------

C STATEMENTS TO CALCULATE THE OBJECTIVE AND CONSTRAINT
C FUNCTIONS AND THE GRADIENTS OF THE OBJECTIVE AND CONSTRAINT
C FUNCTIONS AT X. THE OBJECTIVE AND CONSTRAINT FUNCTIONS AND
C THE GRADIENT OF THE OBJECTIVE FUNCTION MUST BE RETURNED IN



C OBJF, CONF AND FGRD RESPECTIVELY. NOTE THAT THE EQUALITY
C CONSTRAINTS MUST PRECEDE THE INEQUALITY CONSTRAINTS IN CONF.
C THE CONSTRAINT GRADIENTS OR NORMALS MUST BE RETURNED AS THE
C COLUMNS OF CNORM.
C --------------

C RETURN
C END
C
C THE VALUE OF INFO SHOULD NOT BE CHANGED BY FCN UNLESS THE
C USER WANTS TO TERMINATE EXECUTION OF VMCON1. IN THIS CASE
C SET INFO TO A NEGATIVE INTEGER.
C
C N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER OF
C VARIABLES.
C
C M IS i POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER OF
C CONSTRAINTS.
C
C MEQ IS A NON-NEGATIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
C OF EQUALITY CONSTRAINTS. MEQ MUST BE LESS THAN OR EQUAL TO N.
C
C X IS A REAL*8 ARRAY OF LENGTH N. ON INPUT IT MUST CONTAIN AN
C INITIAL ESTIMATE OF THE SOLUTION VECTOR. ON OUTPUT X
C CONTAINS THE FINAL ESTIMATE OF THE SOLUTION VECTOR.
C
C OBJF IS A REAL*8 OUTPUT VARIABLE THAT CONTAINS THE VALUE OF THE
C OBJECTIVE FUNCTION AT THE OUTPUT X.

C FGRi) IS A REAL*8 OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE
C COMPONENTS OF THE GRADIENT OF THE OBJECTIVE FUNCTION AT
C THE OUTPUT X.
C
C CONF IS A REAL*8 OUTPUT ARRAY OF LENGTH M WHICH CONTAINS THE
C VALUES OF THE CONSTRAINT FUNCTIONS AT THE OUTPUT X. THE
C EQUALITY CONSTRAINTS PRECEDE THE INEQUALITY CONSTRAINTS.
C
C CNORM IS A REAL*8 LCNORM BY M ARRAY WHOSE COLUMNS CONTAIN THE
C CONSTRAINT NORMALS AT THE OUTPUT X IN THE FIRST N POSITIONS.
C
C LCNORM IS A POSITI.I INTEGER INPUT VARIABLE SET TO THE ROW
C DIMENSION OF CNORM WHICH IS AT LEAST N+1. THE (N+1)ST ROW
C OF CNORM IS USED FOR WORK SPACE.
C
C VLAM 1S A REAL*8 OUTPUT ARRAY OF LENGTH M WHICH CONTAINS THE
C LAGRANGE MULTIPLIERS AT THE OUTPUT X. THE LAGRANGE
C MULTIPLIERS PROVIDE THE SENSITIVITY OF THE OBJECTIVE
C FUNCTION TO CHANGES IN THE CONSTRAINT FUNCTIONS.
C
C TOL IS A NONNEGATIVE REAL*8 INPUT VARIABLE. A NORMAL RETURN
C OCCURS WHEN THE OBJECTIVE FUNCTION PLUS SUITABLY WEIGHTED
C MULTIPLES OF THE CONSTRAINT FUNCTIONS ARE PREDICTED TO
C DIFFER FROM THEIR OPTIMAL VALUES BY AT MOST TOL.
C
C IPRINT IS AN INTEGER INPUT PARAMETER WHICH CONTROLS THE PRINTED
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C OUTPUT FROM VMCON1. IT SHOULD BE SET AS FOLLOWS
C
C IPRINT <= 0 NO OUTPUT
C
C IPRINT - 1 FOR EACH QUADRATIC SUBPROBLEM, X, OBJF, AND
C THE NORM OF THE LAGRANGIAN GRADIENT ARE OUTPUT
C
C IPRINT = 2 OUTPUT ABOVE PLUS THE SEARCH DIRECTION AND THE
C LAGRANGE MULTIPLIERS FROM THE QUADRATIC SUB-
C PROBLEM, AND THE MULTIPLIERS FOR THE LINE
C SEARCH
C
C IPRINT = 3 OUTPUT ABOVE PLUS LINE SEARCH OUTPUT WHICH
C INCLUDES, FOR EACH ITERATION, X, THE LINE
C SEARCH OBJECTIVE FUNCTION AND ITS COMPONENTS,
C AND THE STEP FACTOR USED IN CONJUNCTION WITH
C THE SEARCH DIRECTION
C
C IPRINT >= 4 OUTPUT ABOVE PLUS, FOR EACH QUADRATIC SUB-
C PROBLEM, FGRD, CONF, CNORM, AND THE HESSIAN
C ESTIMATE
C
C NWRITE IS AN INTEGER INPUT VARIABLE WHICH SPECIFIES THE UNIT
C NUMBER OF THE DATASET OR FILE TO WHICH THE OUTPUT SELECTED BY
C IPPINT IS TO BE WRITTEN. IF NWRITE IS SET TO ANY NONPOSITIVE
C VALUE THE DEFAULT UNIT (UNIT 6) WILL BE USED FOR THE PRINTED
C OUTPUT.
C
C INFO IS AN INTEGER OUTPUT PARAMETER SET AS FOLLOWS
C
C IF INFO IS NEGATIVE THEN USER TERMINATION. OTHERWISE
C
C INFO = 0 IMPROPER INPUT PARAMETERS. TESTS ARE MADE TO INSURE
C THAT N AND M ARE POSITIVE, TOL IS NON-NEGATIVE,
C MEQ IS LESS THAN OR EQUAL TO N, AND THAT LCNORM,
C LWA, AND LIWA ARE SUFFICIENTLY LARGE.
C
C INFO = 1 A NORMAL RETURN. SEE DESCRIPTION OF TOL.
C
C INFO = 2 NUMBER OF CALLS TO FCN IS AT LEAST 100*(N+1).
C
C INFO = 3 LINE SEARCH REQUIRED TEN CALLS OF FCN.
C
C INFO = 4 UPHILL SEARCH DIRECTION WAS CALCULATED.
C
C INFO = 5 QUADRATIC PROGRAMMING ALGORITHM WAS UNABLE TO FIND
C A FEASIBLE POINT.
C
C INFO = 6 QUADRATIC PROGRAMMING ALGORITHM WAS RESTRICTED BY
C AN ARTIFICIAL BOUND OR FAILED DUE TO A SINGULAR
C MATRIX.

