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Solution of the Linear Inverse Problem in Magnetic 
Interpretation with Application to Oceanic 

Magnetic Anomalies 
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Surmnar y 

The problem of interpreting a magnetic anomaly usually reduces to 
either (1) determining the distribution of magnetization given the shape 
of the body and the direction of magnetization, or (2) determining the 
shape of one interface, given the magnetization and other interfaces. 
These involve solution of an integral equation, linear in case ( 1 )  and 
non-linear in case (2). The paper gives two solutions of the linear problem 
applicable either to gravity or magnetic interpretation, which may also 
be used as a starting point for the iterative solution of the non-linear 
problem. 

Method (I): The Fourier convolution theorem has been used to derive 
a two-dimensional magnetic version of the ‘ equivalent layer ’ theorem, 
which is the simplest case of the inverse problem. This enables a given 
magnetic anomaly to  be replaced by a coating of magnetic moment per unit 
area of specified direction over the horizontal plane of the measured 
anomalies. The ‘equivalent layer’ can be continued downwards by 
existing methods. A computer program applicable to the method is 
available at  Durham. 

Method (2): A more versatile approach is to approximate the linear 
integral equation by a summation, resulting in a set of linear equations. 
If the number of observations are equal to the unknown magnetization 
parameters the equations are solved directly; if there are more observations 
than unknowns, least squares is used. In either case, the matrix schemes 
available on most computers provide the main tool for the method. 

Method ( 2 )  has been applied to the interpretation of oceanic magnetic 
anomalies in terms of two-dimensional rectangular blocks confined between 
two specified depths, the magnetization varying laterally from block to 
block. The matrix inversion needs to be done once only for specified depths, 
block width and direction of magnetization. It provides a weighting 
function for the observed anomaly and repeated application of the convo- 
lution gives the underlying distribution of magnetization. Applications of 
the method to the Juan de Fuca Ridge, suggests that unacceptably high 
contrasts in magnetization are required if the main source is below the 
oceanic layer 2, supporting the view that rocks in layer 2 cause a substantial 
part of the anomalies. 
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1. Introduction 

This paper describes two methods for the solution of the inverse problem in the 
interpretation of magnetic anomalies. Method ( I )  uses the Fourier convolution 
theorem and in its simplest form it leads to a magnetic equivalent layer theorem. 
Method (2) depends on the solution of linear equations and has much wider applica- 
tion. The methods described apply to two-dimensional magnetic interpretation but 
are equally applicable to gravity interpretation and may be extended to three- 
dimensional interpretation without further complication apart from increase in com- 
puting time. 

FIG. 1 

Consider a magnetic anomaly measured along the horizontal x-axis, caused by 
an underlying two-dimensional distribution of magnetization with its strike direction 
perpendicular to the x-axis and with a constant (specified) direction of magnetization 
(Fig. 1). The z-axis points vertically downwards and the observed anomaly at  (x, 0) 
is A(x). The magnetization is parallel to m(cos p, sin p) and the measured component 
of anomaly is in the direction s(cos a, sin a), both of which are assumed to lie within 
the xz-plane; if they do not a simple transformation may be used to bring them into 
this plane (Bott, Smith & Stacey 1966). 

Suppose the distribution of magnetization causing the anomaly may be represented 
by a closed body or system of closed bodies whose surfaces are cut either twice or not 
at all by any vertical line. Let 5 be the x-co-ordinate of a point on or in the system of 
bodies and let the upper and lower surfaces be at depths z=q1(5) and z = q 2 ( t )  
respectively. The intensity of magnetization J ( 5 )  is assumed to be a function of 5 
alone within the bodies and zero without. This situation gives rise to two types of 
interpretation problem: 

(i) if the shape of the magnetized body or bodies is given, problem (i) is to deduce 
J ( 5 )  from A(x); 

(ii) if J ( ( )  and either q1(5) or qz(<) are given, problem (ii) is to deduce the shape 
of the undefined surface. 

We have t m  

A(x)= 1 J(C)K(V1, 1 2 ,  P, (x-O)dt, (1) 
- m  

where K is a kernel which depends on q, ,  v2 and f i  = (p+a). Since K is independent 
of f ,  problem (i) involves the solution of a linear integral equation. Problem (ii) 
is non-linear since q I  and q2 are included in K .  Most problems in gravity and magnetic 
interpretation can be reduced to one of these two. The solution of the linear problem 
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forms the substance of this paper. The non-linear problem can usually only be solved 
by iterative methods (e.g. Bott 1960, Tanner 1967), but the linear solution provides a 
powerful tool for making the successive approximations (Tanner 1967). 

