
mathematics of computation, VOLUME 24, NUMBER 112, OCTOBER 1970

Solution of Vandermonde Systems of Equations

By Ake Björck* and Victor Pereyra

Abstract. We obtain in this paper a considerable improvement over a method developed

earlier by Ballester and Pereyra for the solution of systems of linear equations with

Vandermonde matrices of coefficients. This is achieved by observing that a part of the

earlier algorithm is equivalent to Newton's interpolation method. This allows also to

produce a progressive algorithm which is significantly more efficient than previous

available methods. Algol-60 programs and numerical results are included. Confluent

Vandermonde systems are also briefly discussed.

Introduction. In [1] an algorithm was derived for solving a Vandermonde system

of equations

(1) Vx = b,

where V = V(on. «,. • • ■ , an) is the Vandermonde matrix

(2) F(ao,«i, ••• ,an) =

r, , ... ,

«n a,

<xn a"

These systems, and the corresponding dual systems

(3) Kra = f

appear naturally, and have to be solved, in many applications. Some important

examples are interpolation, construction of spline functions [3], approximation of

linear functionals [1], [5], etc.

In this paper a new algorithm for solving (1) will be developed which is faster,

needs less storage and, from experimental results, is more accurate than that in [1].

Also, a progressive version of the algorithm will be given, allowing the updating

of a solution x when a new value of a is added. Corresponding algorithms for the

dual system (3) will also be given. They compare very favorably with the algorithm

proposed in [4].

Only the nonconfluent case, a, 9e a, when / 9* j, will be treated in detail here,

although the generalization to the confluent case will be outlined. In a separate

paper Galimberti and Pereyra [8] consider in detail the general confluent case (of

Hermite type) with an approach similar to [1]. The original matrix is reduced to

block triangular form with diagonal blocks being nonconfluent Vandermonde systems

to which the algorithm of this paper is applied. Also Galimberti and Pereyra in [7]

use the method of this paper in the solution of multidimensional Vandermonde

Received January 30, 1970.

AMS 1968 subject classifications. Primary 6535, 6520.

Key words and phrases. Vandermonde systems, confluent Vandermonde systems.

* The work of the first author was supported in part by the Sweden-America Foundation.

Copyright © 1971, American Mathematical Society

893

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

894 ÂKE BJÖRCK AND VICTOR PEREYRA

systems. In [9], Gustafson develops algorithms and computer programs for the

confluent case.

1. Algorithms for Solving Vandermonde Systems. We will first derive an

algorithm for the dual system (3). Let a be the solution to (3) and introduce the

polynomial

Piz) = (1,2, ... ,z>.

Then P(z) is the unique interpolating polynomial of degree at most n, such that

P(ak) = /», k - 0, 1, ■•• , n.

One of the most efficient ways to determine P(z) is by Newton's method. We

introduce the polynomials

(4) Qo(z) = 1, Qk(z) = U(z - a,), k = 1, 2, • •■ , n,
i-O

and write P(z) in the form

(5) Piz) = (Qo(z), Qdz), ■■■ , Ö„(z))c,

where ck, k = 0, 1, ■ ■ •, n, are the divided differences of kth order,

Ck = fWo, oct, ■ ■ ■ , ak].

It is well known that these divided differences can be recursively generated from

the relation

,„ ,, , flotj-k, • • • .<*;] — /[tty-t-i. • • • ,«,--,]
(o) f[a¡-k-¡, ■■■ ,a¡] =-

a¡ — ai-k-l

When c is known, we can use, essentially, Homer's scheme to evaluate P(z). We have

P(z) = q0(z), where

(7) qn(z) = c„, qk(z) — (z — ak)qk + i + ck, k = n — 1, • • • , 1, 0.

If we substitute here

/o\ Í \ (*> I (k) i i (A) n-fc
(8) qk(z) = a» + ai+iz + • • • + o» z ,

then we get a recurrence relation for computing the unknowns ak = i^01.

