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Abstract

Recent ultrafast experiments have unveiled the time scales of vibrational cooling

and decoherence upon photoexcitation of the diplatinum complex [Pt2(P2O5H2)4]
4−

(PtPOP) in solvent. Here we contribute to the understanding of the structure and

dynamics of the lowest-lying singlet excited state of the model photocatalyst by per-

forming potential energy surface (PES) calculations and Born-Oppenheimer Molecular

Dynamics (BOMD) simulations in gas phase and water. Solvent effects were trea-

ted using a multiscale quantum mechanics/molecular mechanics (QM/MM) approach.

Fast sampling was achieved with a modified version of ∆SCF implemented in the Grid-

based Projector Augmented Wave (GPAW) density functional theory (DFT) code. The

known structural parameters and the PESs of the first singlet and triplet excited states

are correctly reproduced. Besides, the simulations deliver clear evidence that pseudoro-

tation of the ligands in the excited state leads to symmetry lowering of the Pt2P8 core.

Coherence decay of Pt-Pt stretching vibrations in solution was found to be governed by

vibrational cooling, in agreement with previous ultrafast experiments. We also show

that the flow of excess Pt-Pt vibrational energy is first directed towards vibrational mo-

des involving the ligands, with the solvent favouring intramolecular vibrational energy

redistribution (IVR). The results are supported by thorough vibrational analysis in

terms of generalized normal modes.

Introduction

The field of photocatalysis has witnessed increased interest in transition metal complexes

over the last years. Indeed, stability in solution and remarkable photophysical properties

make many of them attractive candidates for application in solar harvesting devices.1–5 The

continuous demand for more efficient and tunable photocatalytic systems has stimulated a

vast amount of experimental studies on solvated metal complexes6–8. Taking full advantage

of their photocatalytic properties requires, in particular, an understanding of the structure-

function relationships and mechanisms behind ultrafast light-induced reactions in complex
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environments. Photo-induced molecular processes can now be observed at an unprecedented

level of detail, thanks to recent advances in time-resolved techniques. Among them, im-

provements to the time resolution of ultrafast optical and X-ray spectroscopies and X-ray

diffraction measurements performed at X-ray Free Electron Laser (XFEL) facilities down to

the femtosecond regime have led to experiments able to follow the evolution of vibrational

wave packets or the solvation dynamics in photoexcited prototypical metal complexes in

real-time.9–16 However, these novel experiments cover grounds often dominated by complex

interplays between vibrational relaxation, solvent effects and electronic couplings, which are

not known a priori. Therefore, linking experimental observations to mechanistic frameworks

can only be accomplished with the help of solid theoretical and modelling strategies. Mo-

reover, even when the interpretation of an experiment is facilitated by prior photophysical

knowledge or by employing simple phenomenological models, a variety of complementary

techniques are needed to assemble a complete atomistic and energetic picture of the early

stages of the investigated dynamics. In this context, advanced computational methods ca-

pable of connecting multiple time-resolved observables, while delivering new mechanistic

insights into the underlying physical processes, play an important role in complementing

ultrafast experiments.

One of the main challenges associated with the a priori determination of the mechanisms

of the ultrafast excited-state dynamics of complex molecular systems is represented by the

time scales one is able to simulate while retaining accuracy. Broadly speaking, much of the

efforts of the theoretical community to address this problem have been directed towards the

development and application of two computational frameworks of choice: methods that solve

the time-dependent Schrödinger equation for the nuclei using precomputed potential energy

surfaces (PESs),17–23 and methods based on classical propagation of the nuclei with on-the-

fly evaluation of energies and forces at ab initio level.24–33 Quantum dynamics approaches

have proven useful in deciphering some aspects of the excited-state decay pathways of photo-

catalytic metal complexes, particularly concerning non-adiabatic electronic transitions.17,20
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However, the outcome of this kind of simulation relies on the selection of a small number

of vibrational modes along which the dynamics is restricted. Furthermore, solvent effects in

quantum wave packet simulations are usually accounted for in an implicit manner,19,21 thus

neglecting any explicit solvation dynamics effect.

In the present work, we have chosen an approach following the second route: ab initio

classical dynamics. This strategy allows, in principle, to efficiently explore the full, uncon-

strained space of nuclear configurations and to include explicit solvent effects in a multiscale

fashion. Recently we have presented34 a density functional theory (DFT) implementation

of on-the-fly QM/MM Born-Oppenheimer Molecular Dynamics (BOMD) that is capable

of extensive sampling of equilibrium thermal properties and out-of-equilibrium dynamics

of solvated transition metal complexes.12,29,34,35 The implementation is available within the

Atomic Simulation Environment (ASE)36,37 and uses the computationally efficient Grid-

based Projector Augmented Wave (GPAW) code38,39 for the DFT part. It has been already

successfully applied to study the ultrafast internal vibrational dynamics and to obtain a

picture of solvent-driven electronic dynamics in bimetallic photoactive complexes,29,35 and

has proven decisive in establishing a robust interpretation of the solvation dynamics at ca-

talytic sites observed in ultrafast diffuse X-ray scattering (XDS) data.12 For all cases, the

excited states of interest were described using the spin unrestricted DFT formalism. In some

of the investigated systems, the observed ultrafast dynamics following photoexcitation was

known to take place on an excited state of the same spin multiplicity as the ground state,

usually a singlet. This implied that the simulations had to approximate the dynamics by

propagating the system on the lowest excited state of a different spin multiplicity by assu-

ming parallel potential energy surfaces along the dominant vibrational motions. However,

even in systems for which the latter assumption was demonstrated to be valid, the dynamics

in the two states can still be different if their energies are such that they lie in regions of

different density of states, as recently shown by Monni et al.10 These authors compared the

coherence decay of vibrational wave packets in the first singlet and triplet excited states
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of diplatinum complexes in solution observed in ultrafast optical measurements, and found

significant differences despite parallel potential energy surfaces.

The need to be able to reliably compare simulations to experimental results calls for

an extension of the QM/MM BOMD method in ASE/GPAW to encompass states of arbi-

trary spin multiplicity. With this perspective in mind, we have extended the capabilities

of the code by coupling it to a single-determinant DFT description of the excited states

based on the ∆SCF approach,40 which carries no extra computational cost with respect to

ground-state DFT. ∆SCF is gaining increasing popularity in the study of the excited states

of both organic chromophores41–44 and transition metal complexes.45,46 This renewed interest

is motivated in part by the growing demand for computationally cheap strategies for simu-

lating with sufficient accuracy the excited-state structure and dynamics of large systems,

for which high-level multireference methods are not yet a viable choice. The reliability of

∆SCF as applied to study the structure and dynamics of small molecules, organic dyes and

even biological systems, has been assessed with respect to vibrational analysis,47 exploration

of PESs,44,48 as well as dynamics in solution within QM/MM MD frameworks.42,49 On the

other hand, to our knowledge, no studies exist that investigate the ability of the method to

predict the structural dynamics of transition metal complexes, even though the performan-

ces of ∆SCF for excitation energies and simulations of UV-vis spectra of metal-containing

molecular systems are not inferior to those achieved when applied to organic molecules.45,46

In a previous computational work34 we applied the QM/MM BOMD scheme in ASE/GPAW

to the ground-state structural dynamics of the diplatinum(II) complex [Pt2(P2O5H2)4]
4−,

abbreviated PtPOP, in aqueous solution. In the study we collected almost half a nano-

second of equilibrated BOMD data, which permitted a statistically unbiased comparison

of thermally averaged structural and dynamical properties with available experimental re-

sults, showing remarkable agreement. Moreover, we characterized in detail the solvent shell

structure around the complex, which had been previously debated due to the lack of direct

experimental evidence and statistically relevant computational insights. Here we investigate
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PtPOP in water in the first singlet excited state using our new ∆SCF-QM/MM BOMD

implementation.

Owing to its nuclear and electronic structures, PtPOP is the prototype system of choice

for photophysical studies within a family of highly photoreactive d8-d8 binuclear complexes.7

The UV-vis absorption spectrum of PtPOP in crystal and different solvents exhibits an in-

tense band around 370 nm and a weaker band around 450 nm that are attributed to elec-

tronic transition from the HOMO dσ∗ antibonding to the LUMO pσ bonding metal-metal

orbital.50–52 As a result of the nature of the excitation, the first singlet and triplet excited

states (S1 and T1), having dσ∗ → pσ character, feature a significantly shortened Pt-Pt dis-

tance. Reported experimental values for the contraction in crystal and solution lie in the

range 0.19-0.31 Å.51,53–57 It is well established, based on the vibronic progression of low-

temperature UV-vis S0 → S1 and S0 → T1 absorption bands,50 that the potential energy

surfaces of S1 and T1 along the Pt-Pt coordinate are parallel. Moreover, these states are

found, from experiments50,51 and previous DFT studies,58,59 to be separated by a relatively

large energy gap of around 0.65 eV, and isolated from other electronic states. The electro-

nic structure of the complex, together with the fact that direct spin-orbit coupling (SOC)

between S1 and T1 is forbidden for symmetry reasons,58,60 accounts for intersystem crossing

(ISC) times between 11.0 and 101.5 ps,14,50,61 depending on solvent and temperature. Besi-

des, the lifetime of T1 is found to be on the order of microseconds.50 Ultimately, it is this

state that has catalytic activity, being able to abstract hydrogen and halogen atoms from

different substrates.7,62

The peculiar photophysical properties of PtPOP have been exploited to characterize, by

femtosecond optical measurements, the evolution of wave packet coherent vibrations along

the Pt-Pt coordinate in S1
14 and recently also in the T1 state.10 Some of the aspects of the

ultrafast relaxation following excitation in the S1 state in different solvents where uncovered

in a combined fluorescence up-conversion and broadband transient absorption (TA) study by

van der Veen et al.14 It was found that the coherence decay of vibrational wave packets with
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a period of ∼224 fs takes place concomitantly with vibrational cooling over a remarkably long

time of 1-2 ps. The observations were interpreted as a signature of the strong harmonicity

of the potential along the Pt-Pt coordinate, which in turn is due to the rigidity of the

cage of P-O-P ligands, and effective shielding from random solvent fluctuations provided

by the latter. Despite the fact that the experiments could characterize the time scales of

vibrational coherence, cooling and ISC in solution, the mechanistic details behind these

processes are far from being well understood. Hypotheses of mechanisms of vibrational

cooling have been put forward, but they are not based on direct experimental evidence;

rather they rely on the observation of solvent trends14 or the comparison with the behaviour

of diplatinum systems with modified ligands under similar experimental conditions.10 Thus,

van der Veen et al.14 assign differences in the vibrational decay rates for excitation in the S1

state observed for different solvents to direct solute-solvent interactions that can only occur

along the open axial Pt-Pt coordination sites of the molecule. More recently, Monni et al.10

seem to exclude this possibility. These authors argue that, since no big differences with

respect to the decoherence times of a perfluoroborated derivative of PtPOP for which the

bulkier ligands offer better shielding of the Pt atoms from the environment were observed,

the origin of coherence decay must arise from anharmonic couplings of the Pt-Pt motion

with other internal vibrational modes. The mechanism of ISC from S1 to T1 in PtPOP is

also a recurrent subject of discussion in the PtPOP literature.7,14,58,60 All recent experimental

indications seem to point in the direction of a possible involvement of a dark mode that would

lower the D4h symmetry of the Pt2P8 core of the complex, allowing for direct SOC or lowering

the energy of other triplet states, but this mode has never been observed experimentally.

