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Abstract
An extension of the classical orthogonal functions invariant to the quantum
domain is presented. This invariant is expressed in terms of the Hamiltonian.
Unitary transformations which involve the auxiliary function of this quantum
invariant are used to solve the time-dependent Schrödinger equation for a
harmonic oscillator with time-dependent parameter. The solution thus obtained
is in agreement with the results derived using other methods which invoke the
Lewis invariant in their procedures.

PACS numbers: 03.65.La, 03.65.Ge, 02.30.Ik

1. Introduction

The existence of invariants in mechanical systems with an explicitly time-dependent
Hamiltonian has evoked considerable interest [1]. These constants of motion are of central
importance in the study of dynamical systems. A wide variety of methods has been developed
in order to obtain the invariants of systems with one degree of freedom [2]. In particular,
the time-dependent harmonic oscillator (TDHO) has received much attention due to its
applications in many areas of physics [3]. Among the procedures developed for obtaining
invariants, a straightforward derivation for the classical TDHO has been presented which leads
directly to the orthogonal functions invariant or, if preferred, to the Lewis invariant [4]. The
study of exact invariants has led to the nonlinear superposition principle as well as obtaining
general solutions, provided that a particular solution is known.

The extension of the theory of invariants to the quantum realm has evolved in, at least,
two directions. On the one hand, the one-dimensional time-independent Schrödinger equation
is formally equivalent to the TDHO equation. The translation between equations requires the
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exchange of temporal and spatial variables as well as a constant shift of the potential V (x) with
the appropriate scaling for the initially time-dependent parameter �2(t) → 2m

h̄2 (E − V (x)).
The results obtained in the classical invariant theory are thus applicable for spatially arbitrary
time-independent potentials in stationary one-dimensional quantum theory. On the other
hand, quantum mechanical expressions of the classical invariant operators have been used
in order to obtain exact solutions to the time-dependent Schrödinger equation. To this
end, the classical Hamiltonian is translated into a quantum Hamiltonian by considering the
canonical coordinate and momentum as time-independent operators obeying the commutation
relationship [q̂, p̂] = ih̄. The quantum treatment then becomes a (1+1)-dimensional problem
where the wavefunction depends on a spatial as well as the temporal variable. A potential with
an arbitrary time dependence is identified with the coordinate operator of the Hamiltonian.
Exact invariants have been derived to tackle a limited class of admissible potentials [5].
The most relevant cases are the quadratic spatial dependence which leads to the quantum
mechanical time-dependent harmonic oscillator (QM-TDHO) and the linear potential [6].

The QM-TDHO has been solved under various circumstances such as damping and a
time-dependent mass. This problem has been worked out in terms of time-dependent Green
functions using a path integral method [7]. Other techniques have also been used such as
the time–space rescaling or transformation method and the time-dependent invariant method
[8]. The constant of motion that has been invoked in the latter procedure is the well-known
Lewis invariant [9]. Unitary transformations then provide a useful tool for simplifying the
invariant and for constructing more general states, such as coherent or squeezed states of
the QM-TDHO. The analytical solutions thus obtained are functions of a c-number quantity
whose differential equation needs to be solved.

The present paper, in contrast to previous derivations which invoke the Lewis invariant,
considers the orthogonal functions quantum invariant as the starting point of the derivation.
This invariant is a quantum version of the classical orthogonal functions invariant that arises
from the linearly independent solutions of the TDHO. A closely related operator with complex
coefficients is also referred to in the literature as a linear integral of motion operator [10].
Unitary transformations are then applied to the invariant in order to obtain an explicitly time-
independent quantity. The transformations map the orthogonal functions quantum invariant
directly onto the momentum operator. Once these transformations are established, the
wavefunction is transformed in order to obtain a simplified Schrödinger equation which is
readily integrable. The procedure is then compared with the transformations which arise from
the Ermakov–Lewis invariant.

2. Orthogonal functions quantum invariant

Consider the time-dependent Hamiltonian of the QM-TDHO:

Ĥ (t) = 1
2 (p̂2 + �2(t)q̂2). (1)

The orthogonal functions invariant of this Hamiltonian’s classical counterpart is given by

G = q1q̇2 − q2q̇1 (2)

where q1 and q2 are linearly independent solutions of the TDHO equation [4]. In order to
translate this invariant to the quantum domain, let the function q2 and its time derivative
become the quantum coordinate and momentum operators. The remaining function is then
treated as a real c-number, which obeys the classical TDHO equation:

ü(t) + �2(t)u(t) = 0. (3)
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The orthogonal functions quantum invariant is then

Ĝ = u(t)p̂ − u̇(t)q̂ (4)

where the dot denotes differentiation with respect to time. The invariance of this linear integral
of motion may be corroborated by direct evaluation of its time derivative. The partial time
derivative reads

∂Ĝ

∂t
= u̇p̂ − üq̂. (5)

This quantity does not vanish since the invariant is explicitly time dependent. However, its
total time derivative is indeed zero:

dĜ

dt
= ∂Ĝ

∂t
− i

h̄
[Ĝ, Ĥ (t)] = (ü + �2u)q̂ = 0. (6)

This constant of motion is closely related to the Lewis invariant and is appealing for its
physical significance in the adiabatic limit [11].

