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Abstract - In the current paper the efficiency of the sparse-grid combination tech­

nique applied to time-dependent advection-di:ffusion problems is investigated. For the 

time-integration we employ a third-order Rosenbrock scheme implemented with adap­

tive step-size control and approximate matrix factorization. Two model problems are 

considered, a scalar 2D linear, constant-coefficient problem and a system of 2D non­

linear Burgers' equations. In short, the combination technique proved more efficient 

than a single grid approach for the simpler linear problem. For the Burgers' equations 

this gain in efficiency was only observed if one of the two solution components was set 

to zero, which makes the problem more grid-aligned. 
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1. Introduction 

In modern CFD codes accurate resolution of thin solution layers is still very time consuming. 

Especially for high Reynolds numbers many grid points are needed to resolve very thin layers. 

The common remedy is to use adapted grids that have small cells near the layers and large 

cells elsewhere. In this paper we investigate another approach to resolve the thin layers, 

namely the sparse grid combination technique (OT) as introduced by Griebel, Schneider and 

Zenger (4]. 
The CT is attractive because, asymptotically, it can yield a smaller spatial error for a 

given complexity than a single grid approach (SG) can [1, 14]. Consider a problem of spatial 

dimension d that is solved on a single grid with spatial discretization of order p, i.e., on 

a single grid with mesh-width h the spatial error is O(hP). On a single grid this problem 

would have a complexity,....., h-d. With the CT a spatial error of order O(hP(logh)d-l) can 

be obtained with a complexity,....., h-1(1og h)d-1 , i.e., an asymptotically first-order complexity 

is obtained with only a slightly larger error than for the SG. Furthermore, the CT can be 

easily and efficiently implemented on a parallel computer, see [3]. 

1This work was performed under a research contract with The Netherlands Organization for Scientific 

Research (NWO) and was carried out under CWI-projects MASl.1 "Numerical Algorithms for Air Quality 

Modeling" and MAS2.l "Computational Fluid Dynamics". 
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In [10] we investigated the efficiency of the CT when applied to a pure advection equation 

and concluded that for a non-grid-aligned solution the CT does not perform very well. In [11] 
this was also found for some elliptic PDEs. Note that in [5) the CT is also applied to a pure 

advection equation, but there the efficiency of the CT is not considered. 

In practice, advection-diffusion problems are usually solved on boundary-fitted grids. 

The corresponding solutions are usually grid-aligned. Also in this paper we study model 

advection-diffusion problems having this type of solution. 

An essential ingredient for a OT solver for time-dependent problems is an efficient time 

accurate integrator. We use a three-stage, third-order Rosenbrock method, implemented with 

built-in step-size control and approximate matrix factorization. Without step-size control the 

method can be implemented as a two-stage scheme. It uses approximate matrix factorization 

to greatly speed up the solution process. Hence we call it factorized ROS3. Independently 

from the current paper, in [7] the same factorized ROS3 has been used without the OT. 

As model problems we consider a scalar two-dimensional, constant-coefficient advection­

diffusion equation and a system of two-dimensional Burgers' equations. To evaluate the 

efficiency of the CT we compare it with a straightforward SG approach. 

2. The model problems 

2.1. Model problem 1: The advection-diffusion equation 

We consider the constant-coefficient advection-diffusion equation 

U,t + Ux - e (uxx + Uyy) = 0 (2.la} 

on the spatial domain [-1, 1) x [-1, 1] and take u(x, y, 0) = 0 as initial solution. As boundary 

conditions we impose 

{ 
~' y < 0 

u(-1, y, t) = 2, y = 0 , 

1, y > 0 

Uy(X, ±1, t) = 0, u(l, y, t) = 0. (2.lb} 

For e = 10-2 the solution at t = 1 is shown in Fig. 1. It possesses a horizontal and a vertical 

grid-aligned solution layers. The thickness of both layers is proportional to ..,fe as e -+ 0. 

For the steady state solution we have derived an exact expression in terms of a Fourier sum, 

u(x,y) 
3/2 00 

- (l _ell•) ex/e (1 - e(l-x)fe) + ~ Bn(x) cos (mry), 

Bn (x) = _2-:;s=i=n=(;::i~=rr=) ;:::/::::-n_7f_ex/(2e) (ex.J1/(4e2)+n27r2 - e(2-x)J ~ +n27f'2) ' 
e2yl/(4e:2)+n27T2 - 1 

and have used this expression to confirm thl'!-t our numerical method converges to the correct 

solution in the limit t -+ oo. 

