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Abstract

We prove local well-posedness in regular spaces and a Beale–Kato–Majda blow-

up criterion for a recently derived stochastic model of the 3D Euler fluid equation

for incompressible flow. This model describes incompressible fluid motions whose

Lagrangian particle paths follow a stochastic process with cylindrical noise and also

satisfy Newton’s second law in every Lagrangian domain.

Keywords Analytical properties · Stochastic fluid equations · Lie derivative estimates

Mathematics Subject Classification 60H15 · 37J15 · 60H30

1 Introduction

The present paper shows that two important analytical properties of deterministic

Euler fluid dynamics in three dimensions possess close counterparts in the stochastic

Euler fluid model introduced in Holm (2015). The first of these analytical properties

is the local-in-time existence and uniqueness of deterministic Euler fluid flows. The

second property is a criterion for blow-up in finite time due to Beale et al. (1984).

For a historical review of these two fundamental analytical properties for determin-

istic Euler fluid dynamics, see e.g. Gibbon (2008). We believe this fidelity of the

stochastic model of Holm (2015) investigated here with the analytical properties of

the deterministic case bodes well for the potential use of this model in, for example,

uncertainty quantification of either observed or numerically simulated fluid flows. The

need and inspiration for such a model can be illustrated, for example, by examining

data from satellite observations collected in the National Oceanic and Atmospheric
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Fig. 1 This figure shows latitude and longitude of Lagrangian trajectories of drifters on the ocean surface

driven by the wind and ocean currents, as compiled from satellite observations by the National Oceanic and

Atmospheric Administration Global Drifter Program. Each colour corresponds to a different drifter (see

Lilly (2017)). Upon looking carefully at the individual Lagrangian paths in this figure, one sees that each

of them evolves as a mean drift flow, composed with an erratic flow comprising rapid fluctuations around

the mean (Colour figure online)

Administration (NOAA) “Global Drifter Program”, a compilation of which is shown

in Fig. 1.

Figure 1 (courtesy of Lilly 2017) displays the global array of surface drifter dis-

placement trajectories from the National Oceanic and Atmospheric Administration’s

“Global Drifter Program” (www.aoml.noaa.gov/phod/dac). In total, more than 10,000

drifters have been deployed since 1979, representing nearly 30 million data points of

positions along the Lagrangian paths of the drifters at 6-h intervals. This large spa-

tiotemporal data set is a major source of information regarding ocean circulation,

which in turn is an important component of the global climate system. For a recent

discussion, see for example Sykulski et al. (2016). This data set of spatiotemporal

observations from satellites of the spatial paths of objects drifting near the surface

of the ocean provides inspiration for further development of data-driven stochastic

models of fluid dynamics of the type discussed in the present paper.

Inspired by this drifter data, the present paper investigates the existence, uniqueness

and singularity properties of a recently derived stochastic model of the Euler fluid

equations for incompressible flow (Holm 2015) that is consistent with this data. For

this purpose, we combine methods from geometric mechanics, functional analysis and

stochastic analysis. In the model under investigation, one assumes that the Lagrangian

particle paths in the fluid motion xt = ηt (X) with initial position X ∈ R
3 each follow

a Stratonovich stochastic process given by

dηt (X) = u(ηt (X), t)dt +
∑

i

ξi (ηt (X)) ◦ dBi
t . (1.1)
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This approach immediately introduces the issue of spatial correlations.

In particular, an important feature of the data in Fig. 1 is that the ocean currents

show up as persistent spatial correlations, easily recognized visually as spatial regions

in which the colours representing individual paths tend to concentrate. To capture this

feature, we transform Lagrangian trajectory description (1.1) into the spatial represen-

tation of the Eulerian transport velocity given by the Stratonovich stochastic vector

field,

dyt (x) = u(x, t)dt +
∑

i

ξi (x) ◦ dBi
t = dηt η−1

t (x) . (1.2)

In Eqs. (1.1) and (1.2), the Bi
t with i ∈ N are scalar independent Brownian motions,

and the ξi (x) represent the spatial correlations which may be obtained as eigenvectors

of the two-point velocity-velocity correlation matrix Ci j (x, y), i, j = 1, 2, . . . , N , as

an integral operator. Namely,

∑

j

∫
Ci j (x, y)ξ j (y)dy = λξi (x) . (1.3)

These correlation eigenvectors exhibit a spectrum of spatial scales for the trajectories of

the drifters, indicating the variety of spatiotemporal scales in the evolution of the ocean

currents which transport the drifters. This feature of the data is worthy of further study.

In what follows, we will assume that the velocity correlation eigenvectors ξi (x) with

i = 1, . . . , N have been determined by reliable data assimilation procedures, so we

may take them to be prescribed, divergence-free, three-dimensional vector functions.

For explicit examples of the process of determining the ξi (x) eigenvectors at coarse

resolution from finely resolved numerical simulations, see Cotter et al. (2018a, b).

For an extension of this method to include non-stationary correlation statistics, see

Gay-Balmaz and Holm (2018).

A rigorous analysis of the stochastic process ηt in (1.1) is under way by the authors.

Following from classical results (e.g. Kunita 1984, 1990), we show in a forthcoming

paper that ηt is a temporally stochastic curve on the manifold of smooth invertible maps

with smooth inverses (i.e. diffeomorphisms). Thus, although the time dependence of ηt

in (1.1) is not differentiable, its spatial dependence is smooth. The stochastic process

dηt (X) in (1.1) is also the pullback by the diffeomorphism ηt of the stochastic vector

field dyt (x) in (1.2). That is, η∗
t dyt (x) = dηt (X) (see e.g. Holm (2015) for details).

Conversely, the stochastic vector field in (1.2) is the Eulerian representation in fixed

spatial coordinates x of the stochastic process in (1.1) for the Lagrangian fluid parcel

paths, labelled by their Lagrangian coordinates X .

The expression for the Lagrangian trajectories in Eq. (1.1) is clearly in accord

with the observed behaviour of the Lagrangian trajectories displayed in Fig. 1. More-

over, expression (1.2) for the corresponding Eulerian transport velocity has been

derived recently in Cotter et al. (2017) by using multi-time homogenization meth-

ods for Lagrangian trajectories corresponding to solutions of the deterministic Euler

equations, in the asymptotic limit of timescale separation between the mean and fluc-

tuating flow. In particular, the fluctuating dynamics in the second term in (1.2) has been
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shown in Cotter et al. (2017) to affect the mean flow. Thus, beyond being potentially

useful as a means of uncertainty quantification, the decomposition in (1.2) represents

a bona fide decomposition of the Eulerian fluid velocity into mean plus fluctuating

components.

The approach of incorporating uncertainties in incompressible fluid motion via

stochastic Lagrangian fluid trajectories as in Eq. (1.1) has several precedents, includ-

ing Brzézniak et al. (1991), Mikulevicius and Rozovskii (2004) and Mémin (2014).

However, the Eulerian fluid representation in (1.2) will lead us next to a stochastic par-

tial differential equation (SPDE) for the Eulerian drift velocity u driven by cylindrical

noise represented by the Stratonovich term in (1.2) which differs from the Eulerian

equations treated in these precedents. For detailed discussions of SPDE with cylindri-

cal noise, see Prato and Zabczyk (2015), Pardoux (2007), Prévôt and Röckner (2007),

Schaumlöffel (1988).

1.1 Stochastic Euler Fluid Equations

As shown in Holm (2015) via Hamilton’s principle and re-derived via Newton’s law

in “Appendix A” of the present paper, the stochastic Euler fluid equations we shall

study in this paper may be represented in Kelvin circulation theorem form, as

d

∮

c(t)

v j (x, t) dx j =
∮

c(t)

ρ−1 F j dx j , (1.4)

in which the closed loop c(t) follows the Lagrangian stochastic process in (1.1),

which means it moves with stochastic Eulerian fluid velocity dyt in (1.2). In Kelvin’s

circulation theorem (1.4), the mass density is denoted as ρ, and F j denotes the j th

component of the force exerted on the flow. In the present work, the mass density ρ will

be assumed to be constant. Notice that the covariant vector with components v j (x, t)

in the integrand of (1.4) is not the transport velocity in (1.2). Instead, v j (x, t) is the

j th component of the momentum per unit mass. In what follows, the force per unit

mass ρ−1 F j = − ρ−1∂ j p will be taken to be proportional to the pressure gradient.

For this force, the Kelvin loop integral in (1.4) for the stochastic Euler fluid case will

be preserved in time for any material loop whose motion is governed by Stratonovich

stochastic process (1.1). That is, Eq. (1.4) implies, for every rectifiable loop c ⊂ R
3,

the momentum per unit mass vt has the property that for all t ∈ [0, T ],
∮

ηt (c)

vt · dx =
∮

c

v0 · dx, a.s. (1.5)

pathwise Kelvin theorem (1.5) is reminiscent of the Constantin–Iyer Kelvin theorem

in Constantin and Iyer (2008) which has the beautifully simple implication that smooth

Navier–Stokes solutions ut are characterized by the following statistical Kelvin theo-

rem which holds for all loops Ŵ ⊂ R
3,

∫

Ŵ

ut · dx = E

[∫

At (Ŵ)

u0 · dx

]
, (1.6)
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where At is the back-to-labels map for a stochastic flow of a certain forward Itô

equation and E denotes expectation for that flow. Unlike pathwise Kelvin theorem

(1.5) which holds for solutions of the stochastic Euler fluid equations, Constantin–

Iyer Kelvin theorem in (1.6) is completely deterministic, since the fluid velocity ut is

a solution of the Navier–Stokes equations. For more discussion of Kelvin circulation

theorems for stochastic Euler fluid equations, see Drivas and Holm (2018).

In the case of the stochastic Euler fluid treated here in Euclidean coordinates,

applying the Stokes theorem to the Kelvin loop integral in (1.4) yields the equation

for ω = curl v proposed in Holm (2015), as

dω + (dyt · ∇)ω − (ω · ∇)dyt = 0 , ω|t=0 = ω0 , (1.7)

where the loop integral on the right-hand side of (1.4) vanishes for pressure forces

with constant mass density.

Main Results This paper shows that two well-known analytical properties of the deter-

ministic 3D Euler fluid equations are preserved under the stochastic modification in

(1.7) we study here. First, 3D stochastic Euler fluid vorticity Eq. (1.7) is locally well-

posed in the sense that it possesses local-in-time existence and uniqueness of solutions,

for initial vorticity in the space W 2,2(R3) (Ebin and Marsden 1970). See Lichtenstein

(1925) as mentioned in Frisch and Villone (2014) for a historical precedent for local

existence and uniqueness for the Euler fluid equations. Second, vorticity Eq. (1.7) also

possesses a Beale–Kato–Majda (BKM) criterion for blow-up which is identical to the

one proved for the deterministic Euler fluid equations in Beale et al. (1984).

Theorem 1 (Existence and uniqueness) Given initial vorticity ω0 ∈ W 2,2
(
T

3, R
3
)
,

there exists a local solution in W 2,2 of stochastic 3D Euler Eq. (1.7). Namely, if

ω(1), ω(2) : 	 × [0, τ ] × T
3 → R

3 are two solutions defined up to the same stopping

time τ > 0, then ω(1) = ω(2).

Our result corresponding to the celebrated Beale–Kato–Majda characterization of

blow-up (Beale et al. 1984) is stated in the following.

Theorem 2 (Beale–Kato–Majda criterion for blow-up) Given initial ω0 ∈ W 2,2(
T

3, R
3
)
, there exists a stopping time τmax : 	 → [0,∞] and a process ω :

	 × [0, τmax) × T
3 → R

3 with the following properties:

(i) (ω is a solution) The process t 	→ ω (t ∧ τmax, ·) has trajectories that are almost

surely in the class C
(
[0, τmax); W 2,2

(
T

3; R
3
))

and Eq. (1.7) holds as an identity

in L2
(
T

3; R
3
)
. In addition, τmax is the largest stopping time with this property;

and

(ii) (Beale–Kato–Majda criterion Beale et al. 1984) If τmax < ∞, then

∫ τmax

0

‖ω (t) ‖∞dt = +∞

and, in particular, lim supt↑τmax
‖ω (t)‖∞ = +∞.
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Plan of the Paper

• Section 2 discusses our assumptions and summarizes the main results of the paper.

– Section 2.1 formulates our objectives and sets the notation.

– Section 2.2 discusses the cylindrical noise properties of (1.1) and provides

basic bounds on the Lie derivatives needed in proving the main analytical

results.

– Section 2.3 provides additional definitions needed in the context of explaining

the main results of the paper.

• Section 3 provides proofs of the main results

– Sections 3.1 and 3.3 prove the uniqueness properties needed for establishing

Theorem 1.

– Section 3.5 introduces a cut-off function which is instrumental in the proof of

the BKM theorem for the stochastic Euler equations given in Section 3.4.

• Section 4 summarizes the proofs of several key technical results which are sum-

moned in establishing Theorems 1 and 2.

– Section 4.1 discusses fractional Sobolev regularity in time.

– Section 4.2 provides the a priori bounds needed to prove estimate (3.19).

– Section 4.3 proves the bounds needed to complete the proof that estimate (3.19)

is uniform in time.

– Section 4.4 establishes the key estimates for the bounds involving Lie deriva-

tives that are needed in the proofs.

• “Appendix A” provides a new derivation of the stochastic Euler equations intro-

duced in Holm (2015) from the viewpoint of Newton’s second law and derives

the corresponding Kelvin circulation theorem. The deterministic (resp. stochastic)

equations of motion are derived using the pullback of Newton’s second law by the

deterministic (resp. stochastic) diffeomorphism describing the Lagrange-to-Euler

map. The Kelvin circulation theorems for both cases are then derived from their

corresponding Newtonian 2nd Laws. The importance of the distinction between

transport velocity and transported momentum is emphasized in “Appendix A”

for both the deterministic and stochastic Newton’s Laws and Kelvin’s circulation

theorems.

2 Assumptions andMain Results

2.1 Formulating Objectives and Setting Notation

Our aim from now on will be to prove local-in-time existence and uniqueness of regular

solutions of the stochastic Euler vorticity equation

dω + Lvωdt +
∞∑

k=1

Lξk
ω ◦ dBk

t = 0, ω|t=0 = ω0, (2.1)
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which was proposed in Holm (2015). Here, Lvω (resp. Lξk
ω) denotes the Lie derivative

with respect to the vector fields v (resp. ξk) as in (A.27) applied to the vorticity vector

field. In particular,

Lξk
ω = (ξk · ∇)ω − (ω · ∇)ξk = [ ξk , ω ] . (2.2)

A natural question is whether we should sum only over a finite number of terms

or, on the contrary, it is important to have an infinite sum, and not only for generality.

An important remark is that a finite number of eigenvectors arises in the relevant case

associated with a “data-driven” model based on what is resolvable in either numerics

of observations, and it would simplify some technical issues [we do not have to assume

(2.11)]. However, an infinite sum could be of interest in regularization-by-noise inves-

tigations: see an example in Delarue et al. (2014) (easier than 3D Euler equations)

where a singularity is prevented by an infinite-dimensional noise. However, it is also

true that in some cases a finite-dimensional noise is sufficient also for regularization

by noise (see examples in Flandoli et al. (2010, 2011, 2014)).

As mentioned in Remark 32, for the case of the Euler fluid equations treated here in

Cartesian R
3 coordinates, the two velocities denoted u and v in the previous section

may be taken to be identical vectors for the case at hand in R
3. Consequently, for the

remainder of the present work, in a slight abuse of notation, we simply let v denote the

both fluid velocity and the momentum per unit mass. Then, ω = curl v is the vorticity,

and ξk comprise N divergence-free prescribed vector fields, subject to the assumptions

stated below. The processes Bk with k ∈ N are scalar independent Brownian motions.

The result we present next will extend the known analogous result for deterministic

Euler equations to the stochastic case.

To simplify some of the arguments, we will work on a torus T
3 = R

3/Z
3. However,

the results should also hold in the full space, R
3.

Stochastic Euler vorticity Eq. (2.1) above is stated in Stratonovich form. The cor-

responding Itô form is

dω + Lvωdt +
∞∑

k=1

Lξk
ωdBk

t = 1

2

∞∑

k=1

L2
ξk

ω dt , ω|t=0 = ω0 , (2.3)

where we write

L2
ξk

ω = Lξk
(Lξk

ω) = [ξk , [ξk , ω]] ,

for the double Lie bracket of the divergence-free vector field ξk with the vorticity

vector field ω. Indeed, let us recall that Stratonovich integral is equal to Itô integral

plus one half of the corresponding cross-variation process1:

∫ t

0

Lξk
ωs ◦ dBk

s =
∫ t

0

Lξk
ωsdBk

s + 1

2

[
Lξk

ω, Bk
]

t
.

1 The subscript t on the square brackets distinguishes between the cross-variation process and Lie bracket

of vector fields. To avoid confusion between these two uses of the square bracket, we will denote the Lie

bracket operation [ ξk , · ] by the symbol Lξk
·, as in Eq. (2.2).
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By the linearity and the space independence of Bk ,
[
Lξk

ω, Bk
]

t
= Lξk

[
ω, Bk

]
t
. As ωt

has the form dωt = at dt +
∑

h bh
t ◦dBh

t , where Bh are independent, the cross-variation

process
[
ω, Bk

]
t

is given by

[
ω, Bk

]
t
=
∫ t

0

bk
s ds.

In our case bk
s = −Lξk

ωs , hence

[
ω, Bk

]
t
= −

∫ t

0

Lξk
ωsds.

Finally

Lξk

[
ω, Bk

]
t
= −

∫ t

0

L2
ξk

ωsds

and therefore, in differential form,

Lξk
ωt ◦ dBk

t = Lξk
ωt dBk

t − 1

2
L2

ξk
ωt dt .

Among different possible strategies to study Eq. (2.3), some of them based on

stochastic flows, we present here the extension to the stochastic case of a classical

PDE proof (see, for instance, Kato and Lai 1984; Lions 1996; Majda and Bertozzi

2002).

The proof is based on a priori estimates in high-order Sobolev spaces. The determin-

istic classical result proves well-posedness in the space ω (t) ∈ W 3/2+ǫ,2
(
T

3; R
3
)
,

for some ǫ > 0, when ω0 belongs to the same space. Here we simplify (due

to a number of new very non-trivial facts outlined in Sect. 4.2) and work in the

space ω (t) ∈ W 2,2
(
T

3; R
3
)
. Consequently, we may consider �ω (t) (to avoid frac-

tional derivatives) and investigate existence and uniqueness in the class of regularity

�ω (t) ∈ L2
(
T

3; R
3
)
.