3. Unitary transformations

The goal of the transformations in this context is to map the invariant onto an explicitly
time-independent quantity. The transformed ‘invariant’ is then no longer time independent
although its partial time derivative does vanish. Such a transformation leads to the solution
of the Schrödinger equation as we shall demonstrate in the following sections. Unitary
transformations of the form

D̂(f ) = exp

(
− i

2h̄
f (t)q̂2

)
(7)

represent a position-dependent displacement of the momentum operator D̂(f )p̂D̂†(f ) =
p̂ + f (t)q̂ , whereas the position operator is unaffected by this transformation. In order to
eliminate the u̇(t) dependence in the invariant expression (4), consider the transformation

D̂u = exp

(
−i

u̇(t)

2h̄u(t)
q̂2

)
(8)

so that when applied to the invariant it yields

Ĝdisp = D̂uĜD̂†
u = up̂ (9)

provided that the function u in the transformation obeys the TDHO equation (3). In the present
case, this shift not only eliminates the u̇(t) dependence but it also happens to eliminate the
position operator q̂ in the transformed invariant.

A further unitary transformation realized by the squeeze operator [12]

Ŝ(g) = exp

(
i
g(t)

2h̄
(q̂p̂ + p̂q̂)

)
(10)

generates a scaling of the position and momentum operators Ŝ(g)q̂Ŝ†(g) = q̂ eg(t) and
Ŝ(g)p̂Ŝ†(g) = p̂ e−g(t). Squeezing or stretching is produced depending on the sign of g(t).
For the displaced invariant (9), the unitary transformation

Ŝu = exp

(
i
ln u(t)

2h̄
(q̂p̂ + p̂q̂)

)
(11)

generates an explicitly time-independent expression Ĝ′ = ŜuĜdispŜ
†
u = p̂. The complete

transformation may then be written as

T̂u = ŜuD̂u = exp

(
i
ln u(t)

2h̄
(q̂p̂ + p̂q̂)

)
exp

(
−i

u̇(t)

2h̄u(t)
q̂2

)
. (12)
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This operator may also be written as a single exponential

T̂u = exp

(
i
ln u(t)

2h̄

(
q̂p̂ + p̂q̂ +

2u(t)u̇(t)

1 − u(t)2
q̂2

))
(13)

since the commutator of the operators in the exponentials is proportional to one of the operators
[q̂p̂ + p̂q̂, q̂2] ∝ q̂2 [13]. The orthogonal functions quantum invariant (4) is then transformed
into the momentum operator:

Ĝ′ = T̂uĜT̂ †
u = p̂. (14)

Unitary transformations in quantum mechanics correspond to canonical transformations in
classical mechanics [14]. In this case, the transformed invariant becomes the new momentum
just as the canonical transformation of the adiabatic invariant turns it into the action variable
[15]. However, in the present case the invariant is exact since it has been established without
the need for adiabatic approximation.

3.1. Invariant in terms of the Hamiltonian

Let us define an invariant which involves the square of the coordinate and momentum operators:

Î u = 1
2Ĝ2 = 1

2 (up̂ − u̇q̂)2. (15)

Quadratic integrals of motion of this type have been used before in order to introduce even
and odd coherent states (see for example [16] and references therein). The Hamiltonian, with
the aid of the classical TDHO equation (3), may be written as u2Ĥ (t) = 1

2 (u2p̂2 − uüq̂2). On
the other hand, the partial time derivative of the transpose transformation is

∂T̂
†
u

∂t
= i

2h̄

1

u2
[(uü + u̇2)q̂2 − uu̇(p̂q̂ + q̂p̂)]T̂ †

u (16)

so that the invariant and the Hamiltonian are related by

Î u = u2

(
H(t) − ih̄

∂T̂
†
u

∂t
T̂u

)
. (17)

The representation of the Hamiltonian in terms of its invariants is relevant in several
applications [17] since it provides an eigenvalue which may be related to the energy of
the system. If we apply the transformation from the left and its inverse from the right, the
transformed invariant yields

Î ′
u = T̂uÎ uT̂

†
u = u2

(
T̂uH(t)T̂ †

u − ih̄T̂u

∂T̂
†
u

∂t

)
. (18)

In summary, the invariant operators Ĝ, Î u are time independent although their partial time
derivatives are different from zero. On the other hand, the transformed operators Ĝ′, Î ′

u are
implicitly time dependent but their partial time derivative is zero.