The scenario is complicated by the fact that up to now no experimental method has been

able to reliably assess the changes affecting the structure of the ligands or the presence of

large amplitude distortions in the excited state in solution.

As experimental techniques with atomistic resolution start putting hitherto unexplored

sub-picosecond intramolecular structural and solvation processes under the microscope, de-
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veloping efficient computational methods capable of providing insights into the underlying

physical mechanisms becomes of utmost importance. With this in mind, the primary ob-

jective of our work was to extend the QM/MM BOMD simulation framework to encompass

states of arbitrary spin multiplicity using ∆SCF implemented in GPAW. The current status

of knowledge of the photophysics of PtPOP allows us to unambiguously assess the approach

for statistically robust predictions of the structure and dynamics of the metal-centered exci-

ted state of d8-d8 transition metal complexes. At the same time, it leaves room for moving

forward in the understanding of the microscopic mechanisms governing ultrafast relaxation

in the S1 state of the complex. With respect to this, the present investigation was aimed at

(i) elucidating structural distortions involving the ligands during the excited-state dynamics;

(ii) characterizing the solvent shell response; (iii) assessing whether the ultrafast relaxation

is exclusively governed by specific solute-solvent interactions or whether energy-accepting

modes are also playing a role as mediators in the transfer of energy to the solvent. This

was achieved by using ∆SCF in extensive nonequilibrium gas-phase and solution-phase si-

mulations in conjunction with a detailed vibrational analysis based on a decomposition of

the time-dependent vibrational kinetic energy in generalized normal mode components.63

The solvent chosen for the investigation is water, for which accurate time-resolved excited-

state X-ray scattering54 and spectroscopic14 data are available and can be used to assess the

validity of the simulations.

Computational methods

∆SCF Implementation

∆SCF excited states are represented by single Slater determinants that are constructed by

constraining the orbital occupation numbers to non-ground-state configurations.40 Hence,

when the approach is used within Kohn-Sham (KS) DFT, it consists in solving the variational

KS equations for a set of KS orbitals ψk(r) with constrained occupations. For standard
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∆SCF schemes based on promotion of a single electron from an occupied orbital ψa(r) of

the ground state to a virtual orbital ψb(r), the electronic density of a system of Ne electrons

can be expressed as:

ρ(r) =
Ne
∑

i=1

(1 − δai) |ψi(r) |2 +
n

∑

j=Ne+1

δbj |ψj(r) |2 (1)

where δai and δbj are Kronecker deltas, and n is the total number of orbitals included in

the calculation. When the energy separation of ψa(r) and ψb(r) from other orbitals is suf-

ficiently large, the KS equations with a density given by (1) will converge to the lowest

electronic state of a given symmetry. However, variational convergence of the density can be

difficult when state degeneracies are present. This can make ∆SCF PES scans problematic

for systems with high density of states, such as transition metal complexes. The issue of

degeneracy in ∆SCF calculations has been recently addressed by Maurer et al.44,64 with a

modification of the ordinary ∆SCF constraints to Gaussian smeared constraints affecting all

orbitals that lie close in energy to the target orbitals ψa(r) and ψb(r). The method has been

demonstrated to be able to deliver, when applied to azobenzene using generalized gradient

approximation (GGA) functionals,44 PES topologies close to conical intersections (CIs) of

quality comparable to those obtained using higher level Coupled Cluster Singles and Doubles

calculations. The proven robustness and flexibility of this ∆SCF strategy are promising in

view of its application in excited-state QM/MM BOMD simulations to ensure stable con-

vergence of the density at each step of the dynamics. In order to explore this possibility,

we have implemented ∆SCF with Gaussian smeared constraints in a development branch of

GPAW that can be used in conjunction with the new QM/MM module in ASE.34 At each

step of an SCF cycle, the electronic density is computed from a modified form of equation

(1):

ρ(r) =
Ne
∑

i=1

(1 − ga(ǫi)) |ψi(r) |2 +
n

∑

j=Ne+1

gb(ǫj) |ψj(r) |2 (2)
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where ga(ǫi) and gb(ǫj) are Gaussian functions of the energies of the KS orbitals:

ga(ǫi) =
1

Na

exp

{

−(ǫi − ǫa)
2

2σ2

}

(3)

gb(ǫj) =
1

Nb

exp

{

−(ǫj − ǫb)
2

2σ2

}

(4)

The normalization factors for ga(ǫi) and gb(ǫj) are calculated by requiring that:

Ne
∑

i=1

ga(ǫi) = 1 (5)

n
∑

j=Ne+1

gb(ǫj) = 1 (6)

such that it satisfies conservation of the total number of electrons:

Ne
∑

i=1

(1 − ga(ǫi)) +
n

∑

j=Ne+1

gb(ǫj) = Ne (7)

The parameter σ controls the extent of the smearing, and can in principle be varied during the

SCF cycle until satisfactory convergence is achieved. Employing the ∆SCF implementation

with the QM/MM electrostatic embedding scheme presented in34 is straightforward. In

fact, the electronic density of equation (2) can be directly used in the SCF cycle with the

Hamiltonian including the external potential of the classical point charges of the solvent,

and, once the converged quantities are obtained, all energy gradients needed to perform MD

simulations can be computed using the routines available for ground-state DFT.

Vibrational analysis from BOMD trajectories

In order to attain a picture of intramolecular vibrational energy redistribution (IVR) during

the ∆SCF nonequilibrium vacuum and QM/MM dynamics simulations, we performed a

vibrational analysis of the trajectories according to the method proposed by Strachan.63,65
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Following Strachan,63 generalized normal modes Qi defined as vibrational modes whose time

evolution is uncorrelated to each other (and hence are not harmonic in general):

〈

Q̇i(t)Q̇j(t)
〉

∝ δij (8)

where δij is the Kronecker delta, can be obtained from an MD simulation of a system of

N atoms by diagonalizing the 3N × 3N covariance matrix K of mass weighted cartesian

velocities, whose elements are:

Kij =
1

2

〈√
mimjvi(t)vj(t)

〉

(9)

where m and v indicate, respectively, atomic masses and (vibrational) velocities in the body-

fixed frame that translates and rotates with the system, and i and j run over the 3N

cartesian components. The matrix L whose columns are the 3N normalized vibrational mode

eigenvectors derived from diagonalization of K can be used to obtain a set of generalized

normal mode velocities at each step of an MD trajectory by the following projection:

Q̇(t) = LTv(t) (10)

where Q̇(t) and v(t) are 3N × 1 vectors of the instantaneous generalized normal mode and

body-fixed-frame velocities, respectively, and LT is the transpose of the matrix L. The vi-

brational kinetic energy of the system can be decomposed into contributions from individual

vibrational modes according to:

T (t) =
1

2

3N
∑

i=1

Q̇2
i (t) =

3N
∑

i=1

Ti(t) (11)

Thus, one can monitor the evolution of the portion of total vibrational kinetic energy shared

by each generalized normal mode during a trajectory propagation, by projecting the body-
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fixed-frame velocities along the vibrational mode vectors through (10) and then computing

the Ti(t) terms appearing in (11). This procedure provides a means to draw a qualitative pic-

ture of intramolecular energy flow in a complex system and was recently successfully applied

to analyze ab initio MD trajectories to investigate IVR processes in uracil.66 Moreover, the

generalized normal mode analysis briefly illustrated here was also used in another study, in

conjunction with QM/MM simulations of a metal ion in water to decompose solute-solvent

thermal fluctuations in terms of vibrational modes to support the analysis of X-ray ab-

sorption measurements.67 In the present work, generalized normal modes and corresponding

velocities were computed for the PtPOP complex from both ∆SCF gas-phase and QM/MM

trajectories. For the ∆SCF-QM/MM trajectories, where it was not possible to separate out

translation and overall rotation of the solute during the propagation, the body-fixed-frame

velocities to be used in (9) were obtained from the cartesian velocity vectors ẋα(t) by an

a posteriori procedure. First of all, we required that the origin is at the center of mass

of the molecule, i.e.
∑N

α mαxα(t) = 0 and
∑N

α mαẋα(t) = 0, to separate the translation.

Afterwards, we applied a rigid rotation to align all frames to a reference structure:

x′
α(t) = R(t)xα(t) (12)

where the rotation matrix R(t) was computed using the Kabsch method,68 which minimizes

the root mean squared deviation (RMSD) between the instantaneous structure x′(t) and

the reference frame. Finally, we assumed the overall rotational energy and internal kinetic

energy of the molecule to be completely separable, such that the total kinetic energy is given

by:

Ek(t) =
1

2
Ẋ2(t)

N
∑

α=1

mα +
1

2

N
∑

α=1

mα (ωr(t) × x′
α(t))

2
+

1

2

N
∑

α=1

mαv
2
α(t) (13)

where X(t) is the translating position of the origin of the system of axis with respect

to the fixed laboratory system and ωr(t) is the apparent angular velocity obtained from

the instantaneous moment of inertia and angular momentum of the molecule (ωr(t) =
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I−1(t)
∑N

α x′
α(t) × ẋ′

α(t)); and calculated the body-fixed-frame velocities according to:

vα(t) = ẋ′
α(t) − ωr(t) × x′

α(t) (14)

When multiple trajectories were available, the average in equation (9) to compute the cova-

riance matrix K was carried out over time and trajectories.