If f , g ∈ L2
(
T

3; R
3
)
, we write 〈 f , g〉 =

∫
T3 f (x) · g (x) dx . We consider the

basis of L2
(
T

3; C
)

of functions
{
e2π iξ ·x ; ξ ∈ Z

3
}
, and for every f ∈ L2

(
T

3; C
)
,

we introduce the Fourier coefficients f̂ (ξ) =
∫

T3 e−2π iξ ·x f (x) dx , ξ ∈ Z
3; Parseval

identity states that
∫

T3 | f (x)|2 dx =
∑

ξ∈Z3

∣∣ f̂ (ξ)
∣∣2. If v ∈ L2

(
T

3; R
3
)

is a vector

field with components vi , i = 1, 2, 3, we write v̂ (ξ) =
∫

T3 e2π iξ ·xv (x) dx and we

may easily check using the components that have
∫

T3 |v (x)|2 dx =
∑

ξ∈Z3 |̂v (ξ)|2.

Since functions which are partial derivatives of other functions, on the torus, must

have zero average, we shall always restrict ourselves to functions f ∈ L2
(
T

3; C
)

such that
∫

T3 f (x) dx = 0. In this case, f̂ (0) = 0 and the term with ξ = 0 does not

appear in the sums above.

We introduce, for every s ≥ 0, the fractional Sobolev space W s,2
(
T

3; C
)

of all

f ∈ L2
(
T

3; C
)

such that
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‖ f ‖2
W s,2 :=

∑

ξ∈Z3\{0}
|ξ |2s

∣∣ f̂ (ξ)
∣∣2 < ∞.

As stated above, we are assuming zero average functions; hence, we have excluded ξ =
0. We denote by W s,2

σ

(
T

3, R
3
)

the space of all zero mean divergence-free (divergence

in the sense of distribution) vector fields v ∈ L2
(
T

3; R
3
)

such that all components

vi , i = 1, 2, 3, belong to W s,2
(
T

3; C
)
. For a vector field v ∈ W s,2

σ

(
T

3, R
3
)
, the

norm ‖v‖W s,2 is defined by the identity ‖v‖2

W
s,2
σ

=
∑3

i=1 ‖vi‖2
W s,2 , where ‖vi‖2

W s,2

is defined above. We thus have again ‖v‖2

W
s,2
σ

:=
∑

ξ∈Z3\{0} |ξ |2s |̂v (ξ)|2. For

f ∈ W s,2
(
T

3; C
)
, we denote by (−�)s/2 f the function of L2

(
T

3; C
)

with Fourier

coefficients |ξ |s f̂ (ξ). Similarly, we write −�−1 f for the function having Fourier

coefficients |ξ |−2 f̂ (ξ). We use the same notations for vector fields, meaning that the

operations are made componentwise.

The Biot–Savart operator is the reconstruction of a zero mean divergence-free vector

field u from a divergence-free vector field ω such that curl u = ω. On the torus,

it is given by u = − curl �−1ω. In Fourier components, it is given by û (ξ) =
|ξ |−2 ξ × ω̂ (ξ). We have the following well-known result: for all s ≥ 0

‖u‖
W

s+1,2
σ

≤ ‖ω‖
W

s,2
σ

. (2.4)

Indeed, using the definition given above of ‖u‖2

W
s+1,2
σ

, the formula which relates û (ξ)

to ω̂ (ξ) and the rule |a × b| ≤ |a| |b|, we get

‖u‖2

W
s+1,2
σ

=
∑

ξ∈Z3\{0}
|ξ |2s+2 |̂u (ξ)|2 =

∑

ξ∈Z3\{0}
|ξ |2s+2 |ξ |−4 |ξ × ω̂ (ξ)|2

≤
∑

ξ∈Z3\{0}
|ξ |2s+2 |ξ |−2 |ω̂ (ξ)|2

and the latter is precisely equal to ‖ω‖
W

s,2
σ

, by the definition above.

We shall denote the dual operator of the Lie derivative Lα of a vector field as L∗
α ,

defined by the identity

〈
L∗

αβ, γ
〉
= 〈β,Lαγ 〉 ,

for all smooth vector fields α, β, γ . When div α = 0, the dual Lie operator is given in

vector components by

(
L∗

αγ
)

i
:= −

∑

j

(
α j∂ jγi + γ j∂iα

j
)

. (2.5)
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2.2 Assumptions on {�k} and Basic Bounds on Lie Derivatives

We assume that the vector fields ξk : T
3 → R

3 are of class C4 and satisfy

∥∥∥∥∥

∞∑

k=1

L2
ξk

f

∥∥∥∥∥

2

L2

≤ C ‖ f ‖2
W 2,2 (2.6)

∞∑

k=1

〈
Lξk

f ,Lξk
f
〉
≤ C ‖ f ‖2

W 2,2 (2.7)

for all f ∈ W 2,2
(
T

3; R
3
)

and

∞∑

k=1

‖ξk‖2
W 3,2 < ∞. (2.8)

These properties will be used below, both to give a meaning to the stochastic terms in

the equation and to prove certain bounds. In addition, a recurrent energy-type scheme in

our proofs requires comparisons of quadratic variations and Stratonovich corrections.

Making these comparisons leads to sums of the form
〈
L2

ξk
f , f

〉
+
〈
Lξk

f ,Lξk
f
〉
. In

dealing with them, we have observed the validity of two striking bounds, which a

priori may look surprising. They are:

〈
L2

ξk
f , f

〉
+
〈
Lξk

f ,Lξk
f
〉
≤ C

(0)
k ‖ f ‖2

L2 (2.9)
〈
�L2

ξk
f ,� f

〉
+
〈
�Lξk

f ,�Lξk
f
〉
≤ C

(2)
k ‖ f ‖2

W 2,2 , (2.10)

for suitable constants C
(0)
k , C

(2)
k . For these estimates to hold, the regularity of f must

be, respectively, W 2,2
(
T

3; R
3
)

and W 4,2
(
T

3; R
3
)
. The proofs of estimates (2.9) and

(2.10) are given in Sect. 4.4.2

Concerning inequality (2.9), it is clear that the second-order terms in
〈
L2

ξk
f , f

〉
and

〈
Lξk

f ,Lξk
f
〉

will cancel. However, the cancellations among the first-order terms are

not so obvious. Remarkably, though, these terms do cancel each other, so that only the

zero-order terms remain. Similar remarks apply to the other inequality.

In addition, we must assume

∞∑

k=1

C
(0)
k < ∞,

∞∑

k=1

C
(2)
k < ∞. (2.11)

Because the constants C
(i)
k are rather complicated, we will not write them explicitly

here. In the relevant case of a finite number of ξk’s, there is obviously no need of this

2 We thank Istvan Gyöngy and Nikolai Krylov for pointing out to us that estimates such as (2.9) and (2.10)

hold in much more generality (see e.g. Gyöngy (1989), Gyöngy and Krylov (1992), Gyöngy and Krylov

(2003)).
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assumption. In the case of infinitely many terms, see a sufficient condition in Remark

28 of Sect. 4.4.

2.3 Statement of theMain Results

Let
{

Bk
}

k∈N
be a sequence of independent Brownian motions on a filtered probability

space (	,F ,Ft , P). We do not use the most common notation � for the probability

space, since ω is the traditional notation for the vorticity. Thus, the elementary events

will be denoted by θ ∈ 	. Let {ξk}k∈N be a sequence of vector fields, satisfying the

assumptions of Sect. 2.2. Consider Eq. (2.3) on [0,∞).

Definition 3 (Local solution) A local solution in W 2,2
σ of the stochastic 3D Euler

Eq. (2.3 ) is given by a pair (τ, ω) consisting of a stopping time τ : 	 → [0,∞)

and a process ω : 	 × [0, τ ] × T
3 → R

3 such that a.e. the trajectory is of class

C
(
[0, τ ] ; W 2,2

σ

(
T

3; R
3
))

, ω (t ∧ τ, ·), is adapted to (Ft ), and Eq. (2.3) holds in the

usual integral sense; more precisely, for any bounded stopping time τ̄ ≤ τ

ωτ̄ − ω0 +
∫ τ̄

0

Lvωdt +
∞∑

k=1

∫ τ̄

0

Lξk
ωdBk

t = 1

2

∞∑

k=1

∫ τ̄

0

L2
ξk

ω dt (2.12)

holds as an identity in L2
(
T

3; R
3
)
.

Definition 4 (Maximal solution) A maximal solution of (2.3) is given by a stopping

time τmax : 	 → [0,∞] and a process ω : 	 × [0, τmax) × T
3 → R

3 such that: (i)

P (τmax > 0) = 1, τmax = limn→∞ τn where τn is an increasing sequence of stopping

times, and (ii) (τn, ω) is a local solution for every n ∈ N; In addition, τmax is the

largest stopping time with properties (i) and (ii). In other words, if (τ ′, ω′) is another

pair that satisfies (i) and (ii) and ω′ = ω on [0, τ ′ ∧ τmax), then, τ ′ ≤ τmax P-almost

surely.

Remark 5 Due to assumptions (2.6) and (2.7) and the regularity of ω, the two terms

related to the noise in Eq. (2.3) are well defined, as elements of L2
(
T

3; R
3
)
.

Remark 6 Recall that, for every α ≥ 0, ω (t) ∈ W α,2
(
T

3; R
3
)

implies v (t) ∈
W α+1,2

(
T

3; R
3
)
. Hence, solutions in W 2,2 have paths such that v ∈ C

(
[0, τ ] ; W 3,2

(
T

3; R
3
))

. Moreover, recall that W α,2
(
T

3; R
3
)

⊂ C
(
T

3; R
3
)

for α > 3/2. There-

fore, ω ·∇v ∈ C
(
[0, τ ] × T

3; R
3
)

and v ·∇ω is at least in C
(
[0, τ ] ; W 1,2

(
T

3; R
3
))

,

hence at least

[v, ω] ∈ C
(

[0, τ ] ; W 1,2
(
T

3; R
3
))

a.s.

which explains why the term [v, ω] is in L2
(
T

3; R
3
)
. (Recall that Definition 3 instructs

us to interpret Eq. (2.3) as an identity in L2
(
T

3; R
3
)
.)
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Remark 7 If ω : 	 × [0, τ ] × T
3 → R

3 has the regularity properties of Definition 3

and satisfies Eq. (2.3) only in a weak sense, namely, for any bounded stopping time

τ̄ ≤ τ

〈ω (τ̄ ) , φ〉 +
∫ τ̄

0

〈
ω (s) ,L∗

v(s)φ
〉

ds +
∞∑

k=1

∫ τ̄

0

〈
ω (s) ,L∗

ξk
φ
〉

Bk
s

= 〈ω0, φ〉 + 1

2

∞∑

k=1

∫ τ̄

0

〈
ω (s) ,L∗

ξk
L∗

ξk
φ
〉

ds

for all φ ∈ C∞ (
T

3; R
3
)
, then, by integration by parts, it satisfies Eq. (2.3) as an

identity in L2
(
T

3; R
3
)
.

Theorem 8 Given ω0 ∈ W 2,2
σ

(
T

3, R
3
)
, there exists a maximal solution (τmax, ω) of

the stochastic 3D Euler Eq. (2.3). Moreover, if
(
τ ′, ω′) is another maximal solution of

(2.3), then necessarily τmax = τ ′ and ω = ω′on [0, τmax). Moreover, either τmax = ∞
or lim supt↑τmax

‖ω (t)‖W 2,2 = +∞.

In this paper, we will also prove a corresponding result to the celebrated Beale–

Kato–Majda criterion for blow-up of vorticity solutions of the deterministic Euler fluid

equations.

Theorem 9 Given ω0 ∈ W 2,2
σ

(
T

3, R
3
)
, if τmax < ∞, then

∫ τmax

0

‖ω (t)‖∞ dt = +∞ .

In particular, lim supt↑τmax
‖ω (t)‖∞ = +∞ almost surely.

Remark 10 As in the deterministic case, Theorem 9 can be used as a criterion for test-

ing whether a given numerical simulation has shown finite-time blow-up. Following

Gibbon (2008), the classical Beale–Kato–Majda theorem implies that algebraic singu-

larities of the type ‖ω‖∞ ≥ (t∗ − t)−p must have p ≥ 1. In our paper, we have shown

that a corresponding BKM result also applies for the stochastic Euler fluid equations;

hence, the same criterion applies here. In Constantin et al. (1996), the L∞ condition in

the BKM theorem was reduced to L p, for finite p, at the price of imposing constraints

on the direction of vorticity. We hope to obtain a similar L∞ result for the stochastic

3D-Euler equation in future work.

In Sects. 3.1 and 3.2, we prove uniqueness. The rest of the paper will be devoted

to proving local existence of the solution and Theorem 9.
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3 Proofs of theMain Results

3.1 Local Uniqueness of the Solution of the Stochastic 3D Euler Equation

In the following proposition, we prove that any two local solutions of the stochastic

3D Euler Eq. (2.3) that are defined up to the same stopping time must coincide. The

proof hinges on bound (2.9) and assumption (2.11).

Proposition 11 Let τ be a stopping time and ω(1), ω(2) : [0, τ ) × T
3 → R

3 be two

solutions with paths of class C
(
[0, τ ); W 2,2

σ

(
T

3; R
3
))

that satisfy the stochastic 3D

Euler Eq. (2.3). Then ω(1) = ω(2) on [0, τ ).

Proof We have that3

dω(i) + Lv(i)ω
(i) dt +

∞∑

k=1

Lξk
ω(i) dBk

t = 1

2

∞∑

k=1

L2
ξk

ω(i) dt, i = 1, 2,

where ω(i) = curl v(i). The difference � = ω(1) − ω(2) satisfies

d� + Lv(1)ω
(1) dt − Lv(2)ω

(2) dt +
∞∑

k=1

Lξk
� dBk

t = 1

2

∞∑

k=1

L2
ξk

� dt

and thus (set also V = v(1) − v(2))

d� + LV ω(1) dt + Lv(2)� dt +
∞∑

k=1

Lξk
� dBk

t = 1

2

∞∑

k=1

L2
ξk

� dt .

It follows

1

2
d ‖�‖2

L2 +
〈
LV ω(1),�

〉
dt +

〈
Lv(2)�,�

〉
dt +

∞∑

k=1

〈
Lξk

�,�
〉

dBk
t

= 1

2

∞∑

k=1

〈
L2

ξk
�,�

〉
dt + 1

2

∞∑

k=1

〈
Lξk

�,Lξk
�
〉

dt .

We rewrite

〈
LV ω(1),�

〉
+
〈
Lv(2)�,�

〉

=
〈
V · ∇ω(1),�

〉
−
〈
ω(1) · ∇V ,�

〉
+
〈
v(2) · ∇�,�

〉
−
〈
� · ∇v(2),�

〉

3 The following identity and all the subsequent ones hold as identities in L2
(
T

3; R
3
)

and represent the

differential form of their integral version in the same way as Eq. (2.3) is the differential form of (2.12).
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and use the following inequalities:

∣∣∣
〈
V · ∇ω(1),�

〉∣∣∣ ≤ ‖�‖L2 ‖V ‖L4

∥∥∥∇ω(1)
∥∥∥

L4
≤ C

∥∥∥ω(1)
∥∥∥

W 2,2
‖�‖2

L2

∣∣∣
〈
ω(1) · ∇V ,�

〉∣∣∣ ≤ ‖�‖L2 ‖∇V ‖L2

∥∥∥ω(1)
∥∥∥

L∞
≤ C

∥∥∥ω(1)
∥∥∥

W 2,2
‖�‖2

L2

〈
v(2) · ∇�,�

〉
= 0

∣∣∣
〈
� · ∇v(2),�

〉∣∣∣≤‖�‖2
L2

∥∥∥∇v(2)
∥∥∥

L∞
≤‖�‖2

L2

∥∥∥∇v(2)
∥∥∥

W 2,2
≤C

∥∥∥ω(2)
∥∥∥

W 2,2
‖�‖2

L2 .

Here and below, we repeatedly use the Sobolev embedding theorems

W 2,2
(
T

3
)

⊂ Cb

(
T

3
)

, W 2,2
(
T

3
)

⊂ W 1,4
(
T

3
)

(3.1)

and the fact that Biot–Savart map ω 	→ v maps W α,p into W α+1,p for all α ≥ 0 and

p ∈ (1,∞). W s,2
σ into W s+1,2

σ for all s ≥ 0; see (2.4). For instance, the sequences of

inequalities used above in the case of the terms ‖V ‖L4 and
∥∥∇v(2)

∥∥
L∞ were

‖V ‖L4 ≤ C ‖V ‖W 1,2 ≤ C ′ ‖�‖L2∥∥∥∇v(2)
∥∥∥

L∞
≤ C

∥∥∥∇v(2)
∥∥∥

W 2,2
≤ C ′

∥∥∥v(2)
∥∥∥

W 3,2
≤ C ′′

∥∥∥ω(2)
∥∥∥

W 2,2
.

We omit similar detailed explanations sometimes below, when they are of the same

kind.

Using also (2.11), we get

d ‖�‖2
L2 + 2

∞∑

k=1

〈
Lξk

�,�
〉

dBk
t ≤ C

(
1 +

∥∥∥ω(1)
∥∥∥

W 2,2
+
∥∥∥ω(2)

∥∥∥
W 2,2

)
‖�‖2

L2 dt .

Then

d
(

eY ‖�‖2
L2

)
= − eY ‖�‖2

L2 C
(

1 +
∥∥∥ω(1)

∥∥∥
W 2,2

+
∥∥∥ω(2)

∥∥∥
W 2,2

)
+ eY d ‖�‖2

L2

≤ −2eY

∞∑

k=1

〈
Lξk

�,�
〉

dBk
t ,

where Y is defined as

Yt := −
∫ t

0

C
(

1 +
∥∥∥ω(1)

s

∥∥∥
W 2,2

+
∥∥∥ω(2)

s

∥∥∥
W 2,2

)
ds.