2. Fourier convolution solution of the linear problem 

This method follows Kreisel’s (1949) solution of integral equations with kernels. 
Suppose the distribution of magnetization (or density) causing a given anomaly is 
either concentrated on a plane at  fixed depth q or lies between planes at  fixed depths 
q l  and q2 .  J ( 5 )  is the magnetic moment (or mass) per unit area, or unit volume, 
respectively. Equation (1) can be written 

where the asterisk denotes Fourier convolution. *It is usually necessary to replace 
A(x)  by a smoothed anomaly A’(x’)  such that 

+ m  
t 

A’(x’)= 1 j A(x)  o(5’ - x)dx= A * w, 
J(W . 

- m  

where w is an appropriate weighting function. 
Denote the Fourier transform of A ( x )  by A($) etc. using the definition 

f W  

and apply the Fourier convolution theorem to (2) and (3). This gives 

A’(s) = E(s) J ( s )  

and A’(s) = G(s) A@). 

Thus J(s )  =Z(s) A(s)/k(s).  

w must be chosen to ensure that is a Fourier transform. Invert (4) to give 

(3) 

(4) 

- m  - m  

Equation (5) formally enables J to be calculated from A .  Assume that the order of 
integration may be changed. Thus 

1 + m  

Equation (6) is applicable either to gravity or magnetic interpretation provided 
that the mass or magnetization is either concentrated on a plane at constant depth 
or is uniformly distributed between two fixed depths, and that they tend to zero as 
I xI-+oo. The ‘sinxlx’ method of gravity interpretation (Tomoda & Aki 1955) and 
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316 M. H. P. Bott 

Bullard & Cooper’s method (1948) may be derived from (6) by inserting the relevant 
weighting function. In the following section it is used to develop a similar method 
for magnetic interpretation. 

3. Application of the Fourier convolution method to the magnetic equivalent layer 
problem 

Suppose the distribution of dipoles causing a given two-dimensional magnetic 
anomaly is concentrated on a horizontal plane at depth z=q and that P= (p+  o) is 
constant and specified. Put t = ( x - t ) .  Then 

and 

Substitute (7) in (6): 

E(s) = - 27c e-Islq (is sin P +I s 1 cos P). J 

Thus 

where 

and 

+ W  

- m  

m 

m 

1 cos ts 
g2(t)= - - 1 o(s)esq - ds. 2n2 S 

Equations (8), (8a) and (8b) give the required equivalent layer theorem. We 
proceed to evaluate the integrals (8a) and (8b) for the special case q =O. Let E(s )  = 1 
for s1 < I sI < s2 and i;j(s)=O elsewhere. Then 

and 

AS ~2-00, 

and 

Thus 
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where y is Euler's constant. The r.h.s. of (9) has a singularity at sl=O but since 
A(x)dx= 0 for any two-dimensional magnetic anomaly and the singularity is 

fa, 

independent of t the term (y  + logs,) A(x)  may be removed from (8). Thus as s1 +O 
we have 

1 and 
gz(t)-+ z;;i log1 tl. 

Thus 
+ m  

I 1 n 
2 ~ ( t ) =  9 (loglx-tl c o s ~ +  - sign(x-4;) sinB ~ ( x ) d x .  (10) 

Equation (10) enables a given magnetic anomaly to be interpreted in terms of a 
coating of magnetic moment per unit area of specified direction over the horizontal 
plane on which the anomaly is measured. The formula can also be obtained from the 
two-dimensional version of the pseudo-gravity calculation (Bott, Smith & Stacey 
1966). 

The coating of magnetization on a plane underlying the observations could be 
obtained by inserting an appropriate weighting function and evaluating the kernel 
functions (8a) and (8b). A simpler approach is to continue the measured anomaly 
downwards and then apply (10); alternatively J ( t )  as obtained using (10) may be 
continued downwards since it satisfies the two-dimensional form of Laplace's equation. 

A computer program for evaluating (10) is available at Durham. It was written 
by R. A. Stacey in connection with the pseudo-gravity method for determining the 
direction of magnetization of a body causing a magnetic anomaly (Bott, Smith & 
Stacey 1966). Computer methods are also available for the downward continuation. 

