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In this paper using �xed pointmethodswe establish some existence theorems of positive (nontrivial) solutions for integral boundary
value problems of nonlinear Hadamard fractional di�erential equations.

1. Introduction

In this work we study the following integral boundary
value problems of nonlinear Hadamard fractional di�erential
equations

�� (�� (��� (�))) = 
 (�, � (�)) , 1 < � < �,
� (1) = �� (1) = �� (�) = 0,

��� (1) = 0,
�� (��� (�)) = � ∫�

1
�� (��� (�)) d�

� ,

(1)

where �, �, and � are three positive real numbers with � ∈
(2, 3], � ∈ (1, 2], and � ∈ [0, �), ��(�) = |�|�−2� is the �-
Laplacian for � > 1, � ∈ R, and 
 is a continuous function

on [1, �] × R. Moreover, let �−1� = �� with 1/� + 1/� = 1. In
what follows, we o�er some related de�nitions and lemmas
for Hadamard fractional calculus.

De	nition 1 (see [1, Page 111]). 
e �th Hadamard fractional
order derivative of a function � : [1, +∞) �→ R is de�ned by

��� (�) = 1
Γ (� − �) (� d

d� )
�

∫	
1

(log �
� )�−�−1 � (�) d�

� , (2)

where � > 0, � = [�] + 1, and [�] denotes the largest
integer which is less than or equal to �. Moreover, we here

also o�er the �th Hadamard fractional order integral of � :
[1, +∞) �→ R which is de�ned by

��� (�) = 1
Γ (�) ∫	

1
(log �

� )�−1 � (�) d�
� , (3)

where Γ is the gamma function.

Lemma 2 (see [1, Theorem 2.3]). Let � > 0, � = [�] + 1. 
en

����� (�) = � (�) + �1 (log �)�−1 + �2 (log �)�−2 + ⋅ ⋅ ⋅
+ �� (log �)�−� ,

(4)

where �
 ∈ R, ! = 1, 2, . . . , �.
In recent years, there have been some signi�cant develop-

ments in the study of boundary value problems for nonlinear
fractional di�erential equations; we refer to [2–11] and the
references therein. For more related works, see also [12–49].
For example, by using monotone iterative methods, Wang
et al. [3] investigated a class of boundary value problems of
Hadamard fractional di�erential equations involving non-
local multipoint discrete and Hadamard integral boundary
conditions and established monotone iterative sequences,
which can converge to the unique positive solution of their
problems. Similar methods are also applied in [4, 5, 12–15].

For di�erential equations with the �-Laplacian, see, for
example, [6, 7, 15–20] and the references therein. In [6],Wang
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considered the nonlinear Hadamard fractional di�erential
equation with integral boundary condition and �-Laplacian
operator

���� (��� (�)) = 
 (�, � (�)) , � ∈ (1, ") ,
� (") = #��� ($) ,

��� (1) = 0,
� (1) = 0,

(5)

where 
 grows (� − 1)–sublinearly at +∞, and by using
the Schauder �xed point theorem, a solution existence result
is obtained. In [7], Li and Lin used the Guo-Krasnosel’skii
�xed point theorem to obtain the existence and uniqueness
of positive solutions for (1) with � = 0.

However, we note that these are seldom considered
Hadamard fractional di�erential equations with the �-
Laplacian in the literature; in this paper we are devoted to this
direction. We �rst utilize the Guo-Krasnosel’skii �xed point
theorem to obtain two positive solutions existence theorems
when 
 grows (� − 1)–superlinearly and (� − 1)–sublinearly
with the �-Laplacian, and secondly by using the �xed point
index, we obtain a nontrivial solution existence theorem
without the �-Laplacian, but the nonlinearity can allow being

sign-changing and unbounded from below. 
is improves
and generalizes some semipositone problems [21–31].

2. Preliminaries

In this section, we �rst calculate Green’s functions associated
with (1) and then transform the boundary value problem into
its integral form. For this, we give the following lemma.

Lemma 3. Let �, �, �, ��, and ��, �� be as in (1). 
en (1)
can take the integral form

� (�) = ∫�
1

% (�, �) �� (∫�
1

& (�, ') 
 (', � (')) d'
' ) d�

� ,
for � ∈ [1, �] ,

(6)

where

% (�, �) = 1
Γ (�)

⋅ {
{{

(log �)�−1 (1 − log �)�−2 − (log � − log �)�−1 , 1 ≤ � ≤ � ≤ �,
(log �)�−1 (1 − log �)�−2 , 1 ≤ � ≤ � ≤ �,

(7)

and

& (�, ') = &1 (�, ') + �
(� − �) Γ (�) (log �)�−1 log ' (1 − log ')�−1 , for �, ' ∈ [1, �] ,

&1 (�, ') = 1
Γ (�)

{
{{

(log �)�−1 (1 − log ')�−1 − (log � − log ')�−1 , 1 ≤ ' ≤ � ≤ �,
(log �)�−1 (1 − log ')�−1 , 1 ≤ � ≤ ' ≤ �.

