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Abstract
We derive the energy levels associated with the even-parity wavefunctions of
the harmonic oscillator with an additional delta-function potential at the origin.
Our results bring to the attention of students a non-trivial and analytical example
of a modification of the usual harmonic oscillator potential, with emphasis on
the modification of the boundary conditions at the origin. This problem calls
the attention of the students to an inaccurate statement in quantum mechanics
textbooks often found in the context of the solution of the harmonic oscillator
problem.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Every single book on quantum mechanics gives the solution of the harmonic oscillator problem.
The reasons for that are, at least, two. (i) It is a simple problem, amenable to different
methods of solution, such as the Frobenius method for solving differential equations [1, 2]
and the algebraic method leading to the introduction of creation and annihilation operators [3].
This problem has therefore a natural pedagogical value. (ii) The system itself has immense
applications in different fields of physics and chemistry [4, 5] and it will appear time and time
again in the scientific life of a physicist.

Another problem often found in quantum mechanics textbooks is the calculation of the
bound state (negative energy) of the potential V (x) = αδ(x), with α < 0. The latter example
is instructive for the students because it cracks down the misconception that the continuity of
the wavefunction and its first derivative at an interface is the only possible boundary condition
in quantum problems. In fact, for this potential, the first derivative of the wavefunction is
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discontinuous at x = 0. To see the origin of this result, let us write the Schrödinger equation
as

− h̄2

2m

d2ψ(x)

dx2
+ αδ(x)ψ(x) = Eψ(x). (1)

Integrating equation (1) in an infinitesimal region around x = 0, we obtain [3]

lim
ε→0

dψ(x)

dx

∣∣∣∣
+ε

−ε

− 2mα

h̄2 ψ(0) = 0 ⇔ ψ ′
>(0) − ψ ′

<(0) = 2mα

h̄2 ψ(0), (2)

where ψ≷(x) are the wavefunctions on each side of the delta potential and we have used
Newton’s notation for derivatives where the primes over functions denote the order of the
derivative of that function. It is clear from equation (2) that the first derivative of the
wavefunction is discontinuous. An explicit calculation gives the eigenstate of the system
in the form

ψ(x) =
√
κ e−κ|x|, (3)

which has a kink at the origin as well as a characteristic length scale given by κ = mα/h̄2.
The eigenvalue associated with the wavefunction (3) is E = −h̄2κ2/(2m). When E > 0, the
system has only scattering states for both positive and negative values of α.

We now superimpose a harmonic potential on the already present delta-function potential.
Due to the confining harmonic potential, the new system has only bound states, no matter
what is the sign of α and E. Thus, the problem we want to address is the calculation of the
eigenstates and eigenvalues of the potential

V (x) = m

2
ω2x2 + αδ(x). (4)

As we will see, this problem has both trivial and non-trivial solutions. Furthermore, it
allows a little excursion into the world of special functions. Indeed, special functions play a
prominent role in theoretical physics, to a point that the famous Handbook of Mathematical
Functions, by Milton Abramowitz and Irene Stegun [6], would be one of the three texts
(together with the Bible and Shakespeare’s complete works) Michal Berry would take with
him to a desert island [7]. In a time where symbolic computational software is becoming more
and more the source of mathematical data, we hope with this problem to show that everything
we need can be found in the good old text of Milton Abramowitz and Irene Stegun [6].

In addition, this problem will call the attention of students to an inaccurate statement
in quantum mechanics textbooks often found in the context of the solution of the harmonic
oscillator problem. Our approach is pedagogical, in the sense that it illuminates the role of
boundary conditions imposed on the even-parity wavefunctions by the δ-function potential.
(We note that after the submission of this paper, the work by Busch et al [8] was brought to
our attention; see note added at the end of the paper.)

2. Solution of the harmonic oscillator with a delta function

The Hamiltonian of the system is

H = − h̄2

2m

d2

dx2
+

m

2
ω2x2 + αδ(x). (5)

Following tradition, we introduce dimensionless variables using the intrinsic length scale of the
problem a2

0 = h̄/(mω). Substituting y = x/a0 into equation (5), we can write the Schrödinger
equation as

d2ψ(y)

dy2
+ (2ε − y2)ψ(y) + 2gδ(y)ψ(y) = 0, (6)
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where ε = ma2
0E/h̄2 and g = αa0m/h̄2. With g = 0, equation (6) is recognized as the

Weber–Hermite differential equation [1]. In quantum mechanics textbooks, the solution of
equation (6) with g = 0 proceeds by making the substitution

