Solutions for parametric double phase Robin problems

Nikolaos S. Papageorgiou ^a, Calogero Vetro ^{b,*} and Francesca Vetro ^{c,d}

E-mail: calogero.vetro@unipa.it

Abstract. We consider a parametric double phase problem with Robin boundary condition. We prove two existence theorems. In the first the reaction is (p-1)-superlinear and the solutions produced are asymptotically big as $\lambda \to 0^+$. In the second the conditions on the reaction are essentially local at zero and the solutions produced are asymptotically small as $\lambda \to 0^+$.

Keywords: Unbalanced growth, asymptotically big solutions, asymptotically small solutions, superlinear reaction, C-condition

1. Introduction

Let $\Omega \subseteq \mathbb{R}^N$ be a bounded domain with a Lipschitz boundary $\partial \Omega$. In this paper we study the following parametric two phase Robin problem

$$\begin{cases} -\operatorname{div}(a(z)|\nabla u|^{p-2}\nabla u) - \Delta_q u + \xi(z)|u|^{p-2}u = \lambda f(z, u(z)) & \text{in } \Omega, \\ \frac{\partial u}{\partial n_{\vartheta}} + \beta(z)|u|^{p-2}u = 0 & \text{on } \partial\Omega, 1 < q < p < +\infty. \end{cases}$$

$$(P_{\lambda})$$

In this problem $a \in L^{\infty}(\Omega)$ with a(z) > 0 for a.a. $z \in \Omega$ and Δ_q denotes the q-Laplace differential operator defined by

$$\Delta_q u = \operatorname{div}(|\nabla u|^{q-2}\nabla u)$$
 for all $W^{1,q}(\Omega)$.

The differential operator in problem (P_{λ}) is related to the two-phase integral functional

$$u \to \int_{\Omega} \left[a(z) |\nabla u|^p + |\nabla u|^q \right] dz.$$

^a Department of Mathematics, Zografou campus, National Technical University, 15780, Athens, Greece E-mail: npapg@math.ntua.gr

^b Department of Mathematics and Computer Science, University of Palermo, Via Archirafi 34, 90123, Palermo, Italy

^c Nonlinear Analysis Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam

^d Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Vietnam E-mail: francescavetro@tdtu.edu.vn

^{*}Corresponding author. E-mail: calogero.vetro@unipa.it.

In the integral functional, the integrand is the function

$$\vartheta(z, y) = a(z)|y|^p + |y|^q$$
 for all $z \in \Omega$, all $y \in \mathbb{R}^N$.

Since we do not assume that the coefficient $a(\cdot)$ is bounded away from zero, this integrand exhibits unbalanced growth, namely we have

$$|y|^q \leqslant \vartheta(z, y) \leqslant c_0 [1 + |y|^p]$$
 for some $c_0 > 0$, all $z \in \Omega$, all $y \in \mathbb{R}^N$.

Such functionals were investigated first in the context of problems related to elasticity theory, by Marcellini [10] and Zhikov [20]. Recently the interest for such functional was revived with the remarkable works of Mingione and coworkers (see Baroni-Colombo-Mingione [1], Colombo-Mingione [3,4], De Filippis–Mingione [5]), who proved local regularity results for minimizers of such functionals. A global regularity theory is still elusive and so the tools and techniques used in the study of (p, q)-equations (see, for example, Papageorgiou-Vetro-Vetro [15]) are not applicable in two-phase problems. Even the ambient space changes and it is no longer the Sobolev space $W^{1,p}(\Omega)$, but the Musielak-Orlicz-Sobolev space $W^{1,\vartheta}(\Omega)$ (see Section 2). In the left hand side of (P_{λ}) we also have a potential term $x \to \xi(z)|x|^{p-2}x$ with $\xi \in L^{\infty}(\Omega), \xi(z) \ge 0$ for a.a. $z \in \Omega$. The reaction $\lambda f(z,x)$ is parametric, with $\lambda > 0$ being the parameter and f(z, x) is a Carathéodory function (that is, for all $x \in \mathbb{R}, z \to f(z, x)$ is measurable and for a.a. $z \in \Omega$, $x \to f(z, x)$ is continuous). We prove two existence theorems and provide information about the asymptotic behavior of the solutions as $\lambda \to 0^+$. In the first existence theorem we assume that $f(z,\cdot)$ exhibits (p-1)-superlinear growth near $\pm \infty$. However, we do not employ the Ambrosetti–Rabinowitz condition (the AR-condition for short), which is common in the literature when dealing with superlinear problems. In this case we show that for the solution u_{λ} , we have $\|u_{\lambda}\| \to +\infty$ as $\lambda \to 0^+$. In the second, the hypotheses on $f(z,\cdot)$, aside from the "subcritical" growth condition, concern only its behavior near zero. In this case we show that $||u_{\lambda}|| \to 0^+$ as $\lambda \to 0^+$. In the boundary condition $\frac{\partial u}{\partial n_{\vartheta}}$ denotes the conormal derivative of u with respect to the modular function ϑ . We interpret this derivative using the nonlinear Green's identity (see Papageorgiou-Rădulescu-Repovš [11], Corollary 1.5.16, p. 34). When $u \in C^1(\overline{\Omega})$, we have

$$\frac{\partial u}{\partial n_{\vartheta}} = \left[a(z) |\nabla u|^{p-2} + |\nabla u|^{q-2} \right] \frac{\partial u}{\partial n},$$

with $n(\cdot)$ being the outward unit normal on $\partial \Omega$.