Computational details

In all simulations reported in this work, unless otherwise specified, the electronic structure

of PtPOP was calculated using the GPAW DFT code. A frozen core approximation was em-

ployed in which the description of the core electrons is based on a reference scalar relativistic

calculation of the isolated atoms (scalar relativistic effects are expected to be important in

determining bond lengths involving Pt atoms69), and the KS orbitals for the valence electrons

are represented in a basis of linear combination of atomic orbitals (LCAO).70 The excited

states were described with the ∆SCF scheme presented herein, with a σ of 0.01 eV for the

Gaussian smearing of the orbital occupation numbers. This value of σ was found to bring

no detectable changes in the PESs of PtPOP calculated in vacuum, while at the same time

allowed to readily converge all steps of all ∆SCF BOMD trajectories. For the S1 state, the

spin-unpolarized formalism was used by enforcing an initial occupation number of 1 for the

HOMO and LUMO of PtPOP. This approach is computationally much cheaper in geometry

optimizations and MD simulations than employing Ziegler’s sum rule,40 because the latter

requires SCF convergence of two single-determinant states, one having mixed singlet-triplet

and one with triplet spin symmetry. Although spin-unpolarized ∆SCF calculations lack a

formal justification, their accuracy in estimating transition energies of transition metal com-

plexes was shown to be superior, in some cases, to the approach based on the sum rule.45

This success was rationalized on the basis of similarities between the spin-unpolarized ∆SCF

density and an ensemble density.45,71 The exchange-correlation functional employed in the
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calculations was the GGA functional BLYP,72,73 while the basis functions were tzp70 for the

Pt atoms and dzp70 for all other atoms. We used a grid spacing of the GPAW cell of 0.18

Å. This choice of LCAO basis set and grid spacing ensures that the structure of the com-

plex is converged with respect to these simulation parameters, as shown in the Supporting

Information (SI).

The geometries of the ground state (S0) and lowest singlet (S1) and triplet (T1) excited

states of PtPOP were fully optimized in vacuum using a quasi-Newton local optimization al-

gorithm implemented in ASE. A previous DFT study74 identified two conformers of PtPOP

in the ground state with staggered (D4 symmetry) and eclipsed (C4h symmetry) hydrogen

bonding motifs, respectively, the eclipsed structure being about 0.036 eV more stable at

the DFT-B3LYP level. In the present work, we optimized the more stable ground-state

conformation; this structure was then used as a starting point to optimize the geometry

in the excited states. Geometry optimization was carried out until the maximum force

on all individual atoms was less than 0.02 eV/Å. In addition to the geometry optimiza-

tions in ASE and GPAW, we performed, for comparison, geometry optimizations of the

complex in the S0 and T1 states using a standard implementation of KS DFT within the

Gaussian09 program package,75 and the unrestricted Kohn-Sham (UKS) approach for the

excited state. These simulations employed the Ahlrichs TZVP76 all-electron basis set for

the P, O, H atoms, and the quasirelativistic effective core potential (ECP) def2-ECP77 in

conjunction with the valence electrons Ahlrichs def2-TZVP78 basis set for the Pt atoms.

Two different exchange-correlation functionals were used for these calculations: the BLYP

functional, which was also utilized in the GPAW calculations, and the commonly employed

hybrid functional B3LYP,79,80 to test the effect of including a portion of exact Hartree-Fock

exchange energy on the structure of the complex. All fully-optimized geometries in this

work were confirmed to be true minima of the potential energy surface by inspection of the

frequencies of normal mode (NM) analyses.

Potential energy curves in vacuum in a particular electronic state were computed by
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scanning along relevant coordinates, starting from the fully-optimized geometry of that state,

while relaxing at each step all other degrees of freedom with the same convergence criteria

as used in the full geometry optimizations in ASE.

As explained in the introduction, we performed ∆SCF-QM/MM BOMD simulations

to investigate the interplay between solvent effects and IVR. However, due to the vast

amount and statistical variability of parallel processes playing out in solution, extracting

clear indications about the most likely paths of energy relaxation from a MD-generated out-

of-equilibrium solution ensemble can be arduous if not impracticable at all. In fact, the

interplay between anharmonic couplings and stochastic events can lead to incoherent pro-

cesses, making the monitoring of average dynamical properties useless, while, at the same

time, extrapolation of ensemble trends from the behaviour of a few individual uncorrelated

trajectories can be dangerous, due to statistical bias. For this reason, we have performed

additional ∆SCF BOMD simulations of an isolated PtPOP molecule in S1 with the aim to

gain preliminary insights into the excited-state intramolecular energy flow and, thus, facili-

tate the interpretation of the vibrational analysis of the ∆SCF-QM/MM trajectories. The

∆SCF BOMD simulations in vacuum were performed by propagating the system with Velo-

city Verlet with an integration time step of 1 fs. To allow a time step of 1 fs, all O-H bonds

and hydrogen bonds present in the complex were constrained with the ASE implementation

of RATTLE.81 This choice was found to negligibly affect the average structural and dynami-

cal properties of PtPOP in the ground state.34 During the dynamics, the translational and

rotational degrees of freedom (DOF) were removed at each step by projecting out the total

linear and angular momenta, respectively.

For the ∆SCF-QM/MM BOMD simulations we used the multiscale scheme implemented

in ASE,34 which couples GPAW with classical potential functions to electrostatically em-

bed the DFT-QM solute in a system of fixed point charges representing the solvent. The

ultrafast dynamics taking place in water after photoexcitation to the S1 electronic state was

approximated by propagating ∆SCF-QM/MM trajectories starting from BOMD configu-
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rations selected from about 460 ps of 300 K thermally equilibrated ground-state QM/MM

trajectories, which were collected in our previous work.34 A complete account of the MD pro-

tocol that was used to produce the QM/MM BOMD data for the ground state can be found

in.34 Here we recapitulate the key settings of the QM/MM simulation setup. We used a cubic

simulation box with side length of 35 Å. The MM region comprised 1383 TIP4P water mole-

cules and 4 K+ counterions to neutralize the total charge of the box. Non-bonded dispersion

and exchange repulsion interactions were parametrized through the standard Lennard-Jones

(LJ) potential,34 using for the atoms of the complex van der Waals parameters from the uni-

versal force field (UFF).82 Throughout the dynamics the positions of the counterions were

restrained by applying a spherical harmonic potential of the form:

V PR(xi) =















1

2
kpr (d′i − dprc )2 if d′i ≤ dprc

0 if d′i > dprc

(15)

where xi is the position vector of counterion i and d′i =|xi − xCQM |, with xCQM the center

of the QM cell. The cutoff radius dprc and the force constant kpr for the harmonic restraint

potential were chosen to be equal to 16 Å and 500 kcal/mol respectively. Propagation was

done in the NVT ensemble at 300 K by applying the Langevin thermostat as implemented

in ASE83 to the solvent molecules. All O-H bonds and hydrogen bonds in the complex were

constrained with RATTLE to achieve a time step of 2 fs. The simulations resulted in around

230000 equilibrated MD snapshots collected over a total simulation time of about 460 ps,

which made up the equilibrium ensemble of ground-state configurations from which initial

conditions for the nonequilibrium dynamics in the excited state were sampled. Freezing the

O-H bonds in the solute and the solvent does not undermine a trustworthy description of the

relaxation of the solvation shell, as it is known84–86 that internal solvent vibrations have a

negligible contribution in the relaxation process as compared to librational and translational

motions.
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Excitation to the S1 state by an ultrashort optical pulse was simulated by instantane-

ously promoting ground-state molecules from the underlying ground-state distribution of

Pt-Pt distances (P eq
GS(dPtPt)) according to a spatial filtering (SF) approximation.87–91 This

approximation takes into account the bandwidth of the pulse but neglects any effect due

to nuclear motion throughout its finite temporal duration. Hence, we assumed a Gaussian

ultrashort pulse ǫ(t) ∝ e−
t
2

2τ2 e−iω1t, where ω1 and τ are respectively the center frequency and

temporal width, and sampled initial conditions for a set of excited-state trajectories from

the (unnormalized) distribution PES(dPtPt, t0) given by:

PES(dPtPt, t0) = F 2(dPtPt)P
eq
GS(dPtPt) (16)

In equation (16) the excitation window F (dPtPt) takes the form:

F (dPtPt) ∝ exp

[

−τ
2 (∆V (dPtPt) − h̄ω1)

2

2h̄2

]

(17)

where ∆V (dPtPt) is the potential energy difference between the ground and excited states.

An extensive discussion about the approximations underlying the SF approximation and

a comparison with other methods to select initial conditions for the excitation process are

provided in the Supporting Information. The parameters for the excitation pulse were chosen

as those of the pulse used in the transient absorption setup by van der Veen et al.14 to probe

the ultrafast vibrational dynamics upon excitation into S1 of PtPOP in water. ω1 corresponds

approximately to the position of the maximum of the experimental absorption spectrum of

PtPOP in water, which is at ∼370 nm,50,52 giving a h̄ω1 of 3.35 eV; while τ was 60 fs

(corresponding to a full width at half maximum (FWHM) of the Gaussian intensity profile

of ∼100 fs).14 ∆V (dPtPt) was taken as the difference between Morse potentials obtained

from a fit to the potentials of mean force (PMF) calculated from the pairwise Pt-Pt radial
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distribution functions (RDFs) for S0 and S1 as:

w(dPtPt) = −kbT ln(gPtPt(dPtPt)) (18)

where gPtPt(dPtPt) is the Pt-Pt RDF of the ground or excited state. For the ground state

gPtPt(dPtPt) was obtained from the 460 ps of equilibrated QM/MM BOMD data previously

collected for S0, and the relative PMF was reported in;34 for the excited state 50 preliminary

S1 ∆SCF-QM/MM trajectories were produced starting from as many ground-state frames

with a Pt-Pt distance close to the Pt-Pt distance of the S1 optimized geometry. The tra-

jectories were run with a a time step of 2 fs, keeping the thermostat applied to the solvent,

and summed up, at the end of the propagation, to around 200 ps, from which gPtPt(dPtPt)

was calculated (gPtPt(dPtPt) was characterized by an average Pt-Pt distance and width that

were found to be the same as for gPtPt(dPtPt) obtained by removing the non-equilibrated

part of the trajectories, the two RDFs differing only by the level of statistical noise). Fi-

nally, the two potentials were shifted relative to each other such that the energy difference

at the average dPtPt of the equilibrium ground-state distribution was equal to 3.35 eV, i.e.

the transition energy at the maximum of the S0 → S1 band of the experimental absorption

spectrum (and center frequency of the experimental pulse14). Since the simulated average

S0 → S1 transition energy in solution was found to be 3.24 eV (see Table 1 in the Supporting

Information), this implied that the S1 potential had to be shifted upwards by 0.11 eV. Once

PES(dPtPt, t0) was obtained according to (16) and (17), 49 S1 ∆SCF-QM/MM trajectories

were started from configurations of the ground-state equilibrium ensemble giving a distri-

bution of Pt-Pt distances reflecting PES(dPtPt, t0). In the selection of ground-state frames

we ensured that they where spaced at least 0.5 ps from each other, such to minimize the

correlation between them. The ultrafast relaxation in the S1 state of PtPOP following pre-

paration of the nonequilibrium ensemble PES(dPtPt, t0) by laser promotion is provided by the

first ∼2.5 ps of this set of trajectories. Equilibrium solute-solvent RDFs for S1 and related
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properties were obtained from the two sets of excited-state trajectories after removing the

first (nonequilibrated) 2.5 ps from each of them, which gave a total of around 80000 MD

snapshots covering 160 ps.