- m  

4. The matrix solution of the linear problem 
An alternative method of solving the linear version of the inverse problem in 

gravity or magnetic interpretation is to subdivide the body into a finite number of 
volume elements, each being sufficiently small to allow the assumption of uniform 
density or magnetization. The direction of magnetization needs to be specified. 
Suppose the value of the anomaly A,(x,  z) is known at n points and there are m volume 
elements (n 2 m). Then the integral (1) may be replaced by a finite summation, giving 

m 

j =  1 
A,= Kt ,Jj  ( i=1,2,  ..., n). 

K ,  is the anomaly at the ith field point caused by the jth volume element assuming 
unit density or magnetization; it is a function only of the shape of the volume element 
and its position relative to the field point, and p in the magnetic case. 

If m =n, the solution is obtained by solving a set of n linear equations. This gives, 
in matrix notation, 

J=K-' A. (12) 

J = @ K ) - ' K ~ A  (13) 

If n>m, (1 1) is solved by least squares (Tanner 1967), giving 

where KT is the transpose of K. 
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gamma 
50 - 

-50 - 

-100 ~ 

-150 

beta = i '55' 

beta = 200' -367 -405 I -561 -620 -542 II - 403 

beta-245' 11 -1181 -283 -853 -425 -407 -124 

FIG. 2. Interpretation of a magnetic anomaly in the north Irish Sea by method (2), 
using the same number of blocks and field points. Three different directions of 

magnetization are assumed. Magnetization in units of 10-5 e.m.u./cm3. 

This method is particularly versatile since it can be applied to irregularly shaped 
bodies which are not amenable to the Fourier method and can also give least squares 
solutions. The field points do not need to be on the same horizontal plane. The 
method provides a tool for the solution of the non-linear problem by successive 
approximation (Tanner 1967). 

An example of application of the method to a magnetic anomaly in the North 
Irish Sea (Bott 1966) is shown in Figs. 2 and 3. The magnetic body is represented by 
eight rectangular blocks of specified dimensions. Fig. 2 shows the solution for three 
different values of p using eight field points. Fig. 3 shows the solution by least squares 
using 19 field points. A correction for the best-fitting background anomaly may be 
included in the least squares solution. 
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gamma 

50- 

'1 S23"E '\ 

x x  x y  
/ 

beta=180° 

-50 ' 

- 2 0 5  -304 -463 -598 -573 -495 -340 - 2 8 6  beta=180° 
r i  
- 2 0 5  -304 -463 -598 -573 -495 -340 - 2 8 6  

FIG. 3. Interpretation of the magnetic anomaly of Fig. 2 by least squares, using 
more field points than blocks. 

5. Application of the matrix method to interpretation of oceanic magnetic anomalies 

To demonstrate the potential of the matrix methods, they are here applied to one 
of the more difficult problems of magnetic interpretation. This is to interpret oceanic 
magnetic anomaly profiles some hundreds of kilometres in length in terms of an 
underlying distribution of magnetization confined between two fixed depths, q I  and q2 .  
The magnetic layer is approximately represented by a series of two-dimensional 
rectangular blocks of constant width A x  and constant thickness (q2 -ql), each being 
uniformly magnetized in a fixed direction. The regional gradient is subtracted from 
the observed anomaly, which is then digitized at a series of equally spaced field points 
situated over the centre of each block. The problem is to determine the intensity of 
magnetization and its sign for each block from the anomaly values. 

We adopt the model shown in Fig. 4 to obtain the magnetization of the block B,. 
Beyond a certain specified distance on either side of B,, blocks are grouped together 
into larger units to reduce computation. Blocks beyond a second specified distance 
from B,  are ignored. The kernel matrix K for the model is obtained and inverted. 
The central row of K- ' is picked out and is used to give a series of weighting values 
which when convolved with the observed anomalies gives the intensity of magnetization 
of Bo. The advantage of this method is that the matrix inversion needs to be done 
once only since the one set of weighting coefficients can be successively applied to 
each block except for blocks near each end of the profile. 

This method has been applied to a total field magnetic profile across the Juan de 
Fuca Ridge in the north-eastern Pacific as presented by Vine & Tuzo Wilson (1965). 