ψ(y) = e−y2/2w(y). (7)

At the same time, it is a common practice to write 2ε = 2ν + 1, where ν is a real number. This
allows us to transform equation (6) into

w′′ − 2yw′ + 2νw − 2gδ(y)w = 0, (8)

which is Hermite’s differential equation when g = 0; a further substitution, z = y2, transforms
equation (8) into Kummer’s equation,

zw′′ + (b − z)w′ − aνw = 0 with a = −ν

2
and b = 1

2
, (9)

which, obviously, has two linearly independent solutions: the confluent hypergeometric
functions M(a, b, z) and U(a, b, z); these functions are also known as Kummer’s functions
(the latter solution is sometimes referred to as Tricomi’s function)1. Thus, the general solution
of equation (9) is

w(z) = Aν M

(
−ν

2
,

1
2
, z

)
+ Bν U

(
−ν

2
,

1
2
, z

)
, (10)

where Aν and Bν are arbitrary complex constants and ν is an arbitrary real number. The
U(− ν

2 , 1
2 , z) function can also be written in terms of the functions M(a, b, z) as [9(a)]

U

(
ν

2
,

1
2
, z

)
= π

{
M

(
− ν

2 , 1
2 , z

)

)
( 1

2

)
)

( 1
2 − ν

2

) −
√

z
M

( 1
2 − ν

2 , 3
2 , z

)

)
( 3

2

)
)

(
− ν

2

)
}

. (11)

It is important to note that equation (11) is not a linear combination of two M(a, b, z) functions.
Using equation (11), it is possible to show that if ν is either zero or a positive integer number
(denoted by n), the solution in equation (10) can be put in the following form (z > 0):2

w(z) ∝
{
M

(
− n

2 , 1
2 , z

)
for n even√

z M
( 1

2 − n
2 , 3

2 , z
)

for n odd,
(12)

or more compactly [9(b), (c)], it can be written as w(z) ∝ Hn(
√

z), with Hn(z) the Hermite
polynomial of order n; furthermore the product w(z)e−|z| converges for all z. Then, the full
wavefunction has the usual form

ψn(y) ∝ e−y2/2Hn(y),

with the corresponding eigenvalues being ε = n + 1
2 . What we have detailed above condenses

the typical solution of the quantum harmonic oscillator using special functions.
We now move to the solution of the quantum harmonic oscillator with a δ-function

potential at the origin. To that end, we have to review a few properties of the M(a, b, z)

functions. For non-integer values of a and b, the M(a, b, z) function is a convergent series for
all finite given z [9(a)], but diverges for z → +∞ as [9(d)]

M(a, b, z) = )(b)

)(a)
ezza−b[1 + O(|z|−1)]. (13)

1 These functions may also be referred to as the confluent hypergeometric functions of the first and second kind,
with the notation M(a, b, z) =1 F1(a; b; z) and U(a, b, z) = z−a

2 F0(a; 1 + a − b;−1/z). All these notations can be
found when using computational methods and software.
2 This is easy to see from equation (11) recalling that the Gamma function diverges at negative integer values.



1380 J Viana-Gomes and N M R Peres

In terms of the original variable y2, function (13) diverges as ey2
, which implies that ψ(y) also

diverges at infinity as ey2/2. Thus, ψ(y) is not, in general, an acceptable wavefunction.
We noted in the introduction to this paper that it is many times referred to (erroneously)

in most standard textbooks on quantum mechanics that the only mathematical solutions of the
harmonic oscillator differential equation that do not blow up when y → +∞ are those having
ν either zero or a positive integer.

On the contrary, however, the function U(− ν
2 , 1

2 , y2) with a non-integer ν does not blow
up as ey2

when y → +∞. Indeed, it is easy to see (using equations (11) and (13)) that
U(−ν/2, 1/2, y2) → yν [9(e)] as y → +∞. Thus, the function

ψν(y) = Ae− 1
2 y2

U

(
−ν

2
,

1
2
, y2

)
(14)

could in principle be an acceptable wavefunction for any value of ν, since it is both an
even-parity function of y and square integrable (therefore normalizable). Why is it then that
this solution has been cast away from textbooks? The weaker answer would be because it
does not provide quantized energy values, which are known to exist in any confined quantum
system. The stronger answer is however that the function ψν(y) violates the boundary
condition ψ ′

<(0) = ψ ′
>(0) for any non-integer ν, which must be obeyed by the even-parity

wavefunctions ψ(y) when g = 0. We are now about to see that ψ ′
ν(0

+) = −ψ ′
ν(0

−). It is the
latter property of ψν(y) which allows the solution of the quantum problem (8) with finite g.

