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A method for finding the solution of time-varying singular nonlinear systems by using

single-term Walsh series is proposed. The properties of single-term Walsh series are given

and are utilized to find the solution of time-varying singular nonlinear systems.

1. Introduction

Singular nonlinear systems has been of interest to some investigators [4, 12], however no

closed-form solution was given in [4, 12]. In some analysis of neural networks, both sin-

gular systems [8] and bilinear systems [16] have been used. For singular bilinear systems,

Lewis et al. [11] applied the Walsh function (WF) approach for time-invariant singu-

lar bilinear systems and Hsiao and Wang [9] used the Haar wavelets for the solution of

time-varying singular nonlinear systems.

Walsh functions (WFs) have received considerable attention in dealing with various

problems of dynamic systems. Chen and Hsiao [5, 6, 7] applied the WF technique to the

analysis, optimal control, and synthesis of linear systems. WFs have also found wide ap-

plications in signal processing, communication, and pattern recognition [13]. Rao et al.

[14] presented a method of extending computation beyond the limit of the initial normal

interval in Walsh series analysis of dynamical systems. In [14] various time functions in

the system were first expanded in terms of their truncated WF with unknown coefficients.

Using the Kronecker product [10], the unknown coefficient of the rate variable was ob-

tained by finding the inverse of a square matrix. It was shown that this method involve

some numerical difficulties if the dimension of this matrix is large. To remove the incon-

veniences in WF technique, the single-term Walsh series (STWS) was introduced in [14],

and Balachandran and Murugesan [1, 2, 3] applied STWS technique to the analysis of

the linear and nonlinear singular systems. The STWS method provides block-pulse and

discrete solutions to any length of time.

In the present paper, we use the STWS approach for the solution of time-varying sin-

gular nonlinear systems. As compared to [9], our method is simpler and consumes less

computer time.

Copyright © 2003 Hindawi Publishing Corporation

Mathematical Problems in Engineering 2003:3 (2003) 129–136

2000 Mathematics Subject Classification: 41A30, 92-08

URL: http://dx.doi.org/10.1155/S1024123X03202027

http://dx.doi.org/10.1155/S1024123X03202027


130 STWS for singular nonlinear systems

The paper is organized as follows: in Section 2 we describe the basic properties of

the WF and STWS required for our subsequent development. Section 3 is devoted to

the formulation of the time-varying singular nonlinear systems. In Section 4 we apply

the proposed numerical method to the time-varying singular nonlinear systems and in

Section 5, we report our numerical finding and demonstrate the accuracy of the proposed

method.

2. Properties of WF and STWS

2.1. Walsh functions. A function f (t), integrable in [0,1), may be approximated using

WF as

f (t)=
∞
∑

i=0

fiφi(t), (2.1)

where φi(t) is the ith WF and fi is the corresponding coefficient. In practice, only the first

m terms are considered, where m is an integral power of 2. Then from (2.1), we get

f (t)=
m−1
∑

i=0

fiφi(t)= FT
Φ(t), (2.2)

where

F =
(

f0, f1, . . . , fm−1

)T
, Φ(t)=

(

φ0(t),φ1(t), . . . ,φm−1(t)
)T
. (2.3)

The coefficients fi are chosen to minimize the mean integral square error

ǫ =

∫ 1

0

(

f (t)−FT
Φ(t)

)2
dt, (2.4)

and are given by

fi =

∫ 1

0
f (t)φi(t)dt. (2.5)

The integration of the vector Φ(t) defined in (2.3) can be approximated by

∫ t

0
Φ(t′)dt′ ≃ EΦ(t), (2.6)

where E is the m×m operational matrix for integration with E1×1 = 1/2 and is given in

[16].

2.2. Single-term Walsh series. With the STWS approach, in the first interval, the given

function is expanded as STWS in the normalized interval τ ∈ [0,1), which corresponds

to t ∈ [0,1/m) by defining τ =mt, m being any integer. In STWS, the matrix E in (2.6)

becomes E = 1/2.
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Let ẋ(τ) and x(τ) be expanded by STWS series in the first interval as

ẋ(τ)=V (1)φ0(τ), x(τ)= X (1)φ0(τ), (2.7)

and in the kth interval as

ẋ(τ)=V (k)φ0(τ), x(τ)= X (k)φ0(τ). (2.8)

Integrating (2.7) with E = 1/2, we get

X (1)
=

1

2
V (1) + x(0), (2.9)

where x(0) is the initial condition. According to Sannuti [15], we have

V (1)
=

∫ 1

0
ẋ(τ)dτ = x(1)− x(0). (2.10)

In general, for any interval k, k = 1,2, . . . , we obtain

X (k)
=

1

2
V (k) + x(k− 1), (2.11)

x(k)=V (k) + x(k− 1). (2.12)

In (2.11) and (2.12), X (k) and x(k) give the block-pulse and the discrete values of the

state, respectively.