(8)

Proof. Use�(�) to replace
(�, �) in (1). Let��(��(���(�))) =
�(�). 
en from Lemma 2 we have

�� (��� (�)) = ��� (�) + �1 (log �)�−1 + �2 (log �)�−2 ,
for �
 ∈ R, ! = 1, 2.

(9)

Note that ���(1) = 0 implies ��(���(1)) = 0, and then �2 =
0. 
erefore, we obtain

�� (��� (�)) = ��� (�) + �1 (log �)�−1 . (10)

Next, we calculate ��(���(�)) and � ∫�1 ��(���(�))(d�/�):
�� (��� (�)) = ��� (�) + �1

= �1 + 1
Γ (�) ∫�

1
(1 − log ')�−1 � (') d'

' , (11)

and

� ∫�
1

�� (��� (�)) d�
�

= � ∫�
1

��� (�) d�
� + ��1 ∫

�

1
(log �)�−1 d�

�

= ��1
� + �

Γ (�) ∫�
1

∫	
1

(log � − log ')�−1 � (') d'
'
d�
� .

(12)


e condition ��(���(�)) = � ∫�1 ��(���(�))(d�/�) enables
us to obtain

�1 = ��
(� − �) Γ (�) ∫�

1
∫	
1

(log � − log ')�−1 � (') d'
'
d�
�

− �
(� − �) Γ (�) ∫�

1
(1 − log ')�−1 � (') d'

' .
(13)

Substituting �1 into (10) gives
�� (��� (�)) = 1

Γ (�) ∫	
1

(log � − log ')�−1 � (') d'
'

− � (log �)�−1
(� − �) Γ (�) ∫�

1
(1 − log ')�−1 � (') d'

'

+ �� (log �)�−1
(� − �) Γ (�) ∫�

1
∫	
1

(log � − log ')�−1 � (') d'
'
d�
�
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= 1
Γ (�) ∫	

1
(log � − log ')�−1 � (') d'

' − (log �)�−1
Γ (�)

⋅ ∫�
1

(1 − log ')�−1 � (') d'
' + (log �)�−1

Γ (�)

⋅ ∫�
1

(1 − log ')�−1 � (') d'
' − � (log �)�−1

(� − �) Γ (�)

⋅ ∫�
1

(1 − log ')�−1 � (') d'
' + �� (log �)�−1

(� − �) Γ (�)

⋅ ∫�
1

∫	
1

(log � − log ')�−1 � (') d'
'
d�
� = − 1

Γ (�)

⋅ ∫	
1

[(log �)�−1 (1 − log ')�−1 − (log � − log ')�−1]

⋅ � (') d'
' − 1

Γ (�) ∫�
	

(log �)�−1 (1 − log ')�−1

⋅ � (') d'
' + �� (log �)�−1

(� − �) Γ (�)
⋅ ∫�
1

∫	
1

(log � − log ')�−1 � (') d'
'
d�
�

− � (log �)�−1
(� − �) Γ (�) ∫�

1
(1 − log ')�−1 � (') d'

'

= − ∫�
1

&1 (�, ') � (') d'
' + �� (log �)�−1

(� − �) Γ (�)
⋅ ∫�
1

∫�
�

(log � − log ')�−1 � (') d�
�
d'
'

− � (log �)�−1
(� − �) Γ (�) ∫�

1
(1 − log ')�−1 � (') d'

'

= − ∫�
1

&1 (�, ') � (') d'
' + � (log �)�−1

(� − �) Γ (�)

⋅ ∫�
1

(1 − log ')� � (') d'
' − � (log �)�−1

(� − �) Γ (�)
⋅ ∫�
1

(1 − log ')�−1 � (') d'
' = − ∫�

1
&1 (�, ')

⋅ � (') d'
' − ∫�

1

�
(� − �) Γ (�) (log �)�−1

⋅ log ' (1 − log ')�−1 � (') d'
' = − ∫�

1
& (�, ')

⋅ � (') d'
' .

