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1 Introduction

Many quantum field theory models have been solved or constructed in two dimensions,

see e.g. [1–3]. For just-renormalisble bosonic models there is little success so far. The

perturbative renormalisation of the Φ4-model on four-dimensional Moyal space with har-

monic propagation [4] and the proof that the β-function vanishes [5] at a self-duality point

provided some hope to construct this particular four-dimensional model which is indeed

just-renormalisable.

At a special self-duality point [6], the model reduces to a dynamical matrix model

with action

S[Φ] = V Tr(EΦ2) +
λ

4
V Tr(Φ4) (1.1)

for self-adjoint N×N -matrices Φ, where E takes the rôle of a Laplacian whose eigenvalues

En = n√
V
+

µ2

bare
2 arise with multiplicity n. The parameter V ∈ R is the deformation pa-

rameter of the Moyal space, λ ∈ R is the coupling constant and µ2bare the unrenormalised

mass square. The dimension of a field theory is defined by Weyl’s Theorem through the

asymptotic behavior of the Laplacian, or equivalently by the asymptotic behavior of its

corresponding spectral measure. Furthermore, the perturbative expansion of the non-

commutative Φ4-model on 4-dimensional Moyal space into Feynman graphs admits the

same degrees of divergences for each graph as the ordinary (commutative) Φ4 model in

four dimensions.
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The action S[Φ] is employed to define correlation functions

〈Φa1b1Φa2b2 . . .Φanbn〉 := log

(∫
dΦΦa1b1Φa2b2 · · ·Φanbne

−S[Φ]

∫
dΦ e−S[Φ]

)

.

Integration by parts produces many relations between these correlation functions. Further

relations result from a Ward-Takahashi identity discovered in [5]. It was shown in [7] that

these relations can be organised into a closed non-linear equation for the planar two-point

function and a hierarchy of Dyson-Schwinger equations for all other functions. The latter

are linear in the function of interest with an inhomogeneity that only depends on finitely

many functions known by induction.

As characteristic to matrix models, the two-point function has a formal genus expansion

〈ΦabΦba〉 =
∞∑

g=0

V 1−2gZG
(g)
ab .

Its planar part G
(0)
ab can be isolated in a limit V → ∞. Particularly transparent is a

combined limit where also the size N of the matrices is sent to ∞, with the ratio N√
V

= Λ2

fixed. The previously discrete eigenvalues En become in this limit functions Ex = x+
µ2

bare
2

of a real variable x ∈ [0,Λ2], andG
(0)
ab converges toG(x, y) with x = lim a√

V
and y = lim b√

V
.

It this setting the Dyson-Schwinger equation for G
(0)
ab converges to a non-linear integral

equation [7]
(

µ2bare + x+ y + λ

∫ Λ2

0
dt t ZG(x, t)

)

ZG(x, y) = 1 + λ

∫ Λ2

0
dt t Z

G(t, y)−G(x, y)

t− x
. (1.2)

It is understood that µ2bare and Z depend on the cut-off Λ. According to the renormalisation

philosophy, the task is to determine the precise dependence µ2bare(Λ), Z(Λ) so that the

solution G(x, y) of (1.2) has a limit Λ → ∞.

In our recent work [8] we succeeded in solving the analogue of (1.2) for general eigen-

values Ea and without requiring the special limit N , V → ∞, up to the determination of

an implicitly defined measure function. In case of (1.2) this solution specifies to:

Theorem 1 ([8]). Equation (1.2) for the renormalised planar 2-point function of the φ4

QFT-model on four-dimensional noncommutative Moyal space is solved by

G(x, y) =
µ2 exp(N(x, y))

µ2 + x+ y
,

N(x, y) :=
1

2πi

∫ ∞

−∞
dt

{

log
(
x− J(−µ2

2 − it)
) d

dt
log
(
y − J(−µ2

2 + it)
)

− log
(
− J(−µ2

2 − it)
) d

dt
log
(
− J(−µ2

2 + it)
)

− log
(
x− (−µ2

2 − it)
) d

dt
log
(
y − (−µ2

2 + it)
)

+ log
(
− (−µ2

2 − it)
) d

dt
log
(
− (−µ2

2 + it)
)
}

,
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where J is the solution of a Fredholm integral equation of second kind:

J(x) = x− λx2
∫ ∞

0
dt

J(t)

(t+ µ2)2(t+ µ2 + x)
. (1.3)

Here µ > 0 is a free renormalisation parameter, and G(0, 0) = 1 is already implemented.

As main result of this paper we prove that (1.3) is solved by a hypergeometric function,

J (x) = x 2F1

(
αλ, 1− αλ

2

∣
∣
∣−

x

µ2

)

, where αλ :=
arcsin(λπ)

π
. (1.4)

Moreover, we show that the particular choice µ2 = αλ(1−αλ)
λ provides the same normalisa-

tion as the expansion into renormalised ribbon graphs.

The following sections present several methods which we employed to find the solu-

tion (1.4) of (1.3). In section 2 we show that a rescaling of J satisfies a hypergeometric

differential equation from which we deduce (1.4). Some steps rely on appendix A where

the spectrum of an integral operator is determined. In subsection 2.1 we determine the

spectral dimension. The treatment via a differential equation is probably the most elegant

one. We first obtained this solution via a perturbative expansion described in section 3.