3. Problem statement

Consider a time-varying singular nonlinear system of the following form:

E(t)ẋ(t)= f
(

t,x(t),u(t)
)

, x(0)= x0, (3.1)

where the singular matrix E(t)∈Rn×n, the nonlinear function f ∈Rn, the state x(t)∈Rn,

and the control u(t)∈Rq. The response x(t) is required to be found.

4. Solution of time-varying singular nonlinear systems via STWS

Normalizing (3.1) by defining τ =mt, we get

mE(τ)ẋ(τ)= f
(

τ,x(τ),u(τ)
)

, x(0)= x0. (4.1)
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Let E(τ) be expressed by STWS in the kth interval as

E(τ)= E(k)φ0(τ), (4.2)

where E(k)
∈Rn×n. By using (2.8) and (2.11), we get

x(τ)=

(

1

2
V (k) + x(k− 1)

)

φ0(τ). (4.3)

To solve (4.1), we first substitute (4.3) in f (τ,x(τ),u(τ)); we then express the resulting

equation by STWS as

f

(

τ,

(

1

2
V (k) + x(k− 1)

)

φ0(τ),u(τ)

)

= F(k)φ0(τ). (4.4)

Using (4.1), (4.2), (4.3), and (4.4), we get

mE(k)V (k)
= F(k). (4.5)

By solving (4.5), the components of V (k) can be obtained. By substituting V (k) in (2.11)

and (2.12), we obtain block-pulse and discrete approximations of the state, respectively.

Further, using (2.7), we get

x(τ)=

∫ τ

0
ẋ(τ′)dτ′ + x(0)=V (1)τ + x(0). (4.6)

Thus, we can obtain a continuous approximation of the state as

x(τ)=V (k)τ + x(k− 1). (4.7)

5. Numerical examples

Three examples are given in this section. These examples were considered by Hsiao and

Wang [9] by using Haar wavelets. Our method differs from their approach and thus these

examples could be used as a basis for comparison.

Example 5.1. Consider a time-varying nonlinear singular system of the following form

[9]:







0 1 0

0 0 t2

0 0 0





 ẋ(t)=









tx1(t) + x2(t)

exp(t)x1(t)x2(t)

x2(t)
(

x1(t) + x3(t)
)









+







0

2t2 exp(−t)

0





 , x(0)=







2

0

−2





 . (5.1)

The exact solution is (see [9])

x(t)=









2exp(−t)(1− 2t)

t2 exp(−t)

−2exp(−t)(1− 2t)









. (5.2)
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Figure 5.1. STWS with m= 32 (circles) and exact solution: ++++ of Example 5.1.

To solve (5.1) by STWS, we first express t, t2, exp(t), and 2t2 exp(−t) by STWS, then

we substitute these values together with V
(k)
i = ẋi(t) and xi(t) = (1/2)V

(k)
i + xi(k − 1),

i = 1,2,3, in (5.1). By solving the resulting equation, V (k)
= [V

(k)
1 ,V

(k)
2 ,V

(k)
3 ]T can be

calculated. By using (2.11), (2.12), and (4.7), block-pulse, discrete, and continuous ap-

proximations of state x(t) are obtained.

The comparison between STWS solution with m = 32 and the exact solution for t ∈

[0,4) is shown in Figure 5.1.

Example 5.2. Consider the following time-invariant singular nonlinear system [9]:

















1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

















ẋ(t) +



















x3(t)− x5(t)

x2(t) + x3(t)− x4(t)− x5(t)
(

x1(t) + x2(t)− 1
)2
− x3(t)

−x4(t)

x2(t)
(

x1(t) + x2(t)
)

− x5(t)



















=

















0

1

0

0

0

















, x(0)=

















0

0

1

0

0

















. (5.3)

The results obtained by STWS with m= 16 and m= 110 together with those obtained

by Haar wavelets with m= 512 are presented in Tables 5.1, 5.2, and 5.3, respectively.

Example 5.3. Consider a time-invariant nonlinear singular system of the following form

[9]:









0 1 0

0 0 0

0 0 0









ẋ(t) +









0 0 1

1 1 0

1 0 −3









x(t) +









0

0

x3
3(t)









=









0

1

0









, x(0)=









2

−1

−2









. (5.4)

The results obtained by STWS with m = 24 and m = 32 and those obtained by Haar

wavelets with m= 32 and m= 128 are presented in Tables 5.4 and 5.5, respectively.
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Table 5.1. Estimated values of x1(t), x2(t), x3(t), x4(t), and x5(t) by STWS with m= 16.

