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Abstract

This report describes how to solve the general nonlinear
programming problem by means of a subroutine called VMCON, VMCON uses
an algorithm proposed and first implemented by M. J. D. Powell, based
on earlier work of 5-P Han. Powell's algorithm solves a sequence of
positive dafinite quadratice programming subproblems. Each solution

determines a direction in which a one-dimensional minimization is
performed.

In developing this code, we have left Powell's basic
algorithm unchanged. Changes in Powell's original implementation were
made to make the program easier to use and maintain and to incorporate

some recently developed LINPACK subprograms. The current
implementation contains extensive in-line documentation; an interface
subroutine, VMCON1, with a simplified calling sequence; and print

options to aid the user in interpreting results.
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SOLUTION OF THE GENERAL NONLINEAR PROGHRAMMING PROBLEM
WITH SUBROUTINE VMCON

Roger L. Crane*
Kenneth E. Hillstrom
Michael Minkoff

Introduction

This report is addressed primarily to the person who wishes
to solve a real problem by use of optimization methods but who is
unsure of how to proceed. Several difficulties confront such a
person, He must select an optimization routine, develop a
mathematical model of the real problem in the form required by this
routine, master numerous programming details, and ultimately interpret
the program output,

A mathematical optimization subroutine does not directly
eriable a user to solve a real problem. A link must be created between
the problem and the subroutine. This 1ink, which we have called an
application program, interfaces to the problem through a mathematical
mod«l and to the subroutine through a programming !anguage. Figure 1
illustrates this relationship.

(:&EAL PROBLEWE)

APPLICATION PROGRAM WHICH
USES OPTIMIZATION METHODS

MATHEMATICAL OPTIMIZATION
SUBRCUTINE

Figure 1, Solution of an Optimization Problem

® RCA David Sarnoff Research Center
Princeton, New Jersey
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This report discusses how te¢ create the link to a particular
optimization subroutine, named VMCON, VMCON uses an algorithm
proposed and first implemented by M. J. D. Powell of Cambridge
University [1, 2], based on earlier work of S-P Han [3]. Powell's
algorithm solves a sequence of positive definite quadratic programming
subproblems. Each solution determines a direction in which a one-
dimensional minimization is performed.

Methods based on “the solution of quadratic subproblems
represent only one class «f techniques for solving the general
nonlinear programming problem, Other approaches include penalty
function methods, generalized reduced gradient methods, and augmented
Lagrangian or multiplier metheds. No one method nor one class of
methods can be expected to solve all problems accurately and
efficiently; each method has particular strengths and weaknesses.
Some feeling for the variety of methods that have been proposed and
implemented can be obtained by study of a recent survey paper of
Lasdon and Waren {4].

Recent tests [5] have shown methods based on quadratic
approximation to be especially efficient in terms of the number of

function and gradient evaluations required. Powell's algorithm as

implemented in the Harwell Library Subroutine VF02AD was included in
these tests.

The test results and some direct experience in using
Subroutine VF02AD motivated us to develop the implementation reported
here, We have left Powell's original algorithm unchanged. We have,
however, changed his implementation to make the program easier to use
and maintain and to incorporate some recently developed LINPACK
subprograms. The current implementation contains extensive in-line
documentation; an interface subroutine, VMCON1, with a simplified

calling sequence; and print options to aid the user in interpreting
results,

-2-



Mathematical Problem

The general nonlinear programming problem, often called the
nonlinear constrained optimization problem, can be stated as

minimize f(x)
subject to (1)
ci(x) = 0, i=1,...,k,

Ci(X) _>_ 0. i=k+1.---lm|

where the objective function, f, and the constraint functions, ¢,, are
functions of n variables. Subroutine VMCON scolves problems of this
form, where the functions f and c¢; are assumed to be continuously
differentiable. Some thoughts about how to formulate such problems
will be given in the next section.

Unconstrained problems and linearly constrained problems are
inecluded in the general form (1) and can be solved with Subroutine
VMCON, However , methods specifically designed to solve these simpler
problems will zenerally be more efficient. Programs are available for
the following special cases:

OBJECTIVE
PROBLEM FUNCTION CONSTRAINTS
Unconstrained General None
Linear Programming Linear Linear
Quadratic Programming Quadratic Linear
Linearly Constrained General Linear

A solution of the general nonlinear programming problem can
be characterlized mathematically, and some understanding of this theory
is necessary to use Subroutine VMCON effectively. In particular, one
must appreciate the role of Lagrange multipliers in characterizing a
solution. Let the Lagranglan function be defined as

m
= - 3
L(x,A) = £(x) izlxici(x,. (2)
qpere the m parameters, Ay, are called the Lagrange multipliers. Ir
X 13 to be a solution of the general nonlinear programming problem,
then it is necessary that fhere exist an associated set of values of
the Lagrange multipliers, Ai' such that



m
LG AT = EGT) - ) AT G5 = o, (3a)

* 1=1
.20, i=k+1,...,m,  (3b)
* *
Aici(x ) =0, i=l,...,m, (3¢)
*
ci(x ) =0, i=l,...,k, (3d)
*
ci(x ) >0, i=k+l,...,m, (3e)

provided that an additional regularity condition is imposed on the
constraints. This condition, called the constraint qualification, may
be defined in several different ways [6]. It is not easy to check in
practice, however, and no attempt is made 4to do so in Powell's
algorithm.

The necessary conditions shown in (3) are known as the Kuhn-
Tucker conditions. Condition (3a), which states that the gradient of
the Lagrangian must wvanish, i3 a generalization of the condition in
the unconstrained case that the gradient of the objective function
must be zero. Condition (3b) states that each Lagrange multiplier
corresponding to an inequality constraint must be nonnegative. No
such requirement need be satisfied by the Lagrange multipliers that
correspond to equality constraints. Condition (3c¢), called the
complementarity condition, shows that at the solution, a constraint is
satisfied at equality, or the associated Lagrange multiplier is zero,
or both conditions hold. Finally, Conditions (3d) and (3e) ensure
that the solution is feasible, i.e., that it satisfies all the
constraints,

Powell's algorithm is an iterative method designed to
converge to a point that satisfies these first-order necessary
conditions. Theoretical results that define sufficient conditions for
a 8olution of the general nonlinear programming problem are also
available [6]. These results are not discussed in this report because
Powell's algorithm does not attempt to satlsfy sufficiency conditions.

In addition to their wuse in characterizing the necessary
conditions (3), the Lagrange multipliers provide information about the
sensitivity of the solution to perturbations in the constraints. In
particular, li gives the rate of change of the objective function, f,
with respect to a change in the 1ith econstraint [7]. The
complementarity condition (3¢), which states that A; =0 if
91(**) > 0, 1llustrates this result for an inequality constraint that
is strictly satisfied,. In this case, the constraint can be perturbed
without changing the objective function.



Problem Formulation

As mertioned earlier, the person who wishes to use
optimization methods to solve a real problem must construct a
mathematical model 1in the form required by the chosen optimization
program. Sor Subroutine VMCON, that form was defined in the preceding
section. The task of problem formulation is obviously highly
dependent on the specific application being considered. Because
optimization methods are used to solve problems from a variety of
application areas, one cannot discuss the process of problem
formulation in the detail required for any specific application.
Nevertheless, some general remarks may be useful,

One needs to consider first the primary purpose in using
optimization methods for real applications. The most obvious purpose
is to find the the minimum of a well defined constrained function
accurately and efficiently. This is appropriate for the designer of
an optimization subroutine. It is, however, unduly restrictive where
real problems are to be solved. Few real problems are so simple or so
well formulated and understood that they can be solved simply by
minimizing a single function of n variables, even when one allows the
solution to be constrained. In an applications environment, then, the
primary purpose in using optimization methods is to enhance one's
understanding of the real problem that 1is being modelled, not to

compute optimal answers. Viewed 1in this context, a mathematical
optimization program 1is a sophisticated tool to be used in an
applications program f{or the solution of a real problem. Insights

gained by using optimirvation methods with a particular mathematical
model imbedded in an application program will often lead to a revision
of the model that better approximates the real problem under
consideration., Ultimately, the precise minimum may be of interest.

The first steps in actually formulating a real problem so
that it can be studied by the use of optimization methods deo not
depend upon the particular optimization subroutine which 1is to be
used. They depend only upon the problem to be solved, As an aid in
comprehending and evzluating the ideas that follow, the reader should
have some particular problem or class of problems in mind. For
example, one might choose to think of engineering design problems.
First, one should carefully enumerate the properties that a useful
solution of the procblem would possess. When this list is completed,
it will contain the potential candidates for the objective function
and the inequality constraint functions that must be supplled to any
subroutine for constrained optimization, Next, one should 1ist all
those quantities upon which these desired characteristics depend.
This 1list will contaln the items that may ultimately be assoclated
with optimization variables, i.e., with the wvector x in the
mathematical problem (1).