2.2. Model problem 2: Burgers' equations 

The two-dimensional system of Burgers' equations 

Ut - -UUx - VUy + c (Uxx + Uyy), 

Vt = -UVx - VVy + e (Vxx + Vyy), 
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Figure 1. Solution of model problem 1 at t = 1 for E = 0.01. 

is considered on the spatial domain [-1, l] x [-1, l]. The boundary conditions for t > O are 

and 

{ 1 - 4(y - 1/2)2 ' y ~ 0 
u(-l,y,t)= l-4(y+l/2) 2 , y<O' u(x, ±1, t) = 0, Ux(l, y, t) = 0, 

v(-1, y, t) = -0.35 sin (~7rY), vy(x, ±1, t) = 0, vx(l, y, t) = 0. 

As initial solutions we take 

u(x,y,0) 

v(x,y,0) = 

{ 
1 - 4(y - 1/2)2 , 

1 - 4(y + 1/2)2 , 

-0.35 sin ( ~7ry) . 

y~O 

y < 0 ' 

In Figs. 2 and 3 the u and v components of the solution at t = 3 are shown for c: = 10-2 • 

The v component shows sharpening from the sinusoidal inlet condition at x = -1 to a much 

steeper slope at the outflow boundary at x = 1. This is a grid-aligned phenomenon, since 

near the outflow boundary the solution varies much stronger in the y direction than in the 

x one. The ·u component shows a mixing of two jets. This phenomenon is not especially 

grid-aligned, since variations in the x and the y directions are comparable. 

3. The sparse grid combination technique 

In the CT several solutions on different grids are combined to obtain a solution which has 

the accuracy corresponding with a much finer grid. The two-dimensional CT is based on a 

family of grids as shown in Fig. 4. Grids in the family of grids are denoted by 0 1,m where 

the superscripts label the level of refinement relative to the root grid n°·0 • The mesh-widths 

in the x and y directions of ni,m are hx = 2-1 H and hy = 2-m H, where H is the mesh width 

of the uniform root grid 0°·0 . We denote the mesh width of the finest grid ON,N by h. Note 

that hx and hy are dependent on the particular grid nl,m in the family of grids, whereas h is 

not. 
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Figure 2. u-Component of the solution of model problem 2 at t = 3 for€= 0.01. 
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Figure 3. v-Cornponent of the solution of model problem 2 at t = 3 for € = 0.01. 

In the time-dependent combination technique the initial profile u(x, y, 0) is restricted, by 

inJ·ection to the grids QN,O nN-l,l . . . no,N and to nN-l,O nN-2,1 . . . no,N-l see Fig 4 
' ' ' ' ') ' ' ' ... 

Then, independent of each other, these rather coarse representations are all integrated in time 

by our ROS3 time integrator. Then, at a chosen point in time, the coarse approximations 

are prolongated with q-th order interpolation onto the finest grid n,N,N, where the integrated 

solutions are combined to obtain a more accurate solution. The notation is summarized in 

Fig. 4. 

Starting from the exact solution u, the combination technique, as introduced in [4], 

constructs a grid function fiN,N on the finest grid n,N,N in the following manner: 

71N,N = L pN,N Rl,mu _ L pN,N Rl,mu. 

l+m=N l+m=N-1 

The corresponding so-called representation error rN,N is 

(3.1) 
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Figure 4. Grid of grids. 

Analogously, assuming exact time integration and semi-discrete solutions Ul,m, resulting 

from a spatial discretization, the combination technique constructs an approximate solution 
fJ N,N on the finest grid n,N,N from the coarse-grid approximate solutions according to 

fjN,N = L pN,NUl,m _ L pN,Nut,m. 

l+m=N l+m=N -1 

Let dl,m denote the discretization error on grid n,t,m, i.e., 

Then the total error eN,N = fJN,N - RN,N u in fJN,N is written as 

eN,N = rN,N + J!l.N' 

where the combined discretization error J,N.N = fJN,N - fiN,N is given by 

'JN,N = I: pN,Ndl,m _ I: pN,Ndl,m. 

l+m=N l+m=N-1 

(3.2) 

(3.3) 

(3.4) 

In [8] the representation error rN,N is analyzed, and in [9] an analysis is given of the combined 

discretization error JN,N for pure advection problems. In the next section we give similar 

results for the combined discretization error for our model problem 1 given by (2.1). 