We mention that recently existence and multiplicity results for two phase problems were proved by Gasiński–Papageorgiou [6], Ge–Lv–Lu [7], Liu–Dai [9], Papageorgiou–Rădulescu–Repovš [12–14], Papageorgiou–Vetro–Vetro [16]. In the framework of double-phase problems with variable growth we refer to Cencelj–Rădulescu–Repovš [2], Ragusa–Tachikawa [18] and Zhang–Rădulescu [19].

2. Mathematical background – Hypotheses

As we already mentioned in the Introduction, the right function space framework for the analysis of problem (P_{λ}) is provided by the so-called Musielak–Orlicz–Sobolev spaces.

We consider the Carathéodory function

$$\vartheta(z, x) = a(z)x^p + x^q$$
 for all $z \in \Omega$, all $x \ge 0$.

Then the Musielak–Orlicz space $L^{\vartheta}(\Omega)$ is defined by

$$L^{\vartheta}(\Omega) = \left\{ u : \Omega \to \mathbb{R} \text{ is measurable and } \rho_{\vartheta}(u) = \int_{\Omega} \vartheta(z, |u|) dz < +\infty \right\}.$$

We furnish $L^{\vartheta}(\Omega)$ with the so-called "Luxemburg norm" defined by

$$\|u\|_{\vartheta} = \inf \left[\lambda > 0 : \rho_{\vartheta}\left(\frac{u}{\lambda}\right) \leqslant 1\right].$$

Then $L^{\vartheta}(\Omega)$ becomes a separable, reflexive (in fact uniformly convex) Banach space. Also, we introduce the weighted Lebesgue space

$$L_a^p(\Omega) = \bigg\{ u : \Omega \to \mathbb{R} \text{ is measurable and } \|u\|_{a,p} = \bigg[\int_{\Omega} a(z) |u|^p \, dz \bigg]^{1/p} < +\infty \bigg\}.$$

We know that

$$L^p(\Omega) \hookrightarrow L^{\vartheta}(\Omega) \hookrightarrow L^q(\Omega) \cap L^p_q(\Omega),$$

and $\min\{\|u\|_{\vartheta}^{p}, \|u\|_{\vartheta}^{q}\} \leq \|u\|_{q}^{q} + \|u\|_{a,p}^{p} \leq \max\{\|u\|_{\vartheta}^{p}, \|u\|_{\vartheta}^{q}\} \text{ for all } u \in L^{\vartheta}(\Omega).$ Then, we can define the corresponding Sobolev-type space $W^{1,\vartheta}(\Omega)$ by setting

$$W^{1,\vartheta}(\Omega) = \{ u \in L^{\vartheta}(\Omega) : |\nabla u| \in L^{\vartheta}(\Omega) \}.$$

We furnish $W^{1,\vartheta}(\Omega)$ with the norm

$$||u|| = ||u||_{\vartheta} + ||\nabla u||_{\vartheta}$$
 for all $u \in W^{1,\vartheta}(\Omega)$

(here $\|\nabla u\|_{\vartheta} = \||\nabla u|\|_{\vartheta}$). Normed this way, the space $W^{1,\vartheta}(\Omega)$ is separable and reflexive (in fact uniformly convex). We know that

$$W^{1,\vartheta}(\Omega) \hookrightarrow L^r(\Omega)$$
 compactly

for every $r \in (1, q^*)$ with

$$q^* = \begin{cases} \frac{Nq}{N-q} & \text{if } q < N, \\ +\infty & \text{if } N \leqslant q \end{cases}$$

(the critical Sobolev exponent corresponding to q).

On $\partial\Omega$ we consider the (N-1)-dimensional Hausdorff measure (surface measure) $\sigma(\cdot)$. Using this measure, we can define in the usual way the boundary Lebesgue spaces $L^s(\partial\Omega)$ $(1 \le s \le +\infty)$. We know that there exists a unique continuous linear map $\gamma_0: W^{1,q}(\Omega) \to L^q(\partial\Omega)$, known as the "trace map", such that

$$\gamma_0(u) = u|_{\partial\Omega}$$
 for all $u \in W^{1,q}(\Omega) \cap C(\overline{\Omega})$

The trace map extends the notion of boundary values to all Sobolev functions. We know that

$$\operatorname{im} \gamma_0 = W^{\frac{1}{q'},q}(\partial\Omega) \quad \left(\frac{1}{q} + \frac{1}{q'} = 1\right) \quad \text{and} \quad \ker \gamma_0 = W^{1,q}_0(\Omega).$$

Moreover, the trace map is compact into $L^s(\partial\Omega)$ for all $s \in [1, \frac{(N-1)q}{N-q})$ if q < N and into $L^s(\partial\Omega)$ for all $s \ge 1$ if $q \ge N$. In the sequel, for the sake of notational simplicity, we drop the use of the trace map $\gamma_0(\cdot)$. All restrictions of Sobolev functions on $\partial \Omega$ are understood in the sense of traces.