(14)

Note that −��(���(�)) = ��(−���(�)), and hence we obtain

− ��� (�) = �� (∫�
1

& (�, ') � (') d'
' ) ,

for � ∈ (2, 3] , � ∈ [1, �] .
(15)


en, if we let 9(�) = ��(∫�1 &(�, ')�(')(d'/')), � ∈ [1, �],
from Lemma 2 we obtain

� (�) = −��9 (�) + �1 (log �)�−1 + �2 (log �)�−2

+ �3 (log �)�−3 , for �
 ∈ R, ! = 1, 2, 3.
(16)


e condition �(1) = ��(1) = 0 implies that �2 = �3 = 0. 
en
we substitute � into the �rst derivative of �, and we calculate
�1 as follows:

�1 = 1
Γ (�) ∫�

1
(1 − log �)�−2 9 (�) d�

� . (17)

As a result, from (16) we have

� (�) = − 1
Γ (�) ∫	

1
(log � − log �)�−1 9 (�) d�

�
+ 1

Γ (�) ∫�
1

(log �)�−1 (1 − log �)�−2 9 (�) d�
�

= ∫�
1

% (�, �) �� (∫�
1

& (�, ') � (') d'
' ) d�

� ,
for � ∈ [1, �] .

(18)


is completes the proof.

Lemma 4. Green’s functions %, & de	ned by (7) and (8) have
the following properties:

(i) %, & are continuous, nonnegative functions on [1, �] ×
[1, �],

(ii) (log �)�−1[(1− log �)�−2−(1− log �)�−1] ≤ Γ(�)%(�, �) ≤
(1 − log �)�−2 − (1 − log �)�−1, for �, � ∈ [1, �].

From [7, Lemma 7] and [8, Lemma 2.2] we easily obtain
this lemma, so we omit its proof.

Let

%1 (�, �) = ∫�
1

% (�, ') & (', �) d'
' ,

; (�) = 1
Γ (�)

⋅ ∫�
1

[(1 − log �)�−2 − (1 − log �)�−1] & (�, �) d�
� ,

for �, � ∈ [1, �] .

(19)


en we obtain the following lemma.

Lemma 5. 
ere exist A1 = ∫�1 (log �)�−1;(�)(d�/�), A2 =
∫�1 ;(�)(d�/�) such that

A1; (�) ≤ ∫�
1

%1 (�, �) ; (�) d�
� ≤ A2; (�) ,

for � ∈ [1, �] .
(20)
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Proof. We only prove the le� inequality above. From
Lemma 4(ii) we have

∫�
1

%1 (�, �) ; (�) dt� = ∫�
1

∫�
1

% (�, ')

⋅ & (', �) d'
' ; (�) d�

� ≥ 1
Γ (�)

⋅ ∫�
1

∫�
1

(log �)�−1 [(1 − log ')�−2 − (1 − log ')�−1]

⋅ & (', �) d'
' ; (�) d�

� = A1; (�) .

(21)


is completes the proof.

Let E = C[1, �] be the Banach space equipped with the
norm ‖�‖ = max	∈[1,�]|�(�)|. 
en we de�ne two sets on E as
follows:

E = {� ∈ E : � (�) ≥ 0, ∀� ∈ [1, �]} ,
E0 = {� ∈ E : � (�) ≥ (log �)�−1 ‖�‖ , ∀� ∈ [1, �]} . (22)

Consequently, E, E0 are cones on E. From Lemma 3 we can
de�ne an operator I onE as follows:

(I�) (�)
= ∫�
1

% (�, �) �� (∫�
1

& (�, ') 
 (', � (')) d'
' ) d�

� ,
for � ∈ E, � ∈ [1, �] .

(23)


e continuity of %, &, 
 implies that I : E �→ E is
a completely continuous operator and the existence of solu-
tions for (1) if and only if the existence of �xed points for I.

Lemma 6 (see [50]). Let E be a Banach space and Ω a
bounded open set in E. Suppose that I : Ω �→ E is a
continuous compact operator. If there exists �0 ∈ K \ {0} such
that

� − I� ̸= ��0, ∀� ∈ MΩ, � ≥ 0, (24)

then the topological degree deg(� − I, Ω, 0) = 0.
Lemma 7 (see [50]). Let E be a Banach space and Ω a
bounded open set in E with 0 ∈ Ω. Suppose that I : Ω �→ E

is a continuous compact operator. If

I� ̸= ��, ∀� ∈ MΩ, � ≥ 1, (25)

then the topological degree deg(� − I, Ω, 0) = 1.
Lemma 8 (see [50]). Let E be a Banach space and E ⊂ E

a cone in E. Assume that Ω1, Ω2 are open subsets of E with

0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2, and let I : E ∩ (Ω2 \ Ω1) �→ E be a
completely continuous operator such that either

(G1) ‖I�‖ ≤ ‖�‖, � ∈ MΩ1 ∩ E, and ‖I�‖ ≥ ‖�‖, � ∈
MΩ2 ∩ E,

or
(G2) ‖I�‖ ≥ ‖�‖, � ∈ MΩ1 ∩ E, and ‖I�‖ ≤ ‖�‖, � ∈

MΩ2 ∩ E.

en I has a 	xed point in E ∩ (Ω2 \ Ω1).

