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Abstract. This work presents a time-truncation scheme, based on the Lagrange interpolation 
polynomial, for the solution of the two-dimensional scalar wave problem by the time-domain boundary 
element method. The aim is to reduce the number of stored matrices, due to the convolution integral 
performed from the initial time to the current time, and to keep a compromise between computational 
economy and efficiency and the numerical accuracy. In order to verify the accuracy of the proposed 
formulation, three examples are presented and discussed at the end of the article. 

Keywords: truncation strategy; boundary element method; scalar wave equation; TD-BEM. 

1. Introduction 

The Boundary Element Method (BEM) has been applied to solve time-dependent problems quite 
successfully, as demonstrated by the several works, dealing with different approaches, published 
during the last years. For general purposes, these approaches can be classified according to the 
nature of the fundamental solution adopted. The use of time-dependent fundamental solution 
originates time-domain formulations (TD-BEM). TD-BEM formulations, beside providing good 
representation of causality and time response jumps and, consequently, leading to very accurate 
results, fulfill the radiation condition, which makes them suitable for infinite domain analysis, e.g. 
(Mansur 1983, Dominguez 1993, Mansur et al. 1998). The use of static fundamental solution, on 
the other hand, originate two formulations, classified according to the maintenance or not of the 
inertial domain integral in the BEM equations as: D-BEM, that keeps the domain integral (D means 
domain) in the equations (Carrer and Telles 1992, Hatzigeorgiou and Beskos 2001), and DR-BEM 
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(DR means Dual Reciprocity) that, by means of suitable interpolation functions, substitutes the 
domain integral by boundary integrals (Kontoni and Beskos 1993, Partridge et al. 1992). 
Formulations based on frequency and Laplace domains are also available, e.g., (Manolis 1983, de 
Lacerda et al. 1996). More recently, a formulation based on the Operational Quadrature Method 
appeared in the literature (Gaul and Schanz 1999, Schanz 2001). 

This work is concerned with the solution of 2D scalar wave problem and is based on the TD
BEM formulation. The aim here is to reduce the storage computational cost due to the evaluation of 
the convolution integral that appear in the formulation. In other words, the aim is to reduce the 
number of assembled matrices, necessary to take into account the time history contribution, and to 
preserve the accuracy of the standard TD-BEM formulation. It seems that the best strategy to 
achieve this goal is to truncate the time integration, as previously presented (Demirel and Wang 
1987, Mansur and de Lima-Silva 1992, Soares Jr. and Mansur 2004): the present work is concerned 
with this topic. Here, the whole time interval of analysis (0 :s; t :s; tn) is divided into two parts, both 
constituted by time steps, At, of equal size: the first one is restricted to the interval tk :s; t :s; tn, where 
tk is a specific value of time. In this first interval, the time integration is effectively done, i.e., the 
matrices are assembled in the standard way. In the second interval, defmed by 0 :s; t :s; tb discrete 
values of time are chosen and a Lagrange polynomial, passing through these discrete values of time, 
is constructed. Proceeding in this way, only matrices at these specific values of time are 
appropriately assembled, and matrices corresponding to intermediate values are computed by 
interpolation. The numerical computation of the convolution integral is carried out in this way. In 
order to simplifY the nomenclature, the first interval, constituted by the last niNr time intervals, will 
be referred to as integration interval; the second interval, by its tum, will be referred to as 
interpolation interval. Naturally, the length of the so-called integration interval and the degree of 
the polynomial in the interpolation interval are problem dependent parameters; incorrect choices of 
these parameters can lead to not reliable results. 

Linear boundary elements and linear triangular cells were employed, respectively, to approximate 
the boundary and the part of the domain with non-homogeneous initial conditions (note that the 
solution of problems with non-homogeneous initial conditions does not present any difficulty: the 
domain integrals, related to the initial conditions are computed as in the standard TD-BEM 
formulation). Linear and constant time variation were assumed, respectively, for the potential and its 
normal derivative (flux) and, as usual in TD-BEM formulations, time integration was carried out 
analytically. 