C
C WA IS A REAL*8 WORK ARRAY OF LENGTH LWA.

C
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C LWA IS A POSITIVE INTEGER INPUT VARIABLE SET EQUAL TO THE
C DIMENSION OF WA WHICH IS AT LEAST
C 2*M + N*(5*N + 21) + 10 + MAX(7*(N+1),14*(N+1)+M).

C
C IWA IS AN INTEGER WORK ARRAY OF LENGTH LIWA.
C
C LIWA IS A POSITIVE INTEGER INPUT VARIABLE SET EQUAL TO THE
C DIMENSION OF IWA WHICH IS AT LEAST 6*(N+1) + M.
C
C SUBROUTINES CALLED
C
C USER SUPPLIED....... FCN
C
C FORTRAN SUPPLIED ... MAXO
C
C AMDLIB SUPPLIED ... VMCON
C
C ALGORITHM VERSION OF JUNE 1979.
C
C ROGER L. CRANE, KENNETH E. HTLLSTROM, MICHAEL MINKOFF
C
C **********

***** Use -,f Subroutine VMCON *****

SUBROUTINE VMCONiFCN,MODE,N,M,MEQ,X,OBJF,FGRD,CONF,CNORM,LCNORM,
1 B,LB,TOL,MAXFEV,IPRINT,NWRITE,INFO,NFEV,VLAM,
2 GLAG,VMU,CM,GLAGA,GAMMA,ETA,XA,BDELTA,DELTA,
3 LDEL,GM,BDL,BDU,H,LH,WA,LWA,IWA,LIWA)
INIE-FR MODE,N,M,MEQ,LCNORM,LB,MAXFEV,IPRINT,NWRITE,INFO,NFEV,
1 LDEL,LH,LWA,LIWA
INTEGER IWA(LIWA)
DOUBLE PRECISION OJF,TOL
DOUBLE PRECISION X(N),FGRD(N),CONF(M),CNORM(LCNORM,M),B(LB,LB),
1 VLAM(M),GLAG(N),VMU(M),CM(M),GLAGA(N),GAMMA(N),
2 ETA(N),XA(N),BDELTA(N),DELTA(LDEL),GM(1),
3 BDL(1),BDU(1),H(LH,LH),WA(LWA)

C **********

C
C SUBROUTINE VMCON
C
C THIS SUBROUTINE CALCULATES THE LEAST VALUE OF A FUNCTION OF
C SEVERAL VARIABLES SUBJECT TO LINEAR AND/OR NONLINEAR EQUALITY
C AND INFQUALITY CONSTRAINTS. MORE PARTICULARLY, IT SOLVES THE
C PROBLEM
C
C MINIMIZE F(X)

C
C SUBJECT TO C (X) = 0.0 , I = 1,...,MEQ
C I
C
C AND C (X) >: 0.0 , I= MEQ+1,...,M

C I
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C

C THE SUBROUTINE IMPLEMENTS A VARIABLE METRIC METHOD FOR

C CONSTRAINED OPTIMIZATION DEVELOPED BY M.J.D. POWELL.

C

C THE SUBROUTINE STATEMENT IS

C
C SUBROUTINE VMCON(FCN,MODEN,M,MEQ,X,OBJF,FGRD,CONF,CNORM,

C LCNORM,B,LB,TOL,MAXFEV,IPRINT,NWRITE,INFO,

C NFEV,VLAM,GLAG,VMU,CM,GLAGA,GAMMA,ETA,XA,

C BDELTA,DELTA,LDEL,GM,BDL,BDU,H,LH,WA,LWA.IWA,

C LIWA)

C

C WHERE

C
C FCN IS THE NAME OF TIE USER SUPPLIED SUBROUTINE WHICH
C CALCULATES THE OBJECTIVE AND CONSTRAINT FUNCTIONS, AND THE

C GRADIENTS (FIRST DERIVATIVE VECTORS) OF THE OBJECTIVE AND

C CONSTRAINT FUNCTIONS. FCN SHOULD BE DECLARED IN AN EXTERNAL

C STATEMENT IN THE USER CALLING PROGRAM, AND SHOULD BE WRITTEN

C AS FOLLOWS

C

C SUBROUTINE FCN(N,MX,OBJF,FGRD,CONF,CNORM,LCNORM,INFO)

C INTEGER N,M,LCNORM,INFO

C DCIUBLE PRECISION OBJF

C DOUBLE PRECISION X(N),FGRD(N),CONF(M),CNORM(LCNORM,M)

C ---------------

C STATEMENTS TO CALCULATE THE OBJECTIVE AND CONSTRAINT

C FUNCTIONS AND THE GRADIENTS OF THE OBJECTIVE AND CONSTRAINT

C FUNCTIONS AT X. THE OBJECTIVE AND CONSTRAINT FUNCTIONS AND

C THE GRADIENT OF THE OBJECTIVE FUNCTION MUST BE RETURNED IN

C OBjF, CONF AND FGRD RESPECTIVELY. NOTE THAT THE EQUALITY

C CONSTRAINTS MUST PRECEDE THE INEQUALITY CONSTRAINTS IN CONF.

C THE CONSTRAINT GRADIENTS OR NORMALS MUST BE RETURNED AS THE

C COLUMNS OF CNORM.

C --------------

C RETURN

C END

C

C THE VALUE OF INFO SHOULD NOT BE CHANGED BY FCN UNLESS THE

C USER WANTS TO TERMINATE EXECUTION OF VMCON. IN THIS CASE

C S.T INFO TO A NEGATIVE INTEGER.