FIG. 4. The model used for interpretation of oceanic magnetic anomalies. 
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gamma 

E calculated model l (b) 
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FIG. 5. The interpretation of a magnetic profile across the Juan de Fuca Ridge in 
terms of a distribution of magnetization confined to layer 2 of the oceanic crust. 
Model 1 (a) uses blocks 2.15 km wide and is the result of a single iteration; model 
1 (b) is obtained after a second iteration. Model 2 has blocks 4.3 km wide and 
one iteration only is used. The calculated anomalies for model 1 (b) are shown 
on the observed profile, and residuals (observed minus calculated) are shown above 

models 1 (a) and 1 (b). 
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calculated model 3 

50 km 
oL.L 

MODEL 4 

I 

-003. 

FIG. 6. Interpretation of the profile of Fig. 5 in terms of a distribution of magneti- 
zation restricted to the oceanic layer 3. Model 3 is based on blocks 4.3 km wide 
and the residuals are shown (crosses for intermediate points). Model 4 uses 

2.15 km blocks. 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/13/1-3/313/920220 by guest on 21 August 2022



322 M. H. P. Bott 

The midpoint of the profile is 47.0" N, 129.2" W, and it is about 350 km long on a true 
bearing of 110". The profile is perpendicular to the well-established magnetic lineation, 
justifying the two-dimensional approach to interpretation. 

The oceanic crust is subdivided into three layers. Layer 1 consists of a thin veneer 
of unconsolidated sediments which do not cause magnetic anomalies. Layer 2 is 
typically about 1.5 km thick and it is usually thought to consist of either volcanic 
rocks or  consolidated sediments. Following Vine & Tuzo Wilson, it is here assumed 
that layer 2 extends between depths of 3-3 and 5 km. Layer 3, the main oceanic crustal 
layer, is taken to  lie between 5 and 1 1  km. The program is here used to estimate the 
distribution of magnetization in either layer 2 or layer 3 required to cause the observed 
anomalies. 

Fig. 5 shows the result of applying the method to layer 2. The observed anomaly 
has been digitized at  2.15 km intervals and layer 2 is subdivided into rectangular blocks 
2.15km wide. Model l(a) shows the result of a single application of the method. 
Using a computer program for the calculation of magnetic anomalies over two- 
dimensional bodies, the residuals (observed minus calculated anomalies) were obtained 
and are shown. A second iteration improves the estimate and gives model 1 (b) which 
has negligible residuals. The calculated anomalies for model l(b) are shown on the 
observed profile: over the central part of the profile the anomalies have been calculated 
at intermediate points and the agreement is still excellent. Thus model l(b) gives a 
complete and accurate model of the magnetization within layer 2 required to explain 
the observations. Model 1 (a) does not differ greatly and is also an acceptable model. 
Model 2 has been computed for blocks 4.3 km wide. The agreement is good at  field 
points over the centre of each block, but the residuals are larger at the intermediate 
points, suggesting that these wider blocks are inadequate as a complete explanation 
of the observations. 

Fig. 6 applies the method to the hypothesis that the anomalies arise from layer 3. 
Model 3 uses blocks 4-3 km wide and has been obtained by a single iteration. The 
residuals have been computed and agree well at the field points above the centre of 
each block, but show much larger discrepancies a t  intermediate points (shown by 
crosses). This shows that there are short wavelength components in the observed 
anomaly which cannot be explained using wide blocks. Model 4 has been computed 
for 2.15 km wide blocks; the agreement between observed and calculated anomalies is 
good but variations in magnetization of the order of 0.08 e.m.u./cm3 appear and the 
simple pattern is lost. 

It is concluded that magnetic rocks within, or partly within, layer 2 can explain the 
observed anomalies. If the magnetic rocks were confined to layer 3, excessively strong 
contrasts in magnetization would be needed. The models for layer 2 show a conspicuous 
symmetry about the centre of the Juan de Fuca Ridge, supporting the hypothesis of 
Vine & Matthews (1963) that the anomalies are caused during the process of ocean floor 
spreading in both directions from the centre. There is, however, no indication of 
excessively strong magnetization for the central block, contrary to the model presented 
by Vine & TuzoWilson. A layer of uniform magnetization could be added to the model 
without affecting the calculated anomalies: it is therefore not possible to decide from 
these anomalies whether the magnetization is alternatively normal and reversed, or 
alternatively strong and weak. 
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