Three examples are presented and discussed at the end of the article, in order to verifY the 
applicability of the proposed interpolation scheme. 

2. TD-BEM formulation 

The TD-BEM equations can be written by employing the kernel regularization procedure (Mansur 
1983) or the concept of fmite part of integrals (FPI) (Hadamard 1952). If, as it is usual in TD-BEM 
formulations, time integration is performed analytically, the resulting time integrated kernels from 
both representations are the same (Mansur and Carrer 1993), that is, both representations are 
entirely equivalent. The use of the Hadamard's concept, however, leads to more compact 
expressions and, it is the authors' opinion, provides an elegant representation of the equations 
involved in the analysis. A brief summary of the equations is given below. 
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Fig. 1 Internal angle for computation of c (.;) 

2.1 Basic integral equation 

Time-domain integral representation of the 2-D scalar wave propagation problem is written as 
(Carrer and Mansur 1996): 

r rt+ • r ar dt+ • 4~rc(~)u(~, t) = .lr Jo u (X, t;~, r)p(X, r)drdr(X)- .lr iJn Jo ur(X, t;~, r)u(X, r)drdr(X)-

! f O'r u;(x, t;~)u 0 (X)dr(X) + _!_ r u;(x, t;~)v0(X)dO(X) + 
c .lr iJn c2 Jn 

In Eq. (1), r is the boundary; 0 is the domain, or the part of the domain, that presents non
homogeneous initial conditions; the coefficient c( ~) assumes the same values of the static case, i.e., 
it is equal to 1 ( ~ E 0) or ( a/2~r) ( ~ E r and a is the internal angle depicted in Fig. 1 ); and the 
subscript 'o' means that r= 0. 

The fundamental solution, u*(X, t; ~. r), that corresponds to the effect of a source represented by 
an impulse at t = r located at X= ~ propagating with velocity equal to c, has the following 
expression: 

u*(X, t;~, r) = U*(X, t;~, r)H[c(t- r)- r] (2) 

where: 

• 2c 
U (X, t;~, r) = --;:::::::;.=:::::::;~ 

Jc2(t- >)2 -r2 
(3) 

In expression (2), H[c(t- r)- r] stands for the Heaviside function (r = r(X; ~) is the distance 
between the field (X) and the source(~) points). 

The functions b*(X, t;~, r) and u;(x, t;~, r), in Eq. (1), are given by: 

b*(X, t;~, r) = B*(X, t;~, r)H[c(t- r) -r] 

• • ur(X, t;~, r) = Ur(X, t;~, r)H[c(t- r)- r] 

(4) 

(5) 
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where: 

B*(x, t;~, r) = 2c[c(t- r) -r] 

[ 
2( )2 2]3/2 c t-r -r 

(6) 

and 

u*(x t·c; r) = 2cr 
r ' ' ' 2 2 2 3/2 

[c(t-r)-r] 
(7) 

The symbolry on the second term on the right-hand-side ofEq. (1) stands for the FPI (Hadamard 
1952): 

,ctu;(x; t;~, r)u(X, r)dr = lim { r'u;(x, t;~, r)u(X, r)dr-! u* (X, t;~, r)u(X, r)} (8) 
Jo r-H-rlc Jo c 

2.2 Space derivative boundary integral equation for internal points 

The derivative of Eq. (1) with respect to a generic direction m(~), if~ E n, can be written as 
(Carrer and Mansur 1996): 

4~rou(~, t) = - f f+u;(x, t;~, r)p(X, r)dr(r0 
• m 0 )dr(X) 

Om(~) .lr 0 

r 4 t • 1 o o o o o o 
- .lrJour(X,t;~, r)u(X, r)dr~[(r ·m )(r ·n )-(m ·n )]dr(X) 