Time x1(t) x2(t) x3(t) x4(t) x5(t)

0.0 0.0000 0.0000 1.0000 0.0000 0.0000

0.5 −0.3297 0.5771 0.5671 0.0000 0.1443

1.0 −0.4776 0.8003 0.4596 0.0000 0.2599

1.5 −0.5486 0.9023 0.4186 0.0000 0.3209

2.0 −0.5835 0.9514 0.4004 0.0000 0.3516

2.5 −0.6008 0.9755 0.3919 0.0000 0.3674

3.0 −0.6094 0.9875 0.3877 0.0000 0.3752

3.5 −0.6137 0.9935 0.3856 0.0000 0.3791

4.0 −0.6159 0.9965 0.3846 0.0000 0.3811

Table 5.2. Estimated values of x1(t), x2(t), x3(t), x4(t), and x5(t) by STWS with m= 110.

Time x1(t) x2(t) x3(t) x4(t) x5(t)

0.0 0.0000 0.0000 1.0000 0.0000 0.0000

0.5 −0.3295 0.5774 0.5658 0.0000 0.1431

1.0 −0.4775 0.8006 0.4582 0.0000 0.2587

1.5 −0.5485 0.9027 0.4171 0.0000 0.3197

2.0 −0.5834 0.9518 0.3989 0.0000 0.3507

2.5 −0.6007 0.9760 0.3903 0.0000 0.3663

3.0 −0.6094 0.9880 0.3861 0.0000 0.3741

3.5 −0.6137 0.9940 0.3841 0.0000 0.3780

4.0 −0.6159 0.9970 0.3830 0.0000 0.3800

Table 5.3. Estimated values of x1(t), x2(t), x3(t), x4(t), and x5(t) by Haar wavelets with m= 512.

Time x1(t) x2(t) x3(t) x4(t) x5(t)

0.0 0.0000 0.0000 1.0000 0.0000 0.0000

0.5 −0.3295 0.5774 0.5658 0.0000 0.1431

1.0 −0.4775 0.8006 0.4582 0.0000 0.2587

1.5 −0.5485 0.9027 0.4171 0.0000 0.3197

2.0 −0.5834 0.9518 0.3989 0.0000 0.3507

2.5 −0.6007 0.9760 0.3903 0.0000 0.3663

3.0 −0.6094 0.9880 0.3861 0.0000 0.3741

3.5 −0.6137 0.9940 0.3841 0.0000 0.3780

4.0 −0.6159 0.9970 0.3830 0.0000 0.3800
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Table 5.4. Estimated values of x1(t), x2(t), and x3(t) by STWS with m= 24 and m= 32.

Time
STWS with m= 24 STWS with m= 32

x1(t) x2(t) x3(t) x1(t) x2(t) x3(t)

0.0 2.00000 −1.00000 −2.00000 2.00000 −1.00000 −2.00000

0.125 1.75175 −0.75175 −1.97189 1.75175 −0.75175 −1.97189

0.25 1.50706 −0.50706 −1.94309 1.50706 −0.50706 −1.94309

0.375 1.26601 −0.26601 −1.91353 1.26601 −0.26601 −1.91353

0.5 1.02871 −0.02871 −1.88316 1.02871 −0.02871 −1.88316

0.625 0.79526 0.20474 −1.85187 0.79526 0.20474 −1.85187

0.75 0.56578 0.43422 −1.81960 0.56578 0.43422 −1.81960

0.875 0.34040 0.65960 −1.78622 0.34040 0.65960 −1.78622

1.0 0.11927 0.88073 −1.75160 0.11927 0.88073 −1.75160

Table 5.5. Estimated values of x1(t), x2(t), and x3(t) by Haar wavelets with m= 32 and m= 128.

Time
Haar wavelets with m= 32 Haar wavelets with m= 128

x1(t) x2(t) x3(t) x1(t) x2(t) x3(t)

0.0 2.0000 −1.0000 −2.0000 2.0000 −1.0000 −2.0000

0.125 1.7517 −0.7517 −1.9719 1.7517 −0.7517 −1.9719

0.25 1.5071 −0.5071 −1.9431 1.5071 −0.5071 −1.9431

0.375 1.2660 −0.2660 −1.9135 1.2660 −0.2660 −1.9135

0.5 1.0287 −0.0287 −1.8832 1.0287 −0.0287 −1.8832

0.625 0.7953 0.2047 −1.8519 0.7953 0.2047 −1.8519

0.75 0.5658 0.4342 −1.8196 0.5658 0.4342 −1.8196

0.875 0.3404 0.6596 −1.7862 0.34040 0.6596 −1.7862

1.0 0.1193 0.8807 −1.7516 0.1193 0.8807 −1.7516

6. Conclusion

The properties of STWS are used to solve the time-varying singular nonlinear systems.

The key idea is to transform the time-varying functions into STWS. The method can be

implemented using a digital computer. It occupies less memory space and consumes less

computer time than the method in [9]. Illustrative examples were included to demon-

strate the validity and applicability of the technique.
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