Now introduce, for k == 0, 1, • • , n, the vectors

and

c(= (c0, • • • , ck, f[a¡, ■ ■ ■ , ak + l], ■ • ■ , f[a„-k, ■ ■ ■ , an])

a = (c0, ••• ,c»_i, a* , • • • , a„)

From these definitions it follows immediately that

c«" = f, c"" = a"" = c, a<0) = a,

and from (6), (7) and (8) we get:

Algorithm for the Dual System.

Step (i). Put c<0) = f and, for k = 0, 1, • • • , n — 1, compute

c) = (c, — £■,-.,)/(£*,• - a,--*-,), y = n, n — 1, ••• , A: + I,
(9)

cf\ j = k, ■■■ , 1,0.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

SOLUTION OF VANDERMONDE SYSTEMS OF EQUATIONS 895

Step (ii). Put a'"1 = c and, for k = n - 1, 1, 0, compute

(10)
j = 0, 1, •• ■ , k — 1, n,

t*+l) (A+l) F F I , ,
= a, — akai + 1 , J — k, k + 1, ••• , n — 1.

Now define the lower bidiagonal matrix Lk(a) of order n + 1 by

1

(11) M«) =

0
0

kth row.

1
—a

kth column

It then follows from (9) that the vectors cU) are recursively generated by

c(0) = f, = DklMkcw, k = 0, 1, ••• , n - 1,

where

Mk = Lk(l), Dk = diag {1, • • • , 1, (at + 1 — a,,), • • • , (a„ — a„_t_,)},

Also from (10) it follows that

where

a = c, a = N k&k , k = n — !,•■-, 1,0,

Nk = Lk(ak).

Collecting these results, we find that Newton's algorithm for solving (3) can be

written in matrix form as

(12)

where

(13)

c = UTi, a = LTc,

UT = D^l.Mn-t ••• Do'MQ, LT = Nt0n! ••• a£_,

are lower triangular and upper unit triangular, respectively. Since a = V Tf, we

have V'T = LTUT or

V~l = UL, V = L~'U~\

Thus, we have found a factorization in bidiagonal factors of the unique triangular

matrices in the (/¿-decomposition of the inverse Vandermonde matrix V'1.

The factorization of K"1 can obviously be used to write down an algorithm for

solving (1). From

x = i/-'b = (MlDÔ1 ■■■ M^D^XNn-! •■■ N,N0)b,

we obtain the recurrence relations for computing x = x(0>,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

896 ÂKE BJÖRCK AND VICTOR PEREYRA

d(0) = b,

_<n)

d(*t.) = JVtd(*)j 0, 1, ,n - 1,

(n) Ik)
MlZ>;V*+1), k = n- 1, ••• , 1,0.

Writing down these relations in component form we get:

Algorithm for the Primal System.

Step (i). Put d!0' = b and, for k = 0, 1, • • • , n - 1, compute

(14)

(15)

a, = a, — a*a,_,, j = n, n — 1, ■ •• , ft + 1,

= ¿i*', y = ft, • •■ , 1,0.

Step (ii). Put x(B) = d(n) and, for ft = n - 1, • • • , 1, 0, compute

y = 0, 1, ••• ,ft,

= *S*+1>/(«, — a,-*-,), j = k + 1, ••■ , n — I, n,

j = 0, 1, • ■• ,k — 1, n,

<*+l/2) _ (* + l)
Xi X,- ,

<*) <* + l/2)

(t + 1/2) _ U + l/2) . . „ _ 1
Xj Xj+¡ , j — k, , n i.

2. Progressive Algorithms. We now consider the problem of updating the

solution when a new value a is added. We write the systems (1) and (3)

K„x„ = b„ KU. = t..
where

Vn = V(a0,ai, , a„).

From well-known properties of the Z-tV-decomposition and triangular matrices it

follows that the decomposition V~l = U„Ln can be written in partitioned form as

Vn-r

a0 ■ ■ ■ «*„-i

U„-,

u¡,">

uw
un- 1

£-.-,

In Step (i) of the algorithm for the dual problem we have

c("' = Ulfn,

and thus, when a„ is added, the first n — 1 components in c"' are unchanged and

only cnn) has to be computed. If the quantities cn{l\, k = 0, 1, • • • , n — 1, have been

saved, then (9) with j = n can be used to compute cnk\ k = 0, 1, • • • , n. In part (ii)

we have

a„ = Líe1"' =

10
+ c„ (.m) ,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

SOLUTION OF VANDERMONDE SYSTEMS OF EQUATIONS 897

where m<n) is the last row in L„. Thus all components in a(n) will change and Step (ii)

requires greater modification. From (4) and (12) it follows that

0.(2) = mi"1 + m[*z + ■■■ + mïV.