The formulation process, up to this point, could be very
qualitative, To proceed further, however, one must start to think
guantitatively, For each ttem in the list of properties possessed by
g useful solution, one must attempt to find a computable measure, i.e.,
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some mathematical function, by which that property can be judged. The
measure 1s most useful if it is monotone in the sense that as its
value decreases (or increases), the property is Jjudged to be more
desirable. This is the most difficult part of the formulation
process. Perhaps some of the desirable properties cannot be
characterized mathematically, or some of the factors that influence
the solution cannot be quantified. Even if neither of these
difficulties arise, it may be best to ignore, at least initially, some
of the desirable properties or some of the factors that influence the
solution, One should attempt to formulate the simplest model that has
a reasonable chance of adequately describing the real problem being
considered. An unduly complicated model is more difficult to solve
and as a result may not lead to increased understanding of the real
problem. Most of the skills required to construct useful mathematical
models come from one's formal education and practical experience in
the application area of interest. One can also profit by studying
some cases in which mathematical models of rezl problems have been
constructed so that optimization methods can be applied {8, 9].

At this point in the formulation process, one has a set
S = {s,(x)}} of maths atical functions. Each s,(x) measures one aspect
of the quality of golution to the real problem of interest. The
objective and ine uality constraint funetions of (1) will be
constructed from this set. Equality constraints will be considered
later. The form of (1) 1is somewhat restrictive in that only one of
the s,(x) can be selected for the objective function; 1i.e., only one
functlion can be minimized, and the others must be regarded as
constraints., Note that it is no restriction to think only of
minimizing si(x) because, if a maximum is desired, one could use the
function -s;(x). Assume that the jth function is selected for
minim -ation, i.e., that f(x) = s:{x} in (1). Now, the constraint
functions ¢;(x) of (1) for i #j can be defined by introducing
constants t; such that

Ci(X) = Si(X) - tii 0.

Inequalities of the opposite sense can be handled easily by using the

negative of s;(x). Each constant, ¢ty, sets the 1level of the
assocliated quality measure that will be regarded as satisfactory in
attempting to solve the constrained problem. Some experimentation

with these constants may be necessary in solving the real problem.
The final step in formulating the problem is to identify any relztions
among the optimization variables or functions of those variables which
result in equality constraints. Such functions can then be used
directly to define the eguality constraints of (1).



Overview of Powell's Algorithm

In this section, we provide encugh information about
Powe . algorithm to enable a user of VMCON to interpret the
subr . = output. A more complete description of the underlying

thecy +: > found in Reference [1]. In the course of solving real
problem., one often inadvertently formulates incomplete mathematical

models. It is common, for example, to assume implicitly that certain
variables or functions will remain positive or not tend to infinity
when it is known from physical arguments that such will be the case
for the real problem. The conditions may not hold, however, if the
model i3 inadequate to describe the real problem. Thus, one must
understand enough about the optimization algorithm to be able to judge
whether the results produced by the subroutine are due to the nature
of the real problem, to the mathematical model, or perhaps to the
algorithm itself, Such judgments are often easier to make if one
requests subroutine output during the course of the seclution rather
than waiting until the iterative process either converges or diverges.
The following description of Powell's algorithm provides some
background to help the user of Subroutine VMCON decide what output to
request.

An iterative procedure 1is used in VMCON to soclve
Problem {(1). Two major tasks are performed during each iteration.
First, a positive definite quadratic programming problem 1is solved;
then a one-dimensional minimization is performed, as illustrated in
the simple flow chart of Fig. 2.

The solution of the quadratic programming problem provides
estimates of the Lagrangz multipliers and also determines a search
direction for use in the subsequent one-dimensional minimization. The
function that is minimized balances the two competing goals which
result from the desire to decrease the objective function while
reducing the amount by which the constraints fail to be satisfied,.
The solution of this minimization problem produces a revised estimate
of the solution of (1).

A positive definite quadratic programming problem is a
problem of form (1), where f is a poaitive definite quadratiec function
and where the constraints are 1linear fu.actions. The quadratic
funetion in Powell's algerithm is obtained by approximating the
Lagrangian function (23}, and the constraints for the quadratic
programming preblem are obtained by 1ineariz%ng the constraints of (1)
about the current solution estimate, xj". Here, and below, a
superscript is wused to denote the iteration on which a quantity 13
computed.



[Initialize

Determine a search direction. 6, and Lagrange
multiplier estimates, , i=1,...,m by
solving a quadratic prog;ammlng problem

Convergence criterion
satisfied 7

‘\“\\JEQB

- Exit

Determine a new solution estimate, xJ. by
approximetely minimizing a function of one
variable which Jepends upon both the
objective runction and those constraints
which are not satisfied

i

l[j:j+1

Figure 2. Simplified Flow Chart of Algorithm Used in VMCON

The quadratic programming problem to be solved at each
iteration can be reduced to the form

minimize Q(§) = ey« sTorcxd b (1/2)TB(xd~1, 3 3-1)s

subject to (L)

Vc'i(xj'l)a + ci(xi‘l) =0, i=1,....k,
ch (x3"Lys + ci(xj_l) >0, izkel,...,m.

The sclution of (4) on the jth iteration is denoted below by Gj and
the Lagrange multipliers generated by snlving (4) ere denoted by Ays
i=1,....,m. A quadratic approximat.on in x of the Lagrangian about

xJ=1 has the form



Q(x) = L(xj'l.xj"l) + (x - xj_l)Tv L(xj"l.xj'l) (%)
X
e /2y = 230 Lo L3y x - xd7Yy,
XX

The simplified form of Q(g) in (4) follows from (5) by first
expressing L(x,A) as given by (2), by expressing v, L(x,A) similsrly,
and then by making use of the constraint relations to simplify the
first two terms. Finally, one identifies B(xj"l, Aj'l } as an
approximation to VxxL(xJ‘l.AJ‘l) and sets § = x - x}~1  As indicated
by the notation, the matrix B changes from iteration to iteration.
The initialization of this matrix and the strategy used to revise it
will be discussed later.

One should note the qualitative relations between the
solution of the quadratic programming problem and the necesszary
conditions (3) of the general problem, Condition (3a) states that the
gradient of the Lagrangian for the general problem must vanish at a
solution. The simplified form of Q{§) is an approximation to the
Lagrangian, as shown above, To the extent that this approximation is
valid and that linear approximations to the constraints are valid, the
solution of the quadratic programming problem approximates the

solution of the general problem. Powell [2] points out the need to
supplement this basic idea with some technique that tends to force
convergence from poor starting approximations. The one-dimensional

minimization is introduced for this purpose.

The form of the function that is minimized in the line
search on the jth iteration is
k

$la) = plx,p) = f(x) +1£1 “ilci(X)|

m
+ uy |min (C,e (x| (6)
1=K+1 il 11

where x = xj_l + aﬁj and My > 0.

The latter two terms in (6) are weighted sums of the absolute
constraint violations. The weights used in VMCON are

- 1
g = Al
for the firat iteration and

Wy o= max[lki|, %(ui-l + |Ai|ﬂ

on subsequent iterations. This choice of weights is motivated by
theoretical results on convergence derived by Han [3] and by numerical
eiperiments performed by Powell 1, 2].

An iterative procedure Hased on quadratic approximations is

useu *o determine an approximete minimum of (6). Detalls are given in
Ref. [1]. A maximum 1limit of ten steps is allowed for the
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minimization in this implementation of VMCON. Powell's original
implementation had a limit of five. Little change in efficiency was
noted in solving several test problems with the increased limit, and a
problem of premature termination of the algorithm was eliminated. The
value of the solution estimate to be, used for the next iteration is

defined as xJ = xi-! + o¢d8J, where o) is the value of o determined by
the linear search procedure above,

Upon completion of the line search, the information required
to revise the estimate of the second derivative of the Lagrangian is
available. The information is in the form of two differences

£=0- 0 band v = LGd ) v LadThad), (7)
The method used to revise the Hessian estimate is based on the BFGS
Quasi-Newton update formula

T T
B, BEE B . Yy
Byew =B - 1 T (8)
£ BE £
which is widely wused for unconstrained minimization. Here, the

superscripts indicating iteration dependence have been dropped for
simplicity. For the constrained problem, vy is modified to ensure that
the revised matrix remains positive definite. The method suggested by
Powell [1,2] is to replace ¥ with

By + {1 - @)BE , (9)

where 0 < 8 < 1 is defined by

1 £’y > 0.267BE

9 = T . (10)
0.8 BE Ty < 0.2¢Tae

eTBe-¢ "y

This completes the discussion of the estimation of VxxL(x,2)
except for the specification of the initial estimate, B(KO.KO). This
estimate 13 normally taken to be be the identity matrix. Because the
algorithm depends on the scaling of the initial Hessian <stimate,
however, a constant multiple of the identity matrix may be preferable
for some problems. If better information is available for estimating
the Hessian initially (for example, information obtained by solving
closely related problems)}, its use may improve both the reliability
and the efficiency of the iterative algorithm.

As indicated in Fig. 2, a convergence test is made on each
iteration after the quadratic programming problem is solved, The
algorithm terminates if the condition

m
vr(xd L T-6j|+ 7 |Ai ci(xj-1)| < = (1)
im]
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is satisfied, where £ is a user-supplied error tolerance. The first
term is the predicted change in magnitude of the objective lunction if
another line search is performed, and the second term is a measure of
the complementarity error, i.e., the amount by which necessary
condition (3¢) fails to be satisfied. Thus, 1if the change in the
objective function and the complementarity error are sufficiently
small, xJ-1 ig accepted as the soluticn of (1).