C

C MODE IS A NON-NEGATIVE INTEGER INPUT VARIABLE SET TO 1 IF THE

C SECOND DERIVATIVE MATRIX IN B (SEE BELOW) IS PROVIDED BY THE

C USER, AND TO 0 IF IT IS TO BE INITIALIZED TO THE IDENTITY

C MATRIX.

C

C N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER OF

C VARIABLES.

C

C M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER OF

C CONSTRAINTS.

C
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C MEQ IS A NON-NEGATIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
C OF EQUALITY CONSTRAINTS. MEQ MUST BE LESS THAN OR EQUAL TO N.
C
C X IS A REAL*8 ARRAY OF LENGTH N. ON INPUT IT MUST CONTAIN AN
C INITIAL ESTIhATE OF THE SOLUTION VECTOR. ON OUTPUT X

C CONTAINS THE FINAL ESTIMATE OF THE SOLUTION VECTOR.

C
C OBJF IS A REAL*8 OUTPUT VARIABLE THAT CONTAINS THE VALUE OF THE

C OBJECTIVE FUNCTION AT THE OUTPUT X.

C
C FGRD IS A REAL*8 OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE
C COMPONENTS OF THE GRADIENT OF THE OBJECTIVE FUNCTION AT
C THE OUTPUT X.
C

C CONF IS A REAL*8 OUTPUT ARRAY OF LENGTH M WHICH CONTAINS THE

C VALUES OF THE CONSTRAINT FUNCTIONS AT THE OUTPUT X. THE
C EQUALITY CONSTRAINTS MUST PRECEDE THE INEQUALITY CONSTRAINTS.
C
C CNORM IS A REAL*8 LCNORM BY M ARRAY WHOSE COLUMNS CONTAIN THE
C CONSTRAINT NORMALS AT THE OUTPUT X IN THE FIRST N POSITIONS.
C
C LCNORM IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE ROW
C DIMENSION OF CNORM WHICH IS AT LEAST N+1. THE (N+1)ST ROW
C OF CNORM IS USED FOR WORK SPACE.
C
C B IS A REAL*8 LB BY LB ARRAY WHOSE FIRST N ROWS AND COLUMNS
C CONTAIN THE APPROXIMATION TO THE SECOND DERIVATIVE MATRIX
C OF THE LAGRANGIAN FUNCTION. OFTEN, AN ADEQUATE INITIAL
C B MATRIX CAN BE OBTAINED BY APPROXIMATING THE HESSIAN
C OF THE OBJECTIVE FUNCTION. ON INPUT, THE APPROXIMATION IS
C PROVIDED BY THE USER IF MODE = 1 AND IS SET TO THE IDENTITY
C MATRIX IF MODE = 0. THE (N+1)ST ROW AND COLUMN ARE USED FOR
C WORK SPACE.
C
C LB IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE ROW
C DIMENSION OF B WHICH IS AT LEAST N+1.
C
C TOL IS A NON-NEGATIVE INPUT VARIABLE. A NORMAL RETURN OCCURS
C WHEN THE OBJECTIVE FUNCTLuN PLUS SUITABLY WEIGHTED MULTIPLES

C OF THE CONSTRAINT FUNCTIONS ARE PREDICTED TO DIFFER FROM
C THEIR OPTIMAL VALUES BY AT MOST TOL.
C
C MAXFEV IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE LIMIT

C ON THE NUMBER OF CALLS TO FCN.

C IPRINT IS AN INTEGER INPUT PARAMETER WHICH CONTROLS THE PRINTED
C OUTPUT FROM VMCON. IT SHOULD BE SET AS FOLLOWS
C
C IPRINT <= 0 NO OUTPUT
C
C IPRINT = 1 FOR EACH QUhDRATIC SUBPROBLEM, X, OBJF, AND

C THE NORM OF THE LAGRANGIAN GRADIENT ARE OUTPUT
C
C IPRINT = 2 OUTPUT APJVE PLUS THE SEARCH DIRECTION AND THE
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C LAGRANGE MULTIPLIERS FROM THE QUADRATIC SUB-
C PROBLEM, AND THE MULTIPLIERS FOR THE LINE
C SEARCH
C
C IPRINT = 3 OUTPUT ABOVE PLUS LINE SEARCH OUTPUT WHICH
C INCLUDES, FOR EACH ITERATION, X, THE LINE
C SEARCH OBJECTIVE FUNCTION AND ITS COMPONENTS,
C AND THE STEP FACTOR USED IN CONJUNCTION WITH
C THE SEARCH DIRECTION
C
C IPRINT >= 4 OUTPUT ABOVE PLUS, FOR EACH QUADRATIC SUB-
C PROBLEM, FGRD, CONF, CNORM, AND THE HESSIAN
C ESTIMATE
C
C NWRITE IS AN INTEGER INPUT VARIABLE WHICH SPECIFIES THE UNIT
C NUMBER OF THE DATASET OR FILE TO WHICH THE OUTPUT SELECTED BY
C IPRINT IS TO BE WRITTEN. IF NWRITE IS SET TO ANY NONPOSITIVE
C VALUE THE DEFAULT UNIT (UNIT 6) WILL BE USED FOR THE PRINTED
C OUTPUT.
C
C INFO IS AN INTEGER OUTPUT VARIABLE SET AS FOLLOWS
C
C IF INFO IS NEGATIVE THEN USER TERMINATION. OTHERWISE
C
C INFO = 0 IMPROPER INPUT PARAMETERS. TESTS ARE MADE TO INSURE
C THAT N AND M ARE POSITIVE, TOL IS NON-NEGATIVE,
C MEQ IS LESS THAN OR EQUAL TO N, AND THAT LCNOR1,
C LB, LDEL, LH, LWA, AND LIWA ARE SUFFICTNTLY LARGE.
C