From this it is easy to derive a recursion formula to compute m1"1, and we get:

Progressive Algorithm for the Dual System. Put a¿0) = c¿0) = /0, m(00> = 1 and,

for « = 1, 2, 3, ••• , compute

c„ = /„, c„ = (c„ — cn_,)/(a„ — a„_^,), ft = 0, 1, • • • , n — 1,

Í161 ~~ _ '

mt - mt_j — a„_1wi , at = ak + ntk cn ,

k = n - 1, ••• , 1, 0.

For the primal system we have in Step (i) of the algorithm

d("J = LA.

Again, the first n — 1 components are unchanged. Provided dnik{, k = 0,1, • • • ,n — 1,

have been saved, o^*', ft = 0, 1, ■ • • , n, can be computed by taking j = n in (14).

In Step (ii) we have

Xn-1 i j(n)„(n)
+ a„ U ,

0 .

where u!,!) is the last column in Un. Thus all components in x„ change, and we must

find a way to generate u<n>, n — 0, 1, 2, • • • . Taking the last component of the rela-

tion c'"' = UTX we get
n

f[a0, a,, • • • , a„] = X ukn)fk.
k-0

Thus Wj"' are coefficients which express the divided difference of nth order in terms

of function values. It is a well-known result that these coefficients are

"t"' = [(«* — <*o) • • ■ («t — <**-i)(<2yt — ak+¡) ■ ■ ■ (ak — a,)]"1.

Using this expression we easily derive:

Progressive Algorithm for the Primal System. Put a_<0) = d0) = b0, ua0) = 1 and,

for m = 1, 2, 3, • • • , compute

d™ = it,, dlk+1) = dik) - akdnklx, k = 0, 1, • • • , n - 1,

(17) unn) = [(an - a0)(an - a,) ■ ■ • (a„ - a»-,)]"1, *¿rt = a-<n,«<n),

(n) (n-1),- .. (n) (n-1) i j(i>) (n) , , in
uk = uk (ak — an). ^t = ^ + rf» "* , ft = n — 1, • • • , 1, 0.

3. Efficiency. In the nonprogressive algorithms for the primal and dual system

we transform the right-hand side, by a sequence of simple transformations, into

the solution vector. If the components are modified in a suitable order, then each

new quantity can over-write an old one, and no extra storage is needed. The number

of operations required by the nonprogressive primal and dual algorithms is by

construction exactly the same. It is easily verified that this number is

i«(« + l)-(3/J + 2M),

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

898 ÂKE BJÖRCK AND VICTOR PEREYRA

where A stands for one addition or one subtraction and M for one multiplication

or one division.

In the progressive versions, the storage of two extra (n + l)-vectors is needed.

The required number of operations, when the points a0, au ■ ■ ■ , an are introduced

one at a time, is for the

primal algorithm: %n(n + \)(3A + 4M),

dual algorithm: \n(n + l)(4A + 3M).

This is only slightly more than for the nonprogressive versions and compares fairly

well with the number of operations required in [4] (see [1, p. 300]).

If the points a< are symmetrically situated around zero, then the amount of

work can be halved by first applying the preliminary transformation given in [4].

This transforms by simple row and column operations the Vandermonde matrix

V = V(—an, ■ ■ ■ , — a-i, a,, ■ • ■ , a,) to a 2 X 2 block-diagonal form

V 0

0 V
V V(a¡, , at).

This means that two problems, each with only half the number of points, have to

be solved.

We note that it is possible to compute V~l by applying the primal or dual algorithm

to the unit matrix. This will, however, be an «3-process. Since in [5] Traub has given

an algorithm which computes V~x in (l/2)n(7n — 9)M and (5/2)n(n — l)A, this

is clearly inefficient.