+ ~ ;(rytu;(x; t;~, r)u(X, r)dr) (r
0 

· m
0
)(r

0 

· n°)dl(X) 

-! r u:(x; t;~)uo(X)![(r0 
0 m

0
) (r0 

0 n°)- (m
0 

0 n°) ]dr(X) 
c.lr r 

+! f au:(X, t;~) u (X)(r0
• m0 )(r0 

· n°)dl(X) + 0 (I + 1 ) (9) 
c .1r iJr o t9m( ~) n, vo n, u0 

The FPI in the first term on the right-hand-side of Eq. (9) is interpreted as: 

,ctu;(x, t;~, r)p(X, r)dr = lim { r'u;(x, t;~, r)p(X, r)dr+ u* (X, t;~, r)p(X, r)} (10) 
Jo r-H-rlc Jo 

The derivative with respect to r of the FPI indicated on the third term on the right-hand-side of 
Eq. (9) is defmed as follows: 

;_({u;(x, t;~, r)u(X, r)dr) = 

lim { f,ou';(X, t;~, r) u(X, r)dr- ~ u;(x; t;~, r)u(X, r)-! u* (X, t;~, r)ou(X, r) 
r-H-r/c 0 Or C C Or 

1 [ • . ou(X, r) • . J} + c
2 

U (X, t,~, r) or + U,(X, t,~, r)u(X, r) (11) 
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where: 

• 2c3(t-r) U,(X, t;~, r) = _ ____;__....:...:....__....:....<...._ 

[ 
2( )2 2]3/2 c t-r -r 

(12) 

2.3 Time derivative boundary integral equation for internal points 

The derivative of Eq. (1) with respect to time, if~ E n, can be written as (Carrer and Mansur 
1996): 

-1~(1tu;(X,t;~, r)u(X, r)dr)!ctr(X) 

-~ 1 :au;(~ t;~ua(X)dr(X) 

+ 0 (1 +I ) (13) Ot n,vo n,uo 

The FPI in the first term on the right-hand-side of Eq. (13) is interpreted as: 

4tu;(x, t;~, r)p(X, r)dr = lim { r'u;(x, t;~, r)p(X, r)dr+ u*(X, t;~, r)p(X, r)} (14) 
Jo r-H-rlc Jo 

• The function u1 (X, t; ~. r) in expression (14) is given by: 

• • u1 (X, t;~, r) = U1 (X, t;~, r)H[c(t- r)- r] (15) 

where: 
3 

u*(x t· j: r) - 2c (t- r) 
t ' '.,, - - 2 2 2 3/2 

[c (t- r) - r ] 
(16) 

The time derivative of the FPI indicated on the second term on the right-hand-side of Eq. (13) is 
defmed as follows: 

~(rytu;(x, t;~, r)u(X, r)dr) = 

lim { r,ou';.(X, t;~, r) u(X, r)dr+ u;(x, t;~, r)u(X, r)-! u* (X, t;~, r)ou(X, r) } (17) 
r-H-r/c Jo 0t C OT 

The space and time derivatives of the initial conditions domain integrals were only indicated in 
Eqs. (9) and (13). For a detailed discussion concerning domain integration, the reader is referred to 
(Mansur 1983, Carrer and Mansur 1996). 
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3. Numerical procedure 

For the numerical solution of Eq. (1) the boundary is approximated by linear boundary elements, 
and the domain (or the part of it in which non-homogeneous initial conditions appear) is 
approximated by linear triangular cells. Time approximation assumes linear variation for the 
potential and constant variation for the potential normal derivative (flux), along the time steps At in 
which the overall time of analysis, 0 :s; t :s; tm is divided. Time integrals are computed analytically 
and the remaining kernels, in the boundary integrals, are computed numerically by the Gaussian 
quadrature. 