C INFO = 1 A NORMAL RETURN. SEE DESCRIPTION OF TOL.
C
C INFO = 2 NUMBER OF CALLS TO FN IS AT LEAST MAXFEV.
C
C INFO = 3 LINE SEARCH REQUIRED TEN CALLS OF FCN.
C
C INFO = 4 UPHILL SEARCH DIRECTION WAS CALCULATED.
C
C INFO = 5 QUADRATIC PROGRAMMING TECHNIQUE WAS U'ABLE TO FIND
C A FEASIBLE POINT.
C
C INFO = 6 QUADRATIC PROGRAMMING TECHNIQUE WAS RESTRICTED BY
C AN ARTIFICIAL BOUND OR FAILED DUE TO A SINGULAR
C MATRIX.
C
C NFEV IS AN INTEGER OUTPUT VARIABLE SET TO THE NUMBER OF CALLS
C TO FCN.
C
C VLAM IS A REAL*8 OUTPUT ARRAY OF LENGTH M WHICH CONTAINS THE
C LAGRANGE MULTIPLIERS AT THE OUTPUT :. THE LAGRANGE
C MULTIPLIERS PROVIDE THE SENSITIVITY OF THE OBJECTIVE
C FUNCTION TO CHANGES IN THE CONSTRAINT FUNCTIONS.
C
C GLAG IS A REAL*8 OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE
C COMPONENTS OF THE GRADIENT OF THE LAGRANGT"% FUNCTION AT



C THE OUTPUT X.
C
C VMU, CM ARE REAL*8 WORK ARRAYS OF LENGTH M.

C
C GLAGA, GAMMA, ETA, XA, BDELTA ARE REAL*8 WORK ARRAYS OF
C LENGTH N.
C
C DELTA IS A REAL*8 WORK ARRAY OF LENGTH LDEL.
C
C LDEL IS A POSITIVE INTEGER INPUT VARIABLE SET EQUAL TO THE
C LENGTH OF DELTA WHICH IS AT LEAST MAX(7*(N+1),14*(N+1)+M).
C
C GM, BDL, BDU ARE REAL*8 WORK ARRAYS OF LENGTH N+1.
C
C H IS A REAL*8 LH BY LH WORK ARRAY.
C
C LH IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE DIMENSION
C OF THE SQUARE ARRAY H WHICH IS AT LEAST 2*(N+1).
C
C WA IS A REAL*8 WORK ARRAY OF LENGTH LWA.
C
C LWA IS A POSITIVE INTEGER INPUT VARIABLE SET EQUAL TO THE
C DIMENSION OF WA WHICH IS AT LEAST 2*(N+1).
C
C IWA IS AN INTEGER WORK ARRAY OF LENGTH LIWA.
C
C LIWA IS A POSITIVE INTEGER INPUT VARIABLE SET EQUAL TO THE
C DIMENSION' OF IWA WHICH IS AT LEAST 6*(N+1) + M.

C

C SUBPROGRAMS REQUIRED
C
C USER SUPPLIED....... FCN
C
C FORTRAN SUPPLIED ... DABS,DMAX1
C
C MINPACK SUPPLIED ... ENORM

C
C AMDLIB SUPPLIED ... QPSUB
C
C ALGORIThM VERSION OF JUNE 1979.
C
C ROGER L. CRANE, KENNETH E. HILLSTROM, MICHAEL MINKOFF
C
C **********

-21-



Examples

The introductory chapter of Reference [9] contains five
simple examples of mathematical programming problems. Each problem

has only two variables, and graphs are included to identify the

constraints and the solutions. Included below is the result obtained

by using VMCON1 to solve one of these problems, the general nonlinear

problem

- 2 2
minimize f(x ,x2 ) -x 2) + (x2 - 1)

subject to (12)

c1(x ,x2 ) - 2*x2 + 1 = 0

c2 x x2) - x2 /4 - x 2  + 1 >0.

The results for two closely related problems are also given. The main

program listed below has been written so that any of the five examples

in Chapter 1 of Ref. [9] can be run simply by changng SUBROUTINE FCN

and by furnishing the appropriate input data. Earh of these five

problems is instructive and simple to code and thus can be used to

gain more experience in the use of VMCON or VVCON1.

The main program also includes code to check how well the

Kuhn-Tucker necessary conditions (3) are satisfied by the solution

produced by VMCON1. The Lagrangian Gradient Error (see 3a, ,is

computed as the sum of the magnitudes of the components of VL(x ,a ),
and the Lagrange Multiplier Error (see 3b) is determined as the sum of

the magnitudes of the negative Lagrange multipliers associated with

inequality constraints. The Complementarity Error (see 3c) is defined

as
m

I a c (x )|,

i=1

and the Constraint Error (see 3d,3e) is defined as

k * m

G Ici(x )I + I Imin(,ci(x )I.
i=1 i=k+l

C

C MAIN PROGRAM FOR USE WITH THE FIVE EXAMPLES GIVEN IN THE

C INTRODUCTION OF BRACKEN AND MCCORMICK (9). AS DESCRIBED IN THE

C DOCUMENTATION FOR VMCON AND VMCON1, THE USER MUST SUPPLY A

C SUBROUTINE TO COMPUTE THE OBJECTIVE AND CONSTRAINT FUNCTIONS AND

C THEIR DERIVATIVES.

C

C

C DECLARATION OF VARIABLES USED IN VMCON1 ARGUMENT LIST

C

-22-



INTEGER N,M,MEQ,LCNORM,IPRINT,NWRITE,INFO,LWA,IWA(22),LIWA
REAL*8 X(2),OBJF,FGR(2),CONF(4),CNORM(3,4),VLAM(4),TOL,WA(101)

C
C DECLARATION OF COMMON AND LOCAL VARIABLES

C
INTEGER I,J,NFUN
REAL*8 SUM,DABS,ZERO,ERRLG,ERRLM,ERRCOM,ERRCON

C
COMMON/STAT/ NFUN

C
EXTERNAL FCN

C
DATA LCNORM/3/,LIWA/22/,LWA/101/,NWRITE/6/
DATA ZERO/O.DO/

C
READ N

M

MEQ
IPRINT

TOL

NUMBER OF VARIABLES

NUMBER OF CONSTRAINTS
NUMBER OF EQUALITY CONSTRAINTS
INTERMEDIATE OUTPUT OPTION

TERMINATION ACCURACY

10 READ(5,*,END=300) N,M,MEQ,IPRINT,TOL

WRITE(6,20) N,M,MEQ,IPRINT,TOL
20 FORMAT('1N =',13,' M = ',13,' ME(

1 ' TOL =',1PD10.2)
IPRINT =',13,

READ INITIAL SOLUTION ESTIMATE

READ(5,*) (X(I),I=1,N)
WRITE(6,30) (X(I),T=1,N)

