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Abstract. We consider a parametric double phase problem with Robin boundary condition. We prove two existence theorems.
In the first the reaction is (p − 1)-superlinear and the solutions produced are asymptotically big as λ → 0+. In the second the
conditions on the reaction are essentially local at zero and the solutions produced are asymptotically small as λ → 0+.
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1. Introduction

Let � ⊆ R
N be a bounded domain with a Lipschitz boundary ∂�. In this paper we study the following

parametric two phase Robin problem

{
− div(a(z)|∇u|p−2∇u) − �qu + ξ(z)|u|p−2u = λf (z, u(z)) in �,
∂u
∂nϑ

+ β(z)|u|p−2u = 0 on ∂�, 1 < q < p < +∞.
(Pλ)

In this problem a ∈ L∞(�) with a(z) > 0 for a.a. z ∈ � and �q denotes the q-Laplace differential

operator defined by

�qu = div
(
|∇u|q−2∇u

)
for all W 1,q(�).

The differential operator in problem (Pλ) is related to the two-phase integral functional

u →

∫

�

[
a(z)|∇u|p + |∇u|q

]
dz.
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In the integral functional, the integrand is the function

ϑ(z, y) = a(z)|y|p + |y|q for all z ∈ �, all y ∈ R
N .

Since we do not assume that the coefficient a(·) is bounded away from zero, this integrand exhibits
unbalanced growth, namely we have

|y|q � ϑ(z, y) � c0

[
1 + |y|p

]
for some c0 > 0, all z ∈ �, all y ∈ R

N .

Such functionals were investigated first in the context of problems related to elasticity theory, by Mar-
cellini [10] and Zhikov [20]. Recently the interest for such functional was revived with the remarkable
works of Mingione and coworkers (see Baroni–Colombo–Mingione [1], Colombo–Mingione [3,4], De
Filippis–Mingione [5]), who proved local regularity results for minimizers of such functionals. A global
regularity theory is still elusive and so the tools and techniques used in the study of (p, q)-equations
(see, for example, Papageorgiou–Vetro–Vetro [15]) are not applicable in two-phase problems. Even
the ambient space changes and it is no longer the Sobolev space W 1,p(�), but the Musielak–Orlicz–
Sobolev space W 1,ϑ(�) (see Section 2). In the left hand side of (Pλ) we also have a potential term
x → ξ(z)|x|p−2x with ξ ∈ L∞(�), ξ(z) � 0 for a.a. z ∈ �. The reaction λf (z, x) is parametric, with
λ > 0 being the parameter and f (z, x) is a Carathéodory function (that is, for all x ∈ R, z → f (z, x)

is measurable and for a.a. z ∈ �, x → f (z, x) is continuous). We prove two existence theorems and
provide information about the asymptotic behavior of the solutions as λ → 0+. In the first existence
theorem we assume that f (z, ·) exhibits (p − 1)-superlinear growth near ±∞. However, we do not
employ the Ambrosetti–Rabinowitz condition (the AR-condition for short), which is common in the lit-
erature when dealing with superlinear problems. In this case we show that for the solution uλ, we have
‖uλ‖ → +∞ as λ → 0+. In the second, the hypotheses on f (z, ·), aside from the “subcritical” growth
condition, concern only its behavior near zero. In this case we show that ‖uλ‖ → 0+ as λ → 0+. In
the boundary condition ∂u

∂nϑ
denotes the conormal derivative of u with respect to the modular function ϑ .

We interpret this derivative using the nonlinear Green’s identity (see Papageorgiou–Rǎdulescu–Repovš
[11], Corollary 1.5.16, p. 34). When u ∈ C1(�), we have

∂u

∂nϑ

=
[
a(z)|∇u|p−2 + |∇u|q−2

]∂u

∂n
,

with n(·) being the outward unit normal on ∂�.
We mention that recently existence and multiplicity results for two phase problems were proved

by Gasiński–Papageorgiou [6], Ge–Lv–Lu [7], Liu–Dai [9], Papageorgiou–Rădulescu–Repovš [12–14],
Papageorgiou–Vetro–Vetro [16]. In the framework of double-phase problems with variable growth we
refer to Cencelj–Rădulescu–Repovš [2], Ragusa–Tachikawa [18] and Zhang–Rădulescu [19].

2. Mathematical background – Hypotheses

As we already mentioned in the Introduction, the right function space framework for the analysis of
problem (Pλ) is provided by the so-called Musielak–Orlicz–Sobolev spaces.

We consider the Carathéodory function

ϑ(z, x) = a(z)xp + xq for all z ∈ �, all x � 0.
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Then the Musielak–Orlicz space Lϑ(�) is defined by

Lϑ(�) =

{
u : � → R is measurable and ρϑ(u) =

∫

�

ϑ
(
z, |u|

)
dz < +∞

}
.

We furnish Lϑ(�) with the so-called “Luxemburg norm” defined by

‖u‖ϑ = inf

[
λ > 0 : ρϑ

(
u

λ

)
� 1

]
.

Then Lϑ(�) becomes a separable, reflexive (in fact uniformly convex) Banach space. Also, we intro-
duce the weighted Lebesgue space

Lp
a (�) =

{
u : � → R is measurable and ‖u‖a,p =

[∫

�

a(z)|u|p dz

]1/p

< +∞

}
.

We know that

Lp(�) →֒ Lϑ(�) →֒ Lq(�) ∩ Lp
a (�),

and min{‖u‖
p

ϑ , ‖u‖
q

ϑ} � ‖u‖
q
q + ‖u‖

p
a,p � max{‖u‖

p

ϑ , ‖u‖
q

ϑ} for all u ∈ Lϑ(�).
Then, we can define the corresponding Sobolev-type space W 1,ϑ(�) by setting

W 1,ϑ(�) =
{
u ∈ Lϑ(�) : |∇u| ∈ Lϑ(�)

}
.

We furnish W 1,ϑ(�) with the norm

‖u‖ = ‖u‖ϑ + ‖∇u‖ϑ for all u ∈ W 1,ϑ(�)

(here ‖∇u‖ϑ = ‖|∇u|‖ϑ ). Normed this way, the space W 1,ϑ(�) is separable and reflexive (in fact
uniformly convex). We know that

W 1,ϑ(�) →֒ Lr(�) compactly

for every r ∈ (1, q∗) with

q∗ =

{
Nq

N−q
if q < N,

+∞ if N � q

(the critical Sobolev exponent corresponding to q).
On ∂� we consider the (N − 1)-dimensional Hausdorff measure (surface measure) σ(·). Using this

measure, we can define in the usual way the boundary Lebesgue spaces Ls(∂�) (1 � s � +∞). We
know that there exists a unique continuous linear map γ0 : W 1,q(�) → Lq(∂�), known as the “trace
map”, such that

γ0(u) = u|∂� for all u ∈ W 1,q(�) ∩ C(�).
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The trace map extends the notion of boundary values to all Sobolev functions. We know that

im γ0 = W
1
q′ ,q(∂�)

(
1

q
+

1

q ′
= 1

)
and ker γ0 = W

1,q

0 (�).

Moreover, the trace map is compact into Ls(∂�) for all s ∈ [1,
(N−1)q

N−q
) if q < N and into Ls(∂�) for

all s � 1 if q � N . In the sequel, for the sake of notational simplicity, we drop the use of the trace map

γ0(·). All restrictions of Sobolev functions on ∂� are understood in the sense of traces.

If