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Solutions for a Singular Elliptic Problem Involving the p(x)-Laplacian
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Abstract. Here, a singular elliptic problem involving p(x)−Laplacian operator in a bounded domain in
RN is considered. Due to this, the existence of critical points for the energy functional which is unbounded
below and satisfies the Palais-Smale condition are proved.

1. Introduction

A large number of researcher study the elliptic equations and variational problems with variable ex-
ponent, because of its importance in the theory of partial differential equations. Some of these problems
come from different areas of applied mathematics and physics such as Micro Electro-Mechanical systems,
modeling of Electrorheological Fluids, Surface Diffusion on Solids or Image Processing and Restoration.

On of the famous elliptic equations is Laplacian. This operator can be categorized as follows:

• Laplacian ∆ :=
∑

j ∂
2
j is linear and homogeneous.

• p−Laplacian ∆pu(x) := div(|Du|p−2Du) is nonlinear but homogeneous.

• p(x)−Laplacian ∆p(x)u := div(|∇|p(x)−2
∇u) is nonlinear and nonhomogeneous.

Thus it seems the problems involving p(x)−Laplacian are usually much harder than those involving Lapla-
cian or p−Laplacian from this point of view. Moreover, the singular boundary value problems involving
the p−Laplacian operator have been studied by many researchers [2, 5–9, 13, 14]. Finally, the singularity
elliptic problem involving p(x)−Laplacian operator is studied (see [10], [20]).

In this paper we consider the following problem

(Pλ)
{
−∆p(x)u + |u|s−2u

|x|s = λ f (x,u) in Ω,
u = 0 on ∂Ω,

where

• ∆p(x)u = div(|∇u|p(x)−2
∇u), denotes p(x)−Laplacian operator,

• p(x) ∈ C(Ω̄),
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• 1 < s < p(x) < ∞,

• Ω ⊂ RN is a bounded domain with smooth boundary,

• λ > 0 is a real parameter and

• q(x) ∈ C(Ω̄) with 1 < q(x) < p∗(x) where

P∗(x) :=
{ Np(x)

N−p(x) p(x) < N,
∞ p(x) ≥ N.

• f : Ω ×R→ R is a Carathéodory function satisfying

| f (x, t)| ≤ a1 + a2|t|q(x)−2, for all (x, t) ∈ Ω ×R (1)

where a1, a2 are two positive constants.

In order to be familiar with the notations and literature associated to the problem, the following prelim-
inaries are presented.

Definition 1.1. [15] The function f : Ω ×R→ R is a Carathéodory function, if

• x→ f (x, t) is measurable for every t ∈ R.

• t→ f (x, t) is continuous for almost every where x ∈ Ω.

Definition 1.2. [22] Let X be a real Banach space. The operator T : X → X∗ is said strictly monotone if 〈T (u) −
T (v) , u − v〉 ≥ 0 for each u, v in X.

Definition 1.3. [16] Let 1 < s < N, we recall the classical Hardy’s inequality, which says that∫
Ω

|u(x)|s

|x|s
dx ≤

1
H

∫
Ω

|∇u(x)|sdx, for all u ∈ X, (2)

where H := ( n−s
s )s.

Definition 1.4. [21] Let X be a reflexive real Banach space. The operator T : X→ X∗ is said the (S+) condition if the
assumptions lim supn→+∞〈T (un) − T (u0) ,un − u0〉 ≤ 0 and un ⇀ u0 in X imply un → u0 in X.

Definition 1.5. [1] Let X be a Banach space and Φ : X→ R a C1-functional, we say that Φ satisfies the Palais-Smale
condition, denoted by (PS), if any sequence un in X such that Φ(un) is bounded and Φ′(un)→ 0 admits a convergent
subsequence.

Let Ω be a bounded subset ofRN, (N ≥ 2) and p(x) ∈ C(Ω̄). The space Lp(x)(Ω) is defined, see as e.g. [18] and
[19], as

Lp(x)(Ω) =

{
u : Ω→ R; u is measurable and

∫
Ω

|u(x)|p(x)dx < ∞
}
,

and it is endowed with following norm

‖u‖Lp(x) := in f
{
λ > 0;

∫
Ω

∣∣∣∣∣u(x)
λ

∣∣∣∣∣p(x)

dx ≤ 1
}
.