4. Spatial discretization errors 

For the test problem (2.1), the linear constant-coefficient advection-diffusion problem, we can 

derive an expansion in hx and hy for the spatial discretization error, as we did for the pure 

advection problem in [9]. Since essentially the same approach is used as in [9} we state only 

the results. We consider the error in the semi-discrete solution due to spatial discretization 

only, i.e., we assume exact time integration. In (2.la) the diffusion terms are discretized 

by second-order central differences and the advection term is discretized by the third-order 

. upwind biased discretization [6]. We neglect the influence of boundary conditions, i.e., we 
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only consider the error away from the boundaries. When solved on a single grid with mesh 

widths hx and hy, the spatial discretization error can be formally expanded as 

d(x, y, t) 

Eadv 

~ (-tEadv - tEditr)i ( ) 
- ~ 'f u x, y, t ' 

. 1 i. 
i= 

= ~ -( - 2)i + 3 ( -1 )i + 1 j . +1 

f::a 3(j + 1)! hrz;~ ' 

~ (-l)i + 1 ( j ·+2 j ·+2) 
c~ (' 2)! hx~ +h/ly , 

j=2 J + 

assuming that u(x, y, t) is a C00 function. Neglecting O(h;) and O(h:) but including O(h;h;) 

for later comparison yields the following leading order expression 

tc ( 2 4 2 ".'14) ) t 3 4 d(x,y,t) = - 12 h:i)x+h1pij u(x,y,t - 12 hiJxu(x,y,t) 

t2c2 
2 2 4 4 ( ) ( 4) ( 4) + 144 hrz;hy8x8yu x, y, t + () hx + () hy . 

As in [9], we use this result to determine the resulting spatial discretization error in the 

combined solution. It is given by 

d(t) = 
tch2 th3 

-12 (a!+ a:) u(t) -12<J!u(t) (4.1) 

t2c2 
2 2 ( H) 4 4 ( ) 3 1 + 144 H h 1 - 3 log2 h 8rc8yu t + O(h log2 J;)· 

The first error term is the usual leading error term on n,N,N coming from the diffusion 

operator. Similarly, the second term stems from the advection operator. The third term 

originates from the mixing of diffusion in the x- and y-direction in the OT-process. Since 

there is only advection in the x-direction, advection does not produce any additional error 

in the combined solution. In order for the OT to be effective, the third term should be small 

compared to the first two terms. Asymptotically (as h and H tend to zero) this is clearly 

the case. In practice, h and H are not always small enough for the third term (and higher 

order mixed terms) to be negligible. 

5. The Rosenbrock solver ROS3 

We consider autonomous ODE systems of the form 

~~ = J(U), 

which result from spatial discretization on one of our grids and we seek a numerical approxi­

mation Un~ U(t) at t = tn. To obtain this approximation we apply a third-order consistent 

two-stage Rosenbrock method, ROS3 (also used in [7]), which can be written as 

Un+i 

(I - ryTA)k1 

(I - "fTA)k2 

5 3 
Un+ 4k1 + 4k2, 

- TF(Un), 

TF (Un+ ~k1)- ~k1, 
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where T = tn+i -tn is the step size, and A is the Jacobian matrix f'(Un) or an O(r) accurate 

approximation thereof. This scheme is a variation to the ROS2 scheme presented in [13] and 

belongs to a family of schemes discussed on p. 233 of (2]. Its stability function is 

R(z) = 1 + (1 - 21)z + (~ - 21+12 )z2 

(1 - 'YZ) 2 ' 

which shows that the scheme is A-stable if and only if 'Y ~ 1/4. The scheme is third-order 

accurate provided 1 = 1/2 + J3/6. Note that this specific 'Y yields A-stability. Because 

our spatially discrete problems are stiff due to the diffusion term, A-stability is a desirable 

property. 

5.1. Factorization 

Since the ROS3 scheme remains of third-order for any O(r) perturbation to A= f'(Un), we 

can split A as A = A1 + A2 and use 

5 3 
- Un+ 4k1 + 4k2, 

(I - ryrA1)(I - 1rA2)k1 

(I - /T Ai) (I - 'f'T A2)k2 

- rF(Un), 

- rF (un + ~k1) - ~k1. 
The latter, factorized ROS3 scheme, is still of third-order since 

(I - 'f'T A1)(I - ryr Az) =I - ryr(A - 1r A1A2). 

In the current work we use directional factorization, separating the horizontal and vertical 

coupling, such that A1 only couples unknowns in the horizontal direction and A2 only in the 

vertical direction. This leads to enormous savings in the required computational work since 

it reduces the two-dimensional linear algebra to one-dimensional linear algebra. 