-11-



Use of Subroutines VMCON and VMCON1

In this section the programming details required for the use
of VMCON and VMCON1 are discussed. In each of the subroutines
supplied, all floating-point variables are declared DOUBLE PRECISION
(REAL®*8). The subroutines have been compiled with the IBM G1 and H
Extended Fortran compilers and have been tested on IBM Model 370/168
370/195, and 3033 processors. Modified versions of two Harwell
librory programs, VEO02AD [10] and LAQGZ2AD [11], are included. These
subroutines are used to solve the quadratic programming subproblems
described above and were modified to wuse some recently developed
LINPACK [12] and Basic Linear Algebra [13] subprograms. No changas
were made to the algorithms defined in Refs. [10] and [11].

Both  VMCON and VMCON1 solve the general nonlinear
programming problem (1). VMCON1 provides an interface to VMCON with a
simplified calling sequence. Details regarding variable names and
calling sequences for both programs are provided by extensive comment
statements included in the Fortran code, These are also included
below,

To use either VMCON or VMCON1, the user must supply a
Fortran subroutine that computes f{x); Vf(x); c.(x); Ve, {(x), i=1,...,m
of (1) given the vector x; the number of variabfes, n: “and the number

of constraints, m. Some consideration must be given to the proper
scaling of these functions. There is a somewhat artificial
restriction on the vector =x. The subroutine used to solve the

quadratic programming subproblems requires that upper and lower bounds
be sprcified for the independent variables, x., i=1,...,n. The values
used in this implementation are set 1in Subroutine QPSUB as £10°% An
error indicator is set in VMCON if the solution of (1) 1is restricted
by one of these artificial bounds. The initial estimate of the second
derivative ma*trix discussed in the preceding section is related to the
scaling of f and Vf. Becuuse the identity matrix is used as an
initial estimate wunless an estimate is provided by the user, the
functions £ and V¥f should be scaled to have magnitudes near unity
Although it is not crucial to the performance of the algorithm, 1i. .3
alsc advisable to scale the constraints and constraint gradients to be
of order one as an aid in interpreting intermediate subroutine cutput.

All additional information required to define the problem
and to control the execution of VMCON or VMCON1 is suprlied through
the a. gument list, No COMMON storage is used. For most problems,
VMCUN1 is recormmended because it is simpler to use. If, however, one
desires to sp:-cify an initial estimate of the second derivative matrix
or to specify an upper limit on the number of funcition evaluations
other than the limit of 100%(n+1) wused in VMCON1, then VMCON must be
called direclly. The options for selecting intermediate subroutine
output are the same for both programs. The information discussed in
the preceding section is useful in determining what output to request.

A variable, INFO, 1is set by VMCON1 or VMCON and returned to
the user to indicate normal or abnormal termination, A brief

-12-



description of the conditions identified by INFO is included with the
in-line documentation below. The factors that result in values of 0,
1, or 2 for INFO are clear. The remaining cases require some
interpretation,

Values of 3 or 4 for INFO are most likely to occur btecause
the results produced by evaluating the user-supplied subroutine FCN
which computes f{x), Vf(x), ci(x). and Vci(x) are inconsistent, It
may be that subroutine FCN has been coded incorrectly and that the
algorithm has not been able to make substantial progress,
Alternatively, the solution may have proceeded to a point where noise
in the functions has produced difficulty. This noise could be due to
rounc¢aoff errora or perhaps to limited precision in the computation of
the finctions. The latter case can occur when the functions are
evaluated by solving differential equations or evaluating integrals
which attempt to satisfy a user-supplled error tolerance [14],

An INFO value of 5 is most 1likely to occur because there is
no feasible solution to the nonlinear problem (1). An illustration of
this case is given in the examples later in this report. However, it
is also possible that the linearized constraints in the quadratic
programming suoproblem have no solution even though there does exist a
feasible sovlution to the nonlinear problem, If this difficulty is
suspected and the subroutine has terminated close to the starting
point, other initial solution estimates should be considered. It may
be, however, that the starting estimate 1is reasonable but the
algorithm has taken an inappropriately 1large initial step. This can
oceur when the initial estimzte of the second derivative matrix is
poor. Use of a better initial Hessian estimate, wften simply a
constant multiple of the 1identity matrix, may result in a more
reasonable initial step and ultimate convergence tc a solution.

INFO is set to b if a singular matrix is encountered in
swlving a quadratic programming subproblem or if the solution of the
subproblem is restricted by an artifiecial bound as discussed eartier
in this seciion,

-13-



kR4 (ge of Subroutine VMCON1 #¥ER%

s NN s NeNeNeNeNeNeNeRe Rz R R Rt Rz R Rz Re R N2 R Ra RN s Es s NS s R R+ N e e NSNS R E NS IS Ir]

SUBROUTINE VMCON1(FCN,N,M,MEQ,X,OBJF,FGRD,CONF,CNORM,LCNORM,

VLAM, TOL, IPRINT,NWRITE, INFO,WA,LWA, IWA,LIWA)
INTEGER N,M,MEQ,LCNORM,IPRINT,NWRITE, INFO,LWA, LIWA
INTEGER IWA(LIWA)
DOUBLE PRECISION OBJF,TOL
DOUBLE PRECISION X(N),FGRD(N),CONF(M),CNORM(LCNORM,M),VLAM(M),
WA {LWA)

EXTERNAL FCN
RERREERRNN

SUBROUTINE VMCON1

THIS SUBROUTINE CALCULATES THE LEAST VALUE OF A FUNCTICON OF
SEVERAL VARIABLES SUBJECT TO LINEAR AND/OR NONLINEAR EQUALITY
AND INEQUALITY CONSTRAINTS, MORE PARTICULARLY, IT SOLVES THE
PROBLEM

MINIMIZE F(X)

SUBJECT TO C (X) = 0.0, I =1,...,MEQ
I

AND C (X} >= 0,0, I
I

MEQ+1,...,M

THE SUBROUTINE IMPLEMENTS A VARIABLE METRIC METHOD FC%
CONSTRAINED OPTIMIZATION DEVELOPED BY M.J.D, POWELL,

THE SUBROUTINE STATEMENT IS

SUBROUTINE VMCON1(FCN,N,M,MEQ,X, OBJF,FGRD,CONF,CNORM,LCNORM,
VLAM,TOL,IPRINT,NWRITE,INFO,WA,LWA, IWA,LIWA)

WHERE

FCN IS THE NAME OF THE USER SUPPLIED SUBROUTINE WHICH
CALCULATES THE OBJECTIVE AND CONSTRAINT FUNCTIONS, AND THE
GRADIENTS (FIRST DERIVATIVE VECTORS) OF THE OBJECTIVE AND
CONSTRAINT FUNCTIONS. FCN SHOULD BE DECLARED IN AN EXTERNAL
STATEMENT IN THE USER CALLING PROCGRAM, AND SHOULD BE WRITTEN
AS FOLLOWS

SUBROUTINE FCN(N,M,X,0BJF,FGKD,CONF,CNORM,LCNORM, INFO)
INTEGER N,M,LCNORM,INFO

DOUBLE PRECISION OBJF

DOUBLE PRECISION X(N),FGRD(N),CONF(M),CNORM(LCNORM,M)
STATEMENTS TO CALCULATE THE OBJECTIVE AND CONSTRAINT
FUNCTIONS AND THE GRADIENTS OF THE OBJECTTVE AND CONSTRAINT
FUNCTIONS AT X. THE OBJECTIVE AND CONSTRAINT FUNCTIONS AND
THE GRADIENT OF THE OBJECTIVE FUNCTION MUST BE RETURNED IN
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QBJF, CONF AND FGRD RESPECTIVELY. NOTE THAT THE EQUALITY
CONSTRAINTS MUST PRECEDE THE INEQUALITY CONSTRAINTS IN CONF.
THE CONSTRAINT GRADIENTS OR NORMALS MUST BE RETURNED AS THE
COLUMNS OF CNORM.

RETURN

END

THE VALUE OF INFO SHOULD NOT BE CHANGED BY FCN UNLESS THE
USER WANTS TO TERMINATE EXECUTION OF VMCON1. IN THIS CASE
SET INFO TO A NEGATIVE INTEGER.

N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER OF
VARIABLES,

M IS 3% POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER OF
CONSTRAINTS.

MEQ IS A NON-NEGATIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF EQUALITY CONSTRAINTS. MEQ MUST BE LESS THAN OR EQUAL TO N.

X 15 A REAL#8 ARRAY OF LENGTH N, ON INPUT IT MUST CONTAIN AN
INITIAL ESTIMATE OF THE SOLUTION VECTOR. ON GUTPUT X
CONTAINS THE FINAL ESTIMATE OF THE SOLUTION VECTOR.

OBJF IS A REAL*8 OQUTPUT VARIABLE THAT CONTAINS THE VALUE OF THE
OBJECTIVE FUNCTION AT THE OUTPUT X,

FGRD IS A REAL*8 OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE
COMPONENTS CF THE GRADIENT OF THE OBJECTIVE FUNCTION AT
THE OUTPUT X.