3. Positive Solutions for (1)

Let P� fl {� ∈ E : ‖�‖ < Q} for Q > 0. Now, we �rst list our
assumptions on 
:

(H1) 
 ∈ C([0, 1] × R
+,R+),

(H2) there exist R1 ∈ (1, �), �0 ∈ (1, �) such that
lim inf��→+∞(
(�, �)/��(�)) ≥ ��(S1), lim inf��→0+(
(�, �)/
��(�)) ≥ ��(S2), uniformly on � ∈ [R1, �], where 2S−11 ,
S−12 ∈ (0, (log R1)�−1 ∫�1 %(�0, �)��(∫��1&(�, ')(d'/'))(d�/�)),

(H3) there exists T1 > 0 such that 
(�, �) ≤ ��(S3T1),
∀� ∈ [0, T1], � ∈ [1, �], where S−13 > ∫�1 %(�, �)��(∫�1 &(�,
')(d'/'))(d�/�),

(H4) lim sup��→+∞(
(�, �)/��(�)) ≤ ��(U1),
lim sup��→0+(
(�, �)/��(�)) ≤ ��(U2), uniformly on

� ∈ [1, �], where (2U1)−1, U−12 > ∫�1 %(�, �)��(∫�1 &(�, ')(d'/
'))(d�/�),

(H5) there exist T2 > 0, R1 ∈ (1, �), �0 ∈ (1, �) such that


(�, �) ≥ ��(U3T2), ∀� ∈ [(log R1)�−1T2, T2], � ∈ [R1, �],
where

U−13 ∈ (0, ∫�
1

% (�0, �) �� (∫�
�1

& (�, ') d'
' ) d�

� ) . (26)

Lemma 9. Suppose that (H1) holds. 
en I(E) ⊂ E0.
Proof. If � ∈ E, from Lemma 4 we have

(I�) (�) ≤ 1
Γ (�) ∫�

1
[(1 − log �)�−2 − (1 − log �)�−1]

⋅ �� (∫�
1

& (�, ') 
 (', � (')) d'
' ) d�

� ,
∀� ∈ [1, �] .

(27)

On the other hand,

(I�) (�) ≥ (log �)�−1 ⋅ 1
Γ (�)

⋅ ∫�
1

[(1 − log �)�−2 − (1 − log �)�−1]

⋅ �� (∫�
1

& (�, ') 
 (', � (')) d'
' ) d�

�
≥ (log �)�−1 ‖I�‖ , ∀� ∈ [1, �] .

(28)


is completes the proof.

Remark 10. Our aim is to �nd operator equation � = I�
has �xed points in E, and from Lemma 9, these �xed points
must belong to the cone E0. 
erefore, our work space can be
chosen E0 rather than E.

In what follows, we discuss the existence of positive
solutions for (1) in E0.

eorem 11. Suppose that (H1)-(H3) hold.
en (1) has at least
two positive solutions.
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Proof. From (H3), when � ∈ MP�1 ∩ E0, we have
(I�) (�)
≤ max
	∈[1,�]

∫�
1

% (�, �) �� (∫�
1

& (�, ') 
 (', � (')) d'
' ) d�

�
≤ ∫�
1

% (�, �) �� (∫�
1

& (�, ') �� (S3T1) d'
' ) d�

�
= S3T1∫

�

1
% (�, �) �� (∫�

1
& (�, ') d'

' ) d�
� < T1,

∀� ∈ [1, �] .

(29)

Hence, we obtain

‖I�‖ < ‖�‖ , for � ∈ MP�1 ∩ E0. (30)

On the other hand, by the second limit inequality in (H2),
there exists V1 ∈ (0, T1) such that


 (�, �) ≥ �� (S2�) , ∀� ∈ [0, V1] , � ∈ [R1, �] . (31)

Note that if � ∈ MP�1 ∩ E0, � ∈ [R1, �], from the de�nition of
E0 we have

� (�) ≥ (log R1)�−1 ‖�‖ . (32)


is, together with (31), implies that

‖I�‖ = max
	∈[1,�]

(I�) (�) ≥ (I�) (�0) = ∫�
1

% (�0, �)

⋅ �� (∫�
1

& (�, ') 
 (', � (')) d'
' ) d�

�
≥ ∫�
1

% (�0, �) �� (∫�
�1

& (�, ')

⋅ �� (S2 (log R1)�−1 ‖�‖) d'
' ) d�

�
= S2 (log R1)�−1 ‖�‖ ∫�

1
% (�0, �)

⋅ �� (∫�
�1

& (�, ') d'
' ) d�

� > ‖�‖ ,
for � ∈ MP�1 ∩ E0.