FORMAT('OINITIAL %DLUTION ESTIMATE, X',/,(1P5D24.16))

NFUN = 0

CALL VMCON1 (FCN,N,M,MEQ,X,OBJF,FGRD,CONF,CNORM,LCNORM,

VLAM,TOL,IPRINT,NWRITE,INFO,WA,LWA,IWA,LIWA)

OUTPUT SOLUTION

WRITE(6, 40)INFO, NFUN
40 FORMAT('OINFO =',I3,19,' FUNCTION

WRITE(6,50) (X(I),I=1,N)
50 FORMAT( 'OF INAL SOLUTION ESTIMATE,

WRITE(6,60) OBJF
60 FORMAT('OF(X) =',1PD24.16)

WRITE(6,70) (CONF(I),I=1,M)
70 FORMAT('OCONSTRAINTS EVALUATED AT

WRITE(6,80) (VLAM(I),I=1,M)

EVALUATIONS')

X' ,/,(1P5D24. 16))

X',/,(1P5D24.16))

FORMAT('OLAGRANGE MULTIPLIER ESTIMATES',,/,(1P5D24.16))

EVALUATE KUHN-TUCKER NECESSARY CONDITIONS (3)

CALCULATE 1-NORM OF LAGRANGIAN GRADIENT ERRORS (3A)

ERRLG = ZERO
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DO 110 I = 1,N

SUM = FGRD(I)

DO 100 J = 1,M

SUM = SUM - VLAM(J)*CWORM(I,J)

100 CONTINUE

ERRLG = ERRLG + DABS(SUM)
110 CONTINUE
C
C CALCULATE 1-NORM OF NEGATIVE LAGRANGE MULTILIER ERRORS (3B)

C
ERRLM = ZERO

DO 120 I = 1,M

IF(I .LE. MEQ

ERRLM = ERRLM

CONTINUE

.OR. VLAM(I) .GE. ZERO) GO TO 120
+ DABS(VLAM(I))

CALCULATE 1-NORM OF COMPLEMENTARITY ERRORS (3C)

ERRCOM = ZERO

DO 130 T = 1,M

ERRCOM = ERRCOM + DAB3(VLAM(I)*CONF(I,)

CONTINUE

CALCULATE 1-NORM OF CONSTRAINT ERRORS (3D,3E)

ERRCON = ZERO

DO 140 I = 1,M
IF(I .GT. MEQ .AND. CONF(I) .GE. ZERO) GO TO 140
ERRCON = ERRCON + DABS(CONF(I))

CONTINUE

OUTPUT KUHN-TUCKER ERRORS

WRITE(6,200) ERRLG
200 FORMAT('OLAGRANGIAN GRADIENT ERROR =',1PD24

WRITE(6,210) ERRLM
210 FORMAT(' LAGRANGE MULTIPLIER ERROR =',1PD24

WRITE(6,220) ERRCOM
220 FORMAT(' COMPLEMENTARITY ERROR =',1PD24.16)

WRITE(6,230) ERRCON

230 FORMAT(' CONSTRAINT ERROR =',1PD24.16)

.16)

.16)

GO TO 10

STOP
END

SUBROUTINE FCN (N,M,X,OBJF,FGRD,CONF,CNORM,LCN)RM,INFO)

NONLINEAR PROBLEM WITH C NE INEQUALITY AND ONE EQUALITY CONSTR.

MINIMIZE F(X1,X2) = (X1 - 2)""2 + (X2 - 1)*#2
SUBJECT TO

120

C

C

C

130

C

C

C

140

C

C

C

C

C

300

C

C

C

C

C

C

C



C C1(X1,X2) = X1 - 2*X2 + 1 = 0
C C2(X1,X2) = -X1**2/4 - X2**2 + 1 >= 0
C
C REFERENCE. BRACKEN AND MCCORMICK (9), PP. 18-19.
C

INTEGER N,M,LCNORM,INFO
REAL*8 X(N),OBJF,FGRD(N),CONF(M),CNORM(LCNORM,M)

C
INTEGER NFUN

C
COMMON/STAT/ NFUN

C
OBJF = (X(1) - 2.DO)**2 + (X(2) - 1.DO)**2

C
FGRD(1) = 2.DO*(X(1) - 2.DO)
FGRD(2) = 2.DO*(X(2) - 1.DO)

C
CONF(1) = X(1) - 2.DO*X(2) + 1.DO
CONF(2) = -0.25DO*X(1)**2 - X(2)**2 + 1.D0

C
CNORM(1,1) = 1.D0
CNORM(2,1) = -2.DO
CNORM(1,2) =-0.5DO*X(1)
CNORM(2,2) = -2,DO*X(2)

C
NFUN = NFUN + 1

RETURN
END

All of the following results were produced by use of an IBM
Model 370/168 computer. The firs' two runs were made with the
MAIN PROGRAM and SUBROUTINE FCN listed above to slve Problem (12).
No intermediate output from VMCON was generated in the first run
because IPRINT = 0. IPRINT was set to 3 in the second run to permit
one to follow the iterative steps taken by VMCON in solving (12). In
each case, a starting estimate of (2,2) was used.