We understand the pattern of the power series solution of (1.3) to O(λ10) and resum it

to (1.4). The advantage of this approach is that it identifies the renormalisation parame-

ter µ2 for which our solution matches the usual perturbative renormalisation prescription.

Finally, in section 4 we directly verify (1.4) via integrals for Meijer-G functions.

2 Solution via differential equation

It is convenient to symmetrise the Fredholm equation (1.3). Dividing by x
µ2+x

and defining

˜̺λ(x) :=
J(x)

x(µ2+x)
, we have

˜̺λ(x) =
1

µ2 + x
− λ

∫ ∞

0
dt

˜̺λ(t) tx

(µ2 + t)(µ2 + x)(µ2 + x+ t)

=
cλ

µ2 + x
− λ

∫ ∞

0
dt

˜̺λ(t)

µ2 + x+ t
, (2.1)

where cλ = 1 + λµ2
∫∞
0 dt ˜̺λ(t)

µ2+t
= 1 + λµ2

∫∞
0 dt J(t)

t(µ2+t)2
. The second line results by

(not so obvious) rational fraction expansion. As proved in appendix A, there exists for

λ > − 1
π a solution ˜̺λ ∈ L2(R+), which means limt→∞ t ˜̺λ(t) = 0. Another transformation

φ(x) = µ2 ˜̺λ(xµ
2) simplifies the problem to

φ(x) =
cλ

1 + x
− λ

∫ ∞

0
dt

φ(t)

1 + t+ x
, φ(0) = 1. (2.2)

The aim is to find the differential operator Dx acting on (2.2) which is reproduced under

the integral on φ(t) such that all appearing inhomogeneous parts vanish, i.e.

Dxφ(x) = −λ

∫ ∞

0
dt

Dtφ(t)

1 + t+ x
.
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We compute derivatives and integrate by parts, taking the boundary values at 0 and ∞

into account:

φ′(x) = −
cλ

(1 + x)2
+ λ

∫ ∞

0
dt

φ′(t)
1 + t+ x

+
λ

1 + x
. (2.3)

Also the product with 1 + x simplifies by integration by parts:

(1 + x)φ′(x) = −
cλ

(1 + x)
− λ

∫ ∞

0
dt

tφ′(t)
1 + t+ x

. (2.4)

We differentiate once more:

(1 + x)φ′′(x) + φ′(x) =
cλ

(1 + x)2
+ λ

∫ ∞

0

dt

(1 + t+ x)

d

dt
(tφ′(t)) ,

(1 + x)φ′′(x) =
2cλ

(1 + x)2
+ λ

∫ ∞

0
dt

tφ′′(t)
1 + t+ x

−
λ

1 + x
. (2.5)

We multiply by x and integrate by parts:

x(1 + x)φ′′(x) =
2cλ

(1 + x)
−

2cλ
(1 + x)2

− λ

∫ ∞

0

dt t(1 + t)φ′′(t)
1 + t+ x

+
λ

1 + x
.

We subtract twice (2.3) and add four times (2.4):

x(1 + x)φ′′(x) + (2 + 4x)φ′(x) = −
2cλ + λ

(1 + x)
− λ

∫ ∞

0
dt
t(1 + t)φ′′(t) + (2 + 4t)φ′(t)

1 + t+ x
.

Finally, we add 2cλ+λ
cλ

times (2.2) to get Dx = x(1 + x) d2

dx2 + (2 + 4x) d
dx + 2cλ+λ

cλ
, or

equivalently

0 = (id + λÂ1)g, where (2.6)

g(x) = x(1 + x)φ′′(x) + (2 + 4x)φ′(x) +
2cλ + λ

cλ
φ(x),

and Âµ is the integral operator with kernel Âµ(t, u) = 1
u+t+µ2 . The arguments given in

appendix A show that Âµ has spectrum [0, π] for any µ ≥ 0. Therefore, equation (2.6)

has for λ > − 1
π only the trivial solution g(x) = 0, which is a standard hypergeometric

differential equation. The normalisation φ(0) = 1 uniquely fixes the solution to

φ(x) = 2F1

(
1+αλ, 2−αλ

2

∣
∣
∣− x

)

=
1

1 + x
2F1

(
αλ, 1−αλ

2

∣
∣
∣− x

)

, cλ =
λ

αλ(1−αλ)
. (2.7)
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It remains to satisfy the boundary condition cλ = 1 + λ
∫∞
0 dt φ(t)

1+t given after (2.1).

The integral can be evaluated via the Euler integral [9, eq. 9.111],

∫ ∞

0
dt

φ(t)

1 + t
=

Γ(2)

Γ(1− αλ)Γ(1 + αλ)

∫ ∞

0
dt

∫ 1

0
du

u−αλ(1− u)αλ

(1 + ut)αλ(1 + t)2

=
1

Γ(1− αλ)Γ(1 + αλ)

∫ 1

0
ds

∫ 1

0
du

u−αλ(1− u)αλ(1− s)αλ

(1− (1− u)s)αλ

=
1

Γ(1− αλ)Γ(2 + αλ)

∫ 1

0
du u−αλ(1− u)αλ

2F1

(
αλ, 1

2 + αλ

∣
∣
∣1− u

)

=
1

Γ(1− αλ)Γ(2 + αλ)

∫ 1

0
du uαλ(1− u)−αλ

{

(1 + αλ)

αλ
2F1

(
αλ, 1

1 + αλ

∣
∣
∣u

)

−
1

αλ
2F1

(
αλ, 2

2 + αλ

∣
∣
∣u

)}

=
1

Γ(1− αλ)Γ(2 + αλ)

{
(1 + αλ)

αλ

Γ(1 + αλ)Γ(1− αλ)Γ(1− αλ)

Γ(2− αλ)Γ(1)

−
1

αλ

Γ(2 + αλ)Γ(1 + αλ)Γ(1− αλ)Γ(1− αλ)

Γ(2)Γ(2)Γ(1)

}

=
1

αλ(1− αλ)
− Γ(αλ)Γ(1− αλ).