CONF IS A REAL*8 OUTPUT ARRAY OF LENGTH M WHICH CONTAINS THE
VALUES QF THE CONSTRAINT FUNCTIOND AT THE OUTPUT X, THE
EQUALITY CONSTRAINTS PRECEDE THE INEQUALITY CONSTRAINTS,

CNORM IS A REAL®*8 LCNORM BY M ARRAY WHOSE COLUMNS CONTAIN THE
CONSTRAINT NORMALS AT THE OUTPUT X IN THE FIRST N POSITIONS,

LCNORM IS A POSITI.I INTEGER INPUT VARIABLE SET TO THE ROW
DIMENSION OF CNORM WHICH IS AT LEAST N+1. THE (N+1)ST ROW
OF CNORM IS USED FOR WORK SPACE,

VLAM 1S A REAL*®*3 OUTPUT ARRAY OF LENGTH M WHICH CONTAINS THE
LAGRANGE MULTIPLIERS AT THE OUTPUT X. THE LAGRANGE
MULTIPLIERS PROVIDE THE SENSITIVITY OF THE OBJECTIVE
FUNCTION TO CHANGES IN THE CONSTRAINT FUNCTIONS.

TOL IS A NONNEGATIVE REAL®*8 INPUT VARIABLE. A NORMAL RETURN
OCCURS WHEN THE OBJECTIVE FUNCTION PLUS SUITABLY WEIGHTED
MULTIPLES OF THE CONSTRAINT FUNCTIONS ARE PREDICTED TO
DIFFER FROM THEIR OPTIMAL VALUES BY AT MOST TOL,

IPRINT IS AN INTEGER INPUT PARAMETER WHICH CONTROLS THE PRINTED
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OUTPUT FROM VMCONi. IT SHOULD BE SET AS FOLLOWS

IPRINT <=

IPRINT =

IPRINT =

IPRINT =

IPRINT >=

0 NO OUTPUT

1 FOR EACH QUADRATIC SUBPROBLEM, X, OBJF, AND
THE NORM OF THE LAGRANGIAN GRADIENT ARE OUTPUT

2 OUTPUT ABOVE PLUS THE SEARCH DIRECTION AND THE
LAGRANGE MULTIPLIERS FROM THE QUADRATIC SUB~-
FROBLEM, AND THE MULTIPLIERS FOR THE LINE
SEARCH

3 OUTPUT ABOVE PLUS LINE SEARCH OUTPUT WHICH
INCLUDES, FOR EACH ITERATION, X, THE LINE
SEARCH OBJECTIVE FUNCTION AND ITS COMPONENTS,
AND THE STEP FACTCR USED IN CONJUNCTION WITH
THE SEARCH DIRECTION

4 OUTPUT ABOVE PLUS, FCR EACH QUADRATIC SUB-
PROBLEM, FGRD, CONF, CNORM, AND THE HESSIAN
ESTIMATE

NWRITE IS AN INTEGER INPUT VARIABLE WHICH SPECIFIES THE UNIT

NUMBER OF

THE DATASET OR FILE TO WHICH THE OUTPUT SELECTED BY

IPRINT IS TO BE WRITTEN. IF NWRITE IS SET TO ANY NONPOSITIVE
VALUE THE DEFAULT UNIT (UNIT 6) WILL BE USED FOR THE PRINTED

OUTPUT.

INFO IS AN INTEGER OUTPUT PARAMETER SET AS FOLLOWS

IF INFO IS NEGATIVE THEN USER TERMINATIOW. OTHERWISE

INFO = 0
INFO = 1
INFO = 2
INFO = 3
INFO = 4
INFO = 5
INFO = 6

IMPROPER INPUT PARAMETERS, TEST3 ARE MADE TO INSURE
THAT N AND M ARE POSITIVE, TOL IS NON-NEGATIVE,

MEQ IS LESS THAN OR EQUAL TO N, AND THAT LCNORM,
LwA, AND LIWA ARE SUFFICIENTLY LARGE,

A NORMAL RETURN, SEE DESCRIPTION OF TOL,

NUMBER OF CALLS TO FCN IS AT LEAST 100%(N+1).

LINE SEARCH REQUIRED TEN CALLS OF FCN.

UPHILL SEARCH DIRECTION WAS CALCULATED.

QUADRATIC PROGRAMMING ALGORITHM WAS UNABLE TO FIND
A FEASIBLE POINT.

QUADRATIC PROGRAMMING ALGORITHM WAS RESTRICTED BY
AN ARTIFICIAL BOUND OR FAILED DUE TO A SINGULAR
MATRIX.

WA IS A REAL®8 WORK ARRAY OF LENGTH LWA,
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LWA IS A POSITIVE INTEGER INPUT VARIABLE SET EQUAL TO THE
DIMENSION OF WA WHICH IS AT LEAST
2%M 4+ N®(S*N 4+ 21) + 10 + MAX(TH(N+1),4%(N+1)+M).

IWA IS AN INTEGER WORK ARRAY OF LENGTH LIWA.

LIWA IS A POSITIVE INTEGER INPUT VARIABLE SET EQUAL TO THE
DIMENSION OF IWA WHICH IS AT LEAST 6%(N+1) + M.

SUBROUTINES CALLED

USER SUPPLIED ...... FCN
FORTRAN SUPPLIED ... MAXO
AMDLIB SUPPLIED ... VMCON

ALGORITHM VERSION OF JUNE 1979.

ROGER L. CRANE, KENNETH E. HTLLSTROM, MICHAEL MINKOFF

eEeEeNsEs Rt Rz Rt EsEvEsRT T s Es R Es s Es s e N ¢ ]

B3 3 9 3o 3 % 3 %

EEREE  lge of Subroutine VMCON  ####x

SUBROUTINE VMCON(FCN,MODE,N,M,MEQ,X,OBJF,FGRD,CONF , CNORM,LCNORM,

1 B,LB, TOL ,MAXFEV, IPRINT, NWRITE, INFO,NFEV, VLAM,
2 GLAG, VMU,CM,GLAGA, GAMMA , ETA, XA, BDELTA, DELTA,
3 LDEL,GM, BDL ,BDU, H, LH,WA, LWA, TWA, LIWA)

IN.ECFR MODE,N,M,MEQ,LCNORM,LB,MAYFEV,IPRINT, NWRITE, INFO, NFEV,
1 LDEL,LH,LWA,LIWA

INTEGER IWA(LIWA)
DOUBLE PRECISICN OBJF,TOL
DOUBLE PRECISION X(N),FGRD(N),CONF(M),CNORM(LCNORM,M),B(LB,LB),

1 VLAM(M) ,GLAG(N),VMU(M) ,CM(M) ,GLAGA(N ) ,GAMMA(N),
ETA(N),XA(N),BDELTA(N) ,DELTA(LDEL),GM(1),

3 BDL(1},BDU(1),H(LH,LH) ,WA(LWA)

T ITIT Y

SUBROUTINE VMCON

THIS SUBROUTINE CALCULATES THE LEAST VALUE OF A FUNCTION OF
SEVERAL VARIABLES SUBJECT TO LINEAR AND/OR NONLINEAR EQUALITY
AND INFQUALITY CONSTRAINTS., MORE PARTICULARLY, IT SOLVES THE
PROBLEM

MINIMIZE F(X)

SUBJECT TO C (X) = 0,0, I =1,...,MEQ
I

AND C (X) >- 0.0, I
I

C
c
c
C
C
C
C
C
c
C
C
C
¢
C
C MEQ+1,...,M
C
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THE SUBROUTINE IMPLEMENTS A VARIABLE METRIC METHOD FOR
CONSTRAINED OPTIMIZATION DEVELOPED BY M,J,.D, POWELL.

THE SUBROUTINE STATEMENT IS

SUBROUTINE VMCON(FCN,MODE,N,M,MEQ,X,0BJF,FGRD, CONF, CNORM,
LCNORM,B,LB, TOL ,MAXFEV, IPRINT ,NWRITE, INFO,
NFEV, VLAM,GLAG, VMU, CM,GLAGA ,GAMMA, ETA XA,
BDELTA,DELTA,LDEL,GM,BDL,BDU,H,LH,WA,LWA.IWA,
LIWA)

WHERE

FCN IS THE NAME OF TI:E USER SUPFLIED SUBROUTINE WHICH
CALCULATES THE OBJECTIVE AND CONSTRAINT FUNCTIONS, AND THE
GRADIENTS (FIRST DERIVATIVE VECTORS) OF THE OBJECTIVE AND
CONSTRAINT FUNCTIONS, FCN SHOULD BE DECLARED IN AN EXTERNAL
STATEMENT IN THE USER CALLING PROGRAM, AND SHOULD BE WRITTEN
AS FOLLOWS

SUBROUTINE FCN(N,M,X,0BJF,FGRD,CONF,CNORM,LCNORM, INFO)
INTEGER N,M,LCNORM,INFO

DCUBLE PRECISIUN OBJF

DOUBLE PRECISION X(N),FGRD(N),CONF(M),CNORM(LCNORM,M)
STATEMENTS TO CALCULATE THE OBJECTIVE AND CONSTHAINT
FUNCTIONS AND THE GRADIENTS OF THE OBJECTIVE AND CONSTRAINT
FUNCTIONS AT X. THE OBJECTIVE AND CONSTRAINT FUNCTIONS AND
THE GRADIENT OF THE OBJECTIVE FUNCTION MUST BE RETURNED IN
OBvF, CONF AND FGRD RESPECTIVELY. NOTE THAT THE EQUALITY
CONSTRAINTS MUST PRECEDE THE INEQUALITY CONSTRAINTS IN CONF,
THE CONSTRAINT GRADIENTS OR NORMALS MUST BE RETURNED AS THE
COLUMNS OF CNORM,

RETURN

END

THE VALUE OF INFO SHOULD NOT BE CHANGED BY FCN UNLESS THE
USER WANTS TO TERMINATE EXECUTION OF VMCON., IN THIS CASE
SZT INFO TO A NEGATIVE INTEGER.