Note also that even when V1 is explicitly known it takes n2(M + A) to compute

x = V~lb in the ordinary way. This is only slightly fewer operations than for our

nonprogressive algorithms. Since also n2 memory locations are needed to store V'1,

it may often be better not to handle it explicitly.

4. Confluent Vandermonde Systems. Let us replace, in the Vandermonde

matrix V(a0, a0 + e, a2, ■ ■ ■ , an), the second column by the difference of the second

and first column, divided by e. In the limit, when e —» 0, we obtain the confluent

Vandermonde matrix

V(a0, 2; a2, , a„)

1

a..

2
«0

0

1

2a0

1

2
o2

1

a0 na0 «2 <V

In the same way, in the Vandermonde matrix V(a0, • • • , ap-,, ap, ■ ■ ■ , an), where

a,: = «o + jt, j = 0, 1, ■ • • , p — 1, we can replace column (j + 1) by ¿~' times the

jth order difference of the first (j + 1) columns. In the limit when e —» 0 we get the

Vandermonde matrix V(a0, p; a„, • ■ ■ , an), where the order of confluency at a0

is O - 1).
In the general case, the order of confluency is (7, — 1) at the (m + 1) points

ßi, j = 0, 1, • • • , m, and we denote the corresponding Vandermonde matrix by

(18) v. = viß0,y0;ßi,yi; ■■■ ;ßa,yn).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

SOLUTION OF VANDERMONDE SYSTEMS OF EQUATIONS 899

This matrix has (n + 1) columns, where

«=(¿T,)-1,

and the elements in the 7, columns corresponding to /3, are given by

(19)
dk(ß')

dßk
ß-ßi

«< = ÜTí, 0, 1, •• 1.

We now want to find out rules on how to modify our algorithms for solving (1)

and (3) in the confluent case. To do this we again start from the dual system (3),

where V now is the matrix (18). The polynomial P(z) defined by (4) now solves the

interpolation problem

p(t)03,.)
/,', ft - 0, 1, ••• ,7, - 1, j

where the right-hand side of (3) has been denoted by

0, 1,

1 — I/o» > 7o > 7i> » Ji 1 ' " 1 J» • " 1 J«) ■

It is well known that Newton's method of interpolation can be generalized to the

confluent case. An excellent survey is given in an appendix in [6]. If we let an.+k =

ßi, k = 0, 1, ■ ■ • , 7, — 1,j = 0,1, • • • , m, then the fundamental polynomials Qk(z) in

(4) are unchanged and only the divided differences have to be generalized. As long

as a divided difference has at least two different arguments, (6) can be used to reduce

the order. When a divided difference with all arguments equal is reached this is

defined by

m, * + u = m, •. ■ ,ßf] = fT/k\.
(k + 1 times)

From this we deduce the important rule: if the maximum order of confluency is

a = max 7, 1,

then in the dual algorithm only Step (i) for ft = 0, 1, • • • , q — 1, (in the primal

algorithm only Step (ii) for ft = q — 1, • • -, 1, 0) is modified. To simplify the dis-

cussion we restrict ourselves in the following to the case when only one point /3, is

confluent i.e., 7, = 1 if y' ?¿ z, 7, = <j + 1. We then have V~T = LTUT, where the

factorization of LT is given by (13) but that of UT is modified to

D~lM^D'^y1 M'^ •■• (D'oT'M'o.U' dz^m^i

Here the matrix M'k is equal to Mk except in the rows i + ft,

(q — ft + 1) rows are now of the form

, /" + q. These

0 0 1 0 -i + k

-1

i + ft

0j- -i- + a.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

900 ÂKE BJÖRCK AND VICTOR PEREYRA

The matrix D'k is changed in the rows i + ft, •■•,/+ q — 1, where the diagonal

entries now should be (ft + 1). Thus, in the dual algorithm, (9) is modified for ft =

0, 1 , • • • , «7 - 1 so that

f<»+.) _ (cu> _ c<*_>ig+t)/(a. _ a._ki)< j= i + g+l

= c{k)/(k +1), j « / + q, i + q - 1, • • • , i + ft + 1.

For all other values of j the formula (9) can still be applied. The changes in the

primal algorithm can easily be deduced from this.