The inequality (recall �0 = 0)

eYτ̄ ‖�τ̄‖2
L2 ≤ −2

∞∑

k=1

∫ τ̄

0

eYs
〈
Lξk

�s,�s

〉
dBk

s
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holds for every bounded stopping time τ̄ ∈ [0, τ ]. Hence, we have

eYt∧τ ‖�t∧τ‖2
L2 ≤ −2

∞∑

k=1

∫ t∧τ

0

eYs
〈
Lξk

�s,�s

〉
dBk

s

= − 2

∞∑

k=1

∫ t

0

1s≤τ eYs
〈
Lξk

�s,�s

〉
dBk

s .

In expectation, denoted E, this implies

E

[
eYt∧τ ‖�t∧τ‖2

L2

]
≤ 0

namely E
[
eYt∧τ ‖�t∧τ‖2

L2

]
= 0 and thus, for every t ,

eYt∧τ ‖�t∧τ‖2
L2 = 0 a.s.

Since Yt∧τ < ∞ a.s., we get ‖�t∧τ‖2
L2 = 0 a.s. and thus

ω
(1)
t∧τ = ω

(2)
t∧τ a.s.

Recalling the continuity of trajectories, this implies

ω(1) = ω(2) a.s.

The proof of the proposition is complete. ⊓⊔

3.2 Existence of a Maximal Solution

Given R > 0, consider the modified Euler equations

dωR + κR (ωR) LvR
ωR dt +

∞∑

k=1

Lξk
ωRdBk

t = 1

2

∞∑

k=1

L2
ξk

ωR dt, ωR |t=0 = ω0,

(3.2)

where ωR = curl vR . In (3.2), κR (ω) := fR(‖∇v‖∞), where fR is a smooth function,

equal to 1 on [0, R], equal to 0 on [R + 1,∞) and decreasing in [R, R + 1].

Lemma 12 Given R > 0 and ω0 ∈ W 2,2
σ

(
T

3, R
3
)
, let ωR : 	 × [0,∞) × T

3 → R
3

be a global solution in W 2,2 of Eq. (3.2). Let

τR = inf

{
t ≥ 0 : ‖ω‖W 2,2 ≥ R

C

}
,

where C is a constant chosen so that

‖∇v‖∞ ≤ C ‖ω‖W 2,2 .
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Finally, let ω : 	 × [0, τR] × T
3 → R

3 be the restriction of ωR . Then, ω is a local

solution in W 2,2
σ of stochastic 3D Euler Eq. (2.3)

Proof Obviously, because for t ∈ [0, τR] we have ‖∇v‖∞ ≤ C ‖ω‖W 2,2 ≤ R and

thus κR (ωR) = 1; namely, the equations are the same. ⊓⊔

The following proposition is the cornerstone of the existence and uniqueness of a

maximal solution of stochastic 3D Euler Eq. (2.3)

Proposition 13 Given R > 0 and ω0 ∈ W 2,2
σ

(
T

3, R
3
)
, there exists a global solution

in W 2,2
σ of Eq. (3.2). Moreover, if ω

(1)
R , ω

(2)
R : 	 × [0,∞) × T

3 → R
3 are two global

solutions in W 2,2
σ of Eq. (3.2 ), then ω

(1)
R = ω

(2)
R .

We postpone the proof of Proposition 13 to the later sections. For now, let us show

how it implies the existence of a maximal solution.

Theorem 14 Given ω0 ∈ W 2,2
σ

(
T

3, R
3
)
, there exists a maximal solution (τmax, ω) of

stochastic 3D Euler Eq. (2.3). Moreover, either τmax = ∞ or lim supt↑τmax
‖ω̃ (t)‖W 2,2

= +∞.

Proof Choose R = n in Lemma 12, then (τn, ωn) is a local solution in W 2,2
σ of

stochastic 3D Euler Eq. (2.3). Moreover, define τmax := limn→∞ τn and define ω as

ω|[0,τn) := ωCn|[0,τn). By uniqueness ωm |[0,τn) := ωn|[0,τn) for any m ≥ n. So ω is

consistently defined.

The statement that either τmax = ∞ or lim supt↑τmax
‖ω̃ (t)‖W 2,2 = +∞ is obvious:

if τmax < ∞, then by the continuity of ω̃ on [0, τmax), there exist some random times

τ̃n < τn such that τn − τ̃n ≤ 1
n

and that ‖ω̃ (τ̃n)‖W 2,2 ≥ n−1
C

. Then,

lim sup
t↑τmax

‖ω̃ (t)‖W 2,2 ≥ lim sup
n↑∞

‖ω̃ (τ̃n)‖W 2,2 = ∞.

We prove by contradiction that (τmax, ω) is a maximal solution. Assume that there

exists a pair
(
τ ′, ω′) such that ω′ = ω on [0, τ ′ ∧ τmax), and τ ′ > τmax with positive

probability. This can only happen if τmax < ∞, therefore by the continuity of ω′ on

[0, τ ′) on the set
{
τ ′ > τmax

}

∞ = lim sup
n↑∞

‖ω̃ (τ̃n)‖W 2,2 = lim sup
n↑∞

∥∥ω̃′ (τ̃n)
∥∥

W 2,2 =
∥∥ω̃′ (τmax)

∥∥
W 2,2 < ∞,

which leads to a contradiction. Hence, necessarily, τ ′ ≤ τ P-almost surely, therefore

(τ, ω) is a maximal solution. ⊓⊔

3.3 Uniqueness of theMaximal Solution

Let us start by justifying the uniqueness of solution truncated Euler Eq. (3.2). The

proof is similar with that of Proposition 11 so we only sketch it here. Let ω
(1)
R , ω

(2)
R :

	 × [0,∞) × T
3 → R

3 are two global solutions in W 2,2
σ of Eq. (3.2 ). We preserve
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the same notation as in the proof of Proposition 11, i.e. denote by � = ω
(1)
R − ω

(2)
R

and V = v
(1)
R − v

(2)
R . We also assume that the truncation function fR is Lipschitz and

we will denote by K R the quantity

K R = fR(||∇v
(1)
R ||∞) − fR(|∇v

(2)
R ||∞)

and observe that,4

|K R | ≤ C

∥∥∥∇v
(1)
R − ∇v

(2)
R

∥∥∥
∞

= C ‖∇V ‖∞ ≤ C ‖�‖2
2,2 .

To simplify notation, we will omit the dependence on R in the following.

We are looking to prove uniqueness using the W 2,2-topology; therefore, we need

to estimate the sum ‖�‖2
L2 + ‖��‖2

L2 . Then,

d� + � dt +
∞∑

k=1

Lξk
� dBk

t = 1

2

∞∑

k=1

L2
ξk

� dt,

where

� := κ
(
ω(1)

)
Lv(1)ω

(1) − κ
(
ω(2)

)
Lv(2)ω

(2)

and thus

d� + 〈�,�〉 dt +
∞∑

k=1

Lξk
� dBk

t = 1

2

∞∑

k=1

L2
ξk

� dt .

Then,

1

2
d ‖�‖2

L2 + 〈�,�〉 dt +
∞∑

k=1

〈
Lξk

�,�
〉

dBk
t = 1

2

∞∑

k=1

〈
L2

ξk
�,�

〉
dt

+ 1

2

∞∑

k=1

〈
Lξk

�,Lξk
�
〉

dt .

On the set τ (2) ≤ τ (1) observe that � is 0 if
∥∥ω(1)

∥∥
W 2,2 ≥ R

C
. It follows that, on this

set, there exists a constant cR such that (recall that 0 ≤ κ ≤ 1)

|〈�,�〉| =
∣∣∣K
〈
Lv(1)ω

(1),�
〉

+ κ
(
ω(2)

) 〈
LV ω(1),�

〉
+ κ

(
ω(2)

) 〈
Lv(2)�,�

〉∣∣∣

≤ cR ‖�‖2
W 2,2 +

∣∣∣
〈
LV ω(1),�

〉 ∣∣∣+
∣∣〈Lv(2)�,�

〉∣∣

4 Here and throughout the paper, we use the standard notation C for generic constants, whose value may

differ from case to case.
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and, similar to the proof of Proposition 11, we deduced that

d ‖�‖2
L2 + 2

∞∑

k=1

〈
Lξk

�,�
〉

dBk
t ≤ C

(
1 +

∥∥∥ω(1)
∥∥∥

W 2,2
+
∥∥∥ω(2)

∥∥∥
W 2,2

)
‖�‖W 2,2 dt .

(3.3)

Similarly, on the set τ (2) ≤ τ (1) observe that � vanishes, if
∥∥ω(2)

∥∥
W 2,2 ≥ R

C
and 3.3

holds true, as seen by observing that there exists a constant cR such that

|〈�,�〉| =
∣∣∣K
〈
Lv(2)ω

(2),�
〉

+ κ
(
ω(1)

) 〈
LV ω(2),�

〉
+ κ

(
ω(1)

) 〈
Lv(1)�,�

〉 ∣∣∣

≤ cR ‖�‖2
W 2,2 +

∣∣∣
〈
LV ω(2),�

〉 ∣∣∣+
∣∣〈Lv(1)�,�

〉∣∣ .

Next we have

d�� + ��dt +
∞∑

k=1

�Lξk
� dBk

t = 1

2

∞∑

k=1

�L2
ξk

� dt

from which we deduce that

1

2
d ‖��‖2

L2 + 〈��,��〉 +
∞∑

k=1

〈
�Lξk

�,��
〉

dBk
t = 1

2

∞∑

k=1

〈
�L2

ξk
�,��

〉
dt

+ 1

2

∞∑

k=1

〈
�Lξk

�,�Lξk
�
〉

dt .

From the Lemma 25, we have

∣∣〈�Lv(2)�,��
〉∣∣ ≤ C

∥∥∥∇v(2)
∥∥∥

L∞
‖�‖2

W 2,2 + C ‖�‖L∞

∥∥∥∇v(2)
∥∥∥

W 2,2
‖�‖W 2,2

≤ C

∥∥∥ω(2)
∥∥∥

W 2,2
‖�‖2

W 2,2 .

Moreover, by similar arguments,

∣∣∣
〈
�LV ω(1),��

〉∣∣∣ ≤ C ‖∇V ‖L∞

∥∥∥ω(1)
∥∥∥

W 2,2
‖�‖W 2,2

+ C

∥∥∥ω(1)
∥∥∥

L∞
‖∇V ‖W 2,2 ‖�‖W 2,2

≤ C ‖∇V ‖W 2,2

∥∥∥ω(1)
∥∥∥

W 2,2
‖�‖W 2,2

≤ C

∥∥∥ω(1)
∥∥∥

W 2,2
‖�‖2

W 2,2 .

Similar estimates hold true for
∣∣〈�LV ω(2),��

〉 ∣∣ and
∣∣〈�Lv(1)�,��

〉∣∣. Next, as

above, on the set τ (2) ≤ τ (1) observe there exists a constant cR such that
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∣∣∣K
〈
�Lv(1)ω

(1),��
〉∣∣∣ ≤ C

∥∥∥∇v(1)
∥∥∥

L∞

∥∥∥ω(1)
∥∥∥

W 2,2
‖�‖W 2,2

+ C

∥∥∥ω(1)
∥∥∥

L∞

∥∥∥∇v(1)
∥∥∥

W 2,2
‖�‖W 2,2

≤ cR ‖�‖2
W 2,2 .

Similarly, on the set τ (2) ≤ τ (1),

∣∣∣K
〈
�Lv(1)ω

(1),��
〉∣∣∣ ≤ cR ‖�‖2

W 2,2 .

Summarizing, we deduce that

1

2
d ‖��‖2

L2 +
∞∑

k=1

〈
�Lξk

�,��
〉

dBk
t ≤ C

(
1+

∥∥∥ω(1)
∥∥∥

W 2,2
+
∥∥∥ω(2)

∥∥∥
W 2,2

)
‖�‖2

W 2,2

+ 1

2

∞∑

k=1

〈
�L2

ξk
�,��

〉
dt + 1

2

∞∑

k=1

〈
�Lξk

�,�Lξk
�
〉

dt .

It is then sufficient to repeat the argument of the proof of Proposition 11 to control

‖�‖2
L2 + ‖��‖2

L2 and obtain the uniqueness of the truncated Euler equation. The

computation required here requires more regularity in space than what we have for

our solutions (we have to compute, although only transiently, �L2
ξk

�). In order to

make the computation rigorous, one has to regularize solutions by mollifiers or Yosida

approximations and do the computations on the regularizations. In this process, com-

mutators will appear and one has to check at the end that they converge to zero. The

details are tedious, but straightforward and we do not write all of them here.

We are now ready to prove the general uniqueness result contained in Theorem 8.

More precisely we prove the following

Theorem 15 Let ω0 ∈ W 2,2
σ

(
T

3, R
3
)

and (τmax, ω) be the maximal solution of

stochastic 3D Euler Eq. (2.3) introduced in Theorem 14. Moreover, let (τ, ω̃) be

another maximal solutions of the same equation with the same initial condition

ω0 ∈ W 2,2
σ

(
T

3, R
3
)
. Then, necessarily τ = τmax and ω = ω′on [0, τmax).

Proof From the local uniqueness result proved above, we deduce that ω = ω̃ on

[0, min (τ, τmax)). By an argument similar to the one in Theorem 14, we cannot have

τmax < τ on any non-trivial set. Hence, τ < τmax. But then from the maximality

property of (τ, ω̃), it follows that necessarily τ = τmax and therefore ω = ω̃ on

[0, τmax). ⊓⊔

3.4 Proof of the Beale–Kato–Majda Criterion

In this section, we prove Theorem 9. In the following, we will use the fact that there

exist two constants C1and C2 such that

C1 ||ω||2,2 ≤ ||v||3,2 ≤ C2 ||ω||2,2 . (3.4)
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The first inequality follows from that fact that ω = curl v, while the second inequality

follows from (2.4).

Lemma 16 There is a constant C such that5

||∇v||∞ ≤ C
(

1 + (log(||ω||22,2 + e)) ||ω||∞
)

. (3.5)

Proof By comparing Beale et al. (1984), the following inequality holds true

||∇v||∞ ≤ C
(
1 +

(
1 + log+ ||v||3,2

)
||ω||∞

)
+ ||ω||2 . (3.6)

The result is then obtained from (3.4), the obvious inequality 1 + log+ a ≤
C log (a + e) for C sufficiently large (say C ≥ 2) and the fact that ||ω||2 ≤ C ||ω||∞
on a torus. ⊓⊔

Theorem 17 Let τ 1 and τ 2 be the following stopping times

τ 1 = lim
n→∞

τ 1
n where τ 1

n = inf
t≥0

{
t ≥ 0| ||ωt ||2,2 ≥ n

}
,

τ 2 = lim
n→∞

τ 2
n where τ 2

n = inf
t≥0

{
t ≥ 0|

∫ t

0

||ωs ||∞ ds ≥ n

}
.

Then, P-almost surely τ 1 = τ 2.

Proof Step 1 τ 1 ≤ τ 2.

From the imbedding W 2,2
(
T

3; R
3
)

⊂ C
(
T

3; R
3
)
, there exists C such that

||ω||∞ ≤ C ||ω||2,2. Then,

∫ τ 1
n

0

||ωs ||∞ ds ≤ ([C] + 1) sup
s≤τ 1

n

||ωs ||2,2 ≤ ([C] + 1) n.

Hence, τ 1
n ≤ τ 2

([C]+1)n ≤ τ 2, and therefore, the claim holds true.

Step 2 τ 2 ≤ τ 1. P-a.s.

We prove that for any n, k > 0 we have

E

⎡
⎣log

⎛
⎝
(

sup
s∈[0,τ 2

n ∧k]
||ωt ||2,2

)2

+ e

⎞
⎠
⎤
⎦ < ∞. (3.7)

In particular, sups∈[0,τ 2
n ∧k] ||ωt ||2,2 is a finite random variable P-almost surely, that

is

P

(
sup

s∈[0,τ 2
n ∧k]

||ωt ||2,2 < ∞
)

= 1.

5 We thank James–Michael Leahy for pointing out an error in an earlier version of the proof of this result.
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Since

{
sup

s∈[0,τ 2
n ∧k]

||ωt ||2,2 < ∞
}

=
⋃

N

{
sup

s∈[0,τ 2
n ∧k]

||ωt ||2,2 < N

}

⊂
⋃

N

{
τ 2

n ∧ k < τ 1
N

}
⊂
{
τ 2

n ∧ k ≤ τ 1
}

we deduce that τ 2
n ∧ k ≤ τ 1 P-almost surely. Then,

{
τ 2 ≤ τ 1

}
=
{

lim
n 	→∞

τ 2
n ≤ τ 1

}
=
⋂

n

{
τ 2

n ≤ τ 1
}

=
⋂

n

⋂

k

{
τ 2

n ∧ k < τ 1
}

and therefore, the second claim holds true since all the sets in the above intersection

have full measure.

To prove (3.7), we proceed as follows: For arbitrary R > 0, and ν ∈ (0, 1) , let ων
R

the solution of equation

dων
R + κR

(
ων

R

)
Lvν

R
ων

R dt +
∞∑

k=1

Lξk
ων

RdBk
t = ν�5ων

Rdt + 1

2

∞∑

k=1

L2
ξk

ων
R dt

with ων
R |t=0 = ω0. We know from the analysis in the next section that if ω0 ∈

W 2,2
(
T

3; R
3
)
, then ωt ∈ W 4,2

(
T

3; R
3
)
. To simplify notation, in the following we

will omit the dependence on ν and R of ων
R and denote it by ω. We have that

1

2
d ‖ω‖2

L2 + κR (ω) 〈Lvω,ω〉 dt +
∞∑

k=1

〈
Lξk

ω,ω
〉

dBk
t

= ν
〈
�5ω,ω

〉
dt + 1

2

∞∑

k=1

(
〈
L2

ξk
ω,ω

〉
dt +

〈
Lξk

ω,Lξk
ω
〉
) dt .

1

2
d ‖�ω‖2

L2 + κR (ω) 〈�Lvω,�ω〉 dt +
∞∑

k=1

〈
�Lξk

ω,�ω
〉

dBk
t

= ν
〈
�6ω,�ω

〉
dt + 1

2

∞∑

k=1

(
〈
�L2

ξk
ω,�ω

〉
+
〈
�Lξk

ω,�Lξk
ω
〉
) dt .