The application of the discretized version of the boundary integral equation to all boundary nodes 
produces a system of algebraic equations, which can be written according to: 

n n 

C n " Hnm m " Gnm m Fn u+L, u =L, p+ (18) 
m=O m=O 

In Eq. (18), diagonal matrix C is constituted by the c(~) coefficients, matrices Hnm and Gnm result 
from the spatial integration of the time-integrated kernels related, respectively, to u;(.x, t;~, r) and 
to u*{.X, t;~, r), and the vector Fn contains the initial conditions contributions (see Eq. (1)). Note, 
additionally, that the subscripts n and m stand for the time tn (fmal time) and tm (previous times), 
respectively. 

After imposing the boundary conditions, the system of equations represented by Eq. (18) can be 
solved for the boundary unknowns. 

For a more detailed discussion concerning these matters, the reader is referred to (Mansur 1983, 
Dominguez 1993, Carrer and Mansur 1996). 

Note that equations similar to Eq. (18) are obtained for the solution of Eqs. (9) and (13) and that, 
in these equations, one has C = I. 

4. Lagrange interpolation polynomial for time truncation 

According to Eq. (1), or to its corresponding discretized version given by Eq. (18), it is necessary 
to take into account the contribution of the history, i.e., it is necessary to take into account the 
contribution of all responses previous to tn to obtain the response at time tn. If very large values of n 
are required, i.e., if late time results are required, and if there is no memory available in the 
computer, the use of time truncation procedures becomes desirable and justified. Naturally, such a 
procedure introduces approximations in overall time integration: these approximations depend on 
the length of the intervals in which the time integration is effectively done and the interpolation 
takes place. The question that arises is: What is the best strategy for an efficient time truncation? It 
is the authors' opinion that the response to this question is not conclusive, yet. Truncation 
procedures, for infmite domain applications, were first reported by Demirel and Wang (1987): in 
this work, it is assumed that there is a time, say t., before which the contributions to the response at 
a late time tm tn >> t., can be disregarded; in this way, the convolution integrals in Eqs. (1), (9) and 
(13) start at r= ts instead of at r= 0. Another truncation scheme, which applies quite well to 
bounded domains analyses, was presented by (Mansur and de Lima-Silva 1992): now the early time 
contributions are not disregarded, but the time integrals are computed in a simplified way in the 
interval [0, t8 ]. Another work, based on multi-linear and Chebyshev-Lagrange polynomials, was 
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- - -
t.=t. t. t._, tn-J t.,_, tn-1 tn 

interpolation interval integration interval 

Fig. 2 Definition of interpolation and integration intervals 

recently presented (Soares Jr. and Mansur 2004). In order to provide topics for discussion, this work 
presents a time truncation strategy based on the use of Lagrange interpolation polynomials. The 
basic idea can be outlined as follows: 

i) initially, the fmal time of analysis, say tn, is divided in time intervals At, such that tn = nAt; 
ii) the number of time intervals in which the time integrations will be carried out in the standard 

way, num is then defmed (or specified as a input datum in the computer program). Note that 
niNr defmes an interval named here as integration interval and that the convolution, diversely 
from the standard TD-BEM formulation, is computed from an intermediate value of time to 
the current (fmal) time; 

iii) in the remaining interval, called interpolation interval, lgr discrete values of time are selected 
and the corresponding matrices are appropriately assembled. Then, the matrices corresponding 
to intermediate values of time are computed by employing a Lagrange interpolation 
polynomial. Therefore, if the interpolation interval is constituted by the first k time intervals 
At, 0 :s; t :s; kAt= tk, Eq. (18) can be written as follows (the same is valid for the discretized 
versions of Eqs. (9) and (13)): 

n k-1 
C n " Hnm m " Lnm m u+L, u+L, hu (19) 

m=k m=O 

In Eq. (19), the interpolated matrices associated to matrices Hand G are denoted by Lh and Lg, 
respectively. It is important to mention that necessarily t0 and tk must belong to the set of selected 
discrete time values. As a matter of fact, t0 is always the first value and tk is always the last value of 
the interpolation interval; intermediate values can be equally spaced between them, or not. An 
illustration of the scheme is shown in Fig. 2. 