If X is a Banach space and $\varphi \in C^1(X,\mathbb{R})$, then we say that $\varphi(\cdot)$ satisfies the "C-condition", if every sequence $\{u_n\}_{n\geqslant 1}\subseteq X$ such that $\{\varphi(u_n)\}_{n\geqslant 1}\subseteq \mathbb{R}$ is bounded and $(1+\|u_n\|_X)\varphi'(u_n)\to 0$ in X^* as $n \to +\infty$, admits a strongly convergent subsequence. Also by K_{φ} we denote the critical set of φ , that is, $K_{\varphi} = \{ u \in X : \varphi'(u) = 0 \}.$

Let $A: W^{1,\vartheta}(\Omega) \to W^{1,\vartheta}(\Omega)^*$ be the nonlinear map defined by

$$\left\langle A(u),h\right\rangle = \int_{\Omega} \left[a(z)|\nabla u|^{p-2} + |\nabla u|^{q-2}\right] (\nabla u,\nabla h)_{\mathbb{R}^N} dz \quad \text{for all } u,h\in W^{1,\vartheta}(\Omega).$$

This map has the following properties (see Liu–Dai [9], Proposition 3.1).

Proposition 1. If $a \in L^{\infty}(\Omega)$ and a(z) > 0 for a.a. $z \in \Omega$, then $A(\cdot)$ is bounded (that is, maps bounded sets to bounded sets), continuous, monotone (hence maximal monotone too) and of type $(S)_+$ (that is, if $u_n \xrightarrow{w} u$ in $W^{1,\vartheta}(\Omega)$ and $\limsup_{n \to +\infty} \langle A(u_n), u_n - u \rangle \leq 0$, then $u_n \to u$ in $W^{1,\vartheta}(\Omega)$.

The hypotheses on the data of (P_{λ}) are the following:

$$H_0$$
: $a \in L^{\infty}(\Omega)$ with $a(z) \geqslant 0$ for a.a. $z \in \Omega$, $\xi \in L^{\infty}(\Omega)$ with $\xi(z) \geqslant 0$ for a.a. $z \in \Omega$, $\beta \in L^{\infty}(\partial \Omega)$ with $\beta(z) \geqslant 0$ for σ -a.a. $z \in \partial \Omega$, $\xi \not\equiv 0$ or $\beta \not\equiv 0$ and $\frac{Np}{N+p-1} < q$.

Remark 1. The last condition in hypotheses H_0 , which relates the two exponents p and q, implies that $W^{1,\vartheta}(\Omega) \hookrightarrow L^p(\partial\Omega)$ compactly via the trace map $\gamma_0(\cdot)$.

 H_1 : $f: \Omega \times \mathbb{R} \to \mathbb{R}$ is a Carathéodory function such that f(z,0) = 0 for a.a. $z \in \Omega$ and

- (i) $|f(z,x)| \le \widehat{a}(z)[1+|x|^{r-1}]$ for a.a. $z \in \Omega$, all $x \in \mathbb{R}$, with $\widehat{a} \in L^{\infty}(\Omega)$, $p < r < q^*$; (ii) if $F(z,x) = \int_0^x f(z,s)ds$, then $\lim_{x \to \pm \infty} \frac{F(z,x)}{|x|^p} = +\infty$ uniformly for a.a. $z \in \Omega$;
- (iii) there exists $\tau \in ((r-q) \max\{1, \frac{N}{q}\}, q^*)$ with $\tau > q$ such that

$$0 < \widehat{\eta} \leqslant \liminf_{x \to \pm \infty} \frac{f(z, x)x - pF(z, x)}{|x|^{\tau}}$$
 uniformly for a.a. $z \in \Omega$;

(iv) there exist $1 < \mu < q$ and $c_1 > 0$ such that

$$-c_1\leqslant \liminf_{x\to 0}\frac{F(z,x)}{|x|^\mu}\leqslant \limsup_{x\to 0}\frac{F(z,x)}{|x|^\mu}\leqslant c_1\quad \text{uniformly for a.a. }z\in\Omega.$$

Remark 2. From hypotheses $H_1(ii)$, (iii), we have that

$$\lim_{x \to \pm \infty} \frac{f(z, x)}{|x|^{p-2}x} = +\infty \quad \text{uniformly for a.a. } z \in \Omega.$$

So the reaction $f(z,\cdot)$ is (p-1)-superlinear. However, this superlinear growth of $f(z,\cdot)$ is not expressed using the AR-condition. Recall that the AR-condition says that there exist $\eta>p$ and M>0 such that

$$0 < \eta F(z, x) \leqslant f(z, x)x \quad \text{for a.a. } z \in \Omega, \text{ all } |x| \geqslant M, \tag{1a}$$

$$0 < \operatorname{essinf}_{\mathcal{O}} F(\cdot, \pm M). \tag{1b}$$

Integrating (1a) and using (1b), we obtain the following weaker condition

$$c_2|x|^{\eta} \leqslant F(z,x)$$
 for a.a. $z \in \Omega$, all $|x| \geqslant M$, some $c_2 > 0$
 $\Rightarrow c_2|x|^{\eta} \leqslant f(z,x)x$ for a.a. $z \in \Omega$, all $|x| \geqslant M$.