Next we will use the following set of inequalities

〈
�5ω,ω

〉
= −

∣∣∣
∣∣∣�5/2ω

∣∣∣
∣∣∣
L2

≤ 0,
〈
�6ω,�ω

〉
= −

∣∣∣
∣∣∣�7/2ω

∣∣∣
∣∣∣
L2

≤ 0

|〈Lvω,ω〉| ≤ ||∇v||∞ ‖ω‖2
L2 , |〈�Lvω,�ω〉| ≤ C (‖ω‖∞ + ||∇v||∞) ‖ω‖2

2,2 .

The first two inequalities are obvious. The third one comes from the fact that in

〈Lvω,ω〉 the term 〈v · ∇ω,ω〉 vanishes and the term |〈ω · ∇v, ω〉| is bounded by
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||∇v||∞ ‖ω‖2
L2 . The last one, the most delicate one, comes from Lemma 25:

|〈�Lvω,�ω〉| ≤ C ‖∇v‖∞ ‖ω‖2
2,2 + C ‖ω‖∞ ‖∇v‖2,2 ‖ω‖2,2

and then, we use ‖∇v‖2,2 ≤ ‖v‖3,2 ≤ C ‖ω‖2,2; see (2.4).

Hence,

d ‖ω‖2
L2 + 2

∞∑

k=1

〈
Lξk

ω,ω
〉

dBk
t ≤ C (1 + ‖ω‖∞ + ||∇v||∞) ‖ω‖2

L2 dt (3.8)

d ‖�ω‖2
L2 + 2

∞∑

k=1

〈
�Lξk

ω,�ω
〉

dBk
t ≤ C (1 + ‖ω‖∞ + ||∇v||∞) ‖ω‖2

2,2 dt,

(3.9)

where we used inequalities (2.9), (2.10) coupled with assumption (2.11) to control

∞∑

k=1

(〈
L2

ξk
ω,ω

〉
+
〈
Lξk

ω,Lξk
ω
〉
+
〈
�L2

ξk
ω,�ω

〉
+
〈
�Lξk

ω,�Lξk
ω
〉)

.

Using Itô’s formula and the fact that ||ωt ||22,2 ≤ ‖ωt‖2
L2 +‖�ωt‖2

L2 , we deduce, from

(3.8)+(3.9), that

d log
(
||ωt ||22,2 + e

)
≤ 1(

||ωt ||22,2 + e
)d ||ωt ||22,2

− 2
(
||ωt ||22,2 + e

)2
∞∑

k=1

(∣∣〈�Lξk
ω,�ω

〉∣∣+
∣∣〈Lξk

ω,ω
〉∣∣ )2

≤ C(
||ωt ||22,2 + e

) (1 + ‖ω‖∞ + ||∇v||∞) ‖ω‖2
2,2 dt + dMt ,

where M is the (local) martingale defined as

Mt :=
∞∑

k=1

∫ t

0

2
(〈
Lξk

ω,ω
〉
+
〈
�Lξk

ω,�ω
〉)

(
||ωt ||22,2 + e

) dBk
s

We use now (3.5) to deduce

d log
(
||ωt ||22,2 + e

)
≤ mC (1 + ||ω||∞) log

(
||ωt ||22,2 + e

)
dt + dMt .

which, in turn, implies that

e−CYt log
(
||ωt ||22,2 + e

)
≤ log

(
‖ω0‖2

L2 + ‖�ω‖2
L2 + e

)
+
∫ t

0

e−CYs dMs, (3.10)
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where

Yt =
∫ t

0

(1 + ‖ω‖∞) ds

and we use the conventions e−∞ = 0 and 0 × ∞ = 0.

Again, by using the fact
∣∣〈Lξk

ω,ω
〉∣∣ is controlled by ||∇ξk ||∞ ‖ω‖2

L2 and that〈
�Lξk

ω,�ω
〉
| is controlled by ‖ξk‖3,2 ‖ω‖2

2,2 following Lemma 25, we deduced that

∣∣〈Lξk
ω,ω

〉
+
〈
�Lξk

ω,�ω
〉∣∣ ≤ C ‖ξk‖3,2 ‖ω‖2

2,2 . (3.11)

From (3.11) and assumption (2.8), we deduce the following control on the quadratic

variation of stochastic integral in (3.10)

[∫ ·

0

e−CYs dMs

]

t

= 4

∞∑

k=1

∫ t

0

e−2CYs

(〈
Lξk

ω,ω
〉
+
〈
�Lξk

ω,�ω
〉)2

(
||ωt ||22,2 + e

)2 ds

≤ 4C

∞∑

k=1

‖ξk‖2
3,2

∫ t

0

‖ω‖4
2,2(

||ωt ||22,2 + e
)2 ds

≤ Ct .

Finally, using the Burkholder–Davis–Gundy inequality (see e.g. Theorem 3.28, page

166 in Karatzas and Shreve (1991)), we deduce that

E

[
sup

s∈[0,t]

∣∣∣∣
∫ s

0

e−CYr dMr

∣∣∣∣

]
≤ C

√
t .

This means there exists a constant C independent of ν and R such that, upon reverting

to the notation ων
R , we have

E

[
sup

s∈[0,t]

e−
∫ s

0 C
(
1+‖ων

R‖∞
)
dr log

(∣∣∣∣ων
R (s)

∣∣∣∣2
2,2

+ e
)]

≤ log
(
‖ω0‖2

L2 + ‖�ω‖2
L2 + e

)
+ C

√
t

By Fatou’s lemma, it follows that the same limit holds for the limit of ων
R as ν tends

to 0 and R tends to ∞, hence

E

[
sup

s∈[0,t]

e−
∫ s

0 C(1+||ωr ||∞)dr log
(
||ωs ||22,2 + e

)]
< ∞.
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It follows that

e−Ck(1+n)
E

[
sup

s∈[0,τ 2
n ∧k]

log
(
||ω (s)||22,2 + e

)]

≤ E

[
sup

s∈[0,τ 2
n ∧k]

e−CYs log
(
||ω (s)||22,2 + e

)]

≤ E

[
sup

s∈[0,k]

e−CYs log
(
||ω (s)||22,2 + e

)]

≤ log
(
‖ω0‖2

L2 + ‖�ω‖2
L2 + e

)
+ C

√
t < ∞.

which gives us (3.7). The proof is now complete. ⊓⊔

Remark 18 The original Beale–Kato–Majda result refers to a control of the explosion

time of ||v||3,2 in terms of ||ω||∞ . Our result refers to a control of the explosion time

for ||ω||2,2 in terms of ||ω||∞. However, due to (3.4), we can restate our result in terms

of ||v||3,2 as well.

3.5 Global Existence of the Truncated Solution

Consider the following regularized equation with cut-off, with ν, R > 0,

dων
R + κR

(
ων

R

)
Lvν

R
ων

R dt +
∞∑

k=1

Lξk
ων

RdBk
t

= ν�5ων
Rdt + 1

2

∞∑

k=1

L2
ξk

ων
R dt , ων

R |t=0 = ω0 , (3.12)

where ων
R = curl vν

R , div vν
R = 0. On the solutions of this problem, we want to perform

computations involving terms like �L2
vω (t), so we need ω (t) ∈ W 4,2

(
T

3; R
3
)
. This

is why we introduce the strong regularization ν�5ων
R ; the precise power 5 can be

understood from the technical computations of Step 1. While not optimal, it a simple

choice that allows us to avoid more heavy arguments.

This regularized problem has the following property.

We understand Eq. (3.12) either in the mild semigroup sense (see below the proof)

or in a weak sense over test functions, which are equivalent due to the high regularity

of solutions. However, �5ων
R cannot be interpreted in a classical sense, since the

solutions, although very regular, will not be in W 10,2
(
T

3; R
3
)
. The other terms of

Eq. (3.12) can be interpreted in a classical sense.

Lemma 19 For every ν, R > 0 and ω0 ∈ W 2,2
σ

(
T

3, R
3
)
, there exists a pathwise

unique global strong solution ων
R , of class L2

(
	; C

(
[0, T ] ; W 2,2

σ

(
T

3; R
3
)))

for

every T > 0. Its paths have a.s. the additional regularity C
(
[δ, T ] ; W 4,2

(
T

3; R
3
))

,

for every T > δ > 0.
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Proof Step 1 (preparation) In the following, we assume to have fixed T > 0 and that

all constants are generically denoted by C > 0 any constant, with the understanding

that it may depend on T .

Let D (A) = W 10,2
σ

(
T

3; R
3
)

and A : D (A) ⊂ L2
σ

(
T

3, R
3
)

→ L2
σ

(
T

3, R
3
)

be the operator Aω = ν�5ω; L2
σ

(
T

3, R
3
)

denotes here the closure of D (A) in

L2
(
T

3, R
3
)

(the trace of the periodic boundary condition at the level of L2 spaces

can be characterized; see Temam 1977). The operator A is self-adjoint and negative

definite. Let et A be the semigroup in L2
σ

(
T

3, R
3
)

generated by A. The fractional

powers (I − A)α are well defined, for every α > 0, and are bi-continuous bijections

between W
β,2
σ

(
T

3; R
3
)

and W
β−10α,2
σ

(
T

3; R
3
)
, for every β ≥ 10α, in particular

‖ f ‖W 10α,2 ≤ Cα

∥∥(I − A)α f
∥∥

L2

for some constant Cα > 0, for all f ∈ W 10α,2
σ

(
T

3; R
3
)
.

In the sequel, we write 〈 f , g〉 =
∫

T3 f (x) · g (x) dx . We work on the torus, which

simplifies some definitions and properties; thus, we write (1 − �)s/2 f for the function

having Fourier transform
(
1 + |ξ |2

)s/2
f̂ (ξ) ( f̂ (ξ) being the Fourier transform of f );

similarly, we write �−1 f for the function having Fourier transform |ξ |−1 f̂ (ξ).

The fractional powers commute with et A and have the property (from the general

theory of analytic semigroups, see Pazy 1983) that for every α > 0 and T > 0

∥∥∥(I − A)α et A f

∥∥∥
L2

≤ Cα

tα
‖ f ‖L2

for all t ∈ (0, T ] and f ∈ L2
σ

(
T

3; R
3
)
.

From these properties, it follows that, for p = 2, 4

∥∥∥∥
∫ t

0

e(t−s)A f (s) ds

∥∥∥∥
2

W p,2

≤ C

∫ t

0

1

(t − s)p/10
‖ f (s)‖2

L2 ds

≤ CT 1− p
10 sup

t∈[0,T ]

‖ f (s)‖2
L2 (3.13)

for all f ∈ C
(
[0, T ] ; L2

σ

(
T

3; R
3
))

and t ∈ [0, T ], because

∥∥∥∥
∫ t

0

e(t−s)A f (s) ds

∥∥∥∥
W p,2

≤ C

∥∥∥∥(I − A)p/10

∫ t

0

e(t−s)A f (s) ds

∥∥∥∥
L2

≤ C

∫ t

0

1

(t − s)p/10
‖ f (s)‖L2 ds.

In particular, the map f 	→
(∫ t

0 e(t−s)A f (s) ds
)

t∈[0,T ]
is linear continuous from

C
(
[0, T ] ; L2

σ

(
T

3; R
3
))

to C
(
[0, T ] ; W 2,2

σ

(
T

3; R
3
))

. Moreover, for p = 2, 4
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E

⎡
⎣ sup

t∈[0,T ]

∥∥∥∥∥

∞∑

k=1

∫ t

0

e(t−s)A fk (s) dBk
s

∥∥∥∥∥

2

W p,2

⎤
⎦

≤ CE

[ ∞∑

k=1

∫ t

0

1

(t − s)p/5
‖ fk (s)‖2

L2 ds

]

= CT 1−p/5
E

[
sup

s∈[0,T ]

∞∑

k=1

‖ fk (s)‖2
L2

]
(3.14)

because

E

⎡
⎣ sup

t∈[0,T ]

∥∥∥∥∥

∞∑

k=1

∫ t

0

e(t−s)A fk (s) dBk
s

∥∥∥∥∥

2

W p,2

⎤
⎦

= E

⎡
⎣ sup

t∈[0,T ]

∥∥∥∥∥

∞∑

k=1

∫ t

0

(I − A)p/10 e(t−s)A fk (s) dBk
s

∥∥∥∥∥

2

L2

⎤
⎦

≤ CE

[ ∞∑

k=1

∫ t

0

∥∥∥(I − A)p/10 e(t−s)A fk (s)

∥∥∥
2

L2
ds

]

≤ CE

[ ∞∑

k=1

∫ t

0

1

(t − s)p/5
‖ fk (s)‖2

L2 ds

]
.

It is here that we use the power 5 of �, otherwise a smaller power would suffice.

Step 2 (preparation, cont.) The function ω 	→ κR (ω) Lvω from W 2,2
(
T

3; R
3
)

to

L2
(
T

3; R
3
)

is Lipschitz continuous, and it has linear grows (the constants in both

properties depend on R). Let us check the Lipschitz continuity; the linear growth is an

easy consequence, applying Lipschitz continuity with respect to a given element ω0.

It is sufficient to check Lipschitz continuity in any ball B (0, r), centred at the

origin of radius r , in W 2,2
(
T

3; R
3
)
. Indeed, when it is true, one can argue as

follows. Take ω(i), i = 1, 2, in W 2,2
(
T

3; R
3
)
. If they belong to B (0, R + 2),

we have Lipschitz continuity. The case that both are outside B (0, R + 2) is triv-

ial, because the cut-off function vanishes. If one is inside B (0, R + 2) and the

other outside, consider the two cases: if the one inside is outside B (0, R + 1),

it is trivial again, because the cut-off function vanishes for both functions. If the

one inside, say ω(1), is in B (0, R), then Lv(1)ω(1)κR

(
ω(1)

)
− Lv(2)ω(2)κR

(
ω(2)

)
=

Lv(1)ω(1)κR

(
ω(1)

)
; one has

∥∥Lv(1)ω(1)κR

(
ω(1)

)∥∥
L2 ≤ CR (same computations done

below) and
∥∥ω(1) − ω(2)

∥∥
W 2,2 ≥ cR , for two constants cR, CR > 0, hence

∥∥∥Lv(1)ω
(1)κR

(
ω(1)

)
− Lv(2)ω

(2)κR

(
ω(2)

)∥∥∥
L2

≤ CR

cR

∥∥∥ω(1) − ω(2)
∥∥∥

W 2,2
.
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Therefore, let us prove that the function ω 	→ κR (ω)Lvω from W 2,2
(
T

3; R
3
)

to L2
(
T

3; R
3
)

is Lipschitz continuous on B (0, r) ⊂ W 2,2
(
T

3; R
3
)
. Given ω(i) ∈

B (0, r), i = 1, 2, let us use the decomposition

Lv(1)ω
(1)κR

(
ω(1)

)
− Lv(2)ω

(2)κR

(
ω(2)

)

= Lv(1)

(
ω(1) − ω(2)

)
κR

(
ω(1)

)
+ L(v(1)−v(2))ω

(2)κR

(
ω(2)

)

+ Lv(1)ω
(2)
(
κR

(
ω(1)

)
− κR

(
ω(2)

))
.

Then,

∥∥∥Lv(1)

(
ω(1) − ω(2)

)
κR

(
ω(1)

)∥∥∥
2

L2

≤ κR

(
ω(1)

)2 ∥∥∥v(1)
∥∥∥

2

∞

∥∥∥∇
(
ω(1) − ω(2)

)∥∥∥
2

L2
+ κR

(
ω(1)

)2 ∥∥∥ω(1) − ω(2)
∥∥∥

2

L4

∥∥∥∇v(1)
∥∥∥

2

L4

≤ κR

(
ω(1)

)2 ∥∥∥∇v(1)
∥∥∥

2

∞

∥∥∥ω(1) − ω(2)
∥∥∥

2

W 2,2
+ κR

(
ω(1)

)2 ∥∥∥ω(1) − ω(2)
∥∥∥

2

W 2,2

∥∥∥∇v(1)
∥∥∥

2

∞

≤ R2
∥∥∥ω(1) − ω(2)

∥∥∥
2

W 2,2
;

similarly

∥∥∥L(v(1)−v(2))ω
(2)κR

(
ω(2)

)∥∥∥
2

L2

≤ κR

(
ω(2)

)2 ∥∥∥∇
(
v(1) − v(2)

)∥∥∥
2

∞

∥∥∥ω(2)
∥∥∥

2

W 2,2

≤ Cr2
∥∥∥v(1) − v(2)

∥∥∥
2

W 3,2
≤ Cr2

∥∥∥ω(1) − ω(2)
∥∥∥

2

W 2,2

by the Sobolev embedding theorem and (2.4). Finally

∥∥∥Lv(1)ω
(2)
(
κR

(
ω(1)

)
− κR

(
ω(2)

))∥∥∥
2

L2

≤
∣∣∣κR

(
ω(1)

)
− κR

(
ω(2)

)∣∣∣
2 ∥∥∥∇v(1)

∥∥∥
2

∞

∥∥∥ω(2)
∥∥∥

2

W 2,2

≤ C

∣∣∣κR

(
ω(1)

)
− κR

(
ω(2)

)∣∣∣
2 ∥∥∥ω(2)

∥∥∥
4

W 2,2

≤ Cr4
∣∣∣κR

(
ω(1)

)
− κR

(
ω(2)

)∣∣∣
2

because
∥∥∇v(1)

∥∥2

∞ ≤ C
∥∥ω(2)

∥∥2

W 2,2 as above, and then, we use the Lipschitz continuity

of the function ω 	→ κR (ω).

Step 3 (local solution by fixed point). Given ω0 ∈ L2
(
	; W 2,2

σ

(
T

3, R
3
))

, F0-

measurable, consider the mild equation

ω (t) = (Ŵω) (t)
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where

(Ŵω) (t) = et Aω0 −
∫ t

0

e(t−s)ALv(s)ω (s) κR (ω (s)) ds

+
∫ t

0

e(t−s)A 1

2

∞∑

k=1

L2
ξk

ω (s) ds −
∞∑

k=1

∫ t

0

e(t−s)ALξk
ω (s) dBk

s

with, as usual, curl v = ω, div v = 0. Set YT := L2
(
	; C

(
[0, T ] ; W 2,2

(
T

3; R
3
)))

.

The map Ŵ, applied to an element ω ∈ YT , gives us an element Ŵω of the same space.