MODI IS A NON-NEGATIVE INTEGER INPUT VARIABLE SET TO 1 IF THE
SECOND DERIVATIVE MATRIX IN B (SEE BELOW) IS PROVIDED BY THE
USER, AND TO 0 IF IT IS TO BE INITIALTIZED TO THE IDENTITY
MATRIX.

N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER OF
VARIABLES,

M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER OF
CONSTRAINTS.
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MEQ IS A NON-NEGATIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF EQUALITY CONSTRAINTS. MEQ MUST BE LESS THAN OR EQUAL TO N.

X IS A REAL*8 ARRAY OF LENGTH N, ON INPUT IT MUST CONTAIN AN
INITIAL ESTIMATE OF THE SOLUTION VECTCR, ON OUTPUT X
CONTAINS THE FINAL ESTIMATE OF THE SOLUTION VECTOR.

OBJF IS A REAL*3 OUTPUT VARIABLE THAT CONTAINS THE VALUE OF THE
OBJECTIVE FUNCTION AT THE OUTPUT X.

FGRD IS A REAL*8 OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE
COMPONENTS OF THE GRADIENT OF THE CBJECTIVi FUNCTION AT
THE OUTPUT X.

CONF IS A REAL*3 CUTPUT ARRAY OF LENGTH M WHICH CONTAINS THE
VALUES OF THE CONSTRAINT FUNCTIONS AT THE OUTPUT X. THE
EQUALITY CONSTRAINTS MUST FRECEDE THE INEQUALITY CONSTRAINTS.

CNORM IS A REAL*3 LCNORM BY M ARRAY WHOSE COLUMNS CONTAIN THE
CONSTRAINT NORMALS AT THE OUIPUT X IN THE FIRST N POSITIONS.

LCNORM IS A FOSITIVE INTEGER INPUT VARIABLE 3ET TO THE ROW
DIMENSION OF CNORM WHICH IS AT LEAST N+1. THE (N+1)ST ROW
OF CNORM IS USED FOR WORK SPACE.

B IS A REAL*8 LB BY LB ARRAY WHOS: FIRST N ROWS AND COLUMNS
CONTAIN THE APPROXIMATICN TO THE SECOND DERIVATIVE MATRIX
OF THE LAGRANGIAN FUNCTION, OFTEN, AN ADEQUATE INITIAL
B MATRIX CAN BE OBTAINED BY APPROXIMATING THE HESSIAN
OF THE COBJECTIVE FUNCTION. ON INPUT, THE APPROXIMATION IS
PROVIDED BY THE USER IF MODE = 1 AND IS SET TO THE IDENTITY
MATRIX IF MODE = 0. THE (N+1)ST ROW AND COLUMN ARE USED FOR
WORK SPACE.

LB IS A PGSITIVE INTEGER INPUT VARIABLE 3SET TO THE ROW
DIMENSION OF B WHICH IS AT LEAST N+1.

TOL IS A NON-NEGATIVE IN®UT VARIABLL. A NORMAL RETURN OCCURS
WHEN THE OBJECTIVE FUNCTLunN PLUS SUITABLY WEIGHTED MULTIPLES
OF THE CONSTRAINT FUNCTIONS ARE PREDICTED TO DIFFER FROM
THEIR OPTIMAL VALUES BY AT MOST TOL.

MAXFEV IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE LIMIT
ON THE NUMBER OF CALLS TO FCM.

IPRINT IS AN TNTEGER INPUT PARAMETER WHICH CONTROLS THE PRINTED
OUTPUT FROM VMCON. IT SHOULD BE SET AS FOLLOWS

IPRINT <= 0 NO OUTPUT

IPRINT =1 FOR EACH QUaDRATIC SUBPROBLEM, X, OBJF, AND
THE NORM OF THE LAGRANGIAN GRADIENT ARE OUTPUT
IPRINT = 2 OUTPUT AFJVE PLUS THE SEARCH DIRECTION AND THE
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LAGRANGE MULTIPLIERS FROM THE QUADRATIC 3UB-
PROBLEM, AND THE MULTIPLIERS FOR THE LINE
SEARCH

IPRINT = 3 OQUTPUT ABOVE PLUS LINE SEARCH QUTPUT WHICH
INCLUDES, FOR EACH ITERATION, X, THE LINE
SEARCH OBJECTIVE FUNCTIONIAND ITS COMPONENTS,
AND THE STEP FACTOR USED IN CONJUNCTION WITH
THE SEARCH DIRECTION

IPRINT >= 4 OUTPUT ABOVE PLUS, FOR EACH QUADRATIC SUB-
PROBLEM, FGRD, CONF, CNORM, AND THE HESSIAN
ESTIMATE

NWRITE IS AN INTEGER INPUT VARIABLE WHICH SPECIFIES THE UWIT
NUMBER OF THE DATASET CR FILE TO WHICH THE CGUTPUT SELECTED BY
IPRINT IS TO BE WRITTEN. IF NWRITE IS SET TO ANY NCNPOSITIVE
VALUE THC DEFAULT UNIT (UNIT 6) WILL BE USED FOR THE PRINTED
OUTPUT.

INFO I3 AN INTEGER OUTPUT VARIABLE SET AS FOLLOWS
IF INFO IS NEGATIYVE THEN USER TERMINATION. OTHERWISE

TINFOQ

0 IMPROPER INPUT PARAMETERS., TESTS AXE MADE TO INSURE
THAT N AND M ARE POSITIVE, TOL IS NON-WEGATIVE,
MEQ I3 LESS THAN OR EQUAL TO N, AND THAT LCNORM,
LB, LDEL, LH, LWA, AND LIWA ARE SUFFICTENTLY LARGE.

INFO = 1 A NORMAL RETULN. SEE DESCRIPFT1ON OF TOL.
INFO = 2 NUMBER OF CALLS TQ FCN IS AT LEAST MAXFEV.
INFO = 3 LINE SEARCH REQUIRED TEN CALLS OF FCN.
INFO = 4 UPHILL SEARCH LIRECTION WWAS CALCULATEL.

INFO = 5 QUADRATIC PROGRAMMING TECHNIQUE WAS U4ABLE TO FIND
A FEASIBLE POINT.

INFO = 6 QUADRATIC PROGRAMMING TECHNIQUE WAS RESTRICTED BY
AN ARTIFICTAL BOUND OR FAILED DUE TO A SINGULAR
MATRIX,

NFEV IS AN INTEGER OUTPUT VARIABLE SET TC THE NUMBER OF CALLS
To FCN.

VLAM IS A REAL®*8 OUTPUT ARRAY OF LENGTH M WHICH CONTAINS THE
LAGRANGE MULTIPLIERS AT THE OUTPUT . THE LAGRANGE
MULTIPLIERS PROVIDE THE SENSITIVITY OF THE OBJECTIVE
FUNCTION TO CHANGES IN THE CONSTRAINT FUNCTIONS,

GLAG IS A REAL®*B8 OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE
COMPONENTS OF THE GRADIENT OF THE LAGRANCTAY FUNCTION AT
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THE OUTPUT X,
VMU, CM ARE REAL%*8 WORK ARRAYS OF LENGTH M.

GLAGA, GAMMA, ETA, XA, BDELTA ARE REAL¥8 WORK ARRAYS OF
LENCTH N,

DELTA IS A REAL*8 WORK ARRAY OF LENGTH LDEL.

LDEL IS A POSITIVE INTEGER INPUT VARIABLE SET EQUAL TO THE
LENGTH OF DELTA WHICH IS AT LEAST MAX(T®(N+1),4%(N+1)+M).

GM, BDL, BDU ARE REAL*8 WORK ARRAYS OF LENGTH N+1.
H IS A REAL*38 LH BY LH WORK ARRAY.

LH IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE DIMENSION
OF THE SQUARE ARRAY H WHICH IS AT LEAST 2%(N+1}.

WA IS A REAL*8 WORK ARRAY OF LENGTH LWA.

LWA IS A POSITIVE INTEGER INPUT VARIABLE SET EQUAL TO THE
DIMENSION OF WA WHICH IS AT LEAST 2¥(N+1).

IWA IS AN TNTEGER WORK ARRAY OF LENGTH LIWA.

LIWA IS A POSITIVE INTEGER INPUT VARIABLE SET EQUAL TO THE
DIMENSION OF IWA WHICH IS AT LEAST 6*%(N+1) + M.