Results and discussion

Molecular geometry from vacuum calculations

Figure 1: (Left) PESs along the Pt-Pt coordinate computed in vacuum for the S0, S1 and T1

states of PtPOP. Open circles represent the calculated points, while the lines are 3rd order
polynomial fits. (Right) Visualization of the PtPOP complex with the atomic labels used to
indicate the structural parameters reported in Table 1. The molecular structure represented
here corresponds to the geometry fully optimized in the ground state. The PESs and the
optimized geometry were obtained from vacuum calculations using GPAW with the BLYP
functional.

Relevant structural parameters of the S0 state of PtPOP (see Figure 1 (right) for a

depiction of the molecule) together with the differences with respect to the S1 and T1 struc-

tures obtained from the geometry optimizations in vacuum are given in Table 1. The ground

state is found to have approximate C4h symmetry, with a D4h Pt2P8 core. The largest dis-

crepancy between the S0 structure predicted using GPAW and the one obtained using more

conventional atom-centered basis sets and an ECP for Pt with the same exchange-correlation
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Table 1: Selected structural parameters for the S0, S1 and T1 states of PtPOP
obtained from the geometries optimized in vacuum at different DFT levels

S0 ∆ (T1 − S0)
b ∆ (S1 − S0)

def2-ECP/TZVPa def2-ECP/TZVPa

BLYP
GPAW

BLYP B3LYP
BLYP
GPAW

BLYP B3LYP
BLYP
GPAW

Bond (Å)
Pt-Pt 3.005 3.091 3.065 -0.211 -0.241 -0.248 -0.205
Pt-P 2.393 2.425 2.399 0.031 0.032 0.019 0.032
P-O(-P′) 1.718 1.711 1.679 0.001 0.002 -0.000 0.001
P· · ·P′ 3.098 3.126 3.084 -0.060 -0.062 -0.067 -0.055
Angles (deg)
P-O-P′ 128.84 131.90 133.38 -4.63 -5.07 -5.39 -4.27
(Pt-Pt-P)α 91.14 90.40 90.23 5.49 5.45 4.42 5.42
(Pt-Pt-P)β 91.08 90.42 90.22 -1.96 -1.28 -0.14 -1.93
P-Pt-Pt-P′ 0.03 0.00 0.01 0.61 0.54 0.36 0.46

a ECP and valence electrons basis set used for the Pt atoms. b T1 calculated using
unrestricted DFT.

functional, is in the Pt-Pt distance, which is 0.086 Å shorter in the GPAW structure. We

note that the GPAW calculated Pt-Pt distance of 3.005 Å is much closer to the experimen-

tal range (2.913-2.979 Å) of values found from X-ray crystallography.55,92–94 The differences

become smaller in the excited states since the structure calculated with standard KS DFT

experiences a larger Pt-Pt contraction. The S1 and T1 excited states are formed by pro-

motion of an electron from the metal-metal dσ∗ HOMO antibonding to the metal-metal pσ

LUMO bonding orbital of the complex. Eventually, the excitation results in the formation

of a bond between the two Pt atoms with consequent shortening of the Pt-Pt distance. The

Pt-Pt contractions from ground to excited state predicted by all different methods are well

within the experimental range (0.19-0.28 Å) of values obtained from Franck-Condon analy-

sis of the vibronic progression of low-temperature absorption and emission spectra51,57 and

X-ray diffraction measurements55,56 of crystals. The Pt-Pt bond in the T1 state is found to

be shorter than in the S1 state of ∼0.01 Å from the GPAW calculations. Indeed, a slightly

reduced contraction in the singlet excited state with respect to the triplet has been inferred

experimentally by comparing the wavenumbers of the Pt-Pt stretching progression exhibited
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by the absorption bands of crystal (n-Bu4N)4[PtPOP] relative to the S1 (145-147 cm−1) and

T1 (150 cm−1) states,7,50 and was further confirmed by the DFT calculations performed by

Zálǐs et al.58 using the PBE0 functional, which delivered a ∆(S1 − T1) for the Pt-Pt bond

of ∼0.02 Å. In Figure 1 (left) we report the PESs computed along the Pt-Pt coordinate for

all three electronic states using GPAW with the BLYP functional. As expected, the PESs

of T1 and S1 are shifted to shorter Pt-Pt distances with respect to the ground state and

parallel to each other, a feature that, up to now, had only been postulated experimentally

based on the similarities of the low-temperature S0 → S1 and S0 → T1 absorption bands.7,50

To our knowledge, this is the first time that this experimental observation is confirmed by

a DFT calculation of the S1 and T1 PESs of PtPOP. Inspection of the relative energies of

the singlet and triplet excited states from Figure 1 reveals that the simulations underes-

timate the experimental single-triplet splitting by a factor of around 2.5. The S1 vertical

transition energy calculated at the S0 optimized geometry by the ∆SCF method is 3.51 eV,

in good agreement with the position of the maximum of the absoption spectra of PtPOP

between 360 and 370 nm (3.35-3.44 eV) for different crystals.50,51 The discrepancy in the

singlet-triplet splitting is due to the triplet excited state being understabilized by ∼0.5 eV

in the calculations. A similar excitation energy for the triplet was obtained by Novozhilova

et al.59 by TDDFT with the BLYP functional and an all-electron basis set for Pt. Thus, the

failure in correctly reproducing the energy of T1 might come from deficiencies of the GGA

functional BLYP in properly accounting for the exchange repulsion term in the T1 state of

PtPOP. However, since the present work focuses exclusively on structural properties of the

molecule and on the BO dynamics in the S1 state that occurs at times considerably shorter

than the ISC times observed for PtPOP in water solution, reproducing an accurate energy

picture of the lowest triplet excited state was not relevant for this study.

Turning to the other geometrical parameters, the most prominent changes between

ground- and excited-state structures in interatomic distances involving atoms in the ligands

are represented by a lengthening of the Pt-P bonds and by a shortening of the P· · ·P′ distan-
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ces along the Pt-Pt axis, which is, however, much smaller than the Pt-Pt contraction itself.

An elongation of the Pt-P bonds in the excited state of PtPOP is a well-known prediction of

DFT.59 Since using B3LYP results in a ∼40% smaller elongation, as evident from Table 1, it

seems also to be the structural effect of excitation that is most sensible to the introduction

of exact exchange in the DFT functional. Apart from that, BLYP and B3LYP predicted

structural changes from ground to excited state agree within 0.007 Å for bond lengths and

1◦ for angles, while differences in the ground state are all smaller than 2% of the BLYP

calculated values. Therefore, given the similarities between BLYP and B3LYP results in this

case, it was possible to perform BOMD simulations using the computationally cheaper GGA

functional without loss of accuracy with respect to DFT with a hybrid functional.

An interesting aspect of the optimized geometry of the excited states that emerges from

inspection of the angles reported in Table 1 is that PtP4 moieties do not retain a local square

based planar geometry but slightly distort towards a quasi-trigonal bipyramidal structure

(see also Figure 2). This results in a lowering of the symmetry of the Pt2P8 core of the

molecule from D4h to D2d. The extent of the distortion can be quantified by the difference

(indicated by ∆) between 6 Pt-Pt-P angles involving equatorial and axial P atoms of the local

quasi-trigonal bipyramidal geometry (indicated by α and β, see Figure 2). To characterize

in more detail this structural distortion involving the ligands, we have computed the PES in

the S1 state along the coordinate ∆. The PES is shown in Figure 2 and clearly reveals the

presence of a rotational barrier between equivalent D2d geometries. The pseudorotation of

the P atoms in each PtP4 group resembles the Berry isomerization mechanism95 occurring

in trigonal bipyramidal molecules, although the angle 6 (Pt-Pt-P)α does not reach the 120◦

value characteristic of a perfect bipyramidal geometry due to the rigidity of the P-O-P

bridging ligands. D2d isomers of transition metal M2L8 dimers, where each ML4 is in a

local trigonal bipyramidal geometry and can undergo Berry pseudorotation, are known,96

but have never been reported before for PtPOP. From the experimental side, Ohashi and

co-workers55 interpreted the outcome of time-resolved X-ray diffraction measurements of
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Figure 2: Vacuum PES of the S1 state of PtPOP along the pseudorotation coordinate ∆.
∆ is the angle difference defined in the figure. The Pt2P8 core of PtPOP is shown at the
symmetric minima and at the transition state of the potential energy curve. The structure
at ∆=0 has D4h symmetry and each PtP4 group is in a local square pyramidal geometry,
as in the fully optimized ground-state molecule. The minima correspond to a Pt2P8 core
with D2d symmetry and PtP4 groups in a quasi-trigonal bipyramidal geometry. Open circles
represent the calculated points, while the line is a cubic spline fit to the data.

crystals assuming D4h symmetry. However, the analysis derived a large contraction of ∼

0.1-0.2 Å of the Pt-P bonds, which is in contrast to the slight lengthening obtained from

all DFT calculations. Moreover, it should be considered that in crystals there are packing

forces and interactions with counterions that might come into play, which are not taken

into account in the calculations of the gas-phase isolated molecule, making the validity

of a direct comparison with experiments dubious. It is difficult, on the other hand, to

explain why previous computational works where the structure of PtPOP in the triplet state

was optimized with unrestricted DFT without symmetry constraints, have not reported

this ligand distortion with symmetry lowering of the Pt2P8 core. The existence of a local

minimum at a geometry with D2d symmetry for both the T1 and S1 states is supported by

all type of DFT calculations presented here, and was reproduced also by a GGA functional

different than BLYP, as shown in Figure S5 of the Supporting Information. In the absence
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of detailed information about the true nature of reported T1 geometries in the literature, we

speculate that this ligand distortion might have been overlooked.

Equilibrium solution structure

Table 2: Structural parameters of PtPOP in water obtained as averages over
equilibrium QM/MM BOMD data for the S0 and S1 states of PtPOP, and compa-
rison with available solution experimental valuesa . The MD average was carried
out over a total simulation time of ∼460 ps for S0 and of ∼160 ps for S1.