Indeed:

(i) et A is bounded in W 2,2
(
T

3; R
3
)

(for instance because it commutes with

(I − A)1/5) hence et Aω0 is in YT ;

(ii) LvωκR (ω) ∈ L2
(
	; C

(
[0, T ] ; L2

σ

(
T

3; R
3
)))

by Step 2, hence
∫ t

0 e(t−s)ALv(s)ω

(s) κR (ω (s)) ds is an element of YT , by property (3.13) of Step 1;

(iii)
∑∞

k=1 L2
ξk

ω ∈ L2
(
	; C

(
[0, T ] ; L2

(
T

3; R
3
)))

from assumption (2.6), hence∫ t

0 e(t−s)A 1
2

∑∞
k=1 L2

ξk
ω (s) ds is in YT by property (3.13);

iv) since, by assumption (2.7),

∞∑

k=1

∥∥Lξk
ω (s)

∥∥2

L2 ≤ C ‖ω (s)‖2
W 2,2

we apply property (3.14) and get that
∑∞

k=1

∫ t

0 e(t−s)ALξk
ω (s) dBk

s is in

L2
(
	; C

(
[0, T ] ; W 2,2

(
T

3; R
3
)))

.

The proof that Ŵ is Lipschitz continuous in YT is based on the same facts, in

particular the Lipschitz continuity proved in Step 2. Then, using the smallness of the

constants for small T in properties (3.13) and (3.14) of Step 1, one gets that Ŵ is a

contraction in YT , for sufficiently small T > 0.

Step 4 (a priori estimate and global solution). The length of the time interval of

the local solution proved in Step 2 depends only on the L2
(
	; W 2,2

σ

(
T

3, R
3
))

norm

of ω0. If we prove that, given T > 0 and the initial condition ω0, there is a constant

C > 0 such that a solution ω defined on [0, T ] has supt∈[0,T ] E

[
‖ω (t)‖2

W 2,2

]
≤ C ,

then we can repeatedly apply the local result of Step 2 and cover any time interval.

Thus, we need such a priori bound. Let ω be such a solution, namely satisfying

ω = Ŵω on [0, T ]. From bounds (3.13) and (3.14) of Step 1, we have

E

[
‖ω (t)‖2

W 2,2

]
≤ CE

[∥∥∥et Aω0

∥∥∥
2

W 2,2

]

+ CE

[∥∥∥∥
∫ t

0

e(t−s)ALv(s)ω (s) κR (ω (s)) ds

∥∥∥∥
2

W 2,2

]

+ CE

⎡
⎣
∥∥∥∥∥

∫ t

0

e(t−s)A 1

2

∞∑

k=1

L2
ξk

ω (s) ds

∥∥∥∥∥

2

W 2,2

⎤
⎦
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+ CE

⎡
⎣
∥∥∥∥∥

∞∑

k=1

∫ t

0

e(t−s)ALξk
ω (s) dBk

s

∥∥∥∥∥

2

W 2,2

⎤
⎦

≤ CE

[
‖ω0‖2

W 2,2

]
+ CE

[∫ t

0

1

(t − s)2/5
‖ω (s)‖2

W 2,2 ds

]
;

hence, we may apply a generalized version of the Grönwall lemma and conclude that

sup
t∈[0,T ]

E

[
‖ω (t)‖2

W 2,2

]
≤ C .

Step 5 (Regularity) Let ω be the solution constructed in the previous steps; it is

the sum of the four terms given by the mild formulation ω = Ŵω. By the property

et Aω0 ∈ D (A), namely Aet Aω0 ∈ L2
σ

(
T

3, R
3
)
, for all t > 0 and ω0 ∈ L2

σ

(
T

3, R
3
)

(see [Pazy], property (5.7) in Theorem 5.2 of Chapter 2, due to the fact that et A is an

analytic semigroup), we may take δ > 0 and have AeδAω0 ∈ L2
σ

(
T

3, R
3
)
; then, for

t ∈ [δ, T ], we have Aet Aω0 = e(t−δ)A Aet Aω0 = e(t−δ)Aωδ where ωδ := AeδAω0

is an element of L2
σ

(
T

3, R
3
)
. Since t 	→ e(t−δ)Aωδ is continuous on [δ, T ] (because

the semigroup is strongly continuous), it follows that t 	→ Aet Aω0 is continuous

on [δ, T ], namely t 	→ et Aω0 belongs to C ([δ, T ] ; D (A)). In particular, it implies

et Aω0 ∈ C
(
[δ, T ] ; W 4,2

(
T

3, R
3
))

, for every T > δ > 0. The two Lebesgue integrals

in Ŵω belong, pathwise a.s., to C
(
[0, T ] ; W 4,2

(
T

3; R
3
))

, for every T > 0, because

of property (3.13), and the fact that LvωκR (ω) and
∑∞

k=1 L2
ξk

ω are, pathwise a.s.,

elements of C
(
[0, T ] ; L2

(
T

3; R
3
))

, as shown in Step 2. Finally, the stochastic integral

in Ŵω belongs to L2
(
	; C

(
[0, T ] ; W 4,2

(
T

3; R
3
)))

by property (3.14) and the fact

that E

[
sups∈[0,T ]

∑∞
k=1

∥∥Lξk
ω (s)

∥∥2

L2
σ

]
< ∞, as shown again in Step 2. ⊓⊔

Definition 20 On a complete separable metric space (X , d), a family F = {μν}ν>0 of

probability measures is called tight if for every ǫ > 0 there is a compact set Kǫ ⊂ X

such that μν (Kǫ) ≥ 1 − ǫ for all ν > 0.

Remark 21 The Prohorov theorem states that, for a tight family of probability mea-

sures, one can extract a sequence
{
μνn

}
n∈N

which weakly converges to some

probability measure,

μ : lim
n→∞

∫

X

ϕdμνn =
∫

X

ϕdμ ,

for all bounded continuous functions ϕ : X → R. We repeatedly use these facts below.

In order to prove Proposition 14, we want to prove that the family of solutions{
ων

R

}
ν>0

(R is given) provided by Lemma 19 is compact is a suitable sense and

that a converging subsequence extracted from this family converges to a solution of

Eq. (3.17). Since
{
ων

R

}
ν>0

are random processes, the classical method we follow is

to prove compactness of their laws {μν}ν>0. For this purpose, we have to prove that
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{μν}ν>0 is tight and we have to apply Prohorov theorem, as recalled above. The metric

space where we prove tightness of the laws will be the space E given by (3.15).6

Lemma 22 Let T > 0, R > 0 and ω0 ∈ W 2,2
σ

(
T

3, R
3
)

be given. Assume that the

family of laws of
{
ων

R

}
ν>0

is tight in the space

E = C
(

[0, T ] ; W β,2
σ

(
T

3, R
3
))

(3.15)

for some β > 3
2

and satisfies, for some constant CR > 0,

E

[
sup

t∈[0,T ]
‖ων

R(t)‖2
W 2,2

]
≤ CR

for every ν > 0. Then, the existence claim of Proposition 13 holds true, and thus,

Theorem 8 is proved.

Proof Step 1 (Gyongy–Krylov approach). We base our proof on classical ingredients,

but also on the following fact proved in Gyongy and Krylov (1996), Lemma 1.1.

Let {Zn}n∈N be a sequence of random variables (r.v.) with values in a Polish space

(E, d) endowed with the Borel σ -algebra B (E). Assume that the family of laws of

{Zn}n∈N is tight. Moreover, assume that the limit in law of any pair

(
Z

n
(1)
j

, Z
n

(2)
j

)

j∈N

of subsequences is a measure, on E × E , supported on the diagonal of E × E . Then,

{Zn}n∈N converges in probability to some r.v. Z .

We take as Polish space E the space (3.15) above, as random variables {Zn}n∈N the

sequence
{
ω

1/n
R

}
n∈N

, whose family of laws is tight by assumption. We have to check

that the limit in law of any pair

(
ω

1/n
(1)
j

R , ω
1/n

(2)
j

R

)

j∈N

is supported on the diagonal of

E × E . For this purpose, we shall use global uniqueness.

Step 2 (Preparation by the Skorokhod theorem). Let us enlarge the previous

pair by the noise and consider the following triple: the sequence

{
ω

1/n
(1)
j

R , ω
1/n

(2)
j

R ,

{
Bk

·
}

k∈N

}

j∈N

converges in law to a probability measure μ, on E × E ×C ([0, T ])N.

We have to prove that the marginal μE×E of μ on E × E is supported on the diagonal.

By the Skorokhod representation theorem, there exists a probability space
(
	̃, F̃ , P̃

)

and E × E × C ([0, T ])N-valued random variables
{
ω̃

1, j

R , ω̃
2, j

R ,
{

B̃
k, j
·
}

k∈N

}
j∈N

and

(
ω̃1

R, ω̃2
R,
{

B̃k
·
}

k∈N

)
with the same laws as

{
ω

1/n
(1)
j

R , ω
1/n

(2)
j

R ,
{

Bk
·
}

k∈N

}

j∈N

and μ,

respectively,7 such that as j → ∞ one has ω̃
1, j

R → ω̃1
R in E , ω̃

2, j

R → ω̃2
R in E ,

6 The authors would like to thank Zdzislaw Brzezniak for pointing out to a gap in an earlier version of the

tightness argument.

7 In particular, for each j ,
{

B̃
k, j
·
}

k∈N
is a sequence of independent Brownian motions.
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B̃
k, j
· → B̃k

· in C ([0, T ]), a.s. In particular,
{

B̃k
·
}

k∈N
is a sequence of independent

Brownian motions.

Since the pairs

(
ω

1/n
(i)
j

R ,
{

Bk
·
}

k∈N

)
, i = 1, 2, solve Eq. (3.12) and

(
ω̃

i, j
R ,

{
B̃

k, j
·
}

k∈N

)
have the same laws (being marginals of vectors with the same laws),

by a classical argument (see, for instance, Prato and Zabczyk 2015), the pairs(
ω̃

i, j
R ,

{
B̃

k, j
·
}

k∈N

)
, i = 1, 2, also solve Eq. (3.12), with ν

(i)
j := 1/n

(i)
j , i = 1, 2,

respectively. In other words,

dω̃
i, j
R +κR

(
ω̃

i, j
R

)
L

ṽ
i, j
R

ω̃
i, j
R dt+

∞∑

k=1

Lξk
ω̃

i, j
R d B̃

k, j
t = ν

(i)
j �5ω̃

i, j
R dt+ 1

2

∞∑

k=1

L2
ξk

ω̃
i, j
R dt

(3.16)

with ω̃
i, j
R |t=0 = ω0, where ω̃

i, j
R = curl ṽ

i, j
R .

Step 3 (Property of being supported on the diagonal). The passage to the limit

in Eq. (3.16) when there is strong convergence (P̃-a.s.) in L2
(
0, T ; L2

(
T

3, R
3
))

is

relatively classical (see Flandoli and Gatarek (1995)). We sketch the main points in

Step 4. One deduces

dω̃i
R + κR

(
ω̃i

R

)
Lṽi

R
ω̃i

R dt +
∞∑

k=1

Lξk
ω̃i

Rd B̃k
t = 1

2

∞∑

k=1

L2
ξk

ω̃i
R dt (3.17)

in the weak sense explained in Remark 7. Since ω̃i
R have paths in C

(
[0, T ] ; W 2,2

(
T

3, R
3
))

(see Step 4), the derivatives can be applied on ω̃i
R by integration by parts

and we get the equation in the strong sense. Now we apply the pathwise uniqueness

of solutions for Eq. (3.2) in W 2,2 as deduced in Sect. 3.3 to deduce ω̃1
R = ω̃2

R . This

means that the law of
(
ω̃1

R, ω̃2
R

)
is supported on the diagonal of E × E . Since this law

is equal to μE×E , we have that μE×E is supported on the diagonal of E × E .

Step 4 (Convergence) In this step, we give a few details about the passage to the

limit, as j → ∞, from Eqs. (3.16) to (3.17). We do not give the details about the

linear terms, except for a comment about the term ν
(i)
j �5ω̃

i, j

R . Namely, in weak form

we write it as (with φ ∈ C∞ (
T

3, R
3
)
)

ν
(i)
j

∫ t

0

〈
ω̃

i, j
R (s) ,�5φ

〉
ds

and use the pathwise convergence in L2
(
0, T ; L2

(
T

3, R
3
))

of ω̃
i, j
R (s) plus the fact

that ν
(i)
j → 0.

The difficult term is the nonlinear one, also because of the cut-off term κR

(
ω̃i

R (s)
)
.

We want to prove that, given φ ∈ C∞ (
T

3, R
3
)
,

∫ t

0

κR

(
ω̃

i, j
R (s)

) 〈
ω̃

i, j
R (s) ,L∗

ṽ
i, j
R

φ

〉
ds

j→∞→
∫ t

0

κR

(
ω̃i

R (s)
) 〈

ω̃i
R (s) ,L∗

ṽi
R

φ
〉

ds

(3.18)
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with probability one. From the Skorokhod preparation in Step 2, we know that

ω̃
i, j
R → ω̃i

R as j → ∞ in the strong topology of E , P̃-a.s., for i = 1, 2. In the sequel,

we fix the random parameter and the value of i = 1, 2. Since W
β,2
σ

(
T

3, R
3
)

is con-

tinuously embedded into C
(
T

3, R
3
)

(recall that β > 3/2), it follows that ω̃
i, j
R → ω̃i

R

in the uniform topology over [0, T ] × T
3. By the continuity of Biot–Savart map

from W
β,2
σ

(
T

3, R
3
)

to W
β+1,2
σ

(
T

3, R
3
)

and the formula for L∗
ṽ

i, j
R

which contains first

derivatives of ṽ
i, j
R , we see that L∗

ṽ
i, j
R

φ → L∗
ṽi

R

φ in the strong topology of E again,

and thus, again by Sobolev embedding, L∗
ṽ

i, j
R

φ → L∗
ṽi

R

φ in the uniform topology over

[0, T ] × T
3. Hence,

〈
ω̃

i, j
R (·) , L∗

ṽ
i, j
R

φ

〉
converges to

〈
ω̃i

R (·) , L∗
ṽi

R

φ

〉
uniformly over

[0, T ]. Hence, if we prove that kR

(
ω̃

i, j
R (s)

)
→ kR

(
ω̃i

R (s)
)

for a.e. s ∈ [0, T ], and

because these functions are bounded by 1, we can take the limit in (3.18). There-

fore, it remains to prove that, P̃-a.s., κR

(
ω̃

i, j
R (s)

)
converges to κR

(
ω̃i

R (s)
)

for a.e.

s ∈ [0, T ], or at least in probability w.r.t. time. This is true because strong con-

vergence in L2 (0, T ) in time implies convergence in probability w.r.t. time, and

we have strong convergence in L2 (0, T ), of κR

(
ω̃

i, j

R (s)
)

, because κR is bounded

continuous, and ω̃
i, j

R converges strongly in L2
(
0, T ; W β,2

(
T

3, R
3
))

, hence ∇ṽ
i, j

R

converges strongly in L2
(
0, T ; W β,2

(
T

3, R
3
))

hence in L2
(
0, T ; C

(
T

3, R
3
))

by

Sobolev embedding theorem. Hence, κR

(
ω̃

i, j
R

)
converges to κR

(
ω̃i

R

)
in probability

w.r.t. time. Finally, from the integral identity satisfied by the limit process ω̃i , one can

deduce that ω̃i ∈ C
(
[0, T ] ; W 2,2

(
T

3, R
3
))

following the argument in Kim (2009).

⊓⊔

Based on this lemma, we need to prove suitable bounds on
{
ων

R

}
ν>0

.

Theorem 23 Assume that, for some N ≥ 0 and α > 1
4

,

E

[
sup

t∈[0,T ]

∥∥ων
R (t)

∥∥4

W 2,2

]
≤ C1 (3.19)

E

∫ T

0

∫ T

0

∥∥ων
R (t) − ων

R (s)
∥∥4

W−N ,2

|t − s|1+4α
dtds ≤ C2 (3.20)

for all ν ∈ (0, 1). Then, the assumptions of Lemma 22 hold.

Proof We shall use the following variant of Aubin–Lions lemma, which can be found

in Simon (1987). Recall that, given an Hilbert space W , a norm on W α,4 (0, T ; W ) is

the fourth root of

∫ T

0

‖ f (t)‖4
W dt +

∫ T

0

∫ T

0

‖ f (t) − f (s)‖4
W

|t − s|1+4α
dtds.
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Assume that V , H , W are separable Hilbert spaces with continuous dense embedding

V ⊂ H ⊂ W such that there exists θ ∈ (0, 1) and M > 0 such that

‖v‖H ≤ M‖v‖1−θ
V ‖v‖θ

W

for every v ∈ V . Assume that V ⊂ H is a compact embedding. Assume α > 0. Then,

L∞ (0, T ; V ) ∩ W α,4 (0, T ; W )

is compactly embedded into C ([0, T ]; H) (see Simon (1987), Corollary 9). We apply

it to the spaces

H = W β,2
(
T

3, R
3
)

, V = W 2,2
(
T

3, R
3
)

, W = W −N ,2
(
T

3, R
3
)

where β ∈
(

3
2
, 2
)
. The constraint β < 2 is imposed because we want to use the

compactness of the embedding W 2,2
(
T

3, R
3
)

⊂ W β,2
(
T

3, R
3
)
. The constraint β >

3
2

is imposed because we want to use the embedding W β,2
(
T

3, R
3
)

⊂ C
(
T

3, R
3
)
.