We have now gathered all the information needed to find the solutions of the eigenvalue
problem (8). Since Hamiltonian (5) is invariant over the parity transformation x → x, their
eigenstates ψg(y) are either even- or odd-parity states. In the case of odd states, we have
ψg(0) = 0 and therefore they do not see the presence of the delta function at the origin. Thus,
the odd-parity wavefunctions ψodd

g (y) are the states ψn(y) of the ordinary harmonic oscillator,
with ν = n = 1, 3, 5, . . . , and the eigenvalues are ε = n + 1

2 . To the latter result, we recall
the ‘trivial solution’ of eigenproblem (8).

The solution of the even-parity eigenfunctions ψeven
g (y) is not as simple, since these states

feel the presence of the delta function at the origin. We need to find now the boundary
condition the function w(y) must obey at the origin. Proceeding as we did in the introductory
section, we integrate equation (8) around y = 0 obtaining

w′
>(0+) − w′

<(0−) = 2gw(0). (15)

Equation (15) enables us to find the quantized energies of the even-parity eigenstates we
are seeking. Thus, the correct wavefunction for ψeven

g (y) is ψν(y) and not ψn(y) with
n = 0, 2, 4, . . ., as in the case g = 0, for the latter wavefunction violates the boundary
condition (15). Using the results [9(f)] 3

lim
x→0+

U(−ν/2, 1/2, y2) =
√
π

)(1/2 − ν/2)
, (16)

lim
x→0+

U ′(−ν/2, 1/2, y2) = ν
√
π

)(1 − ν/2)
, (17)

the eigenvalues associated with even-parity eigenstates of equation (6) are given by the
numerical solution of the transcendent equation

F(ν) ≡ ν − g
)(1 − ν/2)

)(1/2 − ν/2)
= 0, (18)

3 Here, the second identity can be derived from the first one using the fact that [9(g)] U ′(a, b, z) = −aU(a+1, b+1, z).
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Table 1. Eigenvalues ν associated with the even-parity eigenstates ψν(y) for several values of g;
the leftmost column corresponds to the case where g → 0, which coincides with the harmonic
oscillator even-parity eigenvalues; the ensuing columns stand for g = ±0.25, g = ±1.0, g = ±2.5
and g = ±5.0. In between each pair of eigenvalues, we also have the states associated with the
odd-parity eigenstates, which have eigenvalues ν = 1, 3, 5, 7, . . . . The associated eigenenergies
are given by εν = ν + 1

2 .

g → 0 −0.25 0.25 −1.0 1.0 −2.5 2.5 −5.0 5.0

0.0 −0.1557 0.1281 −0.8424 0.3927 −3.5865 0.6434 −12.9900 0.7961
2.0 1.9288 2.0693 1.7208 2.2546 1.4285 2.5042 1.2305 2.7003
4.0 3.9469 4.0525 3.7912 4.2002 3.5420 4.4274 3.3227 4.6364
6.0 5.9558 6.0439 5.8258 6.1699 5.6051 6.3772 5.3833 6.5887
8.0 7.9614 8.0384 7.8473 8.1501 7.6473 8.3412 7.4285 8.5509

which follows from the boundary condition (15). In figure 1, we give the graphical solution
of equation (18) for g = ±0.25, g = ±1.0, g = ±2.5 and g = ±5.0, and in table 1, the
corresponding numerical values of ν, for the first five even-eigenstates. As expected, the
effect of the potential is to shift the eigenenergies of the even-states of the ordinary harmonic
oscillator up or down in energy for positive and negative values of g, respectively. This effect
is stronger for the low-lying eigenvalues (as we can anticipate from perturbation theory) and
shifts the eigenenergies of the states ψν(x) towards those of their lower or higher neighbouring
odd states, depending on the signal of g. This behaviour is plotted in figure 2. In the problem
we are dealing with, and contrary to the simple case of the ordinary harmonic oscillator, if
g < 0, there is also a negative-energy eigenvalue, as we could have anticipated from the
solution of the attractive δ-function potential we have described in the introduction to this
paper. The absolute value of this negative energy state increases with the strength of the
δ-function potential and, in the limit g → −∞, the confinement imposed by the harmonic
potential becomes irrelevant and the wavefunction transforms into the bound state given by
equation (3) and with the same eigenenergy. Indeed, using Stirling’s formula [9(h)], it is
easy to prove that as z → ∞, )

(
z + 1

2

)
/)(z) → √

z. For z = 1 + 1
2 |ν|, this implies that as

g → −∞, g ∼
√

2|ν|. Since E ∼ −|ν|h̄ω4, the former result implies that

Eν = −g2 1
2
h̄ω = −α2m

2h̄2 ,

which is the energy value we have obtained before for the simple case of an isolated attractive
δ-function potential.