Without factorization, spatial discretization leads to pq coupled linear algebraic equations 

for the Rosenbrock vectors k1 and k2 where p is the number of unknowns in horizontal 

direction and q the number in vertical direction. With factorization, we have only p sets of q 

coupled equations and q sets of p coupled equations for k1 and for k2• Moreover, the resulting 

sets of equations have band diagonal matrices and are therefore solved very efficiently by LU 

decomposition. 

In [7] it has been proven that a similar property as A-stability holds for the factorized 

ROS3 scheme. For our model problems this means that we have unconditional stability in 

the sense of Fourier-Von Neumann. 

5.2. Time step size control 

In order to obtain an estimate for the local time error, in our implementation of ROS3 we 

compute an additional vector, k3 . The corresponding extra auxiliary equation is 

2412 - 9ry - 1 3ry - 1 
(I - ryr Ai) (I - 'YTA2)ka = r F(Un+i) + 61(l _ 21) k1 + 2/(l _ 21) k2· 

The error estimate is 

6'Y2 - 1 k 672 - 61 + 1 k k 
Eest - 6ry(l - 2/) 1 + 21(1 - 2/) 2 - 3 

1 3 d3c O( 4) 
- -T -+ T 

6 ct3 ' 
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which is the last term in the Taylor expansion of the updated solution that our scheme 

still handles correctly. Striving for an equidistribution of errors we attempt to keep Eesti 

measured in the Li norm, fixed at some tolerance Tol during the integration. To achieve 

this we adjust the step size r according to 

( Tol ) 113 

1"new = 0.8Told l!Eestlli . 

Solution updates are only performed when llEestll 1 ~ Tol at the new time level, otherwise 

the update is rejected and recomputed with a smaller step size. The factor 0.8 is a safety 

factor and serves to avoid excessive numbers of rejected updates. In our implementation the 

ratio Tnew/rold was kept bounded between 0.1 and 10. 

Now consider the global time error en at the time level tn, i.e., the difference between the 

computed solution at the time level tn and the exact solution at the same time level. This 

error is proportional to the tolerance Tol that we imposed, i.e., 

This property of tolerance proportionality follows from [12], p. 350, when we identify our 

scheme as an XEPS scheme, i.e., an error per step control with local extrapolation. The 

proportionality between the imposed tolerance and the global time error is a nice property 

since it allows the user to control the global error in a very direct manner. 

5.3. Numerical illustration of factorized ROS3 

Figure 5 displays the integration history for the Burgers' equations solved up to t = 3 on a 

single 33 x 33 spatial grid with Tol = 10-3 , The step size r is shown in the left graph and the 

error estimate llEestll1 in the right graph. We start with an initial step size T = 10-2 which 

turns out to be somewhat too small for the imposed tolerance value. As the integration 

proceeds, larger step sizes are permitted. In the intermediate stage of the integration, the 

step size remains almost constant. Finally, as the solution approaches the steady state, the 

size of the allowed step size quickly grows. During the integration the step size control keeps 

the error estimate l!Eestll 1 at a nearly constant level, as can be seen from Fig. 5. 

In Table 1 the ratio is shown of maximal global time errors ETol for SG solutions with 

tolerance Tol and tolerance Tol/2 as a function of the tolerance Tol. The time errors were 

estimated by subtracting a reference solution obtained with Tol = 10-s. As the tolerance, 

and hence the step size, gets smaller, we see that the ratio approaches 2, which confirms that 

the global time error is proportional to the imposed tolerance. The errors EToI are measured 

in the discrete £ 1 norm on a 33 x 33 grid at t = 3. 

Table 1. Ratio of global time errors for model problem 2 

Tol Loo(ET01)/ Loo(ETol/2) 
10-;j 1.748 
10-4 1.597 
10-:i 1.878 
10-(j 1.973 
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Figure 5. Integration history of model problem 2 

6. Results 

In this section the CT is compared with the standard SG approach. Both are implemented 

with the same spatial discretization, i.e., second-order central discretization for the diffusion 

operator and third-order upwind-biased discretization for the advection part. The Neumann 

condition at the outflow boundary in model problem 1 (2.1) is only imposed on the diffusion 

operator to avoid spurious reflections. 