(33)

By the �rst limit inequality in (H2), there exist Y1 > T1 andC1 > 0 such that


 (�, �) ≥ �� (S1�) − C1, ∀� ∈ R
+, � ∈ [R1, �] . (34)

Note that Y1 can be chosen large enough, and if � ∈ MP�1∩E0,
together with (32), there exists C2 > 0 such that


 (�, �) ≥ �� (S1 (log R1)�−1 Y1 − C2) ,
∀� ∈ [R1, �] .

(35)

Combining this and (33), we �nd

‖I�‖ ≥ ∫�
1

% (�0, �) �� (∫�
�1

& (�, ')

⋅ �� (S1 (log R1)�−1 Y1 − C2) d'
' ) d�

�
= (S1 (log R1)�−1 Y1 − C2) ∫�

1
% (�0, �)

⋅ �� (∫�
�1

& (�, ') d'
' ) d�

� ≥ 2Y1 − C3,

(36)

where C3 = C2 ∫�1 %(�0, �)��(∫��1&(�, ')(d'/'))(d�/�). Conse-
quently, we have

‖I�‖ > ‖�‖ , for MP�1 ∩ E0, if ‖�‖ �→ ∞. (37)

In summary, from (30), (33), and (37) with Y1 > T1 > V1,
Lemma 8 enables us to obtain that (1) has at least two positive

solutions in (P�1 \P�1)∩E0 and (P�1 \P�1)∩E0.
is completes
the proof.


eorem 12. Suppose that (H1), (H4)-(H5) hold. 
en (1) has
at least two positive solutions.

Proof. If � ∈ MP�2 ∩ E0, we have ‖�‖ = T2, and � ∈
[(log R1)�−1T2, T2], for � ∈ E0, � ∈ [R1, �]. Hence, from (H5)
we obtain

‖I�‖
≥ ∫�
1

% (�0, �) �� (∫�
1

& (�, ') 
 (', � (')) d'
' ) d�

�
≥ ∫�
1

% (�0, �) �� (∫�
�1

& (�, ') �� (U3T2) d'
' ) d�

�
≥ U3T2 ∫

�

1
% (�0, �) �� (∫�

�1
& (�, ') d'

' ) d�
� > T2.

(38)


is indicates that

‖I�‖ > ‖�‖ , for � ∈ MP�2 ∩ E0. (39)

On the other hand, by the second limit inequality in (H4),
there exists V2 ∈ (0, T2) such that


 (�, �) ≤ �� (U2�) , ∀� ∈ [0, V2] , � ∈ [1, �] . (40)


is, if � ∈ MP�2 ∩ E0, implies that

‖I�‖
≤ ∫�
1

% (�, �) �� (∫�
1

& (�, ') �� (U2� (')) d'
' ) d�

�
≤ ∫�
1

% (�, �) �� (∫�
1

& (�, ') �� (U2V2) d'
' ) d�

�
= U2V2 ∫

�

1
% (�, �) �� (∫�

1
& (�, ') d'

' ) d�
� < V2.

(41)
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is gives

‖I�‖ < ‖�‖ , for � ∈ MP�2 ∩ E0. (42)

By the �rst limit inequality in (H4), there exist Y2 > T2 andC4 > 0 such that


 (�, �) ≤ �� (U1� + C4) , ∀� ∈ R
+, � ∈ [1, �] . (43)

Consequently, if � ∈ MP�2∩E0 withY2 large enough,we obtain

‖I�‖ ≤ ∫�
1

% (�, �)

⋅ �� (∫�
1

& (�, ') �� (U1Y2 + C4) d'
' ) d�

�
= (U1Y2 + C4) ∫�

1
% (�, �) �� (∫�

1
& (�, ') d'

' ) d�
�

≤ 1
2 Y2 + C5,

(44)

where C5 = C4 ∫�1 %(�, �)��(∫�1 &(�, ')(d'/'))(d�/�). Hence,
we have

‖I�‖ < ‖�‖ , for � ∈ MP�2 ∩ E0, if ‖�‖ �→ ∞. (45)

In a word, from (39), (42), and (45) with Y2 > T2 > V2,
Lemma 8 enables us to obtain that (1) has at least two positive

solutions in (P�2 \P�2)∩E0 and (P�2 \P�2)∩E0.
is completes
the proof.

Example 13. Let


 (�, �)

= {
{{

T�−1−�11 S�−13 ��1 , � ∈ (T1, +∞) , � ∈ [1, �] ,
T�−1−�21 S�−13 ��2 , � ∈ [0, T1] , � ∈ [1, �] ,

(46)

where Z1 ∈ (� − 1, +∞), Z2 ∈ (0, � − 1), and S3, T1 are de�ned
by (H3).
en

lim inf
��→+∞


 (�, �)
�� (�) = lim inf

��→+∞
T�−1−�11 S�−13 ��1

��−1 = +∞

≥ �� (S1) ,

lim inf
��→0+


 (�, �)
�� (�) = lim inf

��→0+
T�−1−�21 S�−13 ��2

��−1 = +∞

≥ �� (S2) .