In this paper instead of the AR-condition, we employ hypothesis $H_1(iii)$ which is less restrictive and incorporates in our framework superlinear nonlinearities which fail to satisfy the AR-condition. For example consider the following function (for the sake of simplicity we drop the z-dependence)

$$f(x) = \begin{cases} |x|^{\mu - 2}x & \text{if } |x| \le 1, \\ |x|^{p - 2}x \ln|x| + |x|^{s - 2}x & \text{if } 1 < |x|, \end{cases}$$

with $1 < \mu < q$ and 1 < s < p. The function satisfies hypothesis H_1 , but fails to satisfy the AR-condition.

Let $\widehat{\gamma}_p: W^{1,\vartheta}(\Omega) \to \mathbb{R}$ be the C^1 -functional defined by

$$\widehat{\gamma}_p(u) = \int_{\Omega} a(z) |\nabla u|^p dz + \int_{\Omega} \xi(z) |u|^p dz + \int_{\partial \Omega} \beta(z) |u|^p d\sigma \quad \text{for all } u \in W^{1,\vartheta}(\Omega).$$

Proposition 2. If hypotheses H_0 hold, then $c_3 ||u||^p \leqslant \widehat{\gamma}_p(u)$ for some $c_3 > 0$, all $u \in W^{1,\vartheta}(\Omega)$.

Proof. We argue by contradiction. So, suppose that the result of the proposition is not true. Then on account of the *p*-homogeneity of $\widehat{\gamma}_p(\cdot)$, we can find $\{u_n\}_{n\geqslant 1}\subseteq W^{1,\vartheta}(\Omega)$ such that

$$||u_n|| = 1$$
 and $\widehat{\gamma}_p(u_n) < \frac{1}{n}$ for all $n \in \mathbb{N}$. (2)

We may assume that

$$u_n \xrightarrow{w} u \quad \text{in } W^{1,\vartheta}(\Omega) \quad \text{and} \quad u_n \to u \quad \text{in } L^p(\Omega) \text{ and in } L^p(\partial\Omega).$$
 (3)

From (2) and (3) it follows that

$$\int_{\Omega} a(z) |\nabla u|^p dz = 0$$

$$\Rightarrow |\nabla u(z)| = 0 \text{ for a.a. } z \in \Omega$$

$$\Rightarrow u = c \in \mathbb{R}$$

Then from (2) in the limit as $n \to +\infty$ we have

$$|c|^{p} \left[\int_{\Omega} \xi(z) dz + \int_{\partial \Omega} \beta(z) d\sigma \right] = 0$$

$$\Rightarrow c = 0 \quad \text{(see hypotheses } H_{0}\text{)}$$

$$\Rightarrow u_{n} \to 0 \quad \text{in } W^{1,\vartheta}(\Omega),$$

which contradicts (2).

For every $\lambda > 0$, let $\varphi_{\lambda} : W^{1,\vartheta}(\Omega) \to \mathbb{R}$ be the energy (Euler) functional for problem (P_{λ}) defined by

$$\varphi_{\lambda}(u) = \frac{1}{p} \widehat{\gamma}_{p}(u) + \frac{1}{q} \|\nabla u\|_{q}^{q} - \lambda \int_{\Omega} F(z, u) dz \quad \text{for all } u \in W^{1, p}(\Omega).$$

Evidently $\varphi_{\lambda} \in C^1(W^{1,\vartheta}(\Omega), \mathbb{R})$.

3. Asymptotically big solutions

In this section we show that for all $\lambda > 0$ small problem (P_{λ}) has a solution $u_{\lambda} \in W^{1,\vartheta}(\Omega)$ such that $||u_{\lambda}|| \to +\infty$ as $\lambda \to 0^+$.

Proposition 3. If hypotheses H_0 , H_1 hold and $\lambda > 0$, then the functional $\varphi_{\lambda}(\cdot)$ satisfies the C-condition.

Proof. We consider a sequence $\{u_n\}_{n\geqslant 1}\subseteq W^{1,\vartheta}(\Omega)$ such that

$$|\varphi_{\lambda}(u_n)| \leqslant c_4 \quad \text{for some } c_4 > 0, \text{ all } n \in \mathbb{N},$$

$$(1 + ||u_n||)\varphi_{\lambda}'(u_n) \to 0 \quad \text{in } W^{1,\vartheta}(\Omega)^* \text{ as } n \to +\infty.$$
 (5)

From (5) we have

$$\left| \left\langle A(u_n), h \right\rangle + \int_{\Omega} \xi(z) |u_n|^{p-2} u_n h \, dz + \int_{\partial \Omega} \beta(z) |u_n|^{p-2} u_n h \, d\sigma - \lambda \int_{\Omega} f(z, u_n) h \, dz \right|$$

$$\leq \frac{\varepsilon_n \|h\|}{1 + \|u_n\|} \quad \text{for all } h \in W^{1,\vartheta}(\Omega), \text{ with } \varepsilon_n \to 0^+.$$

$$\tag{6}$$

In (6) we choose $h = u_n \in W^{1,\vartheta}(\Omega)$ and obtain

$$-\widehat{\gamma}_p(u_n) - \|\nabla u_n\|_q^q + \lambda \int_{\Omega} f(z, u_n) u_n \, dz \leqslant \varepsilon_n \quad \text{for all } n \in \mathbb{N}.$$
 (7)