Let {Qν} be the family of laws of
{
ων

R

}
, supported on

E0 := C
(

[0, T ] ; W 2,2
(
T

3, R
3
))

∩ W α,4
(

0, T ; W −N ,2
(
T

3, R
3
))

by the assumption of the theorem. We want to prove that {Qν} is tight in E . The sets

K R1,R2,R3 defined as

{
f : sup

t∈[0,T ]

‖ f (t)‖2
W 2,2 ≤ R1,

∫ T

0

‖ f (t)‖4
W−N ,2 dt

≤ R2,

∫ T

0

∫ T

0

‖ f (t) − f (s)‖4
W−N ,2

|t − s|1+4α
dtds ≤ R3

}

with R1, R2, R3 > 0 are relatively compact in E . Let us prove that, given ǫ > 0, there

are R1, R2, R3 > 0 such that

Qν

(
K c

R1,R2,R3

)
≤ ǫ

for all ν ∈ (0, 1). We have

Qν

(
sup

t∈[0,T ]

‖ f (t)‖2
W 2,2 > R1

)
= P

(
sup

t∈[0,T ]

∥∥ων
R (t)

∥∥2

W 2,2

)

≤
E

[
supt∈[0,T ]

∥∥ων
R (t)

∥∥2

W 2,2

]

R1
≤ C1

R1
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and this is smaller than ǫ/3 when R1 is large enough. Similarly, we get

Qν

(∫ T

0

∫ T

0

‖ f (t) − f (s)‖4
W−N ,2

|t − s|1+4α
dtds > R3

)
≤ ǫ

3

when R3 is large enough. Finally,

Qν

(∫ T

0

‖ f (t)‖4
W−N ,2 dt > R2

)
≤ Qν

(
T sup

t∈[0,T ]

‖ f (t)‖4
W−N ,2 dt > R2

)

≤ Qν

(
CT sup

t∈[0,T ]

‖ f (t)‖4
W 2,2 dt > R2

)

for a constant C > 0 such that ‖ f (t)‖4
W−N ,2 ≤ C ‖ f (t)‖4

W 2,2 . Hence, also this

quantity is smaller than ǫ
3

when R2 is large enough. We deduce Qν

(
K c

R1,R2,R3

)
≤ ǫ

and complete the proof. ⊓⊔

The difficult part of the estimates above is bound (3.19). Thus, let us postpone it

and first show bound (3.20).

4 Technical Results

4.1 Fractional Sobolev Regularity in Time

In this section, we show that bound (3.20), with N = 1, follows from (an easier version

of) bound (3.19).

Lemma 24 Assume

sup
t∈[0,T ]

E

[∥∥ων
R (t)

∥∥4

W 2,2

]
≤ C .

Then, the bound in (3.20), with N = 3 and any α < 1
2

, holds true.

Proof Step 1 (Preparation) In the sequel, we take t ≥ s and denote by C > 0 any

constant. From Eq. (3.12), we have

ων
R (t) − ων

R (s) = −
∫ t

s

∞∑

k=1

Lξk
ων

R (r) dBk
r +

∫ t

s

(
ν�5ων

R (r) + 1

2

∞∑

k=1

L2
ξk

ων
R (r)

−κR

(
ων

R (r)
)
Lvν

R(r)ω
ν
R (r)

)
dr

hence

E

[∥∥ων
R (t) − ων

R (s)
∥∥4

W−3,2

]
≤ C (t − s)3

∫ t

s
E

[
κR

(
ων

R (r)
)4 ∥∥∥Lvν

R
(r)ω

ν
R (r)

∥∥∥
4

W−3,2

]
dr
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+ C (t − s)3
∫ t

s
E

[∥∥∥ν�5ων
R (r)

∥∥∥
4

W−3,2

]
dr

+ C (t − s)3
∫ t

s
E

⎡
⎢⎣

∥∥∥∥∥∥
1

2

∞∑

k=1

L
2
ξk

ων
R (r)

∥∥∥∥∥∥

4

W−3,2

⎤
⎥⎦ dr

+ CE

⎡
⎢⎣

∥∥∥∥∥∥

∫ t

s

∞∑

k=1

Lξk
ων

R (r) dBk
r

∥∥∥∥∥∥

4

W−3,2

⎤
⎥⎦ .

Recall that‖ f ‖W−3,2 ≤ C ‖ f ‖L2 , which follows by duality from‖ f ‖L2 ≤ C ‖ f ‖W 3,2 .

Hence, again denoting any of the constants in the calculation below as C > 0, we have

E

[∥∥ων
R (t) − ων

R (s)
∥∥4

W −3,2

]
≤ C (t − s)3

∫ t

s

E

[
κR

(
ων

R (r)
)4 ∥∥∥Lvν

R (r)ω
ν
R (r)

∥∥∥
4

W −3,2

]
dr

+ C (t − s)3

∫ t

s

E

[∥∥∥�5ων
R (r)

∥∥∥
4

W −3,2

]
dr

+ C (t − s)3

∫ t

s

E

⎡
⎣
∥∥∥∥∥

1

2

∞∑

k=1

L
2
ξk

ων
R (r)

∥∥∥∥∥

4

L2

⎤
⎦ dr

+ CE

⎡
⎣
∥∥∥∥∥

∫ t

s

∞∑

k=1

Lξk
ων

R (r) dBk
r

∥∥∥∥∥

4

L2

⎤
⎦ .

The only term where W −3,2 is necessary is the term
∥∥�5ων

R (r)
∥∥4

W−3,2 ; we keep it also

in the first term, but this is not essential. Now let us estimate each term.

Step 2 (Estimates of the deterministic terms) We have

∣∣〈vν
R · ∇ων

R, φ
〉∣∣ =

∣∣〈ων
R, vν

R · ∇φ
〉∣∣

≤ ‖φ‖W 1,2

∥∥vν
R

∥∥
L2

∥∥ων
R

∥∥
L∞

≤ C ‖φ‖W 1,2

∥∥ων
R

∥∥
L∞
∥∥ων

R

∥∥
L2

≤ C ‖φ‖W 1,2

∥∥ων
R

∥∥
L∞
∥∥ων

R

∥∥
W 2,2 ,

so that

∥∥vν
R · ∇ων

R

∥∥2

W−3,2 ≤ C
∥∥ων

R

∥∥2

L∞
∥∥ων

R

∥∥2

W 2,2 .

Moreover, also

∥∥ων
R · ∇vν

R

∥∥
L2 ≤

∥∥ων
R

∥∥
∞
∥∥∇vν

R

∥∥
L2 ≤ C

∥∥ων
R

∥∥2

L∞
∥∥ων

R

∥∥2

W 2,2 .

Summarizing

∥∥∥Lvν
R(r)ω

ν
R (r)

∥∥∥
2

W−3,2
≤ C

∥∥ων
R

∥∥2

L∞
∥∥ων

R

∥∥2

W 2,2 .
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Therefore,

κ4
R

(
ων

R (r)
) ∥∥∥Lvν

R(r)ω
ν
R (r)

∥∥∥
4

W−3,2
≤ C

∥∥ων
R

∥∥4

W 2,2 .

For the next term, we have

∥∥∥�5ων
R

∥∥∥
4

H−3
≤ C

∥∥ων
R

∥∥4

W 2,2

hence

∫ t

s

E

[∥∥∥�5ων
R

∥∥∥
4

W−3,2

]
dr ≤ C

∫ t

s

E

[∥∥ων
R

∥∥4

W 2,2

]
dr ≤ C

because we have the property supt∈[0,T ] E

[∥∥ων
R (t)

∥∥4

W 2,2

]
≤ C .

For the subsequent term, we have

∥∥∥∥∥

∞∑

k=1

L2
ξk

ων
R (r)

∥∥∥∥∥

2

L2

≤ C
∥∥ων

R (r)
∥∥2

W 2,2

by assumption (2.6), and therefore,

∫ t

s

E

⎡
⎣
∥∥∥∥∥

1

2

∞∑

k=1

L2
ξk

ων
R (r)

∥∥∥∥∥

4

L2

⎤
⎦ dr ≤ C

∫ t

s

E

[∥∥ων
R (r)

∥∥4

W 2,2

]
dr ≤ C

as above.

Step 3 (Estimate of the stochastic term) One has, by the Burkholder–Davis–Gundy

inequality

E

⎡
⎣
∥∥∥∥∥

∫ t

s

∞∑

k=1

Lξk
ων

R (r) dBk
r

∥∥∥∥∥

4

L2

⎤
⎦ ≤ CE

⎡
⎣
(∫ t

s

∞∑

k=1

∥∥Lξk
ων

R (r)
∥∥2

L2

)2
⎤
⎦ dr

≤ C(t − s)

∫ t

s

E

[∥∥ων
R (r)

∥∥4

W 2,2

]
dr

by assumption (2.7),

≤ CE

[∥∥ων
0

∥∥4

W 2,2

]
(t − s)2

by the assumption of this lemma.

Step 4 (Conclusion) From the previous steps, we have

E

[∥∥ων
R (t) − ων

R (s)
∥∥4

W−3,2

]
≤ C (t − s)2 .
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Hence

E

[∫ T

0

∫ T

0

∥∥ων
R (t) − ων

R (s)
∥∥4

W−3,2

|t − s|1+4α
dtds

]
≤
∫ T

0

∫ T

0

C

|t − s|4α−1
dtds ≤ C

for all α < 1
2

. ⊓⊔

4.2 Some a priori Estimates

In order to complete the proof of Theorem 8, we still need to prove estimate (3.19). To

be more explicit, since now a long and difficult computation starts, what we have to

prove is that, given R > 0, called for every ν ∈ (0, 1) by ων
R the solution of equation

dων
R + κR

(
ων

R

)
Lvν

R
ων

R dt +
∞∑

k=1

Lξk
ων

RdBk
t = ν�5ων

Rdt + 1

2

∞∑

k=1

L2
ξk

ων
R dt

with ων
R |t=0 = ω0, there is a constant C > 0 such that

E

[
sup

t∈[0,T ]

∥∥ων
R (t)

∥∥4

W 2,2

]
≤ C

for every ν ∈ (0, 1).

In order to simplify notations, we shall simply write

ω for ων
R

v for vν
R

κ for κR

(
ων

R

)

not forgetting that all bounds have to be uniform in ν ∈ (0, 1).

Difficulty Compared to the Deterministic Case In the deterministic case, d
dt

∫
T3 |�ω

(t, x)|2 dx is equal to the sum of several terms. Using Sobolev embedding theorems

(3.1), one can estimate all terms as

≤ C

∫

T3

|�ω (t, x)|2 dx ,

except for the term with higher-order derivatives

∫

T3
(v · ∇�ω) · �ω dx .

However, this term vanishes, being equal to

1

2

∫

T3
(v · ∇) |�ω|2 dx = − 1

2

∫

T3

|�ω|2 div v dx = 0.
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In the stochastic case, though, we have many more terms, coming from two sources:

(i) the term 1
2

∑
k L2

ξk
ω dt , which is a second-order differential operator in ω, hence

much more demanding than the deterministic term Lvω;

(ii) the Itô correction term in Itô formula for d
∫

T3 |�ω (t, x)|2 dx .

A quick inspection in these additional terms immediately reveals that the highest

order terms compensate (one from (i) and the other from (ii)) and cancel each other.

These terms are of “order 6” in the sense that, globally speaking, they involve 6

derivatives of ω. The new outstanding problem is that there remains a large amount of

terms of “order 5”, hence not bounded by C
∫

T3 |�ω (t, x)|2 dx (which is of “order 4”).

After a few computations, one is naïvely convinced that these terms are too numerous

to compensate and cancel one another.

But this is not true. A careful algebraic manipulation of differential operators, as

well as their commutators and adjoint operators, finally shows that all terms of “order

5” do cancel each other. At the end, we are able to estimate remaining terms again by

C
∫

T3 |�ω (t, x)|2 dx (now in expectation) and obtain the a priori estimates we seek.

Preparatory Remarks By again using the regularity result of Lemma 19, we may write

the identity

�ω (t) = �ω0 + A

∫ t

0

�ω (s) ds −
∫ t

0

κ (s) �Lvω (s) ds

+ 1

2

∫ t

0

�

∞∑

k=1

L2
ξk

ω (s) ds

−
∞∑

k=1

∫ t

0

�Lξk
ω (s) dBk

s

and we may apply a suitable Itô formula in the Hilbert space L2
(
T

3
)

(see Krylov and

Rozovskii 1979) to obtain

1

2
d

∫

T3

|�ω (t, x)|2 dx + ν

∫

T3

∣∣∣�2ω

∣∣∣
2

dxdt = − κ (t)

(∫

T3
�Lvω · �ωdx

)
dt

+ 1

2

∞∑

k=1

(∫

T3
�L2

ξk
ω · �ωdx

)
dt

−
∞∑

k=1

(∫

T3
�Lξk

ω · �ωdx

)
dBk

t

+ Itô correction. (4.1)

Being �ω (t) of the form d (�ω (t, x)) = at (x) dt +
∑∞

k=1 bk
t (x) dBk

t , with bk
t (x) =

−�Lξk
ω (t), one has

d
1

2
|�ω (t, x)|2 = �ω (t, x) · d (�ω (t, x)) + 1

2

∞∑

k=1

∣∣∣bk
t (x)

∣∣∣
2

dt;
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hence, the Itô correction above is given by (we have to integrate in dx the previous

identity)

Itô correction = 1

2

∞∑

k=1

∫

T3

∣∣�Lξk
ω (t)

∣∣2 dxdt .

Let us list the main considerations about identity (4.1).

(1) The term ν
∫

T3

∣∣�2ω
∣∣2 dx will not be used in the estimates, since they have to be

independent of ν; we only use the fact that this term has the right sign.

(2) The term

κ (t)

∫

T3
�Lvω · �ωdx (4.2)

can be estimated by C
∫

T3 |�ω (t, x)|2 dx exactly as in the deterministic theory.

The computations are given in Sect. 4.2.

(3) The term
∑∞

k=1

(∫
T3 �Lξk

ω · �ωdx
)

dBk
t is a local martingale. Rigorously, we

shall introduce a sequence of stopping times, and then, taking expectation, this

term will disappear. Then, the stopping times will be removed by a straightforward

limit.

(4) The main difficulty comes from the term

1

2

∞∑

k=1

(〈
�L2

ξk
ω,�ω

〉
+
〈
�Lξk

ω,�Lξk
ω
〉)

, (4.3)

since it includes, as mentioned above in Sect. 4.2, various terms which are of

“order 6” and of “order 5”, where “order” means the global number of spatial

derivatives. These terms cannot be estimated by C
∫

T3 |�ω (t, x)|2 dx . As it turns

out, the terms of “order 6” cancel each other: this is straightforward and expected.

But a large number of intricate terms of “order 5” still remain, which, naïvely,

may give the impression that the estimate cannot be closed. On the contrary,

though, they also cancel each other: this is the content of Sect. 4.4, summarized

in assumption (2.11).

Estimate of the Classical Term (4.2) The following lemma deals with the control of

the classical term (4.2).

Lemma 25 Given u ∈ W 3,2
σ , ω ∈ W 2,2

σ (not necessarily related by curl u = ω), one

has

∣∣∣∣
∫

T3
�Luω · �ωdx

∣∣∣∣ ≤ C ‖∇u‖L∞ ‖ω‖2
W 2,2 + C ‖ω‖L∞ ‖∇u‖W 2,2 ‖ω‖W 2,2

≤ C (‖∇v‖L∞ + ‖ω‖L∞) ‖ω‖2
W 2,2 .

Proof Since the second inequality is derived from the first and the fact that ‖∇u‖W 2,2 ≤
C ‖ω‖W 2,2 , we concentrate on the first. We use tools and ideas from the classical
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deterministic theory; see for instance (Beale et al. 1984; Kato and Lai 1984; Lions

1996; Majda and Bertozzi 2002). We have

∫

T3
�Lvω · �ωdx

=
∫

T3
�(v · ∇ω) · �ωdx +

∫

T3
�(ω · ∇v) · �ωdx

=
∫

T3
(�v · ∇ω) · �ωdx +

∫

T3
(v · ∇�ω) · �ωdx

+ 2

∫

T3

∑

α

(∂αv · ∇∂αω) · �ωdx

+
∫

T3
(�ω · ∇v) · �ωdx +

∫

T3
(ω · ∇�v) · �ωdx

+ 2

∫

T3

∑

α

(∂αω · ∇∂αv) · �ωdx .

The term
∫

T3 (v · ∇�ω) · �ωdx is equal to zero, being equal to 1
2

∫
T3 v · ∇ |�ω|2 dx

which is zero after integration by parts and using div v = 0. The terms

2

∫

T3

∑

α

(∂αv · ∇∂αω) · �ωdx +
∫

T3
(�ω · ∇v) · �ωdx

are immediately estimated by C ‖∇v‖L∞ ‖ω‖2
W 2,2 . The term

∫
T3 (ω · ∇�v) ·�ωdx is

easily estimated by C ‖ω‖L∞ ‖ω‖2
W 2,2 . It remains to understand the other two terms.

We have

∣∣∣∣
∫

T3
(�v · ∇ω) · �ωdx

∣∣∣∣ ≤ C ‖�v · ∇ω‖L2 ‖ω‖W 2,2

∣∣∣∣
∫

T3
(∂αω · ∇∂αv) · �ωdx

∣∣∣∣ ≤ C ‖∂αω · ∇∂αv‖L2 ‖ω‖W 2,2 .

Hence, we only need to prove that

∥∥∂αω∂β∂γ v
∥∥

L2 ≤ C (‖∇v‖L∞ + ‖ω‖L∞) ‖ω‖W 2,2 (4.4)

for every α, β, γ = 1, 2, 3. Recall the following particular case of Gagliardo–

Nirenberg interpolation inequality:

‖∂α f ‖2
L4 ≤ C ‖ f ‖∞ ‖ f ‖W 2,2 ,

which implies

∥∥∂αω∂β∂γ v
∥∥2 ≤ C ‖ω‖∞ ‖ω‖W 2,2 ‖∇v‖∞ ‖∇v‖W 2,2 .
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Moreover, due to the relation between v and ω, we also have ‖∇v‖W 2,2 ≤ C ‖ω‖W 2,2 .

Hence,

∥∥∂αω∂β∂γ v
∥∥ ≤ C ‖ω‖1/2

∞ ‖ω‖1/2

W 2,2 ‖∇v‖1/2
∞ ‖ω‖1/2

W 2,2

≤ C ‖ω‖∞ ‖ω‖W 2,2 + C ‖∇v‖∞ ‖ω‖W 2,2

and inequality (4.4) has been proved. The proof of the lemma is complete. ⊓⊔

4.3 Estimates Uniform in Time

We introduce the following notations

αt =
∫

R3

|ω (t, x)|2 dx +
∫

R3

|�ω (t, x)|2 dx

Mt =
∫ t

0

∞∑

k=1

(∫

R3
Lξk

ω · ωdx +
∫

R3
�Lξk

ω · �ωdx

)
dBk

s .