4. Solution to the Schrödinger equation

Consider the Schrödinger equation

ih̄
∂|ψ(t)〉

∂t
= Ĥ (t)|ψ(t)〉 (19)
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for the QM-TDHO Hamiltonian given in equation (1). In order to solve this equation, allow
for the unitary transformation T̂u which maps the orthogonal functions quantum invariant onto
an explicitly time-independent operator:

|φu(t)〉 = T̂u|ψ(t)〉 (20)

where u is the solution to the TDHO equation (3). Substitution in the Schrödinger equation (19)
leads to

ih̄

(
T̂ †

u

∂|φu(t)〉
∂t

+
∂T̂

†
u

∂t
|φu(t)〉

)
= Ĥ (t)T̂ †

u |φu(t)〉. (21)

Multiplying by T̂u from the left and rearranging, we obtain

ih̄
∂|φu(t)〉

∂t
=

[
T̂uĤ (t)T̂ †

u − ih̄T̂u

∂T̂
†
u

∂t

]
|φu(t)〉 (22)

where

Ĥ(t) = T̂uĤ (t)T̂ †
u = 1

2

((
p̂

u
+ u̇q̂

)2

+ �2(t)u2q̂2

)
(23)

stands for the transformed Hamiltonian. Although in appearance a less tractable Hamiltonian,
its simplification with the term involving the time derivative of the transformation

∂T̂
†
u

∂t
= i

2h̄
T̂ †

u

[
(uü − u̇2)q̂2 − u̇

u
(p̂q̂ + q̂p̂)

]
(24)

leads to an integrable form of equation (22):

ih̄
∂|φu(t)〉

∂t
= 1

2

[
p̂2

u2
+ (�2u + ü)uq̂2

]
|φu(t)〉 = 1

2

p̂2

u2
|φu(t)〉. (25)

The solution of this equation is

|φu(t)〉 = exp

(
− i

2h̄
p̂2

∫ t

0

dt ′

u2(t ′)

)
|φu(0)〉 (26)

where |φu(0)〉 is the wavefunction at t = 0. Finally, going back to the initial wavefunction,
the solution to the original Schrödinger equation (19) is

|ψ(t)〉 = T̂ †
u exp

(
− i

2h̄
p̂2

∫ t

0

dt ′

u2(t ′)

)
T̂u0 |ψ(0)〉 (27)

where T̂u0 is the transformation at time t = 0. This solution may be applied to any initial
condition |ψ(0)〉. It may be easily checked that the above solution is indeed correct by
evaluating its partial time derivative:

∂|ψ(t)〉
∂t

= i

2h̄

[
uü + (u̇)2

u2
q̂2 − u̇

u
(q̂p̂ + p̂q̂) −

(
p̂ − u̇

u
q̂

)2
]

|ψ(t)〉 = − i

h̄
H (t)|ψ(t)〉 (28)

which recovers the original Schrödinger equation (19). This derivation has considered the
simplest case of a Hamiltonian with only quadratic terms in the operators. However, the
extension to a complete second-order polynomial in the coordinate operator is also possible
[2]. Such an extension permits forced oscillations as well as a time-dependent energy shift.
The formalism presented here is also applicable to this general case as shown in the appendix.
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4.1. Solution in terms of the invariant

The above procedure used to solve the Schrödinger equation does not necessarily involve
the use of the invariant. Nonetheless, in order to choose the appropriate transformation, the
guiding principle was to transform the invariant into an explicitly time-independent quantity.
We are now in a position where this assertion may be justified. Returning to the transformed
Schrödinger equation (22), substitution of the relationship between the invariant and the
Hamiltonian (18) yields

ih̄
∂|φ(t)〉

∂t
=

(
T̂uÎ uT̂

†
u

u2

)
|φ(t)〉 = Î ′

u

u2
|φ(t)〉. (29)

If the transformed invariant is explicitly time independent, the above equation is formally
integrable. The solution of the initial wavefunction in terms of the transformed and the
original invariant is then

|ψ(t)〉 = T̂ †
u exp

(
− i

h̄
T̂uÎ uT̂

†
u

∫ t

0

dt ′

u2(t ′)

)
T̂u0 |ψ(0)〉 (30)

= exp

(
− i

h̄
Î u

∫ t

0

dt ′

u2(t ′)

)
T̂ †

u T̂u0 |ψ(0)〉. (31)