Also from (4) we have

$$\widehat{\gamma}_p(u_n) + \frac{p}{q} \|\nabla u_n\|_q^q - \lambda \int_{\Omega} pF(z, u_n) \, dz \leqslant pc_4 \quad \text{for all } n \in \mathbb{N}.$$
 (8)

We add (7) and (8) and recall that q < p. Then

$$\lambda \int_{\Omega} [f(z, u_n)u_n - pF(z, u_n)] dz \leqslant c_5 \quad \text{for some } c_5 > 0, \text{ all } n \in \mathbb{N}.$$
 (9)

Hypotheses $H_1(i)$, (iii) imply that

$$c_6|x|^{\tau} - c_7 \leqslant f(z, x)x - pF(z, x) \quad \text{for a.a. } z \in \Omega, \text{ all } x \in \mathbb{R}, \text{ some } c_6, c_7 > 0.$$

We use (10) in (9) and obtain

$$\|u_n\|_{\tau}^{\tau} \leqslant c_8 \quad \text{for some } c_8 > 0, \text{ all } n \in \mathbb{N}$$

 $\Rightarrow \{u_n\}_{n\geqslant 1} \subseteq L^{\tau}(\Omega) \quad \text{is bounded.}$ (11)

First assume that q < N. From hypothesis $H_1(iii)$ it is clear that we may assume that $\tau < r < q^*$. Let $t \in (0, 1)$ be such that

$$\frac{1}{r} = \frac{1-t}{\tau} + \frac{t}{q^*}.\tag{12}$$

Using the interpolation inequality (see Papageorgiou-Winkert [17], Proposition 2.3.17, p. 116), we have

$$\|u_n\|_r \leqslant \|u_n\|_{\tau}^{1-t} \|u_n\|_{q^*}^t$$

$$\Rightarrow \|u_n\|_r^r \leqslant c_9 \|u_n\|^{tr} \quad \text{for some } c_9 > 0, \text{ all } n \in \mathbb{N}$$

$$\left(\text{see (11) and recall that } W^{1,\vartheta}(\Omega) \hookrightarrow L^{q^*}(\Omega)\right). \tag{13}$$

From (6) with $h = u_n \in W^{1,\vartheta}(\Omega)$ we obtain

$$\widehat{\gamma}_{p}(u_{n}) + \|\nabla u_{n}\|_{q}^{q} - \lambda \int_{\Omega} f(z, u_{n}) u_{n} dz \leq \varepsilon_{n} \quad \text{for all } n \in \mathbb{N}$$

$$\Rightarrow c_{3} \|u_{n}\|^{p} \leq \lambda \int_{\Omega} f(z, u_{n}) u_{n} dz + \varepsilon_{n} \quad \text{(see Proposition 2)}$$

$$\leq \lambda c_{10} [1 + \|u_{n}\|^{tr}] + \varepsilon_{n} \quad \text{for some } c_{10} > 0, \text{ all } n \in \mathbb{N}$$

$$\text{(see hypothesis } H_{1}(i) \text{ and } (13)). \tag{14}$$

From (12) we have

$$t = \frac{q^*(r-\tau)}{r(q^*-\tau)}$$

$$\Rightarrow tr = \frac{q^*(r-\tau)}{q^*-\tau}.$$
(15)

On account of hypothesis $H_1(iii)$ we have

$$(r-q) \frac{N}{q} < \tau$$
 (recall that we have assumed that $q < N$)
$$\Rightarrow N(r-q) < \tau q$$

$$\Rightarrow Nr - N\tau < Nq - N\tau + \tau q$$

$$\Rightarrow \frac{Nq(r-\tau)}{Nq - N\tau + \tau q} < q$$

$$\Rightarrow \frac{q^*(r-\tau)}{q^* - \tau} < q$$

$$\Rightarrow tr < q \text{ (see (15))}.$$

Then from (14) and since q < p, we infer that

$$\{u_n\}_{n\geqslant 1}\subseteq W^{1,\vartheta}(\Omega)$$
 is bounded. (16)

Next suppose that $q \ge N$. In this case we know that $q^* = +\infty$, while from the Sobolev embedding theorem, we have

$$W^{1,\vartheta}(\Omega) \hookrightarrow W^{1,q}(\Omega) \hookrightarrow L^s(\Omega)$$
 (for all $1 \le s < +\infty$).

So, in the previous argument we need to replace q^* by l > r. Then again from (12) we have

$$tr = \frac{l(r-\tau)}{l-\tau} \rightarrow r-\tau < q$$
 as $l \rightarrow +\infty$ (see hypothesis $H_1(iii)$).

So, by choosing l > r big, we will have

$$tr < q < p$$
,

hence (16) holds again.

From (16) it follows that we may assume that

$$u_n \xrightarrow{w} u \quad \text{in } W^{1,\vartheta}(\Omega) \quad \text{and} \quad u_n \to u \quad \text{in } L^p(\Omega) \text{ and in } L^p(\partial\Omega).$$
 (17)

In (6) we choose $h = u_n - u \in W^{1,\vartheta}(\Omega)$, pass to the limit as $n \to +\infty$ and use (17). Then

$$\lim_{n \to +\infty} \langle A(u_n), u_n - u \rangle = 0$$

$$\Rightarrow u_n \to u \text{ in } W^{1,\vartheta}(\Omega) \text{ (see Proposition 1)}.$$

We conclude that for every $\lambda > 0$ the functional $\varphi_{\lambda}(\cdot)$ satisfies the *C*-condition. \square

Proposition 4. If hypotheses H_0 , H_1 hold, then we can find $\lambda^* > 0$ such that $0 < m_{\lambda} \leq \varphi_{\lambda}(u)$ for all $\|u\| = \rho_{\lambda}$, all $\lambda \in (0, \lambda^*)$.