(47)

Moreover, for � ∈ [0, T1], � ∈ [1, �] we have

 (�, �) ≤ T�−1−�21 S�−13 T�21 = (S3T1)�−1 . (48)


erefore, (H1)-(H3) hold.

Example 14. Let


 (�, �) = {
{{

(log R1)−(�−1)�3 T�−1−�32 U�−13 ��3 , � ∈ [(log R1)�−1 T2, +∞) , � ∈ [1, �] ,
(log R1)−(�−1)�4 T�−1−�42 U�−13 ��4 , � ∈ [0, (log R1)�−1 T2) , � ∈ [1, �] , (49)

where Z3 ∈ (0, �−1), Z4 ∈ (�−1, +∞), and U3, T2 are de�ned
by (H5). 
en

lim sup
��→+∞


 (�, �)
�� (�)

= lim sup
��→+∞

(log R1)−(�−1)�3 T�−1−�32 U�−13 ��3
��−1 = 0

≤ �� (U1) ,
lim sup
��→0+


 (�, �)
�� (�)

= lim sup
��→0+

(log R1)−(�−1)�4 T�−1−�42 U�−13 ��4
��−1 = 0

≤ �� (U2) .

(50)

Moreover, for � ∈ [(log R1)�−1T2, T2], � ∈ [R1, �] we have

 (�, �) ≥ (log R1)−(�−1)�3 T�−1−�32 U�−13 ��3

= (U3T2)�−1 .
(51)


erefore, (H1), (H4)-(H5) hold.

4. Nontrivial Solutions for (1)

In this section we consider the boundary value problem (1)
without the �-Laplacian, i.e., � = 2. In this case, (1) can be
transformed into its integral form as follows:

� (�) = ∫�
1

% (�, �) ∫�
1

& (�, ') 
 (', � (')) d'
'
d�
�

= ∫�
1

%1 (�, �) 
 (�, � (�)) d�
� , for � ∈ [1, �] .

(52)

As said in Section 3, we de�ne an operator, still denoted byI,
as follows:

(I�) (�) = ∫�
1

%1 (�, �) 
 (�, � (�)) d�
� ,

for � ∈ E, � ∈ [1, �] .
(53)
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In what follows, we aim to �nd the existence of �xed points
of I. For this, we list our assumptions on 
:

(H6) 
 ∈ C([1, �] × R,R),
(H7) 
ere exist nonnegative functions ^(�), _(�) ∈ E

with _ ̸≡ 0 and a(�) ∈ C(R,R+) such that


 (�, �) ≥ −^ (�) − _ (�) a (�) , ∀� ∈ R, � ∈ [1, �] . (54)

Moreover,

lim
|�|�→∞

a (�)
|�| = 0, (55)

(H8) lim inf |�|�→∞(
(�, �)/|�|) > A−11 , uniformly in � ∈
[1, �],

(H9) lim inf |�|�→0(|
(�, �)|/|�|) < A−12 , uniformly in � ∈
[1, �].

eorem 15. Suppose that (H6)-(H9) hold. 
en (1) has at
least one nontrivial solution.

Proof. From (H9) there exist b3 ∈ (0, A−12 ) and V3 > 0 such
that

cccc
 (�, �)cccc ≤ (A−12 − b3) |�| , ∀� ∈ [1, �] , |�| ∈ [0, V3) . (56)

For this V3, we show that

I� ̸= ��, � ∈ MP�3 , � ≥ 1. (57)

If otherwise, there exist �1 ∈ MP�3 , �1 ≥ 1 such that

I�1 = �1�1, (58)

and hence, we obtain

cccc�1 (�)cccc = 1
�1

cccc(I�1) (�)cccc ≤ cccc(I�1) (�)cccc

≤ ∫�
1

%1 (�, �) cccc
 (�, �1 (�))cccc d�
�

≤ (A−12 − b3) ∫�
1

%1 (�, �) cccc�1 (�)cccc d�
� .

(59)

Multiply both sides of the above inequality by ;(�) and
integrate from 1 to � and together with Lemma 5 we obtain

∫�
1

cccc�1 (�)cccc ; (�) d�
�

≤ (A−12 − b3) ∫�
1

∫�
1

%1 (�, �) cccc�1 (�)cccc d�
� ; (�) d�

�
≤ (A−12 − b3) A2 ∫�

1

cccc�1 (�)cccc ; (�) d�
� .