Consequently, following from the estimates of the previous section and assumption

(2.11), we have

αt ≤ α0 + 2Mt + CR

∫ t

0

αsds

so

sup
s∈[0,t]

αs ≤ eCR t (α0 + 2 sup
s∈[0,t]

|Ms |)

E[ sup
s∈[0,t]

α2
s ] ≤ 4eCR t (α2

0 + E[ sup
s∈[0,t]

|Ms |2]) . (4.5)

By the Burkholder–Davis–Gundy inequality (see e.g. Theorem 3.28, page 166 in

Karatzas and Shreve 1991), we have that

E[ sup
s∈[0,t]

|Ms |2] ≤ K2E[[M]t |], (4.6)

where [M] is the quadratic variation of the local martingale M and

[M]t =
∞∑

k=1

∫ t

0

(∫

R3
Lξk

ω · ωdx +
∫

R3
�Lξk

ω · �ωdx

)2

ds .

Lemma 26 Under the assumption (2.8), there is a constant C > 0 such that

[M]t ≤ Cα2
t .
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Proof Since Lξk
ω = ξk · ∇ω − ω · ∇ξk , we have

�Lξk
= ξk · ∇�ω + Rkω

where Rkω contains several terms, each one with at most second derivatives of ω.

Since
∫

R3 ξk · ∇�ω�ωdx = 0, we deduce

∣∣∣∣
∫

R3
Lξk

ω · ωdx +
∫

R3
�Lξk

ω · �ωdx

∣∣∣∣ ≤ Ckαs

for some constant Ck > 0. Hence

[M]t =
∞∑

k=1

∫ t

0

(∫

R3
Lξk

ω · ωdx +
∫

R3
�Lξk

ω · �ωdx

)2

ds ≤
∞∑

k=1

C2
k

∫ t

0

α2
s ds.

With a few more computations, it is possible to show that

Ck ≤ C ‖ξk‖W 3,2 .

Hence, we use assumption (2.8). ⊓⊔

From Lemma 26, we deduce

E[[M]t |] ≤ C

∫ t

0

E[ sup
r∈[0,s]

α2
r ]dr (4.7)

and thus, finally from (4.5), (4.6) and (4.7) and Grönwall’s inequality, we obtain

E[ sup
s∈[0,t]

α2
s ] ≤ C ,

independently of ǫ > 0. This proves bound (3.19) and completes the necessary a

priori bounds, modulo the estimates of the next section.

4.4 Bounds on Lie Derivatives

Recall the notation Lξk
, k = 1, . . . ,∞ for the (first-order) operators Lξk

ω =
[ξk, ω] , k = 1, . . . ,∞.

Lemma 27 Inequality (2.9) holds for every vector field f of class W 2,2.

Proof Step 1 We have

L∗
ξk

= −Lξk
+ S2,

Lξk
S2 = S2Lξk

− S4,
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where S2 and S4 are certain zero-order operators (see below for a proof). We have

〈[ξk, f ] , [ξk, f ]〉 + 〈[ξk, [ξk, f ]] , f 〉 =
〈
Lξk

f ,Lξk
f
〉
+
〈
L2

ξk
f , f

〉

=
〈
Lξk

f ,Lξk
f
〉
+
〈
Lξk

f ,L∗
ξk

f
〉

=
〈
Lξk

f ,Lξk
f
〉
−
〈
Lξk

f ,Lξk
f
〉
+
〈
Lξk

f , S2 f
〉

=
〈
Lξk

f , S2 f
〉
.

However, since
〈
f , S2 f ′〉 =

〈
S2 f , f ′〉 for any f , f ′ two square integrable vector fields

(see below for a proof)

〈
Lξk

f , S2 f
〉
=
〈

f ,L∗
ξk

S2 f
〉
= −

〈
f ,Lξk

S2 f
〉
+
〈

f , S2
2 f
〉

= −
〈
f , S2Lξk

f
〉
+ 〈 f , S4 f 〉 +

〈
f , S2

2 f
〉

= −
〈
S2 f ,Lξk

f
〉
+ 〈 f , S4 f 〉 +

〈
f , S2

2 f
〉

Hence

〈[ξk, f ] , [ξk, f ]〉 + 〈[ξk, [ξk, f ]] , f 〉 =
〈
Lξk

f , S2 f
〉
= 1

2

〈
f , (S2

2 + S4) f
〉

Step 2 Now we prove that L∗
ξk

= −Lξk
+ S2 and that

〈
f , S2 f ′〉 =

〈
S2 f , f ′〉 for

any two square integrable vector fields f , f ′. We also have by integration by parts and

using ∇ · ξk = 0 that

〈
Lξk

f , f ′〉 =
∑

i

∫

R3
(Lξk

f )i (x) f ′
i (x)dx3

=
∑

i

∑

j

∫

R3
(ξ

j

k ∂ j fi − f j∂ jξ
i
k)(x) f ′

i (x)dx3

=
∑

i

∑

j

(∫

R3
(−ξ

j

k ∂ j f ′
i )(x) fi (x)dx3 −

∫

R3
(∂ jξ

i
k)(x) f j (x) f ′

i (x)dx3

)

= −
∑

i

∑

j

(∫

R3
(ξ

j

k ∂ j f ′
i − f ′

j∂ jξ
i
k)(x) fi (x)dx3

+
∫

R3
(∂iξ

j
k + ∂ jξ

i
k)(x) f j (x) f ′

i (x)dx3

)

= −
〈
f ,Lξk

f ′〉+
〈
f , S2 f ′〉 ,

where

〈
f , S2 f ′〉 =

〈
S2 f , f ′〉 = −

∑

i

∑

j

∫

R3
(∂iξ

j
k + ∂ jξ

i
k)(x) f j (x) f ′

i (x)dx3.
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Step 3. Finally, we prove that Lξk
S2 = S2Lξk

− S4. We have (S2 f )i (x) =
∑

j ai j (x) f j (x) , where ai j (x) = a j i (x) = −
(
∂iξ

j
k + ∂ jξ

i
k

)
(x) . Then,

(
Lξk

S2 f
)

i
=
∑

j

(ξ
j

k ∂ j (S2 f )i − (S2 f ) j ∂ jξ
i
k)(x)

=
∑

j

∑

l

(ξ
j

k ∂ j (ail fl) − a jl fl∂ jξ
i
k)(x)

=
∑

j

∑

l

(ξ
j

k ail∂ j fl + ξ
j

k fl∂ j ail − a jl fl∂ jξ
i
k)(x)

=
∑

j

∑

l

(ξ
j

k ail∂ j fl) (x) +
∑

l

bil fl (x) ,

where bil =
∑

j (ξ
j

k ∂ j ail − a jl∂ jξ
i
k). Similarly, we find that

(
S2Lξk

f
)

i
=
∑

l

ail (x)
(
Lξk

f
)

l

=
∑

j

∑

l

ail (x) (ξ
j

k ∂ j fl − f j∂ jξ
l
k)(x)

=
∑

j

∑

l

(
ξ

j

k ail∂ j fl

)
(x) −

∑

j

ci j f j (x) ,

where ci j =
∑

l ail (x) ∂ jξ
l
k . Hence, (S4 f )i ≡

(
S2Lξk

f
)

i
−
(
Lξk

S2 f
)

i
= −

∑
l(bil +

cil) fl . ⊓⊔

Remark 28 From this computation, one can easily deduce that

∣∣ai j

∣∣
∞ ≤ 2 ||∇ξk ||∞ ,

∣∣bi j

∣∣
∞ ≤ 6

(
||ξk ||∞ ||ξk ||2,∞ + ||∇ξk ||2∞

)
,

∣∣ci j

∣∣
∞ ≤ 6 ||∇ξk ||2∞ ,

C
(0)
k = c

(
||ξk ||∞ ||�ξk ||∞ + ||∇ξk ||2∞

)
,

where c is an independent constant (c = 48). Therefore, the first of assumptions (2.11)

is fulfilled, provided

∞∑

k=1

(
||ξk ||∞ ||�ξk ||∞ + ||∇ξk ||2∞

)
< ∞ .

The condition for the second assumption in (2.11) is similar.

Remark 29 A typical example arises when ξk are multiples of a complete orthonormal

system {ek} of L2, namely ξk = λkek . In the case of the torus, if ek are associated with
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sine and cosine functions, they are equi-bounded. Moreover, if instead of indexing

with k ∈ N, we use k ∈ Z
3, typically |∇ek | ≤ C |k| and |�ek | ≤ C |k|2. In such a

case, the previous condition becomes

∑

k∈Z3

λ2
k |k|2 < ∞ ,

which is a verifiable condition.

Lemma 30 Inequality (2.10) holds for every vector field f of class W 4,2.

Proof Let us define S1 to be the following operator S1 f := �Lξk
f − Lξk

� f . By a

direct computation, we find that

(S1 f )i :=
(
�Lξk

f − Lξk
� f

)
i

=
∑

j,l

∂2
l

(
ξ

j
k ∂ j fi − f j∂ jξ

i
k

)
−
(
ξ

j
k ∂ j∂

2
l fi − ∂2

l f j∂ jξ
i
k

)

=
∑

j,l

∂2
l ξ

j
k ∂ j fi + 2∂lξ

j
k ∂l∂ j fi − f j∂

2
l ∂ jξ

i
k − 2∂l f j∂l∂ jξ

i
k ,

= A fi + Bi f .

Consequently, S1 is a second-order operator, whose dominant part may be expressed

as

A :=
∑

j,l

2∂lξ
j

k ∂l∂ j ,

where Bi is a first-order operator. Similarly, the computation

(
Lξk

f
)

i
=
∑

j

(
ξ

j
k ∂ j fi − f j∂ jξ

i
k

)
= C fi − Di f

shows that C fi − Di f is a first-order differential operation, whose dominant part may

be expressed as the operator

C :=
∑

j

ξ
j

k ∂ j

and Di is a zero-order operator. Let S3 := S1Lξk
− Lξk

S1. Then, one computes

(S3 f )i =
((

S1Lξk
− Lξk

S1

)
f
)

i

= A
(
Lξk

f
)

i
+ Bi

(
Lξk

f
)
− C (S1 f )i + Di (S1 f )

= AC fi − ADi f + Bi

(
Lξk

f
)
− C (A fi + Bi f ) + Di (S1 f )

= (AC − C A) fi + Ei f .
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We now note that both (AC−C A) and Ei are second-order operators. Consequently,

〈
�L2

ξk
f ,� f

〉
=
〈(
Lξk

� + S1

)
Lξk

f ,� f
〉

=
〈
�Lξk

f ,L∗
ξk

� f
〉
+
〈
S1Lξk

f ,� f
〉

= −
〈
�Lξk

f ,Lξk
� f

〉
+
〈
�Lξk

f , S2� f
〉
+
〈
S1Lξk

f ,� f
〉

= −
〈
�Lξk

f ,�Lξk
f
〉
+
〈
�Lξk

f , S1 f
〉
+
〈
S1Lξk

f ,� f
〉

+
〈
�Lξk

f , S2� f
〉
.

Hence,

〈
�L

2
ξk

f , � f
〉
+
〈
�Lξk

f ,�Lξk
f
〉
=
〈
�Lξk

f , S1 f
〉
+
〈
S1Lξk

f ,� f
〉
+
〈
�Lξk

f , S2� f
〉
.

Observe that

〈
�Lξk

f , S1 f
〉
+
〈
S1Lξk

f ,� f
〉
=
〈
Lξk

� f , S1 f
〉
+ 〈S1 f , S1 f 〉 +

〈
S1Lξk

f ,� f
〉

=
〈
� f ,L∗

ξk
S1 f

〉
+
〈
S1Lξk

f ,� f
〉
+ 〈S1 f , S1 f 〉

= −
〈
� f ,Lξk

S1 f
〉
+〈� f , S2S1 f 〉+

〈
S1Lξk

f ,� f
〉

+ 〈S1 f , S1 f 〉
= 〈� f , S3 f 〉 + 〈� f , S2S1 f 〉 + 〈S1 f , S1 f 〉 .

(4.8)

The last term satisfies

〈
�Lξk

f , S2� f
〉
=
〈(
Lξk

� + S1

)
f , S2� f

〉

= −
〈
� f , Lξk

S2� f ,
〉
+
〈
� f , S2

2� f
〉
+ 〈S1 f , S2� f 〉

= −
〈
� f , S2Lξk

� f
〉
+ 〈� f , S4� f 〉 +

〈
� f , S2

2� f
〉
+ 〈S1 f , S2� f 〉

= −
〈
S2� f ,Lξk

� f
〉
+ 〈� f , S4� f 〉 +

〈
� f , S2

2� f
〉
+ 〈S1 f , S2� f 〉 ,

so that

〈
S2� f ,�Lξk

f
〉
= 1

2

(
〈S4� f ,� f 〉 +

〈
S2

2� f ,� f
〉
+ 〈S2� f , S1 f 〉

)
. (4.9)

Since the terms in both expressions (4.8) and (4.9) can be controlled by ‖ f ‖2
W 2,2 , it

follows that indeed, there exists C
(2)
k = C

(2)
k

(
||ξk ||2,∞

)
such that

∣∣∣
〈
�L2

ξk
f ,� f

〉
+
〈
�Lξk

f ,�Lξk
f
〉∣∣∣ ≤ C

(2)
k ‖ f ‖2

W 2,2 .

⊓⊔
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Appendix A: Derivation of the Stochastic Euler Equations

Summary The generalization from the classic deterministic Reynolds Transport The-

orem (RTT) for momentum to its Stratonovich stochastic version derived in this

Appendix preserves the geometric Lie derivative structure of the RTT. Specifically,

the Lie derivative structure of the Stratonovich stochastic RTT for the vector momen-

tum density derived here turns out to be the same as the expression appearing in

the stochastic Kelvin circulation theorem derived in Holm (2015) from a stochastic

version of Hamilton’s variational principle for ideal fluid flows. Thus, by combining

the Stratonovich stochastic RTT with Newton’s second law for fluid dynamics, one

recovers a known family of stochastic fluid equations. The simplest of these is the 3D

stochastic Euler fluid model, which was introduced in Holm (2015). This model was

re-derived via multi-time homogenization in Cotter et al. (2017), and is re-derived once

again here from Newton’s Law, as it is the main subject of our present investigation.

A.1. Review of the Deterministic Case

Newton’s 2nd Law, Reynolds Transport Theorem, Pullbacks and Lie Derivatives The

fundamental equations of fluid dynamics derive from Newton’s 2nd Law,

dM(t)

dt
= d

dt

∫

�(t)

m d3x =
∫

�(t)

F d3x = F(t) , (A.1)

which sets the rate of change in time t of the total momentum M(t) of a moving

volume of fluid �(t) equal to the total volume-integrated force F applied on it;

thereby producing an equation whose solution determines the time-dependent flow ηt

governing �(t) = ηt�(0).

The fluid flows ηt considered here will be smooth invertible time-dependent maps

with a smooth inverses. Such maps are called diffeomorphisms, and are often simply

referred to as diffeos. One may regard the map ηt as a time-dependent curve on the
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space of diffeos. The corresponding Lagrangian particle path of a fluid parcel is given

by the smooth, invertible, time-dependent map,

ηt X = η(X , t) ∈ R
3, for initial reference position x(X , 0) = η0 X = X . (A.2)

This subsection deals with the deterministic derivation of the Eulerian ideal fluid

equations. So the map ηt is deterministic here. The next subsection will deal with

parallel arguments for the stochastic version of ηt in Eq. (1.1), and we will keep the

same notation for the diffeomorphisms in both subsections.

In standard notation from, e.g. Marsden and Hughes (1994), we may write the i th

component of the total fluid momentum Mi (t) in a time-dependent domain of R
3

denoted �(t) = ηt�(0), as

Mi (t) =
∫

�(t)

m(x, t) · ei (x) d3x =
∫

�(t)

m j (x, t)e j
i (x) d3x (A.3)

=
∫

�(0)

η∗
t

(
m(x, t) · ei (x) d3x

)
=
∫

�(0)

η∗
t

(
m j (x, t)e j

i (x) d3x
)
. (A.4)

Here the ei (x) are coordinate basis vectors and the operation η∗
t denotes pullback by

the smooth time-dependent map ηt . That is, the pullback operation in the formulas

above for the total momentum “pulls back” the map ηt through the functions in the

integrand. For example, in the fluid momentum density m(x, t) at spatial position

x ∈ R
3 at time t , we have η∗

t m(x, t) = m(η(X , t), t).

Lie Derivative The time derivative of the pullback of ηt for a scalar function θ(x, t)

is given by the chain rule as,

d

dt
η∗

t θ(x, t) = d

dt
θ(ηt X , t) = ∂tθ(η(X , t), t) + ∂θ

∂η j

dη j (X , t)

dt

= η∗
t

(
∂tθ(x, t) + ∂θ

∂x j
u j (x, t)

)
. (A.5)

The Eulerian velocity vector field u(x, t) = u j (x, t)∂x j in (A.5) generates the flow

ηt and is tangent to it at the identity, i.e. at t = 0. The time-dependent components of

this velocity vector field may be written in terms of the flow ηt and its pullback η∗
t in

several equivalent notations as, for example,

dη j (X , t)

dt
= u j (η(X , t), t) = η∗

t u j (x, t) = u j (η∗
t x, t) , or simply u = η̇t η−1

t .

(A.6)

Calculation (A.5) also defines the Lie derivative formula for the scalar function θ ,

namely (Marsden and Hughes 1994)

d

dt
η∗

t θ(x, t) = η∗
t

(
∂tθ(x, t) + Luθ(x, t)

)
, (A.7)
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where Lu denotes Lie derivative along the time-dependent vector field u = u j (x, t)∂x j

with vector components u j (x, t). In this example of a scalar function θ , evaluating

formula (A.7) at time t = 0 gives the standard definition of Lie derivative of a scalar

function θ(x) by a time-independent vector field u = u j (x)∂x j , namely,

d

dt

∣∣∣
t=0

η∗
t θ(x) = Lu(x)θ(x) = u j (x)

∂θ(x)

∂x j
. (A.8)

Remark 31 To recap, in Eqs. (A.3) and (A.4) for the total momentum, the Eulerian

spatial coordinate x ∈ R
3 is fixed in space, and the Lagrangian body coordinate

X ∈ �(t) is fixed in the moving body. The Lagrangian particle paths η∗
t x = η(X , t) =

ηt X ∈ R
3 with x(X , 0) = η0 X = X may be regarded as time-dependent maps from

a reference configuration where points in the fluid are located at X to their current

position η∗
t x = η(X , t). Introducing the pullback operation enables one to transform

the integration in (A.3) over the current fluid domain �(t) with moving boundaries

into an integration over the fixed reference domain �(0) in (A.4). This transformation

allows the time derivative to be brought inside the integral sign to act on the pullback

of the integrand by the flow map ηt . Taking the time derivatives inside the integrand

then produces Lie derivatives with respect to the vector field representing the flow

velocity.