N = 2 M = 2 MEQ = 1 IPRINT = 0 TOL = 1.OOD-08
INITIAL SOLUTION ESTIMATE, X
2.0000000000000000D+00 2.0000000000000000D+00
INFO = 1 6 FUNCTION EVALUATIONS
FINAL SOLUTION ESTIMATE, X
8.2287565553287513D-01 9.1143782776643764D-01

F(X) = 1.3934649806878849D+00
CONSTRAINTS EVALUATED AT X
1.3877787807814457D-17 -7.6716411001598317D-13

LAGRANGE MULTIPLIER ESTIMATES
-1.5944911182523063D+00 .8465914396061l25D+00
LACIRANGIAN GRADIENT ERROR a 3.345080954077888D-12
LAGRANGE MULTIPLIER ERROR = 0.0

COMPLEMENTARITY ERROR = 1.4166608063379568D-12
CONSTRAINT ERROR a 7.6717798780379098D-13



N = 2 M = 2 MEQ = 1 IPRINT = 3 TOL = 1.OOD-08
INITIAL SOLUTION ESTIMATE, X

2.0000000000000000D+00 2.0000000000000000D+00

X FOR QUADRATIC SUBPROBLEM 1
2.0000000000000000D+00 2.0000000000000000D+00

OBJF = 1.0000000000000000D+00
NORM OF LAGRANGIAN GRADIENT = 1.0671873729184791D+0O
SEARCH DIRECTION
-6.6666666667013622D-01 -8.3333333334721112D-01
LAGRANGE MULTIPLIERS FOR EQUALITY CONSTRAINTS
-6.3888888888888891D-n1
LAGRANGE MULTIPLIERS FOR INEQUALITY CONSTRAINTS
2.7777777781247306D-02

WEIGHTS FOR LINE SEARCH
6.3888888888888891D-01 2.7777777781247306D-02

X FOR LINE SEARCH ITERATION 1

2.0000000000000OOOOD+00 2.0000000000000000D+00

LINE SEARCH F(X) = 1.7500000000138780D+00
(OBJF = 1.000000D+00, CONS"R = 7.500000D-01)
LINE SEARCH STEPSIZE ALPHA 1.000000000000OOOOD+00
X FOR LINE SEARCH ITERATION 2
1.3333333333298636P+0O 1.1666666666527887D+00

LINE SEARCH F(X) = 4.9459876544944636D-01
(OBJF = 4.722222D-01, CONSTR = 2.237654D-02)
X FOR QUADRATIC SUBPROBLEM 2
1.3333333333298636D+00 1.1666666666527887D+00

OBJF = 4.7222222?22222256D-01
NORM OF LAGRANGIAN GRADIENT = 9.2657637191068534D-01
SEARCH DIRECTION
-4.3939393939421147D-01 -2.1969696968496266D-)1
LAGRANGE MULTIPLIERS FOR EQUALITY CONSTRAINTS
-1.2606501345340593D+00
LAGRANGE MULTIPLIERS FOR INEQUALITY CONSTRAINTS
1. 1880088183710331D+00

WEIGHTS FOR LINE SEARCH
1.2606501345340593D+00 1.1880088183710331D+00

X FOR LINE SEARCH ITERATION 1

1.3333333333298636D+00 1.!666666666527887D+00
LINE SEARCH F(X) = 1.4292293258993971D+00
(OBJF = 4.722222D-01, CONSTR = 9.570071D-01)
LINE SEARCH STEPSIZE ALPHA = 1.0000000000000000+00
X FOR LINE SEARCH ITERATION 2

8.9393939393565212D-01 9.4696969696"82607D-01

LINE SEARCH F(X) = 1.34086494677110800+00
(OBJF = 1.226182D+00, CONSTR = 1.146827D-01)

X FOR QUADRATIC SUBPROBLEM 3

8.9393939393565212D-01 9.4696969696782607D-01

OBJF = 1.2261822773271165D+00
NORM OF LAGRAtGIAN GRADIENT = 2.3501177267611324D-01
SEARCH DIRECTION

-6.9252 305661793120D-02 -3.4626152830896526D-02

LAGRANGF MULTIPLIERS FOR EQUALITY CONSTRAINTS

-1.5835406770665301D+00

LAGRANGE MULTIPLIERS FOR INEQUALITY CONSTRAINTS
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1.8082239730793084D+00
WEIGHTS FOR LINE SEARCH
1.58354067706o5301D+00 1.8082239730793084D+00

X FOR LINE SEARCH ITERATION 1
8.9393939393565212D-01 9.4696969696782607D-01

LINE SEARCH F(X) = 1.4007364969411530D+00
(OBJF = 1.226182D+00, CONSTR = 1.745542D.-O1)
LINE SEARCH STEPSIZE ALPHA = 1.0000000000000000D+00
X FOR LINE SEARCH ITERATION 2
8.2468708827385900D-01 9.1234354413692953D-01

LINE SEARCH F(X) = 1.3933801089817501D+00
(OBJF = 1.389041 D+00, CONSTR = 4.3360 1 4D-03)
X FOR QUADRATIC SUBPROBLEM 4

8.246870882738590OD-01 9.1234354413692953D-r1
OBJF = 1.3890440947246536D+00
NORM OF LAGRANGIAN GRADIENT = 7.3128235955400283D-03
SEARCH DIRECTION
-1.8101942269716479D-03 -9.0509711348578934D-04
LAGRANGE MULTIPLIERS FOR EQUALITY CONSTRAINTS
-1.5944760660530152D+00
LAGRANGE MULTIPLIES FOR INEQUALITY CONSTRAINTS
1.3465349463527272D+00

WEIGHTS FOR LINE SEARCH
1.5944770660530162D+C0 1.8465349463527272D+00

X FOR LINE SEARCH ITERATION 1
8.246870882 7385900D-01 9. 1234'54413692953D-01

LINE SEARCH F(X) = 1.3934719"64322374D4 O
(OBJF = 1.389044D+00, CONSTR = 4.427882D-03)
LINE SEARCH STEPSIZE ALPHA = 1.000000000000OOOOD+00
X FOR LINE SEARCH ITERATION 2

8.91287689404688735D-01 9.1143844702344373D-01
LINE SEARCH F(X) = 1.3934649806000765D+00
(OBJF = 1.393462D+OO, CONSTR = 3.025366D-06)
X FOR QUADRATIC SUBPROBLEM 5
8.2287689404688735D-01 9.1143844702344373D-01