(60)


is implies that ∫�1 |�1(�)|;(�)(d�/�) = 0, and �1 ≡ 0 for the
fact that ;(�) ̸≡ 0, for � ∈ [1, �], which contradicts �1 ∈ MP�3 .

erefore, (57) is true, and from Lemma 7 we obtain

deg (� − I, P�3 , 0) = 1. (61)

On the other hand, by (H8), there exist b4 > 0 and d0 > 0
such that


 (�, �) ≥ (A−11 + b4) |�| , ∀� ∈ [1, �] , |�| > d0. (62)

For every �xed e with ‖_‖e ∈ (0, b4), ‖_‖ = max	∈[1,�]|_(�)|,
and from (H7), there exists d1 > d0 such that

a (�) ≤ e |�| , ∀ |�| > d1. (63)

Combining the two inequalities above, (H7) enables us to �nd


 (�, �) ≥ (A−11 + b4) |�| − ^ (�) − _ (�) a (�)
≥ (A−11 + b4) |�| − ^ (�) − e_ (�) |�|
≥ (A−11 + b4 − ‖_‖ e) |�| − ^ (�) ,

∀ |�| > d1, � ∈ [1, �] .

(64)

If we take C6 = (A−11 + b4 − ‖_‖e)d1 + max	∈[1,�],|�|≤�1|
(�, �)|,
a∗ = max|�|≤�1a(�). 
en we easily have


 (�, �) ≥ (A−11 + b4 − ‖_‖ e) |�| − ^ (�) − C6,
∀� ∈ R, � ∈ [1, �] .

(65)

Note that e can be chosen arbitrarily small, and we let

Y3 ≥ max
{
{{

(A−11 + 2 (b4 − ‖_‖ e)) ∫�1 f (�) (^ (�) + ‖_‖ a∗ + C6) (d�/�)
(b4 − ‖_‖ e) Γ (�) − ‖_‖ e (A−11 + 2 (b4 − ‖_‖ e)) ∫�1 f (�) (d�/�) , ∫�1 f (�) (^ (�) + ‖_‖ a∗ + C6) (d�/�)

Γ (�) − ‖_‖ e ∫�1 f (�) (d�/�)
}
}}

, (66)

where f(�) = ∫�1 (1 − log ')�−2&(', �)(d'/'), for � ∈ [1, �].
Now we prove that

� − I� ̸= �;, ∀� ∈ MP�3 , � ≥ 0, (67)

where ; is de�ned by (19). Indeed, if (67) is not true, then
there exists �2 ∈ MP�3 and �0 > 0 such that

�2 − I�2 = �0;. (68)

Let �̃(�) = ∫�1 %1(�, �)[^(�) + _(�)a(�2(�)) + C6](d�/�). 
en
�̃ ∈ E0 and

�̃ (�) = ∫�
1

%1 (�, �) [^ (�) + _ (�) a (�2 (�)) + C6] d�
�

≤ ∫�
1

∫�
1

1
Γ (�) (log �)�−1 (1 − log ')�−2& (', �) d'

'
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⋅ [^ (�) + _ (�) a (�2 (�)) + C6] d�
�

≤ 1
Γ (�) (log �)�−1 ∫�

1
∫�
1

(1 − log ')�−2& (', �) d'
'

⋅ [^ (�) + _ (�) a (�2 (�)) + C6] d�
�

= 1
Γ (�) (log �)�−1 ∫�

1
f (�)

⋅ [^ (�) + _ (�) a (�2 (�)) + C6] d�
� .

(69)

Consequently, we have

‖�̃‖ ≤ 1
Γ (�) ∫�

1
f (�) [^ (�) + _ (�) a (�2 (�)) + C6] d�

�
≤ 1

Γ (�) ∫�
1

f (�) (^ (�) + C6) d�
�

+ ‖_‖
Γ (�) (∫

|�2|≤�1
f (�) a (�2 (�)) d�

�
+ ∫
|�2|>�1

f (�) a (�2 (�)) d�
� ) ≤ 1

Γ (�)
⋅ ∫�
1

f (�) (^ (�) + ‖_‖ a∗ + C6) d�
� + ‖_‖ e

Γ (�)
⋅ ∫
|�2|>�1

f (�) cccc�2 (�)cccc d�
� ≤ 1

Γ (�)
⋅ ∫�
1

f (�) (^ (�) + ‖_‖ a∗ + ‖_‖ eY3 + C6) d�
� .

(70)

Plus �̃ into (68) gives

�2 (�) + �̃ (�) = (I�2) (�) + �̃ (�) + �0; (�)
= ∫�
1

%1 (�, �) [
 (�, �2 (�)) + ^ (�) + _ (�) a (�2 (�))

+ C6] d�
� + �0; (�) .