Here we have transformed t = s
1−s , evaluated first the s-integral [9, eq. 9.111] to a hy-

pergeometric function, used its contiguous relation [9, eq. 9.137.17] so that the remaining

integrals are known from [9, eq. 7.512.4] and [9, eq. 7.512.3]. We thus conclude

cλ = 1 +
λ

αλ(1− αλ)
−

λπ

sin(αλπ)

!
=

λ

αλ(1− αλ)

with solution

sin(αλπ) = λπ , αλ =







arcsin(λπ)

π
for |λ| ≤ 1

π ,

1

2
+ i

arcosh(λπ)

π
for λ ≥ 1

π .
(2.8)

The branch is uniquely selected by the requirement limλ→0 cλ = 1. For λ < − 1
π there is

no solution for which cλ and φ are real. Transforming back to ρ̃λ and J gives the result

announced in (1.4), which provides the two-point function G(x, y) via Thm. 1.

2.1 Spectral dimension

Let ̺0(x)dx be the spectral measure of the operator E in the initial action (1.1). The

main discovery of [8] was that the interaction λ
4Tr(Φ

4) effectively modifies the spectral

measure to ̺λ(x)dx. What before, when expressed in terms of ̺0(x)dx, was intractable be-

came suddenly exactly solvable in terms of the deformation ̺λ(x)dx. For four-dimensional

Moyal space one has ̺0(x) = x and ̺λ(x) = J(x). The explicit solution (1.4) shows

that the deformation is drastic: it changes the spectral dimension D defined by D =

inf{p :
∫∞
0 dt ̺λ(t)

(1+t)p/2
<∞}.
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Lemma 2.1. For any |αλ| <
1
2 one has

1

(1 + x)αλ
≤ 2F1

(
αλ, 1−αλ

2

∣
∣
∣− x

)

≤
Γ (1− 2αλ)

Γ(2− αλ)Γ(1− αλ)

1

(1 + x)αλ
.

Proof. We transform with [9, eq. 9.131.1] to

2F1

(
αλ, 1−αλ

2

∣
∣
∣− x

)

=

(
1

1 + x

)αλ 2F1

(
2− αλ, 1−αλ

2

∣
∣
∣

x

1 + x

)

(

1−
x

1 + x

)2αλ−1 .

By [10, Thm. 1.10], the fraction on the r.h.s. is strictly increasing from 1 at x = 0 to its

limit B(2,1−2αλ)
B(2−αλ,1−αλ)

= Γ(1−2αλ)
Γ(2−αλ)Γ(1−αλ)

for x→ ∞. �

Corollary 2.2. For |λ| < 1
π , the deformed measure ̺λ = J of four-dimensional Moyal

space has spectral dimension D = 4− 2arcsin(λπ)
π .

Proof. Lemma 2.1 together with ̺λ(x) = J(x) and (1.4) gives the assertion. �

The change of spectral dimension is important. If instead of (1.3) the function J

was given by J̃(x) = x − λx2
∫∞
0 dt ̺0(t)

(t+µ2)2(t+µ2+x)
, then for ̺0(x) = x this function J̃ is

bounded above. Hence, J̃−1 needed in higher topological sectors could not exist globally

on R+, which would render the model inconsistent for any λ > 0. The dimension drop

down to D = 4− 2arcsin(λπ)
π avoids this (triviality) problem.

3 Perturbative expansion

In this section we study two different perturbative expansions of an angle function which is

behind the solution of G(x, y). In section 3.2 we directly expand (3.2) order by order in λ,

whereas in section 3.3 we expand (1.3) and compare with the other result via Corollary 3.1.

For a special choice of µ2 which we determine, both expansions coincide order by order in

λ (we played the game up to the 10th order with a computer algebra system).

3.1 Recalling earlier results

Equation (1.2) is a nonlinear singular integral equation. The solution theory for linear

integral equations of Carleman type is known (see e.g. [11]) and suggests the ansatz

G(a, b) =
sin(τb(a))

λπa
eH

Λ
a [τb(•)]−HΛ

0
[τ0(•)], (3.1)

where HΛ
a [f(•)] := 1

π limε→0

( ∫ a−ε
0 +

∫ Λ2

a+ε

)
dp f(p)

p−a denotes the finite Hilbert transform.

Inserting (3.1) into (1.2) gives with identities established in [12] the consistency relation

pλπ cot(τa(p)) = µ2bare + a+ p+ λπHΛ
p [•] +

1

π

∫ Λ2

0
dt τp(t). (3.2)

– 6 –
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Renormalisation by Taylor subtraction at 0 suggests to choose the bare mass according to

µ2bare = 1− λΛ2 −
1

π

∫ Λ2

0
dt τ0(t). (3.3)

We will later see that another form of (3.3) is for the exact solution more efficient.