SUBPROGRAMS REQUIRED
USER SUPPLIED ...... FCN
FORTRAN SUPPLIED ... DABS,DMAX1
MINPACK SUPPLIED ... ENORM
AMDLIB SUPPLIED ,.. QPSUB
ALGORITHM VERSION OF JUNE 1979.

ROGER L. CRANE, KENNETH E. HILLSTROM, MICHAEL MINKOFF

ARG RERNRR
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Examples

The introductory chapter of reference (9] contains five

simple examples of mathematical programming problems. Each problem
has only two variables, and graphs are included +to identify the
constraints and the sclutions. Included below is the result obtained

by using VMCON1 to solve one of thase problems, the general nonlinear
problem

minimize f(xl,xz) = (xl - 2)2 + (x2 - 1)2
subject to (12)
= - 2% =
cl(xl,xz) .Kl 2 x2 + 1 0
c (x x):-xzfu—x2+1>0.
271" 2 1 2 —

The results for two closely related problems are also given. The main
program listed below has been written so that any of the five examples
in Chapter 1 of Ref., [9] can be run simply by changing SUBROUTINE FCN
and by furnishing the appropriate input data. Each of these five
problems is instructive and simple to code and thus can be used to
gain more experience in the use of VMCON or VMCONT.

The main program also includes code to check how well the
Kuhn-Tucker necessary conditions (3) are satisfied by the solution
produced by VMCONT, The Lagrangian Gradient Error (see 3a *is
computed as the sum of the magnitudes of the components of VxL(x 9. N I
and the Lagrange Multiplier Error (see 3b) is determined as the sum of
the magnitudes of the negative Lagrange multipliers associated with
inequality constraints. The Complementarity Error (see 3¢) is defined
as o

T e, (]
=1 i~i

and the Constraint Error (see 3d,3e) is defined as

k * m *
Y les (x| + ¥ | min(0,c (x ).
i=1 t i=k+1

MAIN PROGRAM FOR USE WITH THE FIVE EXAMPLES GIVEN IN THE
INTRODUCTION OF BRACKEN AND MCCORMICK (9). AS DESCRIBED IN THE
DOCUMENTATION FOR VMCON AND VMCON1, THE USER MUST SUPPLY A
SUBROUTINE TO COMPUTE THE OBJECTIVE AND CONSTRAINT FUNCTIONS AND
THEIR DERIVATIVES.

DECLARATION OF VARIABLES USED IN VMCON1 ARGUMENT LIST

OO0 0000
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INTEGER N,M,MEQ,LCNORM,IPRINT,NWRITE, INFU,LWA,IWA(22),LIWA

REAL*8 X(2),0BJF,FGRD(2),CONF(4),CNORM(3,4),VLAM(4),TOL ,WAC101)

DECLARATION OF COMMON AND LOCAL VARIABLES

INTEGER I,J,NFUN

REAL*8 SUM,DABS, ZERO, ERRLG, ERRLM, ERRCOM, ERRCON

COMMON /STAT/ NFUN

EXTERNAL FCN

DATA LCNORM/3/,LIWA/22/,LWA/101/ ,NWRITE/6/
DATA ZERO/0.DO/

READ N
M
MEQ
TPRINT
TOL

NUMBER OF VARIABLES
NUMBER OF CONSTRAINTS

NUMBER OF EQUALITY CONSTRAINTS

INTERMEDIATE QUTPUT OPTION
TERMINATION ACCURACY

READ(5,*,END=300) N,M,MEQ,IPRINT,TOL
WRITE(6,20) N,M,MEQ, IPRINT, TOL
FORMAT('IN =',I3,' M

' TOL =',1PD10.2)

', I3,!

READ INITIAL SOLUTION ESTIMATE

READ(5,*) (X(I},I=1,N)
WRITE(6,30) (X(I).T=1,N)
FORMAT('OINITIAL SOLUTION ESTIMATE, X',/,{1P5D24.,16))

NFUN = 0

CALL VMCON1 (FCN,N,M,MEQ,X,0BJF,FGRD,CONF,CNORM,LCNORM,
VLAM,TOL,IPRINT,NWRITE, INFO,WA,LWA, IWA,LIWA)

OUTPUT SOLUTION

WRITE(6,40)INFO,NFUN

FORMAT('OQINFO =",I3,19,' FUNCTION EVALUATIONS')

WRITE(6,50) (X(I),I=1,N)
FORMAT('OF INAL SOLUTION ESTIMATE, X',/,(1P5D24.16))
WRITE(6,60) OBJF
FORMAT('OF(X) =',1PD24.16)
WRITE(6,70) (CONF(I),I=1,M)
FORMAT('OCONSTRAINTS EVALUATED AT X',/,(1P5D24.16))
WRITE(6,80) (VLAM(I),I=1,M)
FORMAT('OLAGRANGE MULTIPLIER ESTIMATES',/,(1P5D24,16))

EVALUATE KUHN-TUCKER NECESSARY CONDITIONS (3)

MEQ =',I3,'

IPRINT

CALCULATE 1-NORM OF LAGRANGIAN GRADIENT ERRORS (3A)

ERRLG = ZERO

13,



DC 1101 =
3UM = FG
DO 100 J
SUM =
100 CONTINUE
ERRLG = ERRLG + DABS{SUM)
110  CONTINUE

I)
1,M

D
SUM - VLAM(J)*CKNORM(I,J)

C CALCULATE 1~NORM OF NEGATIVE LAGRANGE MULTIPLIER ERRORS (3B)

ERRLM = ZERO
DO 1201 = 1,M
IF(I .LE. MEQ .OR. VLAM(I) .GE. ZEROC} GO TO 120
ERRLM = ERRLM + DABS(VLAM(I))
120  CONTINUE

C CALCULATE 1-NORM OF COMPLEMENTARITY ERRORS (3C)

ERRCOM = ZERO
DO 130T = 1,M
ERRCOM = ERRCOM + DABS(VLAM{I)*CONF(I;)
130  CONTINUE

c CALCULATE 1-NORM OF CONSTRAINT ERRORS (3D,3E)

ERRCON = ZERO
DO 140 I = 1,M
IF(I .GT. MEQ .AND. CONF(I) .GE. ZERO) GO TO 140
ERRCON = ERRCON + DABS(CONF(I))
140  CONTINUE

c QUTPUT KUHN-TUCKER ERRORS

WRITE(6,200) ERRLG

200 FORMAT('OLAGRANGIAN GRADIENT ERROR =',1PD24.16)
WRITE(6,210) ERRLM

210  FORMAT(' LAGRANGE MULTIPLIER ERROR =',1PD24.16)
WRITE(6,220) ERRCOM

220 FORMAT(' COMPLEMENTARITY ERROR =',1PD24,16)
WRITE(6,230) ERRCON

230 FORMAT(' CONSTRAINT ERROR =',1PD2u,16)

C
GO TO 10
c
300 STOP
END
C
c
SUBROUTINE FCN (N,M,X,0BJF,FGRD,CONF,CNORM,LCNIRM, INFO)
c
c NONLINEAR PROBLEM WITH CNE INEQUALITY AND ONE EQUALITY CONSTA.
c
c MINIMIZE F(X1,X2) = (X1 - 2)%%2 + (X2 - 1)%¥%2
c SUBJECT TO
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c C1(X1,X2) = X1 = 2%2 + 1 = 0
C C2(X1,X2) = -X1%¥2/4 _ X2#¥2 4+ 1 >= 0
c
c REFERENCE. BRACKEN AND MCCORMICK (9), PP. 18-19,
c
INTEGER N,M,LCNORM,INFO
REAL*8 X(N),OBJF,FGRD(N),CONF(M),CNORM(LCNORM,M)
c
INTEGER NFUN
c
COMMON/STAT/ NFUN
c
OBJF = (X(1) - 2.D0)¥#2 4+ (X(2) ~ 1.D0)¥¥2
c
FGRD(1) = 2,DO*(X(1) - 2.D0)
FGRD(2) = 2.DO%(X(2) -~ 1.,D0)
c
CONF(1) = X(1) -~ 2.DO*X(2) + 1.D0
CONF(2) = -0.25DO*X(1)#%2 _ X(2)%¥2 + 1.D0
c
CNORM(1,1) = 1,DO
CNORM(2,1) = -2.D0
CNORM(1,2) = -0,5D0O%X(1)
CNORM(2,2) = -2.D0%*X(2)
c
NFUN = NFUN + 1
RETURN
END

All of the following results were produced by use of an IBM
Model 370/168 computer. The firs' two runs were made with the
MAIN PROGRAM and SUBROUTINE FCN listed above to sclve Problem (12).
No intermediate cutput from VMCON was generated in the first run
because IPRINT = O, IPRINT was set to 3 In the second run to permit
one to follow the iterative steps taken by VMCON in solving (12). In
each case, a starting estimate of (2,2) was vsed.