A generic interpolated matrix, say B, assumed to be a function of time, can be represented as: 

lgr 
B(t) = L Bnm Lm(t) (20) 

m = 0 

in which Bnm represent the matrices computed appropriately at the lgr selected discrete time values, 
for t = tn. The Lagrange interpolation polynomial can be defined according to: 

Lm(t) = (t-t 0 )(t-tl)(t-t2) ... (t-tm-l)(t-tm+l) ... (t-tlgr) ·,- -t 0 :s; t :s; t lgr 
(t m - t o) (t m - t 0 (t m - t 2J · · · ( t m - t m- 1) (t m - t m + 1) · · · ( t m - t lgr) 

(21) 

and has the property: 

(22) 
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It is important to point out that t1 does not represent ~=}At but, instead of it, t1 represents 
the j-th selected discrete time value and that, according to what was previously mentioned, t0 = t0 

and tlgr = tk. 
Another aspect to be mentioned is the generality of the proposed procedure: it can easily be 

applied to alternative TD-BEM formulations (Yu et al. 1998, Carrer and Mansur 2002). 

5. Examples 

In the examples presented in this work, reference will be made to the dimensionless fJ parameter: 

fJ = cAt 
c 

(23) 

in which C is the boundary element length. The choice of the value of the fJ parameter is a problem 
dependent task: as a general rule, small and large values, inside the interval 0 < fJ < 1, must be 
avoided. 

The following notation will be employed in the examples: n represents the total number of time 
intervals and niNr represents the number of time intervals that constitute the integration interval; 
besides, equally spaced time values were adopted to construct the Lagrange polynomial in the 
interpolation interval. Along the discussion, the proposed formulation, for simplicity, will be 
referred to as Lagrange formulation. 

Additionally, in the first and in the second example, E is the Young's modulus. 

5.1 One-dimensional rod under compression (waveguide) 

This example consists of a one-dimensional rod fixed at one extreme and free at the other, that is 
subjected to a compression load suddenly applied at t = 0 and kept constant during the analysis, see 
Fig. 3. The material is such that c = 1. The boundary discretization employed 24 elements, as 
depicted in Fig. 4. The number of time intervals is n = 320, and the time interval length was defmed 
for fJ= 0.6. Results furnished by the standard TD-BEM formulation, corresponding to the potential 
at node A(a, b/2) and to the flux at node B(O, b/2), are presented in Figs. 5 and 6, respectively, and 
were included to demonstrate how the proposed interpolation scheme can produce reliable results, 

PH(t-O)=Ep 

+=0-
----------------~ 

X 

a 

Fig. 3 One-dimensional rod: geometry and loading 
definition 

B A 

Fig. 4 One-dimensional rod: boundary discretization 
and selected nodes 
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Eu/Pa • 

2.00 

1.50 

1 00 

0.50 

0.00 

-0 50 . 

0.00 

--- analytical 
D standard T D-B EM 

4.00 8.00 12.00 
• 

16.00 ctla 

Fig. 5 One-dimensional rod: potential at boundary 
node A(a, b/2): standard TD-BEM 

Eu/Pa 

2.00 

1.50 

1.00 

0.50 

0.00 

--- analytical 
D Lagrange form u I atio n 

-0.50 +------------------
0.00 4.00 8.00 12.00 16.00 ctla 

Fig. 7 One-dimensional rod: potential at boundary 
node A(a, b/2): Lagrange formulation with 
n = 320, niNT = 40, and 14th order polynomial 

Ep/P 

1 60 

1.20 

0.80 

0.40 

000 

-0.40 

-0.80 

-1.20 

-1.60 

-2.00 

-240 

-2.80 

-3.20 
0.00 

---analytical 
C standard TD-BEM 

. .r:. 