The key step in [8] to solve (3.2) (actually in larger generality) was to define a λ-

deformation ̺λ(x) of a spectral measure function ̺0. This deformed measure then gives

rise to a function J(x) which in four dimensions reads

J(z) := z − λz2
∫ ∞

0
dt

̺λ(t)

(t+ µ2)2(t+ µ2 + z)
. (3.4)

The system of functions (̺0, ̺λ, J) is closed by the final condition ̺0(J(x)) = ̺λ(x).

In general this is a complicated system of equations. Here, the integral equation (1.2)

encodes the spectral measure ̺0(x) = x so that J(x) = ̺λ(x) and (3.4) is reduced to (1.3).

We now have the following corollary of [8, Thm. 2.7]:

Corollary 3.1. Adjusting the bare mass to

µ2bare(Λ) = µ2 ·

(

1− λ

∫ J−1(Λ2)

0
dt

̺λ(t)

(t+ µ2)2

)

− 2λ

∫ J−1(Λ)

0
dt

̺λ(t)

(t+ µ2)
, (3.5)

then the consistency relation (3.2) is solved by

λπ̺0(p) cot(τa(p)) = lim
ε→0

Re(a+ I(p+ iε)), (3.6)

where I(z) :=− J(−µ2 − J−1(z)).

Note that (3.5) fixes the renormalisation different than (3.3). It is actually a family of

renormalisations which depend on a free parameter µ2(λ). Setting G(0, 0) = 1 does not

mean µ2 = 1, nevertheless both approaches coincide in the limit Λ2 → ∞. We will later

identify this unique function µ2(λ) that gives (3.3).

3.2 Direct expansion

Expanding equation (3.2) with renormalisation (3.3) and finite cut-off gives

pλπ cot(τa(p)) = 1 + a+ p+ λp log

(
Λ2 − p

p

)

+
1

π

∫ Λ2

0
dt (τp(t)− τ0(t)) . (3.7)

The first order is extracted directly

pλπ cot(τa(p)) = 1 + a+ p+O(λ1) ⇒ τa(p) =
pλπ

1 + a+ p
+O(λ2),

which gives after inserting back at the next order

pλπ cot(τa(p)) = 1 + a+ p+ λ

(

(1 + p) log(1 + p)− p log(p)

+ p log

(
Λ2 − p

1 + p+ Λ2

)

+ log

(
1 + Λ2

1 + p+ Λ2

))

+O(λ2).

– 7 –
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The limit Λ2 → ∞ gives finite results for cot(τa(p)) as well as for τa(p) order by order,

however the limit has to be taken with caution. Integral and limit do not commute.

Namely, for and expansion τa(p) =
∑∞

n=1 λ
nτ

(n)
a (p) we have

lim
Λ2→∞

∫ Λ2

0
dt
(

τ (n)p (t)− τ
(n)
0 (t)

)

6=

∫ ∞

0
dt lim

Λ2→∞

(

τ (n)p (t)− τ
(n)
0 (t)

)

, n > 1.

As an example we will look at the next order of both integrals. They give

lim
Λ2→∞

1

π

∫ Λ2

0
dt
(

τ (2)p (t)− τ
(2)
0 (t)

)

= (1 + p) log(1 + p)2 + (1 + 2p)Li2(−p)− pζ2,

1

π

∫ ∞

0
dt lim

Λ2→∞

(

τ (2)p (t)− τ
(2)
0 (t)

)

=

∫ ∞

0
dt t

(
t log(t)− (1 + t) log(1 + t)

(1 + t+ p)2
−
t log(t)− (1 + t) log(1 + t)

(1 + t)2

)

= (1 + p) log(1 + p)2 + (1 + 2p)Li2(−p) + 2pζ2,

respectively, where Lin(x) is the nth polylogarithm and ζn ≡ ζ(n) is the Riemann zeta

value at integer n. The last term makes the difference. Taking the “wrong” second result

and plugging it back into (3.7) would lead to divergences at the next order. Consequently,

we have to treat the perturbative expansion of (3.7) with a finite cut-off Λ2 at all orders,

where each order has a finite limit.

The integration theory of the appearing integrals is completely understood in form of

iterated integrals [13]. They form a shuffle algebra, which is symbolically implemented in

the Maple package HyperInt [14].

We computed the first 6 orders via HyperInt for finite Λ2. Sending Λ2 → ∞ is

well-defined at any order as expected. The first orders read explicitly

lim
Λ2→∞

pλπ cot(τa(p)) = 1 + a+ p+ λ ((1 + p) log(1 + p)− p log(p))

+ λ2
(
−pζ2 + (1 + p) log(1 + p)2 + (1 + 2p)Li2(−p)

)

+ λ3
(

ζ2 log(1 + p)−
1 + p

2p
log(1 + p)2 + (1 + p) log(1 + p)3

+ 2pζ3 − 2pLi3(−p)− (1 + 2p)Hlog(p, [−1, 0,−1])

− 2(2 + 3p)Hlog(p, [0,−1,−1])

)

+O(λ4). (3.8)

The hyperlogarithms Hlog are defined by the iterated integrals

Hlog(a, [k1, . . . , kn]) :=

∫ a

0

dx1
x1 − k1

∫ x1

0

dx2
x2 − k2

. . .