Proof. On account of hypotheses $H_1(i)$, (iv), we have

$$|F(z,x)| \le c_{11} [|x|^{\mu} + |x|^r] \quad \text{for a.a. } z \in \Omega, \text{ all } x \in \mathbb{R}, \text{ some } c_{11} > 0.$$

Then for every $u \in W^{1,\vartheta}(\Omega)$ we have

$$\varphi_{\lambda}(u) \geqslant \frac{c_3}{p} \|u\|^p - \lambda c_{12} [\|u\|^{\mu} + \|u\|^r] \quad \text{for some } c_{12} > 0$$
(see Proposition 2 and (18)). (19)

Consider $u \in W^{1,\vartheta}(\Omega)$ with $||u|| = \rho_{\lambda} = \lambda^{-\delta}$ where $0 < \delta < \frac{1}{r-p}$. Then from (19) we have

$$\varphi_{\lambda}(u) \geqslant \frac{c_3}{p} \lambda^{-\delta p} - c_{12} \left[\lambda^{1-\delta \mu} + \lambda^{1-\delta r} \right]$$

$$= \left[\frac{c_3}{p} - c_{12} \left(\lambda^{1-\delta(\mu-p)} + \lambda^{1-\delta(r-p)} \right) \right] \lambda^{-\delta p} = m_{\lambda}.$$
(20)

Note that

$$0 < 1 - \delta(r - p) < 1 - \delta(\mu - p).$$

Then we can find $\lambda^* > 0$ such that

$$\lambda^{1-\delta(\mu-p)} + \lambda^{1-\delta(r-p)} < \frac{c_3}{c_{12}p} \quad \text{for all } \lambda \in (0,\lambda^*).$$

From (20) we infer that

$$\varphi_{\lambda}(u) \geqslant m_{\lambda} > 0$$
 for all $u \in W^{1,\vartheta}(\Omega)$ with $||u|| = \rho_{\lambda}$, all $0 < \lambda < \lambda^*$.

Remark 3. From the above proof we see that $m_{\lambda} \to +\infty$ as $\lambda \to 0^+$ (see (20)).

Now we can produce solutions of (P_{λ}) which asymptotically as $\lambda \to 0^+$ become arbitrarily big in the $W^{1,\vartheta}(\Omega)$ -norm.

Theorem 1. If hypotheses H_0 , H_1 hold, then we can find $\lambda^* > 0$ such that for all $\lambda \in (0, \lambda^*)$ problem (P_{λ}) has a nontrivial solution $u_{\lambda} \in W^{1,\vartheta}(\Omega)$ and $||u_{\lambda}|| \to +\infty$ as $\lambda \to 0^+$.

Proof. Let $u \in W^{1,\vartheta}(\Omega)$ with u(z) > 0 for a.a. $z \in \Omega$. Then on account of hypothesis $H_1(ii)$ we have

$$\varphi_{\lambda}(tu) \to -\infty \quad \text{as } t \to +\infty.$$
 (21)

Then (21) together with Propositions 3 and 4, permit the use of the mountain pass theorem. So, we can find $u_{\lambda} \in W^{1,\vartheta}(\Omega)$ such that

$$u_{\lambda} \in K_{\varphi_{\lambda}} \quad \text{and} \quad \varphi_{\lambda}(0) = 0 < m_{\lambda} \leqslant \varphi_{\lambda}(u_{\lambda}).$$
 (22)

So, u_{λ} is a nontrivial solution of (P_{λ}) ($\lambda \in (0, \lambda^*)$). Using (18), we have

$$\begin{split} \varphi_{\lambda}(u_{\lambda}) &\leqslant c_{13} \big[\|u_{\lambda}\|^{p} + \|u_{\lambda}\|^{\mu} + \|u_{\lambda}\|^{r} \big] \quad \text{for some } c_{13} > 0 \\ &\Rightarrow \quad m_{\lambda} \leqslant c_{14} \big[1 + \|u_{\lambda}\|^{r} \big] \quad \text{for some } c_{14} > 0 \text{ (see (22) and recall that } 1 < \mu < p < r) \\ &\Rightarrow \quad \|u_{\lambda}\| \to +\infty \quad \text{as } \lambda \to 0^{+} \text{ (recall that } m_{\lambda} \to +\infty \text{ as } \lambda \to 0^{+}). \end{split}$$

4. Asymptotically small solutions

In this section, we provide conditions on f(z, x) which guarantee that for all $\lambda > 0$ small problem (P_{λ}) has a solution $\widehat{u}_{\lambda} \in W^{1,\vartheta}(\Omega)$ such that $\|\widehat{u}_{\lambda}\| \to 0^+$ as $\lambda \to 0^+$.