S0 ∆ (S1 − S0) ∆ (T1 − S0)
Calc34 Exp54,97 Calc Exp98 Exp53,54

Bond (Å)
Pt-Pt 2.99 2.98b -0.20 -0.24(4)b -0.24(6)b

Pt-P 2.33 2.32(4)c 0.01 - 0.010(6)c

P· · ·P′ 3.09 2.92b -0.01 - 0.00(8)b

Angles (deg)
(Pt-Pt-P)α 91.2 - 5.0 - -
(Pt-Pt-P)β 91.2 - -0.3 - -

a As explained in the text, it is assumed to be possible to directly compare simulation
results for S1 to experimental values obtained for T1 when experimental data for S1 are not
available. b Obtained in water by X-ray scattering experiments.54,98 c Obtained in ethanol

by X-ray absorption measurements.53,97

Table 2 reports bond lengths and angles obtained as averages over the thermally equi-

librated S0 and S1 QM/MM trajectories in water. The only structural parameter of the

S1 state of PtPOP in aqueous solution that has ever been determined experimentally is

the Pt-Pt distance. This bond length was recently deduced from a fit to XFEL difference

scattering data by Biasin et al.98 As seen in Table 2, the Pt-Pt distance predicted by the

∆SCF-QM/MM BOMD simulations agrees to a very good extent with the experimental S1

Pt-Pt distance. For the other structural parameters in S1, there are no values available

from experiments. On the other hand, structural parameters other than the Pt-Pt distance

have been determined experimentally for the T1 state in solution, and are reported in Table

2. The latter include the P· · ·P′ distances obtained by time-resolved X-ray scattering me-

asurements by Christensen et al.,54 and the Pt-P bond lengths derived by van der Veen et
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al.53,97 from a fit to time-resolved X-ray absorption spectra in ethanol. The S1 calculated

structural parameters and the experimental values for T1 agree within the uncertainties of

the experiments. Assuming that the solution structures of the S1 and T1 states are virtually

the same, as they are in gas-phase (see Table 1), the comparison can be taken as a validation

of the ∆SCF-QM/MM BOMD simulations with respect to structural parameters of PtPOP

in S1, or as an indication that S1 and T1 indeed have the same structure. From a compa-

rison with the corresponding structural parameters of the gas-phase optimized geometries,

we notice that the average Pt-Pt distance in solution is only 0.01 Å shorter, while the sol-

vent affects much more significantly structural parameters involving ligand atoms. This is

particularly evident for the Pt-P bonds, which in the ground state are found to be ∼0.06

Å shorter than in the isolated geometry-optimized structure and in S1 experience a ∼70%

smaller elongation. In addition, despite the fact that the shortening of the Pt-Pt distance

due to excitation is found to be the same in vacuum and solution, the P atoms follow the Pt

atoms in the contraction along the Pt-Pt axis to only 0.01 Å, ∼80% less than in gas phase.

As a side note, we point out that differences induced by the presence of the solvent on these

structural parameters of PtPOP are larger than the changes brought by the use of a hybrid

DFT functional like B3LYP, as can be seen by comparing the values reported for the Pt-P

and P· · ·P′ distances in Table 1 and 2. This, again, means that there would be no significant

advantage in employing the computationally more expensive B3LYP functional instead of

BLYP in the QM/MM BOMD simulations.

An analysis of the average values of the 6 Pt-Pt-P angles reveals that also in solution the

PtP4 units are distorted towards a quasi-trigonal bipyramidal local geometry with respect

to the ground state (though the angle difference ∆ found in solvent is ∼5◦, around 2◦

smaller than for the optimized S1 vacuum geometry). This is an important result, because

it hints at the fact that a direct S1 → T1 ISC mechanism might be active in solution, which

could explain the ∼3000-times faster ISC rates exhibited by PtPOP with respect to its

perfluoroborated analogue,7,60 where pseudorotation of the bulkier and more rigid ligands
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is less likely. Indeed, the role of structural distortions in lowering the D4h symmetry of

the Pt2P8 core of PtPOP, thus promoting direct SOC between S1 and T1, has been often

hypothesized but so far never proven.7,10,58,60

Figure 3: (Left) Pairwise Pt-solvent RDFs sampled from the equilibrated part of the
QM/MM trajectories in S0 and S1. The gray vertical line indicate the extent of the first
solvation shell around one Pt atom. (Right) Illustration of the coordination of water mo-
lecules around a single Pt atom of PtPOP. Water molecules highlighted with a particular
color belong to the peak of the Pt-Osolvent RDFs with a shaded area of the same color.

We now turn to an examination of the solvation shell structure in the S1 state as compared

to the one obtained for the ground state in our previous QM/MM BOMD study.34 Figure

3 shows the Pt-Hsolvent and Pt-Osolvent RDFs extracted from the equilibrated trajectories

in S1 and S0
34 using a bin size of 0.01 Å for the radial sampling. The position of water

molecules within each of the coordination peaks with respect to a single Pt atom is illustrated

schematically in Figure 3 (Right). The first peaks are indicative of the presence of strong

H-coordination of solvent molecules at the Pt-ends of the complex34 (molecules highlighted

in blue in Figure 3 (Right)). The second coordination peaks (yellow water molecules) span

Pt-H solvent distances between ∼ 4.5 Å and ∼ 5.5 Å and Pt-Osolvent distances between ∼ 5.5 Å

and ∼ 6.5 Å. These peaks comprise water molecules that are found to lie mainly off-axis

with respect to the Pt-Pt direction. Due to the presence of two Pt atoms, and given the
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symmetry of the complex, water molecules of the second peaks make up also the third peaks

of the RDFs (5.5 Å < dPtH < 7.0 Å and 6.5 Å < dPtO < 8.3 Å). This is better illustrated

by the water molecules highlighted in purple in the schematics of Figure 3 (Right). That

water molecules belonging to the second (and third) peaks do not take up the space along

the Pt-Pt direction is supported by the fact that the distance between the second and third

peaks (∼1.5 Å) is less than the intramolecular Pt-Pt distance. In the excited state, neither

the position of the first nor the second peaks change, which means that molecules in the

two peaks must draw closer in conjunction with the Pt-Pt contraction. This is further

supported by a shift of the third peaks to shorter distances as this results from the Pt atoms

finding themselves closer to water molecules located on the opposite sides of the complex

in the excited state. The second most notable change in the RDFs is represented by a

slightly reduced coordination in the first peaks. If the extent of the first coordination shell

is taken up to the first minimum of the Pt-Osolvent RDF, at 3.85 Å, we can quantify the

coordination with the running coordination number at this distance. It follows that the

Pt-Osolvent coordination number in the first shell is found to be around 0.77 for PtPOP in

S1, only ∼0.1 smaller than in the ground state. Water molecules in this shell seem also to

retain, after excitation, a preferential axial orientation, where the O-H donor bond tends to

point along the Pt-Pt axis of the solute. This is revealed by Figure 4, which shows that

distributions of key solute-solvent angles, indicative of the extent of axial coordination, are

largely unaltered by the excitation. Experimentally, emission spectra of PtPOP are found to

be independent of the solvent.99 The finding that electronic excitation does not lead to any

major restructuring in the local organization of solvent molecules surrounding the complex is

in agreement with this experimental observation and points to the fact that this might be the

case also for other types of solvents. This behaviour is in sharp contrast to the solvent shell

response observed for photoexcitation of the d8-d8 complex [Ir2(dimen)4]
2+ (where dimen

is diisocyano-para-menthane) by ultrafast X-ray scattering measurements in acetonitrile.12

In that case, the effect of electronic excitation was found to be a loss of coordination of
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Figure 4: Probability distributions (Γ) of solute-solvent angles involving water molecules in
the first coordination shell of the Pt atoms in PtPOP as defined by the extent of the first
peak of the Pt-Osolvent RDF in Figure 3. The color code for the distributions is the same
as in Figure 3. The sampled angles are shown schematically using an MD snapshot selected
from one of the S1 ∆SCF-QM/MM trajectories (for visualization purposes hydrogen atoms
of the solute are omitted), and are related to the orientation of water molecules with respect
to the Pt-Pt axis of the complex.

methyl groups with the open coordination site at the metal atoms, followed by reorientation

of the solvent molecules to specifically coordinate Ir atoms with the more electronegative

cyano endings. In both complexes a metal-metal bond is formed after photoexcitation,

thus effectively shifting electronic density from the outer side of the planar faces of the

molecules to the inside (see the Supporting Information for an analysis of the electronic

density difference between the S0 and S1 states of PtPOP as obtained from the vacuum

calculations performed in this work). Although different solvents are involved in the two

cases, the different response of coordinating solvent molecules can be rationalized in terms

of different contributions of atomic orbitals localized on ligand atoms in the formation of the

LUMO. For PtPOP, the LUMO has a largely predominant pz character; as a consequence,

in the excited state, a considerable portion of the electronic density still localizes in outward

position with respect to the planar PtP4 faces (see Figure S2 in the Supporting Information).
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This, in turn, permits the Pt atoms of the complex to retain their ability to coordinate

the more electropositive part of the solvent and it is probably connected to the previously

mentioned excited-state reactivity towards H atom donors. For [Ir2(dimen)4]
2+, on the other

hand, previous DFT calculations7 have highlighted a substantial involvement of π∗
z(C≡N)

orbitals in the formation of the LUMO, shifting more electron density from the outer sides

of the molecule and making the excited state a stronger Lewis acid.

Vibrational dynamics in vacuum

We have performed two different types of ∆SCF BOMD simulations of S1 PtPOP in vacuum.

In the first simulation, a single S1 trajectory was started from a structure geometry-optimized

in vacuum in the S1 state with respect to all DOF except for the Pt-Pt distance, which was

set at the value of the ground-state optimized structure (3.005 Å). At the beginning of

the simulation all atomic momenta were equal to 0. The trajectory was then propagated

for 16 ps with time step of 1 fs. While this choice of initial conditions is far from being

representative of the state created by excitation with an ultrashort laser, it nevertheless

provides a useful means for more easily identifying vibrational modes of the molecule that

couple more strongly to the Pt-Pt stretching mode, since at the beginning of the dynamics

almost all excess potential energy will be concentrated in this mode. In a second vacuum

∆SCF BOMD simulation, we have propagated a S1 trajectory starting from the optimized

geometry of the ground state. This second choice of initial conditions corresponds to a CW

(infinitely long) pump pulse. In which case, the excitation window of equation (17) is a delta

function and only one trajectory is propagated (this is the Bersohn-Zewail (BZ) model, see

for example87). This simulation was aimed at producing a picture of the dynamics that is

closer to the events that take place in an ultrafast pump-probe experiment than the one that

emerges from the first simulation. Total propagation time and time step were the same as

those of the ∆SCF BOMD run started from a relaxed S1 geometry with the Pt-Pt distance

of the ground state.
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In the first vacuum simulation, the Pt-Pt stretching mode takes up alone almost all excess

vibrational energy at the beginning of the dynamics. This is most apparent from Figure 5,

which reports at different interval of times during the simulation the percent fraction of

average total energy (kinetic plus potential) for the four modes that were found to have the

largest average kinetic energy over the entire simulation time and for the sum of the rest.