∫ xn−1

0

dxn
xn − kn

,

where the ki are called letters. An alternative notation is Hlog(a, [k1, . . . , kn]) =

Lk1,...,kn(a). Important special cases are Hlog(a, [−k, . . . ,−k
︸ ︷︷ ︸

n

]) =
log(1+

a
k )

n

n! for k ∈ N
×,

Hlog(a, [0, . . . , 0
︸ ︷︷ ︸

n

]) := log(a)n

n! and Hlog(a, [0, . . . , 0
︸ ︷︷ ︸

n

,−1]) = −Li1+n(−a).
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The perturbative expansion shows that the branch point at p = −1 plays an important

role. Its boundary value is found to be limΛ2→∞
εց0

cot(τ0(−1+iε)) = −i+O(λ7). It is natural

to conjecture that it holds at any order,

lim
Λ2→∞
εց0

cot(τ0(−1 + iε)) = −i. (3.9)

The perturbative expansion with a finite cut-off Λ2 is quite inefficient. The boundary

value (3.9) admits a more efficient strategy. We take the derivative of (3.7) with respect

to p:

1 + λ log

(
Λ2−p

p

)

− λ
Λ2

Λ2−p
+

1

π

∫ Λ2

0
dt
dτp(t)

dp
= λπ cot(τa(p)) + pλπ

∂

∂p
cot(τa(p)).

Multiplying this equation by p and subtracting it from (3.7) again leads to

−p2λπ
∂

∂p
cot(τa(p)) = 1 + a+ λ

pΛ2

Λ2−p
+

1

π

∫ Λ2

0
dt

(

τp(t)− τ0(t)− p
dτp(t)

dp

)

, (3.10)

where the limit Λ2 → ∞ is now safe from the beginning and commutes with the integral.

We divide (3.10) by −p2 and integrate it for all orders higher than λ1 over p from −1

(here (3.9) is assumed) up to some q to get limΛ2→∞ λπ cot(τa(q)) on the l.h.s. On the

r.h.s. the order of integrals
∫ q
−1 dp

∫∞
0 dt can be exchanged. The integral over p is

∫ q

−1
dp

1

p2

(

τp(t)− τ0(t)− p
dτp(t)

dp

)

, (3.11)

assuming Hölder continuity of τp(t) so that the integral splits after taking principal values.

The last term is computed for small ǫ and all O(λ>1)-contributions via integration by parts

∫

[−1,q]\[−ǫ,ǫ]
dp

dτp(t)
dp

p
=
τp(t)

p

∣
∣
∣
∣

q

p=ǫ

+
τp(t)

p

∣
∣
∣
∣

−ǫ

p=−1

+

∫

[−1,q]\[−ǫ,ǫ]
dp
τp(t)

p2

=
τq(t)

q
+ τ−1(t) +

∫

[−1,q]\[−ǫ,ǫ]
dp
τp(t)

p2
−
τ−ǫ(t) + τǫ(t)

ǫ
. (3.12)

The first term in (3.11) cancels. The second term in (3.11) integrates to a boundary term

+2 τ0(t)
ǫ , which is also canceled by the last term of (3.12). Multiplying by q and including

the special O(λ)-contribution we arrive in the limit Λ2 → ∞ where (3.9) is (conjecturally)

available at

qλπ cot(τa(q)) = 1 + a+ q − λq log(q) +
1

π

∫ ∞

0
dt (τq(t)− (1 + q)τ0(t) + qτ−1(t)) . (3.13)

This equation is much more appropriate for the perturbation theory because the number

of terms is reduced tremendously order by order. Obviously, the first six order coincide

with the earlier but much harder perturbative expansion of (3.7).

Using (3.13) the perturbative expansion is increased up to λ9 with HyperInt. As

consistency check of assumption (3.9) we inserted the next orders τ
(n)
a (p) into (3.1) to get

the expansion G(a, b) =
∑∞

n=0 λ
nG(n)(a, b). This confirmed the symmetry G(n)(a, b) =

G(n)(b, a) which would easily be lost by wrong assumptions. We are thus convinced to

have the correct expressions for τ
(n)
a (p) for 6 < n < 10.
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3.3 Expansion of the Fredhom equation

To access the angle function τa(p) through Corollary 3.1 we first have to determine the

expansion of the deformed measure ̺λ(x) = J(x) through the Fredholm equation (1.3).

The constant µ2(λ) is not yet fixed and needs a further expansion

µ2 =
∞∑

n=0

λnµ2n.

First orders of the deformed measure are given iteratively through (1.3)

̺λ(x) = x− λ((x+ µ20)Hlog(t, [−µ
2
0])− x)

−
λ2

µ20
(−µ20xHlog(x, [0,−µ

2
0]) + µ20(µ

2
1 + µ20 + x)Hlog(x, [−µ20])− x(µ21 + µ20))

+O(λ3).

Recall that the inverse of J(x) = ̺λ(x) = p exists for all p ∈ R+ in case λ<
(∫∞

0
dt̺λ(t)
(t+µ2)2

)−1
.

If ̺λ(x) had the same asymptotics as ̺0(x) = x then J−1 could not be defined globally

for λ > 0. We proved in section 2.1 that the asymptotics of ̺λ(x) is altered in such a way

that J−1 is defined. Anyway, in each order of perturbative expansion the inverse J−1 is

globally defined on R+. At this point it suffices to assume that J−1(p) is a formal power

series in λ, which is achieved by (3.4)

J−1(p) = p+ λ(J−1(p))2
∫ ∞

0

dt ̺λ(t)

(t+ µ2)2(t+ µ2 + J−1(p))
.