The general case can be treated by superposing changes from single points of

confluency. The corresponding formulas are, however, rather awkward to write

down, and there seems to be no point in doing this. Many important special cases can,

however, easily be treated, e.g., that with only the two endpoints of confluency

greater than one, or that with all points of the same order of confluency. For some

more results on this subject, see [9].

5. Test Results. To test the accuracy of the given algorithms, a few test ex-

amples have been run on an IBM 360/50. The programs used were FORTRAN-

versions of the Algol-procedures 'pvand' and 'dvand' given in the appendix. They

were run in double precision, which corresponds to 14 hexadecimal digits in the

mantissa, or a unit of precision equal to u = 16~13 = 2.22 X 10~16.

For the primal algorithm, test systems were chosen with a, = l/(i + 3), 6, =

1/2', i — 0, I, •• -, n. The exact solution can be shown to be

-<->'(" tiX'+^y+ h

Lei x, be the computed solution and take as a measure of the relative error

e« = max |*,- — *,|/|.x,|.
OSiSn

The results from runs with n + 1 = 5(5)30 are summarized in the following table :

n + 1

eju

5 10 15 20 25 30

5 10 54 81 280

The same systems were also solved with the algorithm described in [1]. The solution

then deteriorated completely after n = 15. In fact, considering the ill-conditioned

nature of the test systems, the observed errors for the new algorithm are surprisingly

small.

It seems as if at least some problems connected with Vandermonde systems, which

traditionally have been considered too ill-conditioned to be attacked, actually can be

solved with good precision.

For the dual algorithm, test systems were solved for n + 1 = 5(5)30 with «,=

1 /(/' + 2), /, = Tn(a,), i = 0, 1 • • • , n, where T„(x) is the Chebyshev polynomial of

order n. Thus, the problem is to retrieve the coefficients of Tn(x) from function values

at the points a,-. Here, however, the solutions from the dual algorithm deteriorated

completely after n = 10. The systems were also solved with a dual version of the

algorithm in [1]. The errors now showed the same behaviour, and were only slightly

larger than for the new algorithm.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

SOLUTION OF VANDERMONDE SYSTEMS OF EQUATIONS 901

Appendix. Below we give Algol procedures for the derived algorithms. The

direct versions are named "pvand" and "dvand", the progressive versions "pvandprg"

and "dvandprg".

procedure pvand(n,alpha,x,b);

value n; integer n; array alpha,x,b;

comment The procedure pvand solves the system of equations Vx =b,

■where V is the non-confluent Vandermonde matrix V(alpha[o],...,

alpha[n]). The right hand side b is left unchanged, unless the

formal parameters x and b correspond to the same actual parameter;

begin integer j,k;

for k:= 0 step 1 until n do x[k] := b[k];

for k:= 0 step 1 until n-1 do

for j:= n step -1 until k+1 do

x[j]:= x[j] - alpha[k] x x[j~l];

for k:= n-1 step -1 until 0 do

begin for j:= k+1 ste£ 1 until n do

x [j] : = x [jj / (alpha [j] - alpha [j -k-1]) ;

for j:= k step 1 until n-1 do

x[j] := x[j] - x[j + l]

end

end

procedure dvand(n,alpha,a,f);

value n; integer n; array alpha,a,f;

T
comment The procedure dvand solves the system of equations V a = f,

where V is the non-confluent Vandermonde matrix V(alpha[oj,...

alpha[n]). The right hand side f is left unchanged, unless the

formal parameters a and f correspond to the same actual parameter;

begin integer ¿,k;

for k:= 0 step 1 until n do a[k]

for k:= 0 step 1 until n-1 do

for j:=n step -1 until k+1 do

a[j] :=(a[j] - a[j-l])/(alpha |j]

for k:= n-1 step -1 until 0 do

for j:= k step 1 until n~1 do

a[jJ := aKl - alpha [k] x a[j+l]

end;

= f[k];

alpha [j-k-1]);