5. Ermakov–Lewis invariant

The transformation method has been extensively used in order to obtain exact solutions of
the Schrödinger equation [18]. This method involves an appropriate rescaling of the space
and time variables in the Schrödinger equation as well as a unitary transformation of the
wavefunction [8]. An equivalent procedure has been to invoke the Ermakov–Lewis invariant
and perform a suitable transformation in order to obtain the eigenvalue equation [19]. Let us
recreate this method in order to compare it with the results derived in the previous sections.
Consider the transformation

T̂ρ = ei ln ρ

2h̄
(q̂p̂+p̂q̂) e−i ρ̇

2h̄ρ
q̂2

(32)

where ρ satisfies the auxiliary equation

ρ̈ − ρ−3 = −�2ρ. (33)

This transformation is formally equivalent to that implemented in the preceding sections
except for the auxiliary function ρ which now obeys the Ermakov equation. Recall that the
Ermakov–Lewis invariant is given by

Î ρ = 1

2

((
q̂

ρ

)2

+ (ρp̂ − ρ̇q̂)2

)
. (34)

The transformed invariant then reads

Î ′
ρ = T̂ρ Î ρT̂

†
ρ = 1

2 [q̂2 + p̂2]. (35)

This invariant is again explicitly time independent as in the previous case although it retains
the spatial operator. It corresponds to that derived by Hartley and Ray [19] where the
spatial rescaling made in their communication has been included here in the squeezing
transformation. The transformed wavefunction |φρ(t)〉 = T̂ρ |ψ(t)〉, then translates the
Schrödinger equation (19) into

ih̄
∂|φρ(t)〉

∂t
= 1

2ρ2
(q̂2 + p̂2)|φρ(t)〉 = Î ′

ρ

ρ2
|φρ(t)〉. (36)
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The solution is then

|ψ(t)〉 = exp

(
− i

h̄
Î ρ

∫ t

0

dt ′

ρ2

)
T̂ †

ρ T̂ρ0|ψ(0)〉. (37)

The relationship between the Lewis invariant and the Hamiltonian is obtained in an analogous
fashion to the derivation of equation (17):

Î ρ = ρ2

(
H(t) − ih̄

∂T̂ †
ρ

∂t
T̂ρ

)
. (38)

These last three equations are formally equivalent to those obtained with the orthogonal
functions invariant (29), (31) and (17) provided that the invariant together with the
transformation and its associated auxiliary function are substituted. The Lewis–Risenfeld
orthonormal states have been used to obtain expansions of coherent states [20] as well as
squeezed states [21] of the QM-TDHO.

6. Conclusions

A quantum version of the orthogonal functions classical invariant has been economically
derived in order to establish unitary transformations that map this operator onto an explicitly
time-independent operator. The quantum invariant and its transformed operator have been
expressed in terms of the Hamiltonian. The orthogonal functions invariant (4) is equally
suitable as the Ermakov–Lewis invariant in order to solve the one-dimensional QM-TDHO
although the former does not require an auxiliary Ermakov equation.

Appendix. Generalized Hamiltonian

Consider the Schrödinger equation for a Hamiltonian which in addition to the quadratic terms
has a linear term in the position operator with an arbitrary time-dependent function and an
operator-free time-dependent term:

ih̄
∂|ε(t)〉

∂t
=

(
p̂2

2
+

�2(t)q̂2

2
+ g1(t)q̂ + g0(t)

)
|ε(t)〉. (A.1)

Allow for the unitary transformation

|ε(t)〉 = e
i
h̄
(ũ(t)p̂− ˙̃u(t)q̂)|ξ(t)〉 (A.2)

where e
i
h̄
(ũ(t)p̂− ˙̃u(t)q̂) is the Glauber displacement operator (see, for instance, [22]). The

Schrödinger equation is then mapped to

ih̄
∂|ξ(t)〉

∂t
=

(
p̂2

2
+

�2(t)q̂2

2
+ θ(t)

)
|ξ(t)〉 (A.3)

where ũ obeys an inhomogeneous time-dependent harmonic differential equation

¨̃u + �2ũ = g1 (A.4)

and

θ = g0 + 3
2 (�2ũ2 − ˙̃u2) + −2ũg1. (A.5)

The term θ represents an overall phase or time-dependent shift of the energy. It may be easily
eliminated by performing a phase transformation

|ψ(t)〉 = e− i
h̄

∫
θ dt |ξ(t)〉 (A.6)
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in order to obtain the Schrödinger equation (19) which was the starting point of our previous
derivations:

ih̄
∂|ψ(t)〉

∂t
=

(
p̂2

2
+

�2(t)q̂2

2

)
|ψ(t)〉. (A.7)
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