Expanding ̺λ(t) and µ
2, the first orders are

J−1(p) = p− λ(p− (µ20 + p)Hlog(p, [−µ20]))

−
λ2

µ20
(pµ20Hlog(p, [0,−µ

2
0])− 2µ20(p+ µ20)Hlog(p, [−µ

2
0,−µ

2
0])

− µ20(µ
2
1 + µ20)Hlog(p, [−µ

2
0]) + p(µ21 + µ20)) +O(λ3).

The last step is to determine limε→0ReI(p+ iε) = pλπ cot(τ0(p)) for Λ
2 → ∞ via

I(z) = µ2 + J−1(z) + λ(µ2 + J−1(z))2
∫ ∞

0

dt ̺λ(t)

(t+ µ2)2(t− J−1(z))
,

as a formal series. The first few orders are

lim
ε→0

I(p+iε)=µ20+p+λ
(
iπp+µ20+µ

2
1+(µ20+p)Hlog(p, [−µ

2
0])+p log(µ

2
0)−p log(p)

)

+λ2
(

µ20(1−ζ2)+µ
2
1+µ

2
2−pζ2+(µ20+µ

2
1)Hlog(p, [−µ

2
0])

+2(µ20+p)Hlog(p, [−µ
2
0,−µ

2
0])−(µ20+2p)Hlog(p, [0,−µ20])

)

+O(λ3).

Comparing it with (3.8) through equation (3.6) fixes every µ2i uniquely and confirms

lim
ε→0

I(p+ iε) = λπp cot(τ0(p)) + iλπp.
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Furthermore, the first 10 orders are identical with the expansion of (3.13), provided that

the µ2i ’s are fixed to

µ2 = 1− λ+
1

6
(πλ)2 − λ

1

3
(πλ)2 +

3

40
(πλ)4 − λ

8

45
(πλ)4 +

5

112
(πλ)6 − λ

4

35
(πλ)6

+
35

1152
(πλ)8 − λ

128

1575
(πλ)8 +

63

2816
(πλ)10 +O(λ11). (3.14)

The conjectured behavior of cot(τ0(p)) at p = −1 + iε in the previous subsection (3.9) is

now equivalent to

lim
ε→0

I(−1 + iε) = 0 ⇒ J−1(−1) = −µ2.

We find that the expansion (3.14) of µ2 obeys an unexpected boundary condition

∫ ∞

0

dt ̺λ(t)

(µ2 + t)3
=

1

2
+O(λ10). (3.15)

For further study we pass as in section 2 to the rescaled measure φ(x) = µ2 ˜̺λ(µ
2x) :=

̺λ(µ
2x)

µ2x(1+x)
. The pattern of coefficients of the µ2-expansion in (3.14) suggests to distinguish

between even an odd powers in λ. The even powers λ2n are given by the formula

(2n− 1)!!

(2n)!!(2n+ 1)
=

(2n)!

4nn!2(2n+ 1)
,

and the odd powers λ2n+1 by

2
(2n)!!

(2n+ 1)!!(2n+ 2)
= 2

4nn!2

(2n+ 2)!
.

Both series are convergent for |λ| < 1
π with the result (up to order λ10)

µ2 =
arcsin(λπ)

λπ
− λ

(
arcsin(λπ)

λπ

)2

.

This result suggests that arcsin(λπ)
π is a better expansion parameter than λ itself. The factors

π2n are produced by ζ2n in the iterated integrals. We thus reorganise the perturbative

solution of (2.2) into a series in arcsin(λπ)
π . The power of arcsin(λπ)

λπ depends on the number

of letters of the hyperpolylogarithm, which alternate between −1 and 0. The expansion

which holds up to order λ10 is given by

φ(x) = cλ
arcsin(λπ)

λπ(1 + x)

∞∑

n=0

Hlog(x, [0,−1, . . . , 0,−1
︸ ︷︷ ︸

n

])

(
arcsin(λπ)

π

)2n

(3.16)

− λcλ
arcsin(λπ)2

x(λπ)2

∞∑

n=0

Hlog(x, [−1, 0,−1, . . . , 0,−1
︸ ︷︷ ︸

n

])

(
arcsin(λπ)

π

)2n

,

where the underbrace with n means that we have n times the letters 0 and −1 in an

alternating way.
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In the limit x→ 0 only the terms with n = 0 in both sums survive,

1 ≡ φ(0) = cλ
arcsin(λπ)

λπ
lim
x→0

Hlog(x, [ ])

1 + x
− λcλ

arcsin(λπ)2

(λπ)2
lim
x→0

Hlog(x, [−1])

x

=
cλ
λ

arcsin(λπ)

π

(

1−
arcsin(λπ)

λπ

)

.

This value was found in section 2 by another method. We also remark that cλ = 1
µ2 for

the special renormalisation.