Moreover, the space W1,p(x)(Ω) is defined by

W1,p(x)(Ω) :=
{
u ∈ Lp(x); |∇u| ∈ Lp(x)

}
,
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and norm in W1,p(x) is

‖u‖W1,p(x) := ‖u‖Lp(x) + ‖|∇u|‖Lp(x) .

Also

W1,p(x)
0 (Ω) :=

{
u ∈W1,p(x); u|∂Ω = 0

}
.

Let X := W1,p(x)
0 (Ω) endowed with norm

‖u‖ = ‖|∇u|‖Lp(x) ,

the compact embedding X ↪→ Lq(x)(Ω), shows the existence of a Cq > 0 such that

‖u‖Lq(x) ≤ Cq‖u‖, (3)

where 1 < q(x) < p∗(x), for all x ∈ Ω, (see [11, Proposition 2.5 ]). Set

p− := inf
x∈Ω

p(x), p+ := sup
x∈Ω

p(x)

Assume that Φ : X→ R is a functional defined by

Φ(u) =

∫
Ω

(
1

p(x)
|∇u|p(x) +

|u|s

s|x|s
)dx (4)

where 1 < s < p− ≤ p(x) ≤ p+ < ∞. By [17] and [11, Theorem 3.1],

• Φ ∈ C1.

• It is continuously Gâteaux differentiable functional.

• For all u, v ∈ X,

Φ′(u)(v) =

∫
Ω

(|∇u|p(x)−2
∇u∇v +

|u|s−2uv
|x|s

)dx. (5)

• The operator Φ′ : X→ X∗ defined by (5) is strictly monotone.

• The operator Φ′ : X→ X∗ is homeomorphism and satisfies the condition (S+).

Moreover, by [12, Theorem 1.3] we have:

Proposition 1.6. Let u ∈W1,p(x)
0 and ρp(u) :=

∫
Ω
|u(x)|p(x)dx. Then

(i) ‖u‖ < 1(= 1 :> 1)⇐⇒ ρp(|∇u|) < 1(= 1 :> 1);
(ii) ‖u‖ > 1, then 1

p+ ‖u‖p
−

≤ Φ(u) ≤ 1
p− ‖u‖

p+
+

∫
Ω

|u|s
s|x|s dx;

(iii) ‖u‖ < 1, then 1
p+ ‖u‖p

+
≤ Φ(u) ≤ 1

p− ‖u‖
p− +

∫
Ω

|u|s
s|x|s dx.

Now, let f : Ω ×R→ R be a Carathéodory function.

• For all (x, ξ) ∈ X, define

F(x, ξ) :=
∫ ξ

Ω

f (x, t)dt. (6)
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• For u ∈ X, define Ψ : X→ R by

Ψ(u) :=
∫

Ω

F(x,u(x))dx, (7)

• Ψ is continuously Gâteaux differentiable functional.

• Ψ ∈ C1 and has compact derivative such that

Ψ′(u)(v) :=
∫

Ω

f (x,u(x))v(x)dx, (8)

for u, v in X (see [17]).

• Define I := Φ − λΨ. Let I′(u) = 0. So∫
Ω

(|∇u|p(x)−2
∇u∇v +

|u|s−2uv
|x|s

)dx = λ

∫
Ω

f (x,u(x))v(x)dx, (9)

for u, v ∈ X. Thus the critical points of I are the weak solutions of problem Pλ.

2. Two weak solutions

First we recall the following Bonanno’s theorem [4].

Theorem 2.1. Let X be a real Banach space, Φ,Ψ : X → R be two continuously Gâteaux differentiable functionals
such that Φ(0) = Ψ(0) = 0. Fix r > 0 and assume that, for each

λ ∈]0,
r

sup
u∈Φ−1(]−∞,r[)

Ψ(u)
[

the functional Iλ := Φ − λΨ satisfies (PS) condition and it is unbounded from below. Then, for each

λ ∈]0,
r

sup
u∈Φ−1(]−∞,r[)

Ψ(u)
[

the functional Iλ admits two distinct critical points.

We present the existence of two weak solutions by applying Theorem 2.1 in case r = 1.