OBJF = 1.3934619552343219D+00
NORM OF LAGRANGIAN GRADIENT = 5.0534185475060226D-06
SEARCH DIRECTION

-1.2385140122115455D-06 -6.1925700608743976D-07
LAGRANGE MULTIPLTFRS FOR EQUALITY CONSTRAINTS
-1.5944911182381'725D+00

LAGRANGE MULTIPLIERS FOR INEQUALITY CONSTRAINTS

1.8465914395513170D+00
WEIGHTS FOR LINF SEARCH

1.5944911182381725D+00 1.846591435513170D+00
X FOR LINE SEARCH ITERATION 1

8.2287689404688735D-01 9.1143844702344373D-01

LINE SEARCH F(X) = 1.3934649306926351D+00

(OBJF = 1.393462D+00, CONSTR = 3.025458D-06)

LINE SEARCH STEPSIZE ALPHA = 1.000000U000000000D+00
X FOR LINE SEARCH ITERATION 2

8.2287565553287513D-01 9.1143782776643764D-01
LINE SEARCH F(X) = 1.3934649806893016D+00

(OBJF = 1.393465D+00, CONSTR = 1.1416661D-12)
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X FOR QUADRATIC SUBPROBLEM 6

8.2287565553287513D-01 9.1143782776643764D-01
OBJF = 1.3934649806878849D+00
NORM OF LAGRANGIAN GRADIENT = 2.3655407013876912D-12

SEARCH DIRECTION

-5.7993111865659503D-13 -2.8992456599272847D-13
LAGRANGE MULTIPLIERS FOh EQUALITY CONSTRAINTS
-1.5944911182523063D+00
LAGRANGE MULTIPLIERS FOR INEQUALITY CONSTRAINTS
1.8465914396061 125)400

WEIGHTS FOR LINE SEARCH
1.5944911182523063D+00 1.8465914396061125D+00

INFO = 1 6 FUNCTION EVALUATIONS
FINAL SOLUTION ESTIMATE, X
8.2287565553287513D-01 9.1143782776643764D-01

F(X) = 1.3934649806878849D+00
CONSTRAINTS EVALUATED AT X
1.3877787807814457D-17 -7.6716411001598317D-13

LAGRANGE MULTIPLIER ESTIMATES
-1.5944911182523063D+00 1.8465914396061125D+00
LAGRANGIAN GRADIENT ERROR = 3.3450880954C77888D-12
LAGRANGE MULTIPLIER ERROR = 0.0
COMPLEMENTARITY ERROR = 1.4166608063379568D-12
CONSTRAINT ERROR = 7.6717798780379098D-13

The following output was obtained by defining the first
constraint of (12) to be an inequality constraint, i.e., by setting

c11,x2 x1 - 2*x2 + 1 >0.

As can be seen by inspecting the output, the first constraint is
strictly satisfied at the solution, i.e., c(x 1,x 2 ) > 0.

N = 2 M = 2 MEQ = 0 IPRINT = 2 TOL = 1.00D-08
INITIAL SOLUTION ESTIMATE, X

2.0000000000000000D+00 2.000000OOO0O000OD+00
X FOR QUADR:e.TIC SUBPROBLEM 1

2.0000000000000000D+00 2.00000000000C0000D+00
OBJF = 1.0000000000000000D+00

NORM OF LAGRANGIAN GRADIENT = 2.000000000000OOOOD+00
SEARCH DIRECTION

0.0 -2.0000000000000000D+00

LAGRANGE MULTIPLIERS FOR INEQUALITY CONSTRAINTS
0.0 0.0

WEIGHTS FOR LINE SEARCH

0.0 0.0
X FOR QUADRATIC SUBPROBLEM 2

2.0000000000000000D+00 1.0000000000000000D+00

OBJF = 0.0

NORM OF LAGRANGIAN GRADIENT = 7.45355992'49992988D-01

SEARCH DIRECTION

-3.3333333333333333D-01 -3.3333333333333333D-01
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LAGRANGE MULTIPLIERS FOR INEQUALITY CONSTRAINTS
0.0 3.3333333333333331D-01

WEIGHTS FOR LINE SEARCH
0.0 3.3333333333333331D-01

X FOR QUADRATIC SUBPROBLEM 3

1.6666666666666665D+00 6.6666666666666667D-01
OBJF = 2.2222222222222231D-01
NORM OF LAGRANGIAN GRADIENT = 3.035751118575528oD-01
SEARCH DIRECTION
9.1542781631979098D-02 -1.6138090518665336D-01

LAGRANGE MULTIPLIERS FOR TNEQUALITY CONSTRAINTS
0.0 7.2246448629005593D-01

WEIGHTS FOR LINE SEARCH
0.0 7.2246448629005593D-01
X FOR QUADRATIC SUBPROBLEM 4
1.7116274847636603D+00 5.8740517391898890D-01

OBJF = 2.5339319805255274D-01
NORM OF LAGRANGIAN GRADIENT = 1.281164635046353dD-01
SEARCH DIRECTION
-4.8777874421563779D-02 -3.0402545234618000D-02
LAGRANGE MULTIPLIERS FOR INEQUALITY CONSTRAINTS
0.0 7.7962167158415112D-01

WEIGHTS FOR LINE SEARCH
0.0 7.7q6216715u;415112D-01
X FOR QUADRATIC SUBPROBLEM 5
1.6628496103420964D+00 5.5700262868437089D-01

OBJF = 3.0991705623903357D-01
NORM OF LAGRANGIAN GRADIENT = 1.1735150097131356D-02

SEARCH DIRECTION
2.2648544569566127D-03 -3.0540171764236416D-03

LAGRANGE MULTIPLIERS FOR INEQUALITY CONSTRAINTS
0.0 8.0476906403356428D-01

WEIGHTS FOR LINE SEARCH
0.0 8.0476906403356428D-01
X FOR QUADRATIC SUBPROBLEM 6

1.6651 144647990530D+00 5.5394861150794725D-01
OBJF = 3.1111016286251286D-01

NORM OF LAGRANGIAN GRADIENT = 5.0355469328224549D-04
SEARCH DTRECTION

-1.4601565292086483D-04 1.0015096458053793D-04
LAGRANGE MULTIPLIERS FOR INEQUALITY CONSTRAINTS
0.0 8.0489463690323858D-01