Next define the functions

f(x) :=

∞∑

n=0

Hlog(x, [0,−1, . . . , 0,−1
︸ ︷︷ ︸

n

])α2n
λ

g(x) :=
∞∑

n=0

Hlog(x, [−1, 0,−1, . . . , 0,−1
︸ ︷︷ ︸

n

])α2n
λ ,

where αλ = arcsin(λπ)
π . Both together obey the differential equations

f ′(x) =
α2
λ

x
g(x) g′(x) =

1

1 + x
f(x),

or equivalently

f ′′(x) +
f ′(x)
x

− α2
λ

f(x)

(1 + x)x
= 0, g′′(x) +

g′(x)
1 + x

− α2
λ

g(x)

(1 + x)x
= 0,

with the boundary conditions f(0) = 1, f ′(0) = α2
λ, g(0) = 0 and g′(0) = 1. The solution

is given by hypergeometric functions 2F1

f (x) = 2F1

(
αλ, −αλ

1

∣
∣
∣− x

)

g (x) =
x

α2
λ

f ′ (x) = x2F1

(
1+αλ, 1−αλ

2

∣
∣
∣− x

)

.

In summary, the solution of equation (2.2) is conjectured to be

φ(x) =
αλcλ

λ(1 + x)
2F1

(
αλ, −αλ

1

∣
∣
∣− x

)

−
α2
λc

λ
2F1

(
1+αλ, 1−αλ

2

∣
∣
∣− x

)

= 2F1

(
1+αλ, 2−αλ

2

∣
∣
∣− x

)

(3.17)

or equivalently for (1.3)

J(x) = ̺λ(x) =
x

µ2

(

1 +
x

µ2

)

f

(
x

µ2

)

= x 2F1

(
αλ, 1−αλ

2

∣
∣
∣−

x

µ2

)

, (3.18)

where we have used the Gauss recursion formula [9, eq. 9.137.7] for hypergeometric func-

tions. Finally, we note that
∫ ∞

0

dt ̺λ(t)

(t+ µ2)3
= lim

x→0

x− ̺λ(x)

λx2
=
αλ(1− αλ)

2λµ2
=

1

2cλµ2
.

Thus choosing µ2 = αλ(1−αλ)
λ we confirm (3.15) exactly.
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4 Stieltjes transform of the measure function

We find it interesting to directly check that the hypergeometric function ˜̺λ(x) =
1
µ2φ(

x
µ2 ),

see (2.7), solves the integral equation (2.1). The hypergeometric function can be expressed

through the more general Meijer-G function. A Meijer-G function is defined by

Gm,n
p,q

(

z
∣
∣
∣
a1, . . . , ap
b1, . . . , bq

)

=
1

2πi

∫

L

∏m
j=1 Γ(bj − s)

∏n
j=1 Γ(1− aj + s)

∏q
j=m+1 Γ(1− bj + s)

∏p
j=n+1 Γ(aj − s)

zsds, (4.1)

with m,n, p, q ∈ N, with m ≤ q and n ≤ p, and poles of Γ(bj − s) different from poles

of Γ(1 − aj + s). The infinite contour L separates between the poles of Γ(bj − s) and

Γ(1− aj + s), and its behavior to infinity depends on m,n, p, q (see [9, section 9.3]).

The Meijer-G function has by definition the property

Gm,n
p,q

(

z
∣
∣
∣
a1, . . . , ap
b1, . . . , bq

)

=
1

z
Gn,m

q,p

(
1

z

∣
∣
∣
−b1, . . . ,−bq
−a1, . . . ,−ap

)

. (4.2)

It obeys the convolution formula [9, eq. 7.811.1]

∫ ∞

0
dxGm,n

p,q

(

αx
∣
∣
∣
a1, . . . , ap
b1, . . . , bq

)

Gm′,n′

p′,q′

(

βx
∣
∣
∣
a′1, . . . , a

′
p′

b′1, . . . , b
′
q′

)

=
1

α
Gn+m′,m+n′

q+p′,p+q′

(

β

α

∣
∣
∣
−b1, . . . ,−bm, a

′
1, . . . , a

′
p′ ,−bm+1, . . . ,−bq

−a1, . . . ,−an, b′1, . . . , b
′
q′ ,−an+1, . . . ,−ap

)

, (4.3)

which is the source of numerous impressive integrals over R+ of products of special func-

tions. If no two bj differ by an integer, either p < q or p = q with |z| < 1, then a Meijer-G

function can be expressed by hypergeometric functions

Gm,n
p,q

(

z
∣
∣
∣
a1, . . . , ap
b1, . . . , bq

)

=

m∑

k=1

∏′m
j=1 Γ(bj − bk)

∏n
j=1 Γ(1 + bk − aj)

∏q
j=m+1 Γ(1 + bk − bj)

∏p
j=n+1 Γ(aj − bk)

zbk (4.4)

× pFq−1

(
1 + bk − a1, . . . , 1 + bk − ap

1 + bk − b1, . . . , ⋆, . . . , 1 + bk − bq

∣
∣
∣(−1)p−n−mz

)

,

where primed product and the ⋆ means that the term with j = k is omitted.