'-' . c 

.JL_< • 

4.00 8.00 12.00 

' -:. 

·• 

• 
16.00 ctla 

Fig. 6 One-dimensional rod: flux at boundary node 
B(O, b/2): standard TD-BEM 

Ep/P 

1.60 

1.20 

0.80 

0.40 

000 

-0.40 

-0.80 

-1.20 

-1.60 

-2.00 

-240 

-2.80 

--- analytical 
CJ Lag range formulation 

.,. 

., 

·' ~ 

-3.20 +------------------
0.00 4.00 8.00 12.00 16.00 ctla 

Fig. 8 One-dimensional rod: flux at boundary node 
B(O, b/2): Lagrange formulation with n = 320, 
niNr = 40, and 14th order polynomial 

even at a reduced storage cost: the results presented here were obtained by adopting niNr = 40 and a 
Lagrange interpolation polynomial of 14th order. In the interpolation interval, the discrete time 
values, say t1 , are equally spaced, i.e., j = 0, 20, 40, ... , 280, always bearing in mind that t1 =}At. 
It is important to mention that only 2 ( 41 + 14) = 110 matrices were assembled and stored, instead 
of the (321 + 320) = 641 matrices required by the standard TD-BEM formulation; in other words, 

9



Eu/Pa 

1.25 --- analytical 
-:. ; Lagrange formula! ion 

1.00 . ' -· -

0.75 

0.50 

0.25 

0.00 

-0 25 +-----------------
0.00 4.00 8.00 12.00 16.00 ctla 

Fig. 9 One-dimensional rod: potential at point 
C(a/2, b/2): Lagrange formulation with n = 
320, niNT = 40, and 14th order polynomial 

E(du/'Jt)IP 

1.500 

1.000 

0.500 

0.000 

-0.500 

-1.000 

-1.500 analytical 
::J Lagrange formu I ation 

·2.000 1-------------------

0.00 4.00 8.00 12.00 16.00 ctla 

Fig. 11 One-dimensional rod: potential time 
derivative Ou/ot at point C(a/2, b/2): 
Lagrange formulation with n = 320, niNT 
= 40, and 14th order polynomial 

E(,iu/,Jx)JP 

2.80 

240 

200 

1 60 

1.20 

080 

040 

0.00 

-0.40 

--- analytical 
: I Lagrange formula lion 

·0.80 +--------------------· 

0.00 4.00 8.00 12.00 16.00 ctla 

Fig. 10 One-dimensional rod: potential space 
derivative iJu/illc at point C(a/2, b/2): 

Eu/Pa 

2.00 

1.50 

1.00 

0.50 

0.00 

Lagrange formulation with n = 320, niNr 
= 40, and 14th order polynomial 

--- analylical 
•:) Lagrange formulation 

-0.50 -1------================--
o_oo 4.00 8.00 1200 16.00 ctla 

Fig. 12 One-dimensional rod: potential at boundary 
node A(a, b/2): Lagrange formulation with 
n = 320, niNT = 40, and 7th order polynomial 

the proposed scheme reduces the number of the stored matrices to 17.2% of the total number 
required by the standard TD-BEM. Results for to the boundary nodes A(a, b/2) and B(O, b/2) are 
presented in Figs. 7 and 8, respectively. Results for the potential, and its space and time derivatives 
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at internal point C(a/2, b/2) are presented in Figs. 9, 10 and 11. Note that, from Fig. 5 to Fig. 11, 
the BEM results are always compared with the corresponding analytical solution. The oscillations 
around the analytical solution, in Figs. 8, 10 and 11, appear even in the results from the standard 
TD-BEM formulation, and better results can be obtained only with the use of a more refmed 
boundary element mesh. It is important to mention that several analyses have been performed by 
the authors, aiming at fmding a pattern for the adoption of the best length for the integration 
interval and the order of the interpolation polynomial. The conclusion is that the choice of these 
parameters depends on the problem; thus, the experience of the analyst plays an important role in 
this matter. To illustrate this, another analysis was included; see Fig. 12, in which results not so 
accurate (when compared to those from Fig. 7) were achieved for the potential at node A(a, b/2): 
although the integration interval was kept the same, niNr = 40, a poor interpolation polynomial of 
7th order was adopted: the values t 1 are equally spaced but, now, one has j = 0, 40, 80, 120 ... , 280. 
Now, the number of matrices assembled and stored is equal to 2 (41 + 7) = 96, which means that 
only 15% of the total number of matrices are effectively stored. 