The average total energy for each mode was calculated from the virial theorem as twice the
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Figure 5: Time evolution of the total energies (kinetic plus potential) of selected vibrational
modes and the sum of the rest as obtained from a generalized normal mode analysis of
a gas-phase S1 trajectory started from a PtPOP structure with the Pt-Pt distance of the
ground state and all other DOF relaxed in the S1 state. In total, the modes extracted from
the vibrational analysis after removing the translations and overall rotations, and taking
into account the constraints enforced on the positions of the hydrogen atoms during the
dynamics, were 92. The total mode energies were averaged over time intervals of 300 fs
and expressed as a percentage of the total average vibrational energy. See Figure 6 for a
depiction of the four selected modes

average of the kinetic energy over intervals of 300 fs. The four selected modes are depicted

in terms of generalized normal mode displacement vectors in Figure 6. The figure also shows

the Fourier transform (FT) of the autocorrelation function Ci(t) of the mode velocities for

each mode. These were calculated from:

Ci(t) =
〈

Q̇i(0)Q̇i(t)
〉

(19)
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Figure 6: The four main generalized normal modes involved in the gas-phase S1 dynamics
of PtPOP, and the FTs of their velocity autocorrelation functions. The position of the
maximum of the FT of a mode gives the characteristic frequency of that mode.

The positions of the FT peaks represent the characteristic vibrational frequencies of the

modes. The mode with character of Pt-Pt stretching is indicated as “pinch”. Initially in the

dynamics, this mode takes up to almost 90% of the total vibrational energy. After around

6 ps, the portion of energy shared by the pinching mode has decreased by around 95% of

the initial value. Of this, ∼80% has flowed into 87 modes, which seem to be activated

simultaneously and at the same rate, with none of them showing particular preference for

overtaking the excess Pt-Pt vibrational energy; while around 20% has been transferred to a

single mode with main character of ligand twist (twist 1). Thereafter, a significant portion of

the energy flow is directed towards the other two remaining modes (twist 2 and breathing),

which, thus, seem to be activated rather sequentially after the activation of twist 1. The

interplay between the four main modes identified in the vibrational analysis manifests itself

in the evolution of the respective kinetic energies, as illustrated in Figure 7. In particular,

the strong coupling between the pinching mode and twist 1 is evident from the fact that

while the energy flow into twist 1 is at a maximum, around 6-7 ps, the kinetic energy of

the pinch has reached a minimum, and after that has a small increase at the expense of
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Figure 7: Instantaneous kinetic energy of the four main modes of a generalized normal
mode analysis of PtPOP along a vacuum trajectory in S1 where almost all excess vibrational
energy is initially stored along the Pt-Pt stretching coordinate. The energies of the twist 2
and breathing modes are shifted upwards for better clarity. All modes are visualized with
the help of displacement vectors in Figure 6.

the energy accumulated in twist 1. The same is true at early times in the dynamics for

the pinching and breathing modes. In fact, at times earlier than 1 ps, energy is seen to

rapidly flow in and out of the breathing mode, matching a local minimum in the evolution

of the kinetic energy of the pinch. To shed light on the origin of the couplings between

these vibrational modes, an analysis in terms of their characteristic frequencies (see Figure

6) and main structural distortions involved is needed. The Pt-Pt pinching period of 242 fs is

in satisfactory agreement with the ∼230 fs value extracted from the vibrational progression

of the low-temperature S0 → S1 absorption band of crystal (n-Bu4N)4[PtPOP],7,50 already

mentioned before. Interestingly, the breathing mode having also partial character of Pt-Pt

stretching, thus explaining why these two modes seem to be coupled despite the breathing

mode has a considerably higher frequency. Regarding the latter, the period of 140 fs obtained

from the maximum of the FT of this mode is in very good agreement with the experimental

232 cm−1 peak (144 fs period) of the Raman spectrum of PtPOP in the ground state,100 which

was assigned to a symmetric Pt2P8 stretching mode by Gellene and Roundhill74 on the basis

of a DFT vibrational analysis. Lastly, twist 1 and twist 2 are antisymmetric twistings of the
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ligands, where pairs of opposite ligands twist in clockwise and counterclockwise directions,

resulting in variations of the dihedral 6 P-Pt-Pt-P′ and in-plane 6 P-Pt-P angles. The strong

coupling between the pinching and one of these twisting modes (twist 1) is readily explained

by the fact that they share almost the same frequency. Indeed, the period of the twisting

mode is found to be only ∼8 fs longer than that of the pinch. A vibrational analysis

carried out using the Gaussian09 program on the ground-state molecule optimized in vacuum

with BLYP identified an analogous normal mode with frequency close to the one of the

Pt-Pt stretching mode. Furthermore, the calculated gradients of the dipole moment and

polarizability of PtPOP along this mode are very close to 0, revealing that it is neither IR or

Raman active, thus explaining why it has never been observed experimentally (unfortunately

Gellene and Roundhill74 have decided to report only DFT-calculated frequencies that could

be compared to experimentally determined IR or Raman transitions, thus a comparison

with their vibrational analysis cannot be made for this mode). Plots of the evolution of

the structural parameters that are mostly involved in the dynamics of the selected modes,

together with their FTs, are shown in Figure 8. The frequencies of the fluctuations of reported

atomic displacements and angles, and the time evolution of their amplitudes correlate very

well with the evolution of the mode kinetic energies shown in Figure 7, thus further validating

the results of the generalized normal mode analysis. We note that it would be more difficult

to infer the intramolecular energy flow from the local mode picture provided by the evolution

of the amplitudes of oscillations of single structural parameters, when a priori knowledge

of the coupled nuclear motion in the dynamics is lacking. This is clear, for example, from

the plot of the evolution of the average P-P distance between P atoms belonging to the

same PtP4 group and to opposite ligands, which features two superimposed oscillations with

different frequencies (indeed, the P-P distances change both in the breathing and pinching

modes); as a consequence, the correlation between the pinching and breathing modes before

1 ps, which shows up clearly in the evolution of the kinetic energies, is lost, thus highlighting

the advantages offered by a decomposition of the kinetic energy in generalized normal mode
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Figure 8: Evolution of the main geometry parameters of PtPOP involved in the ∆SCF
BOMD vacuum simulation started from a relaxed S1 structure with the Pt-Pt distance of
the ground-state optimized geometry, and their FT. Changes in the reported parameters
and their frequencies correlate with variations in the kinetic energy of the normal modes
presented in Figure 7. (Top) Evolution of the Pt-Pt distance. (Bottom, left) Instantaneous
average P-P distance between P atoms belonging to opposite ligands. Since P-P symmetric
vibrations take part in both the breathing and pinching modes, fluctuations in this parameter
reflect the frequencies of both modes. (Bottom, right) Variation of the mean of the 6 P-Pt-
Pt-P′ dihedral angles involving ligands that undergo simultaneous clockwise torsion in the
dynamics of the twist 1 and twist 2 modes.

contributions as performed in this work. Overall, we can conclude that the dynamics is

dominated by the pinching mode, which is initially activated, and those few modes that are

more strongly coupled to it. In the case of the breathing mode, the coupling can be explained

by the partial character of Pt-Pt stretching that this mode presents; while in the case of the

twist 1 mode, the coupling derives from its period being very close to that of the pinching

mode. Finally, the twist 2 mode is involved in the dynamics because it has a very similar

character to, and hence is coupled to, the twist 1 mode.

In the second ∆SCF BOMD vacuum simulation, started from the ground-state optimized

geometry of the complex, the portion of total energy stored initially in the pinching mode

was found to be much smaller than in the first simulation, being equal to only ∼30% (see
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Figure S11 in the Supporting Information). Notably, an almost equal portion of energy is

shared by a mode that was not activated in the first simulation. This mode is depicted in

Figure 9 (right), where also the FT of the autocorrelation of mode velocities is reported. It

Figure 9: Evolution of the vacuum S1 trajectory started from the optimized gas-phase S0

geometry of PtPOP along the coordinates that, at the beginning, share the largest portion
of vibrational energy of the molecule. (Top, left) Variation of the Pt-Pt distance. (Bottom,
left) Evolution of the pseudorotation coordinate ∆ defined in Figure 2. (Right) Visualization
of the mode that corresponds to motion along ∆ and is activated at the beginning of the
dynamics together with the pinching mode.

is characterized by a bending of the ligands corresponding to nuclear motion in the well of

the potential energy landscape along the pseudorotation coordinate ∆, as defined in Figure

2. This is further confirmed by the evolution of ∆ during the dynamics (Figure 9 (bottom

left)), which shows a first rapid increase, followed by oscillations with a period of ∼490 fs

around a value of about 7◦, consistent with the shape and the minimum of the potential

shown in Figure 2. The only experimental indication of the existence of a vibrational mode

with a lower frequency than the metal-metal stretching in PtPOP is given by the presence

of a ∼40 cm−1 sideband on the Pt-Pt vibronic progression of low-temperature absorption

and emission spectra of single crystals of Ba2[PtPOP],51 which was attributed to a ligand

deformation mode, but was never further characterized. According to the results of our
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simulations we assign the observed mode to a bending of the ligands in a D2d geometry (of

the Pt2P8 core), thus reaffirming our conclusion that PtPOP in the excited state does not

retain a C4h symmetry. In Figure 10 we report the evolution of the instantaneous kinetic

energy along the modes with the largest average kinetic energy over the entire MD simulation

time. These include the pinching and bending modes, the breathing and twist 1 modes,

identified also previously, and a new twisting mode (twist 3). The behaviour of the twist 3

mode is similar to the twist 2 mode observed for the first vacuum ∆SCF BOMD simulation,

in that it is activated later in the dynamics, after about 6 ps, but has a slightly different

period (∼107 fs) and character of the torsional motion (see Figure S12 in the Supporting

Information). The energy along the bending mode is seen to decrease rapidly in the first
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Figure 10: Evolution of the instantaneous kinetic energy along the vibrational modes of
PtPOP that undergo the largest displacements during a vacuum BOMD propagation in S1

started from the ground-state optimized geometry of the complex.