The new conditions on the function f(z, x) in the reaction are the following:

 H_2 : $f: \Omega \times \mathbb{R} \to \mathbb{R}$ is a Carathéodory function such that f(z,0) = 0 for a.a. $z \in \Omega$ and

- (i) $|f(z,x)| \leq \widehat{a}(z)[1+|x|^{r-1}]$ for a.a. $z \in \Omega$, all $x \in \mathbb{R}$, with $\widehat{a} \in L^{\infty}(\Omega)$, $p < r < q^*$;
- (ii) there exists $\tau \in (1, q)$ and $\delta, \widehat{c}, \widetilde{c}$ such that

$$\widehat{c}|x|^{\tau} \leqslant F(z,x)$$
 for a.a. $z \in \Omega$, all $|x| \leqslant \delta$,
 $\limsup_{x \to 0} \frac{F(z,x)}{|x|^{\tau}} \leqslant \widetilde{c}$ uniformly for a.a. $z \in \Omega$.

Remark 4. The hypotheses on $f(z, \cdot)$ are minimal. We stress that no asymptotic condition as $x \to \pm \infty$ is imposed on $f(z, \cdot)$. Only the subcritical growth condition $H_2(i)$, which guarantees that the energy functional of the problem is C^1 . It is an interesting open question whether we can drop hypothesis $H_2(i)$ and use cut-off techniques like those in Leonardi-Papageorgiou [8]. The lack of global regularity results for double phase problems, make such an approach problematic.

Theorem 2. If hypotheses H_0 , H_2 hold, then we can find $\widehat{\lambda}^* > 0$ such that for all $\lambda \in (0, \widehat{\lambda}^*)$ problem (P_{λ}) has a nontrivial solution $\widehat{u}_{\lambda} \in W^{1,\vartheta}(\Omega)$ and $\|\widehat{u}_{\lambda}\| \to 0^+$ as $\lambda \to 0^+$.

Proof. As before $\varphi_{\lambda}: W^{1,\vartheta}(\Omega) \to \mathbb{R}$ is the energy functional for problem (P_{λ}) defined by

$$\varphi_{\lambda}(u) = \frac{1}{p} \widehat{\gamma}_{p}(u) + \frac{1}{q} \|\nabla u\|_{q}^{q} - \lambda \int_{\Omega} F(z, u) dz \quad \text{for all } u \in W^{1, \vartheta}(\Omega).$$

We know that $\varphi_{\lambda} \in C^1(W^{1,\vartheta}(\Omega), \mathbb{R})$. Hypotheses H_2 imply that

$$|F(z,x)| \leqslant c_{15} [|x|^{\tau} + |x|^{r}] \quad \text{for a.a. } z \in \Omega, \text{ all } x \in \mathbb{R}, \text{ some } c_{15} > 0.$$

Let $0 < \delta < \frac{1}{p}$. Then for $u \in W^{1,\vartheta}(\Omega)$ with $||u|| = \lambda^{\delta}$, we have

$$\varphi_{\lambda}(u) \geqslant \frac{c_3}{p} \lambda^{\delta p} - c_{16} \left[\lambda^{\delta \tau} + \lambda^{\delta r} \right] \quad \text{for some } c_{15} > 0 \text{ (see Proposition 1 and (23))}$$

$$= \left[\frac{c_3}{p} \lambda^{\delta p - 1} - c_{16} \left(\lambda^{\delta \tau} + \lambda^{\delta r} \right) \right] \lambda.$$

Note that $\delta p - 1 < 0$ and so we see that we can find $\widehat{\lambda}^* > 0$ such that for all $\lambda \in (0, \widehat{\lambda}^*)$ we have

$$\varphi_{\lambda}(u) > 0 \quad \text{for all } u \in W^{1,\vartheta}(\Omega) \text{ with } ||u|| = \lambda^{\delta}.$$
 (24)

Let $B_{\lambda} = \{u \in W^{1,\vartheta}(\Omega) : \|u\| < \lambda^{\delta}\}$. The reflexivity of $W^{1,\vartheta}(\Omega)$ and the Eberlein–Smulian theorem imply that \overline{B}_{λ} is sequentially weakly compact. The functional $\varphi_{\lambda}(\cdot)$ is sequentially weakly lower semi-continuous (recall that $W^{1,\vartheta}(\Omega) \hookrightarrow L^p(\Omega)$ compactly). So, by the Weierstrass–Tonelli theorem, we can find $\widehat{u}_{\lambda} \in W^{1,\vartheta}(\Omega)$ such that

$$\varphi_{\lambda}(\widehat{u}_{\lambda}) = \min[\varphi_{\lambda}(u) : u \in \overline{B}_{\lambda}]. \tag{25}$$

Let $u \in C^1(\overline{\Omega}) \subseteq W^{1,\vartheta}(\Omega)$ with u(z) > 0 for all $z \in \overline{\Omega}$. Then we can find $t \in (0,1)$ small such that $0 < tu(z) \le \delta$ for all $z \in \overline{\Omega}$, where $\delta > 0$ is as postulated by hypothesis $H_2(ii)$. We have

$$\varphi_{\lambda}(tu) \leqslant \frac{t^p}{p} \widehat{\gamma}_p(u) + \frac{t^q}{q} \|\nabla u\|_q^q - \widehat{c}t^{\tau} \|u\|_{\tau}^{\tau} \quad \text{(see hypothesis } H_2(ii)).$$