5.2 Circular cavity in an infinite medium 

This example consists of a circular cavity, in an infmite medium, subjected to an internal pressure 
suddenly applied at t = 0 and kept constant during the time, see Fig. 13. The boundary 
discretization, shown in Fig. 14, employed 24 elements. The number of time intervals is n = 380, 
and the time interval length was defmed for fJ= 0.645. The results presented here were obtained by 
adopting niNr= 80 and a Lagrange interpolation polynomial of 15th order, with discrete time values, 
t 1 , equally spaced, i.e., j = 0, 20, 40, ... , 300. In this example, the advantage of the TD-BEM 
formulation becomes more evident: only the cavity boundary needs to be approximated and the 
results at any internal point, no matter how far it is from the cavity centre, can be computed without 
any domain discretization. The results furnished by the proposed formulation are compared with 
those furnished by the standard TD-BEM formulation in Fig. 15, for the potential at node A(R, 0), 
and in Figs. 16 to 18 for the potential and its space and time derivatives at internal point B(2R,O). 
The results related to the potential, in Figs. 15 and 16, are in very good agreement. The results 
related to space and time derivatives, furnished by both formulations, present oscillations around 

& 
y 

I 

---

' ' i 
/ 

/ 

PH(t-O)=Ep 

X 

R 
I> I 

Fig. 13 Circular cavity: geometry and loading 
defmition 

A(R,O) • B(2R,O) 

Fig. 14 Circular cavity: boundary discretization and 
selected nodes 
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Eu/PR 

500 

4.00 

3.00 

2.00 

1.00 

---standard TD-BEM 
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Fig. 15 Circular cavity: potential at boundary node 
A(R, 0): Lagrange formulation with n = 380, 
niNr= 80, and 15th order polynomial 
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Fig. 17 Circular cavity: potential space derivative 
&/ill: at point B(2R, 0): Lagrange formula
tion with n = 380, niNr= 80, and 15th order 
polynomial 

Eu/PR 

500 

4.00 

3.00 

2.00 

1.00 

0.00 

000 

--- standard TD-BEM 
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Fig. 16 Circular cavity: potential at point B(2R, 0): 
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--- standard TD-BEM 
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Fig. 18 Circular cavity: potential time derivative at/ 
ot at point B(2R, 0): Lagrange formulation 
with n = 380, niNr= 80, and 15th order 
polynomial 

their asymptotic values: in the results from the Lagrange formulation, the oscillation is more 
pronounced, but are still in agreement with the corresponding ones from the standard formulation. 
In this example, the number of matrices required by the proposed scheme is given by 
2(81 + 15) = 192; comparing this value with the number of matrices required by the standard TD-

12



BEM formulation, given by (381 + 380) = 761, one can verify that the analysis was performed by 
employing only 25.2% of the matrices originally required. 

5.3 Square membrane under prescribed initial velocity 

The square membrane depicted in Fig. 19, with initial velocity field V0 = c prescribed over the 
sub-domain 0, and with zero displacements prescribed all over the boundary, is analysed in this 

u=o 

a u==o a/5l~ u=o 
~. 