∼3 ps. The pinching mode, instead, has, at ∼3 ps, around the same kinetic energy it had

at the beginning; hence, it is reasonable to assume that a considerable portion of the excess

energy of the bending flows to the pinch. Besides, we observe how, in this second type of

simulation, the coupling between the pinching and the breathing and twist 1 modes seems to

be accentuated. This is apparent from the multiple local dips that characterize the evolution

of the kinetic energy of the pinch in the first ∼3 ps, which are accompanied by variations
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of the same magnitude but opposite sign in the energy of the breathing and twist 1 modes.

What is new with respect to the first simulation, in which all coordinates except the Pt-Pt

distance were relaxed before running the dynamics, is that a non-negligible portion of the

total kinetic energy of the molecule is also stored in the breathing and twisting modes from

the very beginning of the dynamics. Therefore, we conclude that initial activation following

the gradients of the excited-state potential after excitation can induce a stronger coupling

of the ligand deformation modes with the Pt-Pt vibrations along the dynamics.

Solution dynamics

Figure 11 shows a schematic of the excitation process simulated in aqueous solution, together

with plots of the evolution of the distribution of Pt-Pt distances as obtained from the ensem-

ble of out-of-equilibrium S1 ∆SCF-QM/MM trajectories. The excited population exhibits

coherent Pt-Pt oscillations around the equilibrium distance of 2.79 Å with a period of ∼230 fs

that persist up until around 2 ps. The value of the vibrational period is found in remarkably

good agreement with the experimental period of 224.5 ± 0.1 fs measured by van der Veen et

al.14 in a femtosecond transient absorption experiment in water. So far we have shown that

the Pt-Pt distance is not the only coordinate to undergo large changes from ground to exci-

ted state, but the Pt-Pt contraction is accompanied by a bending of the ligands, quantified

by an increase of the parameter ∆ by ∼5◦. Therefore, we have examined the possibility that

the ensemble of excited molecules displays coherent oscillations also along the coordinate ∆

by plotting the evolution of the distribution of angle differences ∆ (Figure 12). As apparent

from Figure 12, no coherent oscillations are observed for the bending motion, but rather the

trajectories along this coordinate exhibit the behaviour of overdamped oscillators, reaching

the equilibrium value gradually over a time of ∼ 2.5 ps. This finding is consistent with the

lack of oscillating signatures different from the Pt-Pt stretching vibrations in time-resolved

measurements in solution.14 Focusing back on the Pt-Pt oscillations, we have investigated

the causes of the decoherence by quantifying the coherence decay (τc) and vibrational cooling
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Figure 11: (Left) Schematics of the simulated S0 → S1 photoexcitation of PtPOP in aqueous
solution. The S0 and S1 potentials used within the SF approximation of the excitation (see
equations (16) and (17)) are Morse-potential fits to the PMF obtained as explained in the
Computational methods section, while the parameters of the laser pulse appearing in the
expression of the excitation window F (dPtPt), equation (17), were chosen such to reproduce
the experimental conditions of the transient absorption experiment of van der Veen et al.14

as close as possible. The continuous gray line is the equilibrium QM/MM distribution of
Pt-Pt distances in the ground state. The portion of molecules promoted to S1 according to
equation (16) was subtracted from the equilibrium S0 distribution to give the (unnormalized)
distribution represented by the dashed line. The non-stationary distribution propagated in
S1 by ∆SCF-QM/MM BOMD (blue curves) is shown immediately after excitation, at its
first classical turning point and at the end of the nonequilibrium dynamics. (Right, top)
Density plot of the evolution of the ensemble of Pt-Pt distances obtained from propagation
of 49 ∆SCF-QM/MM trajectories in S1 satisfying the initial conditions shown in the left
panel. The superimposed black curve represent the instantaneous average Pt-Pt distance.
(Right, bottom) Time dependence of the average Pt-Pt distance of the nonequilibrium S1

ensemble (black line) together with the best fit (red line) from equation (20). All displayed
distributions were smoothed with a cubic smoothing spline.

(τe) times (see101 for an extensive discussion of these concepts) predicted by the simulations.

To obtain the simulation decoherence time, we have fitted the time-dependent average of

Pt-Pt distances with a periodic monoexponentially decaying function of the form:

fc(t) = Ae−t/τc cos

(

2π

T
t

)

+B (20)
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Figure 12: Density plot of the evolution of the distribution of angle differences ∆ extracted
from the ensemble of S1 ∆SCF-QM/MM trajectories of PtPOP in water. The black line is
the mean ∆ along the ensemble propagation. The distributions were smoothed with a cubic
smoothing spline.

in which T is the coherent oscillation period. Accordingly, the vibrational cooling time τe was

computed by fitting the time-dependent kinetic energy of the pinching mode obtained from

the generalized normal mode analysis, and shown in Figure 13, with the following function:

fe(t) = Ce−t/τe cos2
(

2π

T
t+

π

2

)

+D (21)

The best fits gave values of τc = 520±14 fs and τe = 320±10 fs. Relaxation of the vibrational

energy competes, in solution, with pure dephasing processes, arising from elastic stochastic

collisions with the solvent and phase changes along an anharmonic potential, in determining

the final coherence time of the ensemble oscillations. We estimated the pure dephasing time

(τd) by making use of the approximations underlying the optical Bloch equations.102 In the

optical Bloch picture, the rate of decoherence is given, phenomenologically, by the sum of

the rates of the two competing processes of vibrational cooling and pure dephasing:

1

τc
=

1

2τe
+

1

τd
(22)
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Figure 13: Time dependence of the kinetic energy of the pinching mode of PtPOP (black open
circles) obtained from the vibrational analysis of the S1 ∆SCF-QM/MM BOMD simulations
and averaged over all trajectories. The red line is the best fit of the function in equation
(21) to the time dependence of the average pinching kinetic energy. Also shown (blue line)
is the average translational kinetic energy of water molecules sampled by requiring that (i)
at t = 0 they are within the first peak of the Pt-Osolvent RDF (see Figure 3) and (ii) at the
end of the nonequilibrium propagation they have not left this coordination shell. Finally, the
dashed vertical lines represent the times when the average Pt-Pt distance of the ensemble of
non-stationary S1 PtPOP molecules is at the first two outer turning points.

Using equation (22), a value of 2770 fs is found for τd. This means that the decoherence of the

Pt-Pt vibrations is essentially driven by energy dissipation along the Pt-Pt coordinate, while

statistical effects are far less important. Experimentally, decoherence times of τc = 1.76±0.8

ps and τc = 1.5±0.5 ps were found from transient absorption and time-resolved fluorescence

up-conversion measurements respectively.14 Furthermore, vibrational cooling was found to

happen on time scales of τc = 1.31 ± 0.04 ps (transient absorption) and τc = 1.5 ± 0.2 ps

(fluorescence up-conversion), i.e. simultaneously to coherence decay. Therefore, while the

coherence decay is around three times faster in our simulations, they agree qualitatively with

the experiments in the observation that the origin of the decoherence is mostly dynamical,

i.e. a result of (dynamical) energy dissipation in the excited system, and not statistical in

nature. This behaviour is a consequence of the compactness and rigidity of the scaffold of

P-O-P ligands, the first providing screening of the Pt-Pt oscillator from (stochastic) inte-

ractions with solvent molecules, and the second offering a highly harmonic force constant for

the pinching motion (the period of the oscillations in the average Pt-Pt distance from the
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simulations changes by only ∼18 fs from the first to the last oscillation). As for the causes of

the quantitative discrepancy between the coherence decay and vibrational relaxation times

found for PtPOP from the present simulations with respect to the experimental values, we

argue that this can be a consequence of different factors. One of the main cause derives

from the calculations slightly overestimating the anharmonicity of the Pt-Pt motion. This is

underpinned by the fact that the PMF computed from the equilibrated part of the S1 ∆SCF-

QM/MM trajectories, shown in Figure 11, is best fitted with a Morse potential, while in the

transient absorption measurements performed by van der Veen et al.14 the period changes

at most by ∼1.5 fs in going from a 360 to a 380 nm excitation wavelength (as already menti-

oned, in our simulations the period changes by ∼18 fs at the end of the coherent dynamics).

Another possible cause of the discrepancy with the experimental values of coherence decay

and vibrational relaxation times could be an overestimation of solvent-induced fluctuations

in the energies of the KS orbitals in the ∆SCF-QM/MM BOMD simulations. These fluctu-

ations could favour temporarily other electronic states getting closer to S1, which, in turn,

would lead to a faster dephasing of the QM/MM trajectories

The mechanism of coherence decay in PtPOP is different from what was proposed for

the [Ir2(dimen)4]
2+ complex29 mentioned previously. The main factor causing decoherence

in [Ir2(dimen)4]
2+ is, in fact, statistical, ascribable to the flexibility of the dimen ligands

that impart higher anharmonicity to the potential energy surface and a broader width to

the distribution of configurations of ground-state molecules that can be excited.7,29 Even

more insightful is, perhaps, a comparison with the behaviour observed for I2 undergoing

geminate recombination after photoexcitation in different environments. When the reaction

was followed in solvents like CCl4 or cyclohexane, vibrational relaxation was found to occur

without coherent oscillations.103 The behaviour of PtPOP is, instead, much more similar

to that of I2 in solid krypton, where stochastic collisions with solvent molecules leading to

dephasing in solution are absent and the system is allowed to dissipate energy while retaining

the vibrational phase.102,104 In all cases, the rigidity of the environment surrounding the
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oscillators is found to play an important role in determining whether vibrational coherence

survives during the energy relaxation process or not.

Having established that vibrational cooling drives the coherence decay of the ensemble

of Pt-Pt oscillators, the natural question that arises at this point is: what are the paths

of energy dissipation from the Pt-Pt coordinate? To provide an answer to this question,

we have first investigated the hypothesis advanced by van der Veen et al.14 that the main

channel of energy dissipation involves transient orientationally specific interactions of the

Pt atoms with water molecules coordinated at the open axial site. To do so, we have

calculated the average translational and rotational energies of water molecules selected from

the first solvent coordination shell around the Pt atoms defined by the first peak of the

Pt-Osolvent RDF, as indicated in Figure 3. The average translational energy is plotted as a

function of time in Figure 13 together with the average kinetic energy along the pinching

mode. The average rotational energy extracted from the trajectories did not display any

particular displacement from its equilibrium thermal value, and, thus, it’s not reported here.

Early in the dynamics, the average translational energy of the coordinating water molecules

experiences small positive fluctuations from its thermal equilibrium value. These fluctuations

happen at around 250 and 450 fs, i.e. at the first and second outer turning points of the

average Pt-Pt distance. This uptake of energy by the solvent, however, represents only a

small fraction of the loss of energy from the pinching mode, and, certainly, cannot explain

the steady decrease happening already during the first Pt-Pt oscillation period. In other

words, the water molecules are more “spectators” of the Pt-Pt dynamics, rather than active

participants in the relaxation process. This is further substantiated by the time evolution

of the first peak of the Pt-Osolvent RDF presented in Figure 14. The oscillations that appear

until around 500 fs mirror the Pt-Pt oscillations of the excited-state ensemble of PtPOP

molecules, thus implying that the solvent molecules are relatively static during this part of

the dynamics. After that, the Pt-Pt distribution has almost reached an equilibrium, and

the solvent molecules rearrange to the new solute configuration, as evident from the inset
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Figure 14: Density plot of the time evolution of the first peak of the Pt-Osolvent RDF obtained
from the S1 ∆SCF-QM/MM trajectories of PtPOP in water during the first 3 ps of dynamics.
The inset shows the time dependence (black curve) of the cumulative Pt-Osolvent coordination
number at dPtO = 3.85 Å, representing the instantaneous average number of water molecules
found within the first solvent coordination shell of the Pt atoms, together with the value
(red line) obtained from the equilibrated part of the ∆SCF-QM/MM trajectories.

of Figure 14, which reports the time evolution of the Pt-Osolvent cumulative coordination

number at the first minimum of the RDF (dPtO = 3.85 Å). Since only water molecules

coordinating to the Pt atoms at the free axial sites are eligible to accept energy directly

from the Pt-Pt pinching, the simulations seem to exclude direct solute-solvent interactions

as the main source of energy loss. Therefore, other intramolecular vibrational modes have

to mediate dissipation of the excess energy along the Pt-Pt coordinate to the solvent owing

to anharmonic couplings with the pinching mode. A second indication that this is indeed

the case is given by Figure 15 (top), where the total vibrational energy of PtPOP averaged

over time intervals of 100 fs is plotted. An exponential fit to the evolution of the total

vibrational energy, also shown in Figure 15 (top), gives a time constant of 600 ± 200 fs

(uncertainty estimated from the 95% confidence bound of the fitting parameter) for the

decay before reaching equilibrium. Hence, the total vibrational energy is dissipated almost

twice as slow as the vibrational cooling along the Pt-Pt coordinate. It is reasonable to

expect that the energy put into vibrational modes involving ligand atoms in the excitation

process is dissipated faster to the solvent than the Pt-Pt excess energy since the ligands

43



Figure 15: (Top) Evolution of the ensemble average total vibrational energy of PtPOP
(black circles) obtained as sum of the kinetic energies of the individual generalized normal
modes, according to equation (11), from the vibrational analysis of the S1 ∆SCF-QM/MM
trajectories. The average ensemble total energy was further averaged over time intervals of
100 fs as indicated by the horizontal black lines. The red line is an exponential fit to the
data points, while the horizontal dashed line represents the theoretical value of vibrational
energy of an ensemble of molecules with the number of DOF of PtPOP in the simulations
in equilibrium at 300 K. (Bottom) Plots of the time dependence of the kinetic energy along
selected vibrational modes of PtPOP for three representative ∆SCF-QM/MM trajectories in
S1. The kinetic energies of modes a, b and c are vertically shifted for clarity of presentation.

are more exposed to direct interactions with the solvent. It follows that the above result

can be interpreted as an indication that the energy initially stored in the Pt-Pt coordinate

might survive in the PtPOP molecule for longer than the simulated vibrational cooling time

for the ensemble of Pt-Pt oscillators. As a last, more stringent, test of this mechanistic

hypothesis we have plotted in Figure 15 (bottom) the evolution of the kinetic energy for

the pinching mode together with three other relevant vibrational modes, as obtained from

the generalized normal mode analysis, along three representative trajectories. The modes

labelled mode b and mode c were found to have similar frequencies and large overlaps with

respectively the twist 1 and breathing modes obtained from the gas-phase trajectories, and

shown previously to be coupled to the pinching mode. However, they cannot be characterized

fully as a twisting and a breathing mode, since they exhibit also character of other types
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of vibrations, most significantly Pt-P stretching (a representation of the modes in terms of

displacement vectors is given in Figure S13 in the Supporting Information). Mode a does not

overlap significantly with any of the main modes coupled in vacuum with the Pt-Pt pinch.

It has mixed character of Pt-P stretching and ligand twist, with an autocorrelation function

of mode velocities (see Figure S13) centered around 120 fs. This period is not far from the

position of the peak (138 fs) in the IR spectrum of PtPOP assigned to P-Pt-P stretching by

Gellene and Roundhill.74 Notably, the evolution of the kinetic energies along these ligand

deformation modes is seen from Figure 15 (bottom) to be strongly anticorrelated with the

evolution of the kinetic energy of the pinching mode, since drops in the latter are always

mirrored by increments of the former and vice versa. P-O and P-OH groups in the molecule

experience large nuclear motion along the three ligand vibrational modes. Since these groups

are likely involved in hydrogen bonding with the water molecules during the dynamics, the

modes are expected to efficiently funnel excess energy to the solvent.

Overall, the simulations carry clear signs that dissipation of the Pt-Pt energy to the

solvent, which drives the decoherence of the Pt-Pt oscillations, occurs mainly indirectly

through IVR to modes characterized by motion of the O-P-OH moieties. The result seems to

confirm the hypothesis recently put forward by Monni et al.,10 mentioned in the introduction,

that anharmonic couplings between internal modes are the main source of decoherence of

the Pt-Pt vibrations in photoexcited PtPOP. Since vibrational cooling along the pinching

mode is found from the simulations to be much faster in solvent compared to vacuum, we can

deduce that the role of the solvent is actually to facilitate anharmonic couplings between the

modes, making IVR more efficient. Experimentally, van der Veen et al.14 found a dependence

of vibrational cooling to the solvent, which was interpreted as a signature of direct energy

transfer from the Pt-Pt coordinate to the solvent. This interpretation, however, neglects

the fact that different solvents can affect the strength of the anharmonic couplings between

internal modes differently, thus changing the rates of IVR. Once again, this is in contrast to

what was found for [Ir2(dimen)4]
2+ in acetonitrile, where the solvent prolongs coherence of
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the metal-metal oscillations by making, in some cases, IVR less likely than in vacuum.29

Conclusions

In this work, we have shed light on the structural and solution dynamics of the first excited

state of the model photocatalyst PtPOP by performing PESs calculations and nonequili-

brium vacuum and QM/MM BOMD simulations. A modified version of ∆SCF was used to

obtain the electronic structure of S1. The approach relies on a Gaussian smearing of the

discrete ∆SCF constraints on the orbital occupation numbers to readily converge the elec-

tronic density of the complex during the dynamics, and was implemented in the GPAW DFT

code. The computational expediency of the method was exploited to collect large amount

of statistics in order to unambiguously assess the validity of the simulations against known

experimental data.

We reported DFT-calculated PESs along the Pt-Pt coordinate for both the first dσ∗ → pσ

singlet and triplet excited states, for the first time providing computational evidence that

they have approximately the same shape and position with respect to the ground-state gas-

phase equilibrium geometry. From a structural point of view, we also found that in the

excited state PtP4 groups are distorted towards a local quasi-trigonal bipyramidal geometry,

thus lowering the Pt2P8 core symmetry to D2d; an aspect that had passed unnnoticed from

previous DFT calculations but which could play a decisive role in determining the trends

observed in the ISC rates of PtPOP and its derivatives in solution.7,58,60 This distortion

is associated to the presence of a low-frequency mode in the molecule with character of

bending of the ligands, which in the gas-phase ∆SCF BOMD simulations manifests itself

with oscillations with a period of ∼490 fs (68 cm−1). Based on this, we tentatively assigned

the 40 cm−1 sideband superimposed to the Pt-Pt stretch progression in low-temperature

absorption spectra of PtPOP in crystals,51 which had so far remained uncharacterized, to

this ligand distortion mode.
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As for the ultrafast dynamics following photoexcitation to S1 in water, we have established

the paths of energy flow from the Pt-Pt stretching vibrations to the solvent. Water molecules

strongly coordinated along the Pt-Pt axis of the complex are not the direct recipients of

excess energy, but channels of IVR to ligand deformation modes that can efficiently funnel

it to the solvent were found to prevail. Thanks to the support of the vacuum ∆SCF BOMD

simulations and an analysis in terms of the time dependence of the internal vibrational

kinetic energy along generalized normal modes, we were able to identify the intramolecular

motions that are most likely to accept excess energy from the Pt-Pt pinching. The modes

involved in the IVR were found to have main character of ligand twisting and Pt-P bond

stretching, and vibrational periods between ∼120 and ∼250 fs, close to the period of the

Pt-Pt stretching vibrations (∼230 fs from the simulations). The role of the solvent in the

relaxation process was found to strengthen anharmonic couplings between the pinching and

the ligand deformation modes, thus facilitating IVR with respect to the scenario in vacuum.

The decay of coherent Pt-Pt oscillations in water from the simulations is around three times

faster than the experimentally determined decoherence time; however, there is a qualitative

agreement in the prediction that vibrational cooling along the Pt-Pt coordinate occurs by

preserving to a large extent the vibrational phase.

The present study focused on the relaxation events taking place in S1 in the first pi-

coseconds after photoexcitation in water. The intersystem crossing to the lower lying T1

state is known from transient absorption measurements to occur much later, after around

∼14 ps.14 This permitted us to use ∆SCF-QM/MM BOMD simulations that neglect any

non-adiabatic and spin-orbit couplings between electronic states. The S1 state, where the

investigated structural dynamics occurs, was found to be relatively well isolated from T1

and other higher lying electronic states, as implied by the unperturbed shape of all obtained

S1 potential curves. However, fluctuations in the solvent configurations could temporarily

shift the energy levels, thus favouring the approach of different electronic states. In order

to asses the interplay between these transient energy levels fluctuations and the structural
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distortion of the symmetry of the molecule caused by bending of the ligands in determining

the rates of ISC in water solution, non-adiabatic dynamics simulations including SOCs and

solvent effects are needed. Future computational studies should point in this direction to

expand on the knowledge about the excited-state relaxation cascade at later times than those

considered in the present investigation.

Concluding, we have shown that ∆SCF-QM/MM BOMD simulations can be a very po-

werful tool to investigate aspects of the excited-state dynamics and reactivity of complex

molecular systems in solution. Current computational resources pose a limit to the utilization

of high-level multireference methods for statistically robust sampling of solvent-influenced

dynamics. In this context, cost-effective multiscale methods based on DFT as presented here

represent a valuable alternative, offering first-hand theoretical support to ultrafast experi-

ments with unprecedented atomistic and time resolution.
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