N= 2 M= 2 MEQ= 1 IPRINT= 0 TOL = 1.00D-08
INITIAL SOLUTION ESTIMATE, X

2.0000000000000000D+00 2.0000000000000000D+00
INFO = 1 6 FUNCTION EVALUATIONS
FINAL SOLUTION ESTIMATE, X

8.22875655532875130-01 9, 1143782776643764D-01
F(X) = 1,3934649806878849D+00
CONSTRAINTS EVALUATED AT X

1.3877787807314457D-17 -7.6T164110061598317D-13
LAGRANGE MULTIPLIER ESTIMATES
~-1.5944911182523063D+00 .8465914396061125D+00
LAGRANGIAN GRADIENT ERROR = 3.3450880954077888D-12
LAGRANGE. MULTIPLIER ERROR =z 0.0
COMPLEMENTARITY ERROR = 1.4166608063379568D-12
CONSTRAINT ERROR = 7,6717798780379098D~13
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N= 2 M= 2 MEQ= 1 IPRINT= 3 TOL = 1.,00D-08

INITIAL SOLUTION ESTIMATE, X

2.0000000000000000D+00 2, 0000000000000000D+00

X FOR QUADRATIC SUBPROBLEM 1
2.0000000000000000D+00 2. 00000000000000000+00

OBJF = 1.0000000000000000D+00

NORM OF LAGRANGIAN GRADIENT = 1.06718737°9184791D+00

SEARCH DIRECTION

-6,6666666667013622D-01 -8.3333333334721112D-01

LAGRANGE MULTIPLIERS FOR EQUALITY CONSTRAINTS

~H.3868888888888891D-01

LAGRANGE MULTIPLIERS FOR INEQUALITY CONSTRAINTS
2. 77177717 781247306D-02

WEIGHTS FOR LINE SEARCH
6.3888888888888891D-01 2.7777777781247306D-02

X FOR LINE SEARCH ITERATION 1
2.0000000000000000D+00 2.0000000000000000D+00

LINE SEARCH F(X) = 1.7500000000138780D+00

(OBJF =  1.000000D+00, CON3"R =  7.500000D-01)

LINE SEARCH STEPSIZE ALPHA = 1.0000000000000000D+00

X TOR LINE SEARCH ITERATION 2
1.3333333333298636N+00 1, 1666666666527887D+00

LINE SEARCH F(X) = 4.9459876544944636D-01

(OBJF =  L,722222D-01, CONSTR = 2.237654D-02)

X FOR QUADRATIC SUBPROBLEM 2
1.3333333333298630D+00 1.166666666652T887D+00

OBJF = U,7222222222222256D-01

NORM OF LAGRANGIAN GRADIFENT = 9.2657637191068534D-01
SEARCH DIRECTION

-4,3939393939421147D-01 -2.1969696968496266D-71

LAGRANGE MULTIPLIERS FOR EQUALITY CONSTRAINTS
-1.2606501345340593D+00

LAGRANGE MULTIPLIERS FOR INEQUALITY CONSTRAINTS
1.1880088183710331D+00

WEIGHTS FOR LINE SEARCH
1,2606501345340593D+00 1, 1880088183710331D+00

X FOR LINE SEARCH ITERATION 1
1.3333333333298636D+0N0 1, 1666666666527887D+00

LINE SEARCH F(X) = 1.4292293258993971D+00

(OBJF =  4,722222D-01, CONSTR = 9.570071D-01)
LINE SEARCH STEPSIZE ALPHA = 1.00000000000000000+00

X FOR LINE SEARCH ITERATION 2
8.9393939393565212D-01 9, 4696969696"82607D-~01

LINE SEARZH F(X) = 1.34086494677110800+00

(OBJF = 1.226182D+00, CONSTR = 1,146827D-01)

¥ FOR QUADRATIC SUBPROBLEM 3
8.9393939393565212D-01 9.4696969696782607D=01

OBJF = 1.2261822773271165D+00

NORM OF LAGRAAGIAN GRADIENT = 2.350117726761132uUD-01

SEARCH DIRECTION

-6.9252505661793120D-02 -3.4626152830896526D-02

LAGRANGF MULTIPLIERS FOR EQUALITY CONSTRAINTS

-1,5835u406770665301D+00

LAGRANGE MULTIPLIERS FOR INFQUALITY CONSTRAINTS
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1.8082239730793084D+00
WEIGHTS FOR LINE SEARCH
1.5835406770655301D400 1.8082239730793084D+00
X FOR LINE SEARCH ITERATION 1
8.9393939393565212D-01 9.4696969696782607D-01
LINE SEARCH F(X) = 1.4007364969411530D+00
(OBJF = 1.226182D+00, CONSTR =  1,745542D.-01)
LINE SEARCH STEPSIZE ALPHA = 1.0020000000000000D+00
X FOR LINE SEARCH ITERATION 2
8.2468708827385900D-01 9.12343544136G2953D-01
LINE SEARCH F{X) = 1.3933801089817501D+00
(OBJF =  1.38904:D+00, CONSTR = 4,336014D-03)
X FOR QUADRATIC SUBPROBLEM 4
8.2468708827385900D-01 9.1234354413692953D-01
OBJF = 1.3890440447246536D+00
NORM OF LAGRANGIAN GRADIENT = 7.3128235955400283D-03
SEARCH DIRECTION
-1.8101942269716479D-03 -v.0509711348578934D-04
LAGRANGE MULTIPLIERS FOR EQUALITY CONSTRAINTS
-1.5944760660530152D+00
LAGRANGE MULTIPLIE3S FOR INEQUALITY CONSTRAINTS
1.8465349463527272D+00
WEIGHTS FOR LINE SEARCH
1.59447r0660530162D+C0  1,8U465349463527272D+00
X FOR LINE SEARCH ITERATION 1
8.2468708827385900D-01 9.1234254413692953D-01
LINE SEARCH F(X) = 1,3934719764322374D4720
(OBJF =  1.389044D+00, CONSTR = 4, 427882D-03)
LINE SEARCH STEPSIZE ALPHA = 1,0000000000000000D+00
X FOR LINE SEARCH ITERATION 2
8.2287689404688735D-01 9. 1143844702344373D-01
LINE SEARCH F(X) = 1,3934649806000765D+00
(OBJF =  1.393462D+00, CONSTR =  3.025366D-06)
X FOR QUADRATIC SUBPROBLEM 5
8.228768940u688735D-01 9.1143844702344373D-01
OBJF = 1.3934619552343219D+00
NORM OF LAGRANGIAN GRADIENT = 5.0534185475060226D-06
SEARCH DIRECTIOHN
-1.2385140122115455D-06 ~6.1925700608743976D-07
LAGRANGE MULTIPLTFRS FOR EQUALITY CONSTRAINTS
-1.5944911182381725D+00
LAGRANGE MULTIPLIERS FOR INEQUALITY CONSTRAINTS
1,8465914395513170D+00
WEIGHTS FOR LINF SEARCH
1.5944911182381725D+00 1, 8465914305513170D+00
X FOR LINE SEARCH ITERATION 1
8.228768940U688T735D-01 9.1143844702344373D-01
LINE SEARCH F(X) = 1,3934649506926351D+00
(OBJF = 1,393462D+00, CONSTR = 3.025U458D-06)}
LTINE SEARCH STEPSIZE ALPHA = 1.0000000000000000D+00
X FOR LINE SEARCH ITERATION 2
8.2287565553287513D-01 G, 1143782776643764D-01
LINE SEARCH F(X) = 1.3934649806893016D+00
(OBJF =  1,393465D+00, CONSTR = 1.416661D-12)
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X FOR QUADRATIC SUBPROBLEM 6
8.2287565553287513D-01 G, 1143782776643764D-01
OBJF = 1.3934649806878849D+00
NORM OF LAGRANGIAN GRADIENT = 2,3655437013876912D-12
SEARCH DIRECTION
-5.7993111865659503D-13 -2,8992456599272847D-13
LAGRANGE MULTIPLIERS FOK EQUALITY CONSTRAINTS
-1.5944911182523063D+00
LAGRANGE MULTIPLIERS FOR INEQUALITY CONSTRAINTS
1.84659143960611250400
WEIGHTS FOR LINE SEARCH
1.5944911182523063D+00 1.8465914396061125D+00
INFG = 1 i FUNCTION EVALUATIONS
FINAL SOLUTION ESTIMATE, X
8.2287565553287513D-01 9.1143782776643764D-01
F(X) = 1.3934649806878849D+00
CONSTRAINTS EVALUATED AT X
1.3877787807814457D-17 -7.6716411001598317D-13
LAGRANGE MULTIPLIER ESTIMATES
-1.5944G11182523063D+00 1.8465914396061125D+00
LAGRANGIAN GRADIENT ERROR = 3,3450880954C77888D-12
LAGRANGE MULTIPLIER ERROR = 0,0
COMPLEMENTARITY ERROR = 1.4166608063379568D=-12
CONSTRAINT ERROR = 7.6717798780379098D-13

The following output was obtained by defining the first
constraint of (12) to be an inequality constraint, i.e., by setting

- - 2%
cl(xl,xz) = x1 2 x2-+1 >0,
As can be seen by inspecting the output, the first constraint is

strictly satisfied at the solution, i.e., cl(xl ,x; ) > 0.