6.1. Validation of the sparse grid error expression 

In Fig. 6 a numerical illustration of the sparse grid error behaviour is given. Spatial errors 

are shown for solutions of (2.la) with initial profile 

u(x, y, 0) = e-16(x2+yz)' 

integrated up to t = 0.25, with c: = 0.05 and zero Dirichlet boundary conditions. A sparse 

grid with N = 5, i.e., containing 11 semi-coarsened grids, was used. The top row of Fig. 6 

corresponds to the solutions obtained with a root mesh width H = 1/2, the bottom row 

corresponds to H = 1/8. The errors in the left column were obtained numerically, i.e., by 

subtracting the reference solution obtained on a finer grid (N = 5, H = 1/32). The errors 

in the right column are predictions according to ( 4.1) where the derivatives of the solution 

were replaced by numerical differences of the reference solution. 

The errors in the top row show oscillatory behaviour that is due to the third term in 

(4.1), i.e., the term due to combination. This behaviour is absent in the lower row. Here the 

third term, which is proportional to H 2 , can be neglected due to the smaller H = 1/8. The 

error prediction ( 4.1) illustrated in the right column clearly matches this transition in error 

behaviour. 

6.2. Model problem 1: the advection diffusion equation 

In Fig. 7 the efficiency of the CT is compared with the SG when applied to the linear 

constant-coefficient advection-diffusion equation. Along the vertical axes the discrete L1 

error meausured on n,N,N is plotted in the left column of graphs and the discrete L00 error 
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Figure 6. Spatial errors 

is plotted in the right column. Along the horizontal axes the computational work is plotted 

in terms of the number of required cell updates. The graphs in the top, middle and bottom 

row correspond to c: = 10-2 , 10-3 and 10-5 , respectively. 

We see that for all these c the OT is more efficient than the SG if we consider the errors 

in the £ 1 norm. Also, the gain in efficiency becomes larger as c: decreases. This is expected 

since for small c the grid-aligned advection becomes more dominant rendering the test case 

more grid-aligned and hence better suited to the CT. For c = 10-3 and 10-5 the same holds 

for the £ 00 norm. For c = 10-2 the OT does not perform well when measured in the £ 00 

norm. Examination of the corresponding spatial error distribution shows that the maximum 

error occurs near the discontinuity in the inlet condition. The mixed derivative Uxxyy is large 

near this discontinuity which causes, for large €, a large term c2Uxxyy in the spatial error for 

the OT. Hence, it is to be expected that for relatively large€ the OT performs poorly locally 

near the discontinuity. 
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Figure 7. Efficiency comparisons for model problem 1. 

6.3. Model problem 2: Burgers' equations 

In Fig. 8 the CT and SG are compared for the 2D Burgers' test case. In Fig. 8 the diffusion 

parameter is kept fixed at t = 10-2 because it appears that varying the diffusion parameter 

(between 10-5 and 10-1) does not change the qualitative conclusions that can be drawn. 

The top row corresponds to the Burgers' test problem described in Section 2.2. For this test 

case it is clear that CT does not perform well compared with SG, when measured either in 

L1 norm or in L 00 norm. It was expected that the Burgers' test case would be less well suited 
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to the CT than the linear test case since the solution of the former is less grid-aligned. 

To see how the CT performs on the Burgers' test case when it is more grid-aligned, 

we take as initial condition v = 0, which guarantees that v remains zero. Furthermore we 

replace the parabolic inlet condition by 

u(-l t) _ { cos2(y- 1/2), y;;:;: 0, 
'y, - cos2 (y + 1/2)2 , y < 0. 

This removes a strong peak in the error at (x, y) = (-1, 0) which would otherwise dominate 

the error. The results for this reduced Burgers' test case are shown in the bottom row of 

Fig. 8. Measured in the L 1 norm the CT outperforms a SG when applied to this reduced 

test case. However, measured in the L00 norm this is still not the case, but both solutions 

are comparable. 
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Figure 8. Efficiency comparisons for model problem 2 

7. Conclusions 

When applied to the simple grid-aligned, linear constant-coefficient test case the CT is clearly 

superior to the SG approach in terms of efficiency. Especially when the diffusion parameter 

c is small, the linear test case is strongly grid-aligned and very well suited for the CT. 

When applied to the 2D Burgers' test case, the CT does not perform so well. However, 

the CT does perform reasonably well for a reduced version of the Burgers' test case when 

advection appears in only one direction. 
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Based on these observations, our expectation that the CT is well suited to advection­

diffusion problems that are strongly grid-aligned has been confirmed. But it seems that the 

CT is less suited to more general problems where the solution features are not well aligned 
with the grid. 
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