The coordinate basis vectors ei (x) in (A.3) for the moving domain and the corre-

sponding basis vectors in the fixed reference configuration Ei (X) are spatial gradients

of the Eulerian and Lagrangian coordinate lines in their respective domains. The coor-

dinate basis vectors ei in the moving frame and Ei in the fixed reference frame are

related to each other by contraction with the Jacobian matrix of the map ηt ; namely,

(Marsden and Hughes 1994)

η∗
t e j

i (x) = ∂η j (X , t)

∂ X A
E A

i (X) =
(

η∗
t

∂x j

∂ X A

)
E A

i (X) =: (η∗
t J j

A)E A
i (X) . (A.9)

As a consequence of the definition of Eulerian velocity in Eq. (A.6), defining relation

(A.9) for η∗
t e j

i (x) implies the following evolution equation for the Eulerian coordinate

basis vectors,

d

dt

(
η∗

t e j
i (x)

)
= ∂

∂ X A

dη j (X , t)

dt
E A

i (X)

= η∗
t

(
∂u j

∂xk

∂xk

∂ X A

)
E A

i (X)

= η∗
t

(
∂u j

∂xk
J k

A

)
E A

i (X)

= η∗
t

(
∂u j

∂xk
ek

i

)
.

(A.10)
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Likewise, the mass of each volume element will be conserved under the flow, ηt .

In terms of the pullback, this means

η∗
t

(
ρ(x, t)d3x

)
= ρ(η(X , t), t) det(J ) d3 X = ρ0(X) d3 X , (A.11)

where the function ρ(x, t) represents the current mass distribution in Eulerian coordi-

nates in the moving domain, and the function ρ0(X) represents the mass distribution

in Lagrangian coordinates in the reference domain at the initial time, t = 0. Conse-

quently, the time derivative of mass conservation relation (A.11) yields the continuity

equation for the Eulerian mass density,

d

dt

(
η∗

t

(
ρ(x, t)d3x

))
= η∗

t

((
∂tρ + u j ∂x j ρ + ρ ∂x j u j

)
d3x

)
= η∗

t

(
(∂t + Lu)(ρ d3x)

)
= 0 ,

(A.12)

and again, as expected, the Lie derivative Lu appears. In this example of a density,

evaluating formula (A.12) at time t = 0 gives the standard definition of Lie derivative

of a density, ρ(x) d3x , by a time-independent vector field u = u j (x)∂x j , namely,

d

dt

∣∣∣
t=0

η∗
t

(
ρ(x) d3x

)
= Lu(x)

(
ρ(x) d3x

)
= div

(
ρ(x)u(x)

)
d3x . (A.13)

Next, we insert mass conservation relation (A.11) into Eq. (A.4) and introduce the

covector v j (x, t) := m j (x, t)/ρ(x, t) in order to distinguish between the momentum

per unit mass v(x, t) and the velocity vector field u(x, t) defined in (A.6) for the flow

ηt , which transports the Lagrangian particles. In terms of v, we may write the total

momentum in (A.4) as

Mi (t) =
∫

�(0)

η∗
t

(
v j (x, t)e j

i (x) ρ(x, t) d3x
)

. (A.14)

Introducing the two transformation relations (A.9) for e j
i (x) and (A.11) for

ρ(x, t) d3x , yields

Mi (t) :=
∫

�(0)

η∗
t

(
v j (x, t)

∂x j

∂ X A

)
E A

i (X)ρ0(X) d3 X (A.15)

=
∫

�(0)

(
v j (x, t)

∂x j

∂ X A

)
δ
(
x − η(X , t)

)
E A

i (X)ρ0(X) d3 X , (A.16)

where in the last line we have inserted a delta function δ(x −η(X , t)) for convenience

in representing the pullback of a factor in the integrand to the Lagrangian path.

Newton’s second law for fluids We aim to explicitly write Newton’s second law for

fluids, which takes the form

dMi (t)

dt
=
∫

�(t)

ρ−1 F j e j
i (x) ρ d3x , (A.17)
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for an assumed force density Fi e j
i (x) d3x in a coordinate system with basis vectors

e j
i (x). To accomplish this, we of course must compute the time derivative of the

total momentum Mi (t) in (A.15). The result for the time derivative dMi (t)/dt is the

following,

dMi (t)

dt
=
∫

�(0)
η∗

t

((
∂tv j (x, t) + dxk

dt
v j,k + vk

∂

∂x j

dxk

dt

) ∂x j

∂ X A

)
E A

i (X)ρ0(X) d3 X .

(A.18)

Upon defining uk := dxk

dt
(in a slight abuse of notation) and using Eqs. (A.9) and

(A.11) this calculation now yields

dMi (t)

dt
=
∫

�(0)

η∗
t

(
ρ(x, t)

(
∂tv j (x, t) + uk∂xk v j + vk∂x j u

k
)

e j
i (x) d3x

)

(A.19)

=
∫

�(t)

ρ(x, t)
(
∂tv j (x, t) + uk∂xk v j + vk∂x j u

k
)

e j
i (x) d3x . (A.20)

Perhaps not unexpectedly, one may also deduce the Lie derivative relation

dMi (t)

dt
=
∫

�(t)

ρ(x, t)
(
∂tv j (x, t) + uk∂xk v j + vk∂x j u

k
)

e j
i (x) d3x (A.21)

=
∫

�(t)

(∂t + Lu)
(
v j (x, t) e j

i (x) ρ(x, t) d3x
)

, (A.22)

where, in the last step, we have applied the Lie derivative of continuity Eq. (A.12). We

note that care must be taken in passing to Euclidean spatial coordinates, in that one

must first expand the spatial derivatives of e j
i (x), before setting e j

i (x) = ∂i x j = δ
j
i .

One may keeping track of these basis vectors by introducing a 1-form basis. Upon

using continuity Eq. (A.12), one may then write Newton’s second law for fluids in

Eq. (A.17) as a local 1-form expression,

(
∂tvi (x, t) + uk∂kvi + vk∂i u

k
)

dx i = (∂t + Lu)
(
vi (x, t) dx i

)
= ρ−1 Fi dx i .

(A.23)

Remark 32 (Distinguishing between u and v) In formula (A.23), two quantities with

the dimensions of velocity appear, denoted as u and v. The fluid velocity u is a

contravariant vector field (with spatial component index up) which transports fluid

properties, such as the mass density in continuity Eq. (A.12). In contrast, the velocity v

is the transported momentum per unit mass, corresponding to a velocity 1-form vi dx i

(the circulation integrand in Kelvin’s theorem) and it is covariant (spatial component

index down).

In general, these two velocities are different, they have different physical meanings

(velocity versus specific momentum) and they transform differently under the diffeos.

Mathematically, they are dual to each other, in the sense that insertion (i.e. substitution)
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of the vector field u into the 1-form v yields a real number, ukvk , where we sum

repeated indices over their range. Only in the case when the kinetic energy is given

by the L2 metric and the coordinate system is Cartesian with a Euclidean metric can

the components of the two velocities u and v be set equal to each other, as vectors.

And, as luck would have it, this special case occurs for the Euler fluid equations

in R
3. Consequently, when we deal with the stochastic Euler fluid equations in R

3 in

the later sections of the paper, our notation will simplify, because we will not need to

distinguish between the two types of velocity u and v. That is, in the later sections of

the paper, when stochastic Euler fluid equations are considered in R
3, the components

of the velocities u and v will be the denoted by the same R
3 vector, which we will

choose to be v.

Deterministic Kelvin Circulation Theorem Formula (A.22) is the Reynolds Trans-

port Theorem (RTT) for a momentum density. When set equal to an assumed force

density, the RTT produces Newton’s second law for fluids in Eq. (A.23). Fur-

ther applying Eq. (A.23) to the time derivative of the Kelvin circulation integral

I (t) =
∮

c(t)
v j (x, t) dx j around a material loop c(t) moving with Eulerian veloc-

ity u(x, t), leads to Holm et al. (1998)

d I (t)

dt
= d

dt

∮

c(t)

(
v j (x, t) dx j

)
= d

dt

∮

c(0)

η∗
(
v j (x, t) dx j

)

=
∫

c(0)

η∗
t

(
(∂t + Lu)

(
v j (x, t) dx j

))

=
∮

c(0)

η∗
t

((
∂tv j (x, t) + uk∂xk v j + vk∂x j u

k
)

dx j
)

=
∮

c(t)

(∂t + Lu)
(
v j (x, t) dx j

)

=
∮

c(t)

ρ−1 Fi dx i .

(A.24)

Perhaps not surprisingly, the Lie derivative appears again, and the line-element stretch-

ing term in the deterministic time derivative of the Kelvin circulation integral in the

third line of (A.24) corresponds to the transformation of the coordinate basis vectors

in RTT formula (A.21). Moreover, the last line of (A.24) follows directly from the

Newton’s second law for fluids in Eq. (A.23).

The Deterministic Euler Fluid Motion Equations The simplest case comprises the

deterministic Euler fluid motion equations for incompressible, constant-density flow

in Euclidean coordinates on R
3,

∂t ui (x, t) + uk∂kui + uk∂i u
k = −∂i p , with ∂ j u

j = 0 , (A.25)

for which the two velocities are the same and the only force is the gradient of pressure,

p.
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Upon writing Euler motion Eq. (A.25) as a 1-form relation in vector notation,

(∂t + Lu)(u · dx) = − dp , (A.26)

one easily finds the dynamical equation for the vorticity, ω = curl u, by taking exterior

differential of (A.26), since ω · dS = d(u · dx) and the differential d commutes with

the Lie derivative Lu . Namely,

∂tω + (u · ∇)ω − (ω · ∇)u = 0 . (A.27)

In terms of vector fields, this vorticity equation may be expressed equivalently as

∂tω +
[
u , ω

]
= 0 , (A.28)

where [u, ω] is the commutator of vector fields.

A.2. Stochastic Reynolds Transport Theorem (SRTT) for Fluid Momentum

For the stochastic counterpart of the previous calculation we replace u = η̇t η−1
t

written above in Eq. (A.6) with the Stratonovich stochastic vector field

dyk
t = uk(x, t)dt +

∑

i

ξ k
i (x) ◦ dBi

t = dηt η−1
t , (A.29)

where the Bi
t with i ∈ N are scalar independent Brownian motions. This vector field

corresponds to the Stratonovich stochastic process

dηk
t (X) = uk(ηt (X), t)dt +

∑

i

ξ k
i (ηt (X)) ◦ dBi

t , (A.30)

where ηt is a temporally stochastic curve on the diffeomorphisms. This means that the

time dependence of ηt is rough, in that time derivatives do not exist. However, being

a diffeo, its spatial dependence is still smooth.

Consequently, upon following the corresponding steps for the deterministic case

leading to Eq. (A.20), the Stratonovich stochastic version of the deterministic RTT in

Eq. (A.20) becomes

dMi (t) =
∫

�(t)

ρ(x, t)
(
dv j (x, t) + dyk

t ∂xk v j + vk∂x jdyk
t

)
e j

i (x) d3x . (A.31)

We compare (A.31) with the Lie derivative relation (cf. Eq. (A.22))

(
dv j (x, t) + dyk

t ∂xk v j + vk∂x jdyk
t

)
dx j =

(
dy + Ldyt

)
(
v j (x, t) dx j

)
. (A.32)
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Here, Ldyt
denotes Lie derivative along the Stratonovich stochastic vector field dyt =

dy
j
t (x, t)∂x j with vector componentsdy

j
t (x, t) introduced in (A.29). We also introduce

the stochastic versions of auxiliary Eq. (A.8) for a scalar function θ and (A.12) for

a density ρ d3x , and we compare these two formulas with their equivalent stochastic

Lie derivative relations,

d
(
η∗

t θ(x, t)
)

= η∗
t

(
dθ(x, t) + Ldyt

θ(x, t)
)
, (A.33)

d
(
η∗

t (ρ(x, t)d3x)
)

= η∗
t

((
dρ + ∂x j

(
ρ dy

j
t (x, t)

))
d3x

)
= η∗

t

(
(d + Ldyt

)(ρ d3x)
)

= 0 .

(A.34)

Stochastic Newton’s second law for fluids The stochastic Newton’s second law for

fluids will take the form

dMi (t) =
∫

�(t)

ρ−1 Fi e j
i (x) ρ d3x , (A.35)

for an assumed force density Fi e j
i (x) d3x in a coordinate system with basis vectors

e j
i (x). Because of the stochastic RTT in (A.31), expression (A.32) in a 1-form basis

and the mass conservation law for the stochastic flow in (A.34), one may write the

stochastic Newton’s second law for fluids in Eq. (A.35) as a 1-form relation,

(
dv j (x, t) + dyk

t ∂xk v j + vk∂x j dyk
t

)
dx j =

(
d + Ldyt

)
(
v j (x, t) dx j

)
= ρ−1 F j dx j dt .

(A.36)

Stochastic Kelvin Circulation Theorem The stochastic Newton’s second law for fluids

in the 1-form basis in (A.36) introduces the line-element stretching term previously

seen in the stochastic Kelvin circulation theorem in Holm (2015).

Proof Inserting relations (A.31) and (A.32) for the stochastic RTT into the Kelvin

circulation integral I (t) =
∮

c(t)
v j (x, t) dx j around a material loop c(t) moving with

stochastic Eulerian vector field dyt in (A.29), leads to the following, cf. Holm (2015),

dI (t) = d

∮

c(t)

(
v j (x, t) dx j

)
= d

∮

c(0)

η∗
(
v j (x, t) dx j

)

=
∫

c(0)

η∗
t

(
(d + Ldyt

)
(
v j (x, t) dx j

))

=
∮

c(0)

η∗
t

((
dv j (x, t) + dyk

t ∂xk v j + vk∂x jdyk
t

)
dx j

)

=
∫

c(t)

(d + Ldyt
)
(
v j (x, t) dx j

)
.

(A.37)

Substituting the stochastic Newton’s second law for fluids in the 1-form basis in (A.36)

into the last formula in (A.37) yields the stochastic Kelvin circulation theorem in the

form of Holm (2015), namely,
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dI (t) = d

∮

c(t)

v j (x, t) dx j =
∮

c(t)

ρ−1 F j dx j dt . (A.38)

⊓⊔

Remark 33 As we have seen, the development of stochastic fluid dynamics models

revolves around the choice of the forces appearing in Newton’s second law (A.35) and

Kelvin’s circulation theorem (A.38). For examples in stochastic turbulence modelling

using a variety of choices of these forces, see Mémin (2014), Resseguier (2017), whose

approaches are the closest to the present work that we have been able to identify in

the literature.

The Stochastic Euler Fluid Motion Equations in Three Dimensions The simplest

3D case comprises the stochastic Euler fluid motion equations for incompressible,

constant-density flow in Euclidean coordinates on R
3 which was introduced and stud-

ied in Holm (2015). These equations are given in (A.37) by

dvi (x, t) + dyk
t ∂kvi + vk∂idyk

t = − ∂i p dt , with ∂i (dyi
t ) = 0 , (A.39)

in which the stochastic transport velocity (dyt ) corresponds to the vector field in (A.29),

the only force is the gradient of pressure, p, and the density ρ is taken to be constant.

The transported momentum per unit mass with components v j , with j = 1, 2, 3,

appears in the circulation integrand in (A.38) as v j dx j = v · dx. 3D stochastic Euler

motion Eq. (A.39) may be written equivalently by using (A.37) as a 1-form relation

(d + Ldyt
)(v · dx) = − dp dt , (A.40)

where we recall that (d) denotes the stochastic evolution operator, while (d) denotes

the spatial differential. We may derive the stochastic equation for the vorticity 2-form,

defined as

ω · dS := d(v · dx) = (v j,k − vk, j ) dxk ∧ dx j =: ω jk dxk ∧ dx j =: curl v · dS ,

with dx j ∧ dxk = − dxk ∧ dx j , by taking the exterior differential (d) of (A.40) and

then invoking the two properties that (i) the spatial differential d commutes with the

Lie derivative Ldyt
of a differential form and (ii) d2 = 0, to find

0 = (d + Ldyt
)(ω · dS) =

(
dω − curl (dyt × ω)

)
· dS . (A.41)

In Cartesian coordinates, all of these quantities may treated as divergence-free vectors

in R
3, that is, ∇ ·v = 0 = ∇ ·dyt . Consequently, Eq. (A.41) recovers the vector SPDE

form of 3D stochastic Euler fluid vorticity Eq. (1.7),

dω + (dyt · ∇)ω − (ω · ∇)dyt = 0 . (A.42)
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In terms of volume preserving vector fields in R
3, this vorticity equation may be

expressed equivalently as

dω +
[
dyt , ω

]
= 0 , (A.43)

where [dyt , ω] is the commutator of vector fields, dyt := dyt · ∇ and ω := ω · ∇.

Equation (A.43) for the vector field ω implies

d(η∗
t ω) = η∗

t (dω + Ldyt
ω) = 0 , (A.44)

where Ldyt
ω = [dyt , ω]. In vector components, this implies the pullback relation

η∗
t

(
ω j (x, t)

)
= η∗

t

(
∂x j

∂ X A

)
ωA

0 (X) , or ω j (η(X , t), t) =
(

∂η j (X , t)

∂ X A

)
ωA

0 (X) ,

(A.45)

where ωA
0 (X) is the Ath Cartesian component of the initial vorticity, as a function of

the Lagrangian spatial coordinates X of the reference configuration at time t = 0, and

η∗
t is the pullback by the stochastic process in (1.1). Equation (A.45) is the stochastic

generalization of Cauchy’s 1827 solution for the vorticity of the deterministic Euler

vorticity equation, in terms of the Jacobian of the Lagrange-to-Euler map. See Frisch

and Villone (2014) for a historical review of the role of Cauchy’s relation in determin-

istic hydrodynamics.

Foundational results for other SPDEs for hydrodynamics related to (A.42) can be

found in Flandoli (2011), Flandoli and Gatarek (1995), Flandoli et al. (2014) and

references therein.
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