N= 2 M= 2 MEQ= 0 IPRINT= 2 TOL = 1.00D-08
INITIAL SOLUTION ESTIMATE, X
2.00000000CC000000D+00  2,0000000000000000D+0OF
X FOR QUADRLTIC SUBPROBLEM 1
2.0000000000000000D+00 2.00000000000CU000D+00
OBJF = 1,0000000000000000D+00
NORM OF LAGRANGIAN GRADIENT = 2.00000000000000C0D+00
SEARCH DIRECTION
0.0 -2,0000000000000000D+00
LAGRANGE MULTIPLIERS FOR INEQUALITY CONSTRAINTS
0.0 0.0
WEIGHTS FOR LINE SEARCH
0.0 0.0
X FOR QUADRATIC SUBPROBLEM 2
2.0000000000000000D+00 1.0000000000000000D+00
OBJF = 0.0
NORM OF LAGRANGIAN GRADIENT = 7.4535599249992988D-01
SEARCH DIRECTION
-3.3333333333333333D-01 -3.3333333333333333D-01
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LAGRANGE MULTIPLIERS FOR INEQUALITY COUSTRAINTS

0.0 3.3333333333333331D-01
WEIGHTS FOR LINE SEARCH
0.0 3.3333333333333331D-01

X FOR QUADRATIC SUBFROBLEM 3
1.6666666666666665D+00 6,6666666666666667D-01
QBJF = 2,2222222222222231D-01
NORM OF LAGRANGIAN GRADTENT = 3,03575111857%5280D-01
SEARCH DIRECTION
9.1542781631979098D-02 -1.6138090518665336D-01
LAGRANGE MULTIPLIERS FOR TNEQUALITY CONSTRAINTS3

0.0 7.2246448629005593D~01
WEIGHTS FOR LINE SEARCH
0.0 7.2246448629005593D-01

X FOR QUADRATIC SUBPROBLEM 4

1.71162748U47636603D+00 5.8740517391838890D-01
OBJF = 2.5333319805255274D-01
NORM OF LAGRANGIAN GRADIENT = 1.28116U46350463533D-01
SEARCH DIRECTION
-4,.8777874421563779D-02 -3.0402545234618000D-02
LAGRANGE MULTIPLIERS FOR INEQUALITY CONSTRAINTS

0.0 7.7962167158415112D-01
WEIGHTS FOR LINE SEARCH
0.0 7.766216715¢415112D-01

X FOR QUADRATIC SUBPROBLEM 5

1.6628496103420964D+00 5.5700262868437089D-01
OBJF = 3.0991705623903357D-01
NORM OF LAGRANGIAN GRADIENT = 1,1735150097131356D-02
SEARCH DIRECTION

2.2648584569566127D-03 -3.0540171764236416D-03
LAGRANGE MULTIPLIERS FOR INEQUALITY CONSTRAINTS

0.0 8.0476906U403356428D-01
WEIGHTS FOR LINE SEARCH
0.0 8.0476906403356428D-01

X FOR QUADRATIC SUBPROBLEM ©

1.6651144647990530D+00 5.5394861150794725D-01
OBJF = 3.1111016286251286D-01
NORM OF LAGRANGIAN GRADIENT = 5.0355469328224549D-04
SEARCH DTRECTION
-1.4601565292086483D-04 1,0015096458053793D-04
LAGRANGE MULTIPLIERS FOR INEQUALITY CONSTRAINTS

0.0 8.0489463690323858D-01
WEIGHTS FOR LINE SEpRCH
0.0 8.0489463690323858D-01

X FOR QUADRATIC SUBPROBLEM 7

1.6649684491461321D+00 5.5U04876247252778D-01
OBJF = 3,1111864631983183D-01
NORM OF LAGRANGIAN GRADIENT = 3.9411810755140243D-07
SEARCH DIRECTION

9.8090412324918410D-08 -B8.,7554639248454225D-08
LAGRANGE MULTIPLIERS FOR INEQUALITY CONSTRAINTS

0.0 8.0489557166403237D~01
WEIGHTS FOR LINE SEARCH
0.0 8.0489557166403237D-01
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X FOR QUADRATIC SUBPROBLEM 8
1.6649685472365443D+00 5,5404867491788852D-01

OBJF = 3,1111865868328270D~01

NORM OF LAGRANGIAN GRADIENT = 1,6599489103916337D-11

SEARCH DIRECTION

-4,5881350475022549D-12 3.4378166279704850D-12

LAGRANGE MULTIPLIERS FOR INEQUALITY CONSTRAINTS

0.0 8.0489557193146243D-01
WEIGHTS FOR LINE SEARCH

0.0 8.0489557193146243D-01
INFO = 1 10 FUNCTION EVALUATIONS

FINAL SOLUTION ESTIMATE, X
1.6649685472365443D+00 5.5404867491788852D-01
F(X) = 3.1111865868328270D~01
CONSTRAINTS EVALUATED AT X
1.5568711974007674D+00 ~1.0214051826551440D-14
LAGRANGE MULTIPLIER ESTIMATES
0.0 8.0489557193146243D-01
LAGRANGIAN GRADIENT ERROR = 2,3433338602885101D-11
LAGRANGE MULTIPLIER EZRROR = 0,0
COMPLEMENTARITY ERROR = 8,2212450866697197D-15
CONSTRAINT ERROR = 1.0214051826551440D-14

To demonstrate the behavior of the program when an attempt
is made to solve a problem for which no feasible solution exists, the
first constraint of (12) was redefined as

Cl(xlng) = xl + x2 - 3 = 00

and the following output was produced.

N= 2 M= 2 MEQ= 1 IPHINT = 2 TOL = 1,00D-08
INITIAL SOLUTION ESTIMATE, X
2.0000000000000000D+00 2.0000000000000000D+00
X FOR QUADRATIC SUBPxOBLEM 1
2.0000000000000000D4+00 2. 0000000000000000D+00
CBJF = 1.0000000000000000D400
NORM OF LAGRANGIAN GRADIENT = 1.5811388300841893D+00
SEARCH DIRECTION
5.000060000000000000-01 -1,5000000000000000D+00
LAGRANGE MULTIPLIERS FOR EQUALITY CONSTRAINTS
5.0000000000000000D-01
LAGRANGE MULTIPLIERS FOR INEQUALITY CONSTRAINTS
0.0
WEIGHTS FOR LINE SEARCH
5.0000000000000000D-01 0.0
X FOR QUADRATIC SUBPROBLEM 2
2.5000000000000000D+0C 5,0000000000000000D-01
OBJF = 5.0000000000000000D-01
NORM OF LAGRANGIAN GRADIENT = 8.4749631267634491D+00
SEARCH DIRECTION
-3.2500000000000020D+00 3.2500000000000016D+00
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LAGRANGE MULTIPLIERS FOR EQUALITY CONSTRAINTS
4, 4950000000000042D+01
LAGRANGE MULTIPLIERS FOR INEQUALITY CONSTRAINTS
3.8800000000000040D+01
WEIGHTS FOR LINE SEARCH
4, 4950000000000042D+01 3, 8800000000000040D+01
X FOR QUADRATIC SUBPROBLEM 3
2.3841584158415843D+00 6.1584158415841569D-01
OBJF = 2.9515537692383119D-01
NORM OF LAGRANGIAN GRADIENT = 1.6656672144959527)+03
SEARCH DIRECTION
2.0207920792062648D+01 -2.0207920792062666D+01
LAGRANGE MULTIPLIERS FOR EQUALITY CONSTRAINTS
6.19135704949477U43D+04
LAGRANGE MULTIPLIERS FOR INEQUALI1{ SONSTRAINTS
5.1574049999915223D+04
WEIGHTS FOR LINE SEARCH
6.1913570494947743D+04 5, 15T4049999915223D+04
X FOR QUADRATIC SUBPROBLEM 4
2.4043663366336467D+00 5.9563366336635303D-01
OBJF = 3.2702426840503161D-01
NORM OF LAGRANGIAN GRADIENT = 1.0127428365451781D+04
SEARCH DIRECTION
~9.5249590073447399D-02 §.5249690073443583D-02
LAGRANGE MULTIPLIERS FOR EQUALITY CONSTRAINTS
1.3499423760088445D+06
LAGRANGE MULTIPLIERS FOR INEQUALITY CONSTRAINTS
1,1249516708907119D+06
WEIGHTS FOR LINE SEARCH
1.3499423760C88445D+06 1,1249516708307119D+06
X FOR QUADRATIC SUBPROBLEM 5
2.3999994310874733D+00 6,0000056891252611D-01
OBJF = 3.1995908974060504D-01
INFO = 5 12 FUNCTION EVALUATIONS
FINAL SOLUTION ESTIMATE, X
2.3999994310874733D+00 6.0000056891252611D-01
F(X) = 3.1999908974060504D-01
CONSTRAINTS EVALUATED AT X
-6.6613381477509392D-16 -§,0000000000040350D-01
LAGRANGE MULTIPLIER ESTIMATES
0.0 0.0
LAGRANGTAN GRADIENT ERROR = 1.5999977243498942D+00
LAGRANGE MULTIPLIER ERROR = 0.0
COMPLEMENTARITY ERROR = 0.0
CONSTRAINT ERROR = 8,0000000000040417D-01
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