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

902 ÁKE BJÖRCK AND VICTOR PEREYRA

procedure pvandprg(n,alpha,d,u,x,b);

value n; integer n; array alpha,d,u,x,b;

comment The procedure pvandprg updates the solution to the system

of equations Vx = b, where V is the non-confluent Vandermonde matrix

V(alpha [O] ,... .alpha {n-ÏJ), when the value alpha [n] is added. The

procedure must be called successively with n = 0,1,2,... The content

of the arrays d,u[0:nmax], which are used as working storage, must

not be changed between calls;

begin integer j; real delta,dn;

d[n] := b[nj;

for j:= n-1 step -1 until 0 do

d[j}:= d[j+l] alpha[n-j--l] x à[j] ;

dn := d[0]; u[n] := 1;

for j:= 0 step 1 until n-1 do

begin delta := alpha [nj - alpha[j];

u[jQ := u[j] x delta;u[n] := u[nl x delta*»

xft] := x[j] + On/u[j]

end; xjn] := dn/u[n]

end;

procedure d.vandprg(n,alpha,c,m,s.,f) ;

value n; integer n; array alpha,c,m,a,f;

comment The procedure dvandprg updates the solution to the system

T
of equations V a = f, where V is the non-confluent Vandermonde matrix

V(alpha[oj,...,alpha[n-1j), when the value alpha[n] is added. The

procedure must he called successively with n = 0,1,2,... The content

of the arrays c,mfO:nmpjc], which are used as working storage, must

not be changed between calls ;

begin integer j; real en;

c M
for j

»M
m[nj

for j

'[»]'.

■ n-1 step -1 until 0 do

= (c[j+l] - c[j])/(alpha [n] - alpha [j]);

= if n=0 then 1 else 0; en := a[n] := cjo];

:= n step -1 until 1 do

begin mfj3 := mfj] - alpha[n-ï] x mfj-lj;

afn-j"] := afn-j] + m[j] x en

end

end;

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

SOLUTION OF VANDERMONDE SYSTEMS OF EQUATIONS 903

Acknowledgment. We are indebted to Professor Gene H. Golub of Stanford

University for stimulating conversation on this subject and for making the two

authors aware of each other.

We also thank Professor Gustavo Galimberti of the Universidad Central de

Venezuela for his help in the preliminary testing of the algorithms.

Department of Applied Mathematics

University of Linköping

S-581 83 Linköping, Sweden

Departamento de Computación

Universidad Central

Caracas, Venezuela 105

1. C. Ballester <& V. Pereyra, "On the construction of discrete approximations to linear
differential expressions," Math. Comp., v. 21, 1967, pp. 297-302. MR 37 #3751.

2. W. Gautschi, "On the inverses of Vandermonde and confluent Vandermonde matrices. I,
II," Numer. Math., v. 4,1962, pp. 117-123; ibid., v. 5,1963, pp. 425-430. MR 25 #3059; MR 29 #1734.

3. J. W. Jerome & L. L. Schumaker, A Note on Obtaining Natural Spline Functions by the
Abstract Approach of Laurent, MRC Technical Report #776, University of Wisconsin, Madison,
Wis., 1967.

4. J. N. Lyness <& C. B. Moler, "Van der Monde systems and numerical differentiation,"
Numer. Math., v. 8, 1966, pp. 458-464. MR 34 #956.

5. J. F. Traub, "Associated polynomials and uniform methods for the solution of linear
problems," SIAM Rev., v. 8, 1966, pp. 277-301. MR 34 #7054.

6. J. F. Traub, Iterative Methods for the Solution of Equations, Prentice-Hall Series in Automatic
Computation, Prentice-Hall, Englewood Cliffs, N. J., 1964. MR 29 #6607.

7. G. Galimberti & V. Pereyra, "Numerical differentiation and the solution of multidimen-
sional Vandermonde systems," Pub. 69-07, Dep. de Comp., U. Central de Venezuela, Caracas, 1969;
Math. Comp., v. 24, 1970, pp. 357-364.

8. G. Galimberti & V. Pereyra, Solving Confluent Vandermonde Systems of Hermite Type,
Pub. 70-02, Dep. de Comp., U. Central de Venezuela, Caracas, 1970.

9. S.-A. Gustafson, Rapid Computation of Interpolation Formulae and Mechanical Quadrature
Rules, Technical Report CS #70-152, Stanford University, Stanford, Calif., 1970.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