Finally, in figure 3 we plot in solid lines |ψn(y)|2 as a function of y for n = 1, 2, 3. In panels
(a), (b) and (c) of the same figure, we also plot, in dashed lines, |ψn(y)|2 for the wavefunctions
that would correspond to the harmonic oscillator with n = 2 for different positive and negative
values of g. As g increases in positive (negative) values, the corresponding value of ν

approaches ν = 3 (ν = 2) making the absolute square of the wavefunction, |ψν(x)|2, look like
the absolute square of the wavefunction of its odd-parity state neighbour, |ψn±1(x)|2. This
does not mean however that the two types of wavefunctions are the same, since they refer to
orthogonal eigenstates. To make this point evident, we plot both types of states in panel (d) of
figure 3.

The behaviour ψ ′
ν(0

+) *= 0 (the number of nodes defines the order of the state) is clear
from figure 3. When g + 1, pairs of states (odd and even) of the harmonic oscillator with a

4 Note that here, the harmonic oscillator frequency appears just as a by-pass between the α and g coupling constants:
at the end, the harmonic potential, too shallow compared with the delta, plays no role in obtaining the result.
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Figure 1. Graphical solution of equation (18), for several positive and negative values of g. The
numerical values of ν are given in table 1. The eigenvalues for the energy Eν are given by ν + 1

2
with ν the intercepts of the graphs with the x-axis (the dashed lines refer to negative g, whereas the
solid lines refer to positive g).

Figure 2. Graphical solution of equation (18), for several positive and negative values of g. The
numerical values of ν are given in table 1.
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(a) (b)

(c) (d)

Figure 3. Panels (a), (b) and (c): absolute square values of the wavefunctions of the harmonic
oscillator (solid lines) for (from top to bottom) ν = n = 3, 2, 1 (plotted, respectively, in blue,
black and red) and for ψν(x) (dashed lines) with ν corresponding to values of g that vary from 1
to 10, for positive and negative values (top and bottom curves, respectively). These plots show
that the |ψν(x)|2 curves approach the neighbouring odd states. However, as is shown in panel (d),
the wavefunctions are quite different since the ψν(x) are symmetrical with respect to x, presenting
always a kink at x = 0.

delta function become quasi-degenerate. Indeed, in this regime the dip of the wavefunction
ψν(y) at y = 0 approaches zero, but looking at figure 3 it is seen by the naked eye that the
two functions are orthogonal (one is even and the other is odd; this is not self-evident from the
density probability graphs). The enhancement of the curvature of the wavefunction around
y = 0 leads to an increase in the kinetic energy and therefore to an increase in the energy of
the even-parity eigenstates.

3. Conclusions

We have discussed the solution of the Schrödinger equation for the one-dimensional harmonic
potential with a Dirac delta function at the origin. The odd-parity eigenstates are given by the
wavefunctions of the ordinary harmonic oscillator. This is obvious since the states of the latter
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system are zero at the origin and therefore do not feel the presence of the delta function. For
the even-parity states, the solution is non-trivial. We have shown the existence of a solution
of the differential equation of the harmonic oscillator that does not blow up at infinity as ex2/2

for non-integer values of ν. As is well known, this solution is never mentioned in quantum
mechanics textbooks for a good reason, but unfortunately that reason is, as far as we know,
never discussed. Here we have shown that the reason lies in the fact that its derivative at
x = 0 is finite, violating the boundary conditions imposed on the simple harmonic oscillator
problem, that is, without the δ-function at the origin. Nevertheless, the wavefunction (14) is
the one we need for solving problem (8). In our work, we have computed the eigenvalues and
eigenfunctions of the even-parity states and made, at the same time, a little excursion into the
famous Handbook of Mathematical Functions [6].

Note added. After the submission of this paper, the work by Busch et al [8] was brought to our attention; the latter
work elaborates on top of another paper by Janev and Marić [10] and, although focused on the three-dimensional
harmonic oscillator with a delta function at the origin, one of the figures in [8] (figure 2) has the same information as
our figure 2, albeit presented in a different form. Furthermore, the energy eigenvalues of the zero angular momentum
states are given by an equation identical to our equation (18) but with 1/2 replaced by 3/2 (for obvious reasons).
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