Since $1 < \tau < q < p$, choosing $t \in (0, 1)$ even smaller if necessary, we have

$$\varphi_{\lambda}(tu) < 0$$

$$\Rightarrow \quad \varphi_{\lambda}(\widehat{u}_{\lambda}) < 0 = \varphi_{\lambda}(0) \quad (\text{see (25)})$$

$$\Rightarrow \quad \widehat{u}_{\lambda} \neq 0.$$
(26)

Also from (24) and (26) it follows that

$$\|\widehat{u}_{\lambda}\| < \lambda^{\delta}. \tag{27}$$

Therefore $\widehat{u}_{\lambda} \in B_{\lambda} \setminus \{0\}$. On account of (25) we have

$$\widehat{u}_{\lambda} \in K_{\varphi_{\lambda}}$$

$$\Rightarrow \widehat{u}_{\lambda} \text{ is a nontrivial solution of } (P_{\lambda}), \lambda \in (0, \widehat{\lambda}^*).$$

From (27) we see that $||u_{\lambda}|| \to 0^+$ as $\lambda \to 0^+$. \square

References

- [1] P. Baroni, M. Colombo and G. Mingione, Harnack inequalities for double phase functionals, *Nonlinear Anal.* **121** (2015), 206–222. doi:10.1016/j.na.2014.11.001.
- [2] M. Cencelj, V.D. Rădulescu and D.D. Repovš, Double phase problems with variable growth, *Nonlinear Anal.* **177** (2018), part A, 270–287. doi:10.1016/j.na.2018.03.016.
- [3] M. Colombo and G. Mingione, Bounded minimisers of double phase variational integrals, *Arch. Ration. Mech. Anal.* 218 (2015), 219–273. doi:10.1007/s00205-015-0859-9.
- [4] M. Colombo and G. Mingione, Regularity for double phase variational problems, *Arch. Ration. Mech. Anal.* **215** (2015), 443–496. doi:10.1007/s00205-014-0785-2.
- [5] C. De Filippis and G. Mingione, On the regularity of minima for non-autonomous functionals, *J. Geom. Anal.* doi:10. 1007/s12220-019-00225-z.
- [6] L. Gasiński and N.S. Papageorgiou, Constant sign and nodal solutions for superlinear double phase problems, *Adv. Calc. Var.* doi:10.1515/acv-2019-0040.
- [7] B. Ge, D.-J. Lv and J.F. Lu, Multiple solutions for a class of double phase problem without the Ambrosetti–Rabinowitz condition, *Nonlinear Anal.* **188** (2019), 294–315. doi:10.1016/j.na.2019.06.007.
- [8] S. Leonardi and N.S. Papageorgiou, On a class of critical Robin problems, Forum Math. 32 (2020), 95–110. doi:10.1515/forum-2019-0160.
- [9] W. Liu and G. Dai, Existence and multiplicity results for double phase problems, *J. Differential Equations* **265** (2018), 4311–4334. doi:10.1016/j.jde.2018.06.006.
- [10] P. Marcellini, Regularity and existence of solutions of elliptic equations with p, q-growth conditions, J. Differential Equations 90 (1991), 1–30. doi:10.1016/0022-0396(91)90158-6.
- [11] N.S. Papageorgiou, V.D. Rădulescu and D.D. Repovš, Nonlinear Analysis Theory and Methods, Springer Nature, Switzerland, 2019.
- [12] N.S. Papageorgiou, V.D. Rădulescu and D.D. Repovš, Double-phase problems and a discontinuity property of the spectrum, *Proc. Amer. Math. Soc.* 147(7) (2019), 2899–2910. doi:10.1090/proc/14466.
- [13] N.S. Papageorgiou, V.D. Rădulescu and D.D. Repovš, Positive solutions for nonlinear parametric singular Dirichlet problems, *Bull. Math. Sci.* **9**(3) (2019), 1950011. doi:10.1142/\$1664360719500115.
- [14] N.S. Papageorgiou, V.D. Rădulescu and D.D. Repovš, Ground state and nodal solutions for a class of double phase problems, *Z. Angew. Math. Phys.* **71**(1) (2020), Paper No. 15. doi:10.1007/s00033-019-1239-3.
- [15] N.S. Papageorgiou, C. Vetro and F. Vetro, Multiple solutions with sign information for a (p, 2)-equation with combined nonlinearities, *Nonlinear Anal.* **192** (2020), 111716. doi:10.1016/j.na.2019.111716.
- [16] N.S. Papageorgiou, C. Vetro and F. Vetro, Multiple solutions for parametric double phase Dirichlet problems, *Commun. Contemp. Math.*, to appear.
- [17] N.S. Papageorgiou and P. Winkert, Applied Nonlinear Functional Analysis, De Gruyter, Berlin, 2018.
- [18] M.A. Ragusa and A. Tachikawa, Regularity for minimizers for functionals of double phase with variable exponents, *Adv. Nonlinear Anal.* **9**(1) (2020), 710–728. doi:10.1515/anona-2020-0022.
- [19] Q. Zhang and V.D. Rădulescu, Double phase anisotropic variational problems and combined effects of reaction and absorption terms, J. Math. Pures Appl. 118 (2018), 159–203. doi:10.1016/j.matpur.2018.06.015.
- [20] V.V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR Izv. 29 (1987), 33–66. doi:10.1070/IM1987v029n01ABEH000958.