We need another identity which is derived directly from the definition

G3,2
3,3

(

z
∣
∣
∣
0, 0, 1

b1, b2, 0

)

=
1

2πi

∫

L

Γ(b1 − s)Γ(b2 − s)Γ(−s)Γ(1 + s)2

Γ(1− s)
zsds

= −
1

2πi

∫

L
Γ(b1 − s)Γ(b2 − s)Γ(s)Γ(1 + s)zsds

= Γ(b1)Γ(b2)−
1

2πi

∫

L′

Γ(b1 − s)Γ(b2 − s)Γ(s)Γ(1 + s)zsds

= Γ(b1)Γ(b2)−G2,2
2,2

(

z
∣
∣
∣
0, 1

b1, b2

)

, (4.5)

where the contour is changed L → L′ such that it is moved through s = 0 and picked up

the residue. The contour L′ fulfills the definition (4.1) for G2,2
2,2

(

z
∣
∣
∣

0,1
b1,b2

)

.
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From (4.4) one can establish

˜̺λ(t) =
1

µ2
1

Γ(2− αλ)Γ(1 + αλ)
G1,2

2,2

(
t

µ2

∣
∣
∣
αλ − 1,−αλ

0,−1

)

,

and 1
x+t+µ2 = 1

x+µ2 1F0

(
1
−
∣
∣− t

x+µ2

)
= 1

x+µ2G
1,1
1,1

(
t

x+µ2

∣
∣0
0

)

. The convolution theorem (4.3)

of Meijer-G functions thus allows to evaluate the integral

λ

∫ ∞

0

dt ˜̺λ(t)

x+ t+ µ2

(4.3)
=

λ

µ2Γ(2− αλ)Γ(1 + αλ)
G2,3

3,3

(
x+ µ2

µ2

∣
∣
∣
αλ − 1,−αλ, 0

0, 0,−1

)

(4.2)
=

λ

(x+ µ2)Γ(2− αλ)Γ(1 + αλ)
G3,2

3,3

(
µ2

x+ µ2

∣
∣
∣

0, 0, 1

1− αλ, αλ, 0

)

(4.5)
=

λ

(x+ µ2)Γ(2− αλ)Γ(1 + αλ)

(

Γ(1− αλ)Γ(αλ)−G2,2
2,2

(
µ2

x+ µ2

∣
∣
∣

0, 1

1− αλ, αλ

))

(4.4)
=

λ

(x+ µ2)

{

1

αλ(1− αλ)

−
Γ(2αλ − 1)Γ(1− αλ)

Γ(1 + αλ)

(
µ2

x+ µ2

)1−αλ

2F1

(
2−αλ, 1−αλ

2−2αλ

∣
∣
∣

µ2

x+ µ2

)

−
Γ(1− 2αλ)Γ(αλ)

Γ(2− αλ)

(
µ2

x+ µ2

)αλ

2F1

(
1+αλ, αλ

2αλ

∣
∣
∣

µ2

x+ µ2

)}

=
1

(x+ µ2)

λ

αλ(1− αλ)
−

λπ

sin(αλπ)
˜̺λ(x) . (4.6)

We have used the expansion of a Meijer-G function into hypergeometric functions and

applied in the last step [9, eq. 9.132.1]. The result is precisely (2.1) provided that cλ =
λ

αλ(1−αλ)
(see (2.7)) and sin(αλπ) = λπ (see (2.8)).

5 Outlook

With the identification of J we have completed the solution of the planar 2-point function

of the Φ4-QFT model on four-dimensional Moyal space at the self-duality point. From

the 2-point function one directly builds all planar correlation functions [7, 15]. In our

earlier work [16] on the much simpler cubic Kontsevich-like model we gave an algorithm

to compute also all non-planar correlation functions from the planar sector. It remains to

be seen whether a similar endeavour can succeed for the Φ4-model, too.

We expect that non-planar functions are expressed in terms of the inverse function

J−1. Inverses of hypergeometric functions do not seem to be studied. There is now strong

motivation to try it. Of course one can approximate J−1 perturbatively via the expansion

of J into hyperlogarithms which we established. A non-perturbative characterisation of

J−1 could provide useful identities between these number-theoretic functions.
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A On the spectrum of the integral operator (by Robert Seiringer)

Abstractly, the integral equation (2.1) is of the form

ψ = fµ − λAµψ,

where ψ(t) = ˜̺λ(t), fµ(t) = (t+ µ2)−1 and Aµ is the operator with integral kernel

Aµ(t, u) =
ut

(u+ µ2)(u+ t+ µ2)(t+ µ2)
. (A.1)

Note that Aµ is symmetric and positive. The equation can thus be solved for ψ if λ > λc =

−‖Aµ‖
−1.

By scaling, the spectrum of Aµ is independent of µ for µ > 0. We claim that

‖Aµ‖ = ‖A0‖ = π. (A.2)

In particular, λc = −1/π.

Since Aµ has a positive kernel which is monotone in µ, one readily obtains ‖Aµ‖ ≤

‖A0‖. On the other hand, A0 is the weak limit of Aµ as µ → 0, hence ‖A0‖ ≤

lim infµ→0 ‖Aµ‖, which proves that ‖Aµ‖ = ‖A0‖. Now A0(t, u) = (u + t)−1. Introducing

logarithmic coordinates, we have

∫ ∞

0

∫ ∞

0

φ(u)∗φ(t)
u+ t

dudt =

∫

R

∫

R

φ∗(ev)φ(es)
ev + es

ev+sdvds

=

∫

R

∫

R

φ∗(ev)ev/2φ(es)es/2

2 cosh(12(v − s))
dvds (A.3)

which can be diagonalised via Fourier transforms. Since

∫

R

1

2 cosh(v/2)
dv = π,

this shows that the spectrum of A0 equals [0, π], and indeed ‖A0‖ = ‖Aµ‖ = π.
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