WEIGHTS FOR LINE SEPPCH
0.0 8.0489463690323858D-01

X FOR QUADRATIC SUBPROBLEM 7

1.6649684491461321D+00 5.5404876247252778D-01
OBJF = 3.1111864631983183D-01

NORM OF LAGRANGIAN GRADIENT = 3.9411810755140243D-07
SEARCH DIRECTION

9.8090412324918410D-08 -8.7554639248454225D-08
LAGRANGE MULTIPLIERS FOR INEQUALITY CONSTRAINTS

0.0 8.0489557166403237D-01
WEIGHTS FOR LINE SEARCH

0.0 8.0489557166403237D-01
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X FOR QUADRATIC SUBPROBLEM 8
1.6649685472365443D+00 5.5404867491788852D-01

OBJF = 3.1111865868328270D-01
NORM OF LAGRANGIAN GRADIENT = 1.6'99489103916337D-11
SEARCH DIRECTION
-4.5881350475022549D-12 3.4378166279704850D-12
LAGRANGE MULTIPLIERS FOR INEQUALITY CONSTRAINTS
0.0 8.0489557193146243D-01

WEIGHTS FOR LINE SEARCH
0.0 8.0489557193 146243D-01

INFO = 1 10 FUNCTION EVALUATIONS
FINAL SOLUTION ESTIMATE, X
1.6649685472365443D+00 5.5404867491788852D-01

F(X) = 3.1111865868328270D-01
CONSTRAINTS EVALUATED AT X
1.5568711974007674D+00 -1.0214051826551440D-14

LAGRANGE MULTIPLIER ESTIMATES
0.0 8.0489557193 146243D-01

LAGRANGIAN GRADIENT ERROR = 2.3433338602885101D-11
LAGRANGE MULTIPLIER ERROR = 0.0
COMPLEMENTARITY ERROR = 8.2212450866697197D-15
CONSTRAINT ERROR = 1.0214051826551440D-14

To demonstrate the behavior of the program when an attempt
is made to solve a problem for which no feasible solution exists, the
first constraint of (12) was redefined as

c1(x1 ,x2) = x1 + x 2 - 3 = 0,

and the following output was produced.

N = 2 M= 2 MEQ = 1 IPHINT = 2 TOL = 1.OOD-08
INITIAL SOLUTION ESTIMATE, X

2.000000000000OOOOD+00 2.OOOOOOOOOOOOOOOOD+00
X FOR QUADRATIC SUBPiiOBLEM 1

2.0000000000000000D+00 2.0000000000000000D+00
OBJF = 1.0000000000000000D+00

NORM OF LAGRANGIAN GRADIENT = 1.5811388300841893D+00
SEARCH DIRECTION

5.0000000000000000D-01 -1.5000000000000000D+00
LAGRANGE MULTIPLIERS FOR EQL'ALITY CONSTRAINTS
5.0000000000000000D-01

LAGRANGE MULTIPLIERS FOR INEQUALITY CONSTRAINTS
0.0

WEIGHTS FOR LINE SEARCH
5.0000000000000000D-01 0.0

X FOR QUADRATIC SUBPROBLEM 2
2.5000000000000000D+00 5.00000000000000OOOD-01

OBJF = 5.0000000000000000D-01
NORM OF LAGRANGIAN GRADIENT = 8.4749631267634491D+00
SEARCH DIRECTION

-3.2500000000000020D+00 3.2500000000000016D+00
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LAGRANGE MULTIPLIERS FOR

4.4950000000000042D+01
LAGRANGE MULTIPLIERS FOR
3.8800000000000040D+01

WEIGHTS FOR LINE SEARCH
14.4950000000000042D+01

EQUALITY CONSTRAINTS

INEQUALITY CONSTRAINTS

3.8800000000000040D+01

X FOR QUADRATIC SUBPROBLEM 3

2.3841584158415843D+00 6.1584158415841569D-01

OBJF = 2.9515537692383119D-01
NORM OF LAGRANGIAN GRADIENT = 1.6656672144959527)+03

SEARCH DIRECTION

2.0207920792062648D+01 -2.0207920792062666D+01
LAGRANGE MULTIPLIERS FOR EQUALITY CONSTRAINTS

6.1913570494947743D+04
LAGRANGE MULTIPLIERS FOR INEQUALIif CONSTRAINTS

5. 1574049999915223D+04
WEIGHTS FOR LINE SEARCH

6.1913570494947743D+04 5.1574049999915223D+04
X FOR QUADRATIC SUBPROBLEM 4

2.4043663366336467D+00 5.9563366336635303D-01
OBJF = 3.2702426840503161D-01
NORM OF LAGRANGIAN GRADIENT = 1.0127428365451781D+04

SEARCH DIRECTION

-9.5249690073447399D-02
LAGRANGE MULTIPLIERS FOR
1.3499423760088445D+06

LAGRANGE MULTIPLIERS FOR
1.1249516708907119D+06

WEIGHTS FOR LINE SEARCH
1 .3499 4237600884 45D+06

9.5214969007314143583D-02
EQUALITY CONSTRAINTS

INEQUALITY CONSTRAINTS

1.1249516708907119D+06

X FOR QUADRATIC SUBPROBLEM 5

2.3999994310874733D+00 6.0000056891252611D-01
OBJF = 3.1993908974060504D-01
INFO = 5 12 FUNCTION EVALUATIONS
FINAL SOLUTION ESTIMATE, X
2.3999994310874733D+00 6.0000056891252611D-01

F(X) = 3.199990897 4060504D-01
CONSTRAINTS EVALUATED AT X
-6.6613381477509392D-16 -8,0000000000040350D-01
LAGRANGE MULTIPLIER ESTIMATES

0.0 0.0
LAGRANGIAN GRADIENT ERROR = 1.5999977243498942D+00
LAGRANGE MULTIPLIER ERROR = 0.0
COMPLEMENTARITY ERROR = 0.0
CONSTRAINT ERROR = 8.0000000000040417D-01
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