I. 
u=o 

.I 
X 

a 

Fig. 19 Square membrane: geometry and loading 
definition 
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-1.00 Lagrange i nterpotati on 

-1.25 ' .. 
0.00 1.00 2.00 3.00 4.00 5.00 ct/a 

Fig. 21 Square membrane: flux at boundary node 
A( a, a/2): Lagrange formulation with n = 
200, niNr = 60, and 14th order polynomial 

• • 
• •B A 

• • 

Fig. 20 Square membrane: boundary and domain 
discretization and selected nodes 
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Fig. 22 Square membrane: potential at point B(4a/5, 
a/2): Lagrange formulation with n = 200, 
niNr = 60, and 14th order polynomial 
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Fig. 23 Square membrane: potential space derivative 
at/a at point B(4a/5, a/2): Lagrange formula
tion with n = 200, niNT = 60, and 14th order 
polynomial 
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Fig. 24 Square membrane: potential time derivative 
at!Ot at point B(4a/5, a/2): Lagrange formula
tion with n = 200, niNr= 60, and 14th order 
polynomial 

example. The boundary discretization employed 32 elements and 0, was divided into four cells, as 
shown in Fig. 20. As previously pointed out (Mansur 1983), the adoption of fJ< 0.6 does not 
introduce any great amount of noise in the BEM results. For this reason, the value fJ= 0.2 was 
adopted. Besides, as the number of discrete values increases, a better picture of the results can be 
inferred from the numerical results. Fig. 21 presents the results for the flux at boundary node 
A(a, a/2). Potential, space and time derivatives results, for internal point B(4a/5, a/2), are presented 
in Figs. 22, 23 and 24, respectively. This analysis was carried out by adopting n = 200, niNr = 60, 
and an interpolation polynomial of 14th order, with discrete time values, t1 , equally spaced, i.e., 
j = 0, 10, 20, ... , 140. In this example, the number of matrices required by the proposed scheme is 
equal to 2 ( 61 + 14) = 15 0 whereas the number of matrices required by the standard TD-BEM 
formulation is (201 + 200) = 401; consequently, the analysis was performed by employing only 
37.4% of the matrices originally required. Finally, one can conclude that the numerical results agree 
quite well with the analytical solution (Morse and Ingard 1968). 

6. Conclusions 

In this work, a strategy for the solution of the 2-D scalar wave propagation problem, by the TD
BEM formulation, is developed. The aim is to reduce the computational costs from the assemblage 
and from the storage of the matrices related to the time-history contributions to the results at a 
specific value of time. These matrices are due to the convolution integral presented in the basic TD
BEM formulation. Computational costs are reduced by partially computing the convolution integral, 
i.e., the time integration is no longer performed from t0 to tn but, instead of it, from some value tk to 
tn; the interval [tk, tn] is designated integration interval, meaning that the matrices are appropriately 
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computed there (BEM matrices). In the remaining interval, [t0 , tk], designated interpolation interval, 
the matrices are computed by interpolation. To do so, a Lagrange polynomial is constructed by 
selecting discrete lgr values of time in the interval [t0 , tk]: BEM matrices are computed for these lgr 
values and, fmally, matrices corresponding to values of time different from the selected ones are 
computed by interpolation. It is important to mention that the Lagrange interpolation formulation 
was also adopted for the computation of space and time derivatives of the potential at internal 
points and for the analysis of problems with non-homogeneous initial conditions. For the chosen 
examples, the numerical results can be considered good. As the experience plays an important role 
in the choice of the new parameters, i.e., the integration interval length and the order of the 
interpolation polynomial, in the absence of a study concerning error estimation, two practical 
recommendations are suggested by the authors: i) the use of interpolation polynomials of order 
greater than or equal to 10, with equally spaced time values; ii) the ratio between niNr and n must 
belong to the interval: 0.15 :s; niNrln :s; 0.30. Note that the proposed procedure can easily be extended 
to elastodynamics, as well. 
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