(71)

Note that 
(�, �2(�)) + ^(�) + _(�)a(�2(�)) + C6 ∈ E, � ∈ [1, �]
and ; ∈ E0. Lemma 9 enables us to know that �2 + �̃ ∈ E0.
From (65) we have

(I�2) (�) + �̃ (�) = ∫�
1

%1 (�, �) [
 (�, �2 (�)) + ^ (�)

+ _ (�) a (�2 (�)) + C6] d�
� ≥ ∫�

1
%1 (�, �)

⋅ [
 (�, �2 (�)) + ^ (�) + C6] d�
� ≥ ∫�

1
%1 (�, �)

⋅ (A−11 + b4 − ‖_‖ e) cccc�2 (�)cccc d�
� ≥ ∫�

1
%1 (�, �) (A−11

+ b4 − ‖_‖ e) �2 (�) d�
� .

(72)

On the other hand, we have

A−11 ∫�
1

%1 (�, �) [�2 (�) + �̃ (�)] d�
�

+ (b4 − ‖_‖ e) ∫�
1

%1 (�, �) �2 (�) d�
�

− A−11 ∫�
1

%1 (�, �) �̃ (�) d�
�

≥ A−11 ∫�
1

%1 (�, �) [�2 (�) + �̃ (�)] d�
� .

(73)


is inequality holds if

(b4 − ‖_‖ e) ∫�
1

%1 (�, �) �2 (�) d�
�

− A−11 ∫�
1

%1 (�, �) �̃ (�) d�
� ≥ 0.

(74)

Indeed, �2 + �̃ ∈ E0 implies that �2(�) + �̃(�) ≥ (log �)�−1‖�2 +
�̃‖ ≥ (log �)�−1(‖�2‖ − ‖�̃‖), for � ∈ [1, �]. Consequently,

(b4 − ‖_‖ e) ∫�
1

%1 (�, �) [�2 (�) + �̃ (�)] d�
�

− (A−11 + b4 − ‖_‖ e) ∫�
1

%1 (�, �) �̃ (�) d�
�

≥ (b4 − ‖_‖ e) (Y3 − ‖�̃‖) ∫�
1

%1 (�, �) (log �)�−1 d�
�

− A−11 + b4 − ‖_‖ e
Γ (�)

⋅ ∫�
1

f (�) (^ (�) + ‖_‖ a∗ + ‖_‖ eY3 + C6) d�
�

⋅ ∫�
1

%1 (�, �) (log �)�−1 d�
� ≥ 0.

(75)

As a result, we have

(I�2) (�) + �̃ (�) ≥ A−11 ∫�
1

%1 (�, �) [�2 (�) + �̃ (�)] d�
�

fl A−11 " (�2 + �̃) (�) , ∀� ∈ [1, �] ,
(76)

where ("�)(�) = ∫�1 %1(�, �)�(�)(d�/�), for � ∈ E, � ∈ [1, �].
Using (68) we obtain

�2 + �̃ = I�2 + �̃ + �0; ≥ A−11 " (�2 + �̃) + �0;
≥ �0;. (77)

De�ne

�∗ = sup {� > 0 : �2 + �̃ ≥ �;} . (78)

Note that �0 ∈ {� > 0 : �2 + �̃ ≥ �;}, and then �∗ ≥ �0,�2 + �̃ ≥ �∗;. From Lemma 5 we have

A−11 " (�2 + �̃) ≥ �∗A−11 "; ≥ �∗;, (79)
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and hence

�2 + �̃ ≥ A−11 " (�2 + �̃) + �0; ≥ (�0 + �∗) ;, (80)

which contradicts the de�nition of �∗. 
erefore, (67) holds,
and from Lemma 6 we obtain

deg (� − I, P�3 , 0) = 0. (81)


is, together with (61), implies that

deg (� − I, P�3 \ P�3 , 0)
= deg (� − I, P�3 , 0) − deg (� − I, P�3 , 0) = −1.

(82)


erefore the operator I has at least one �xed point in P�3 \
P�3 , and (1) has at least one nontrivial solution. 
is completes
the proof.

Example 16. Let 
(�, �) = ^|�| − _m(�), m(�) = ln(|�| + 1), � ∈
R, � ∈ [1, �], where ^ ∈ (A−11 , +∞) and _ ∈ (^, ^ + A−12 ). 
en
lim|�|�→+∞(m(�)/|�|) = 0, and lim|�|�→+∞((^|�| − _ ln(|�| +
1))/|�|) = ^ > A−11 , lim|�|�→0(|^|�| − _ ln(|�| + 1)|/|�|) = |^ −
_| < A−12 . 
erefore, (H6)-(H9) hold.
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