Theorem 2.2. Let f satisfies (1), F be in (6), and there exist θ > p+ and r > 0 such that

0 < θF(x, t) ≤ t f (x, t). (10)

Then, for λ ∈]0, λ∗[, the problem (Pλ) admits two weak solutions, where

λ∗ :=
1

a1C1(p+)
1

p− + a2
q− [Cq]q(p+)

q+

p−

. (11)

Proof. Let Φ and Ψ are defined by (4) and (7), respectively. We prove the following steps:
Step 1. I := Φ − λΨ satisfies (PS) condition.
Assume {un} is a sequence in X such that

d := sup
n→+∞

I(un) < ∞, ‖I′(un)‖X∗ → 0,
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thus

d ≥ I(un)
≥

∫
Ω

1
p(x) |∇un|

p(x)dx + 1
s

∫
Ω

|un |
s

|x|s dx − λ
∫

Ω
F(x,un)dx

≥

∫
Ω

1
p(x) |∇un|

p(x)dx + 1
s

∫
Ω

|un |
s

|x|s dx − λ
θ

∫
Ω

f (x,un)undx

≥ ( 1
p+ −

1
θ )

∫
Ω
|∇un|

p(x)dx + 1
θ‖I
′(un)‖ ‖un‖,

so ‖un‖ is bounded. Therefore, if un ⇀ u so Ψ′(un) → Ψ′(u), since I′(un) = Φ′(un) − λΨ′(un) = 0 then
Φ′(un)→ λΨ′(un), thus un → u (because Φ′ is homeomorphism). So I satisfies the condition (PS).

Step 2. I is unbounded from below.
First we show, there exists M ∈ R+ such that for x ∈ Ω and |t| > M

F(x, ξ) ≥ K|ξ|θ. (12)

(10) implies

0 < θF(x, ξt) ≤ ξt f (x, ξt), for all ξ > 0.

Let m(x) := min
|ξ|=M

F(x, ξ) and 1t(z) := F(x, zt) for all z > 0 thus

0 < θ1t(z) = θF(x, zt) ≤ zt f (x, zt) = z1′t(z)

for all z > M
|t| , so∫ 1

M
|t|

1′t(z)
1t(z)

dz ≥
∫ 1

M
|t|

θ
z

dz,

then

Ln(
1t(1)

1t( M
|t| )

) ≥ Ln(
|t|θ

Mθ
)

therefore

F(x, t) = 1t(1) > F(x,
M
|t|

t)
|t|θ

Mθ
≥ m(x)

|t|θ

Mθ
≥ K|t|θ

so (12) is established.
Fixed v ∈ X − {0}, for each t > 1 one has

I(tv) =
∫

Ω
1

p(x) |t∇v|p(x)dx + 1
s

∫
Ω

|tv|s
|x|s dx − λ

∫
Ω

F(x, tv)dx

≤ tp+
∫

Ω
1

p(x) |∇v|p(x)dx + ts

sH

∫
Ω

|∇v|s
|x|s dx − λKtθ

∫
Ω
|v|θdx − C1

≤ tp+
(
∫

Ω
1

p(x) |∇v|p(x)dx + 1
sH

∫
Ω

|∇v|s
|x|s dx) − λKtθ

∫
Ω
|v|θdx − C1,

where H as in Definition (1.3). Since p+ < θ if t→ +∞ then I→ −∞.
Fix λ ∈]0, λ∗[ where λ∗ is defined as (11) and will be given later. Proposition 1.6 for each u ∈ Φ−1(]−∞, 1[)

implies

‖u‖ ≤ [p+Φ(u)]
1
p ≤ [p+]

1
p = (p+)

1
p− . (13)
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by (3) and Proposition 1.6∫
Ω

|u(x)|q(x)dx = ρq(u) ≤ [‖u‖Lq(x)(Ω)]
q
≤ [Cq‖u‖]q (14)

for u ∈ X. By the compact embedding X ↪→ L1(Ω), X ↪→ Lq(Ω) there exist C1,Cq > 0 and by (1), (10), (13)
and (14)

Ψ(u) =
∫

Ω
F(x,u)dx

≤ a1

∫
Ω
|u(x)|dx + a2

q−
∫

Ω
|u(x)|q(x)dx

≤ a1C1‖u‖ + a2
q− [Cq‖u‖]q

≤ a1C1[p+]
1

p− + a2
q− [Cq]q(p+)

q+

p−

= 1
λ∗

< 1
λ ,

therefore λ < 1
sup

u∈Φ−1(]−∞,1[)

Ψ(u) . Let I := Iλ in Theorem 2.1, thus by Theorem 2.1 problem (Pλ) admits two weak

solutions.

Here we present two examples to show the validity of Condition (10) of Theorem 2.2. In other words, in each
example we present a function f (x, t) to check the validity of Condition (10). Consequently, by Theorem 2.2
we can guarantee the existence of two weak solutions for each problem presented in the examples.

Example 2.3. Consider the following problem
−∆p(x)u + |u|s−2u

|x|s = λq(x)sinht, in Ω,

u = 0, on ∂Ω.

For x ∈ R, 1 < p+ < θ < |t| < q(x) < ∞, we have

F(x, t) = q(x)[cosht − 1].

We prove θF(x, t) < t f (x, t), or equivalently θcosht − tsinht − θ ≤ 0, for x ∈ R and 1 < θ < |t|. For this, we discuss
two following cases:
(i) if t > θ > 1 then

θcosht − tsinht − θ < θcosht − tsinht − θ
< θe−t

− θ < 0.

(ii) if t < −θ < −1 hence

θcosht − tsinht − θ < θcosht + tsinht − θ
< θet

− θ < 0.

Therefore, the function f satisfies Condition (10), so by Theorem 2.2 this problem has two weak solutions.

Remark 2.4. In Example 2.3, it is easily seen that the function q(x) can be replaced by all positive functions
cosh x, ex, x2.
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The following example (given in [3]) presents a function f (x, t) to satisfy Condition (10).

Example 2.5. Let a and b be two positive constants and

f (x, t) =


a + bq(x)tq(x)−1 x ∈ Ω, t ≥ 0

a − bq(x)(−t)q(x)−1 x ∈ Ω, t < 0

for (x, t) ∈ Ω ×R and 1 < p+ < q(x) < ∞. Thus f satisfies Condition (10) of Theorem 2.2.

3. Three weak solutions

First we recall the following Bonanno’s theorem [4].

Theorem 3.1. Let X be a reflexive real Banach space, Φ : X→ R be a coercive, continuously Gâteaux differentiable
and sequentially weakly lower semi-continuous functional whose Gâteaux derivative admits a continuous inverse on
X∗, Ψ : X→ R be a continuously Gâteaux differentiable functional whose Gâteaux derivative is compact such that

inf
x∈Ω

Φ(x) = Φ(0) = Ψ(0) = 0.

Assume that there exist r > 0 and x ∈ X with Φ(x) < r such that

(i)
sup

Φ(x)<r
Ψ(x)

r < Ψ(x)
Φ(x) .

(ii) for each λ ∈ Λ :=] Φ(x)
Ψ(x) ,

r
sup

Φ(x)<r
Ψ(x) [ the functional Φ − λΨ is coercive.

Then for each λ ∈ Λ, the functional Φ − λΨ has at least three distinct critical points in X.

In order to percent the existence of at least three weak solutions set

δ(x) = sup {δ > 0 : B(x, δ) ⊆ Ω} ,

D = sup
x∈Ω

δ(x),

for x ∈ Ω, it is easy to see that there exists x0 ∈ Ω such that

B(x0,D) ⊆ Ω.

Also, for a > 0 and q(x) ∈ C(Ω) with

1 < q− := inf
x∈Ω

q(x) < q(x) < q+ := sup
x∈Ω

q(x) < 0,

we have

[a]q(x) := max
{
aq− , aq+

}
,

[a]q(x) := min
{
aq− , aq+

}
,

where x ∈ Ω. Let r > 0, set

ω :=
1
r

{
a1C1(p+)

1
p− [r]

1
p +

a2

q−
[Cq]q(p+)

q+

p− [[r]
1
p ]q

}
(15)

where a1, a2 are positive numbers and C1,Cq are ordinary embedding constants X ↪→ L1(Ω) and X ↪→
Lq(x)(Ω), respectively.
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Theorem 3.2. Assume that f ,F satisfy (6) and

F(x, t) ≥ 0, (16)

for (x, t) ∈ Ω ×R+. Suppose there exists C ∈ [0,∞) such that

F(x, t) ≤ C(1 + |t|q(x)), (17)

for (x, t) ∈ Ω × R, q(x) ∈ C(Ω) and 1 < q− < q(x) < q+ < p−. Moreover, there exist δ, r > 0 with r <
1

p+ [ 2δ
D ]pm(DN

− ( D
2 )N) such that

ω <
(H + 1)[ 2δ

D ]p(2N
− 1)

sH inf
x∈Ω

F(x, δ)
.

Then, for every λ ∈ Λ, the problem (Pλ) has at least three weak solutions, where

Λ :=]
(H + 1)[ 2δ

D ]p(2N
− 1)

sH inf
x∈Ω

F(x, δ)
,

1
ω

[

and ω is in (15), m := π
N
2

N
2 Γ( N

2 )
is measure of unit of RN and Γ is the Gamma function.

Proof. Let X,Φ,Ψ and I be the same as the last section. We investigate the conditions (i), (ii) of Theorem 3.1.
Let u ∈ X such that

u(x) =


0 x ∈ Ω\B(x0,D),
δλ x ∈ B(x0, D

2 ),
2δλ
D (D − |x − x0|) x ∈ B(x0,D)\B(x0, D

2 ),

where |.| is Euclidean norm on RN. By Proposition 1.6 and hypothesis of theorem

r < 1
p+ [ 2δ

D ]pm(DN
− ( D

2 )N)

≤

∫
Ω

( 1
p(x) |∇u|p(x) + |u|s

s|x|s )dx = Φ(u)

≤

∫
Ω

1
s |∇u|p(x)dx + 1

sH

∫
Ω
|∇u|sdx

≤
1
s [ 2δ

D ]pm(DN
− ( D

2 )N) + 1
sH [ 2δ

D ]sm(DN
− ( D

2 )N)

≤
H+1
sH [ 2δ

D ]pm(DN
− ( D

2 )N).

Therefore

Ψ(u)
Φ(u)

≥

sH inf
x∈Ω

F(x, δ)

(H + 1)[ 2δ
D ]p(2N − 1)

, (18)

because

Ψ(u) ≥
∫

B(x0,D)
F(x,u(x))dx ≥ inf

x∈Ω
F(x, δ)m(

D
2

)N

thus, for every u ∈ Φ−1(−∞, r] by Proposition 1.6

‖u‖ ≤ [p+Φ(u)]
1
p ≤ (p+)

1
p− [r]

1
p . (19)
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Thanks to (19), (1), the compact embedding X ↪→ L1(Ω) and X ↪→ Lq(x)(Ω), we have

Ψ(u) =
∫

Ω
F(x,u(x))dx

≤ a1

∫
Ω
|u(x)|dx + a2

q−
∫

Ω
|u(x)|q(x)dx

≤ a1C1‖u‖ + a2
q− [Cq]q(p+)

q+

p− [[r]
1
p ]

≤ a1C1(p+)
1

p− [r]
1
p + a2

q− [Cq]q(p+)
q+

p− [[r]
1
p ]

for u ∈ Φ−1(−∞, r], therefore

1
r

sup
u∈Φ−1(−∞,r]

Ψ(u) ≤
1
r

{
a1C1(p+)

1
p− [r]

1
p +

a2

q−
[Cq]q(p+)

q+

p− [[r]
1
p ]
}
<

Ψ(u)
Φ(u)

this implies part (i) of Theorem 3.1 is satisfied.

Here, we show that for each λ > 0, I := Φ− λΨ is coercive. Let u ∈ X with ‖u‖ ≥
{
1, 1

Cq

}
, by (3) and (17), we

have

Ψ(u) =
∫

Ω
F(x, t)dx ≤

∫
Ω

(C(1 + |t|q(x)))dx

≤ C(|Ω| + [Cq‖u‖]q+
),

therefore

I(u) = Φ(u) − λΨ(u) ≥
1

p+
‖u‖p

−

− λC(|Ω| + Cq+

q ‖u‖
q+

),

hence, according q+ < p− implies I is coercive. So by Theorem 3.1 the problem Pλ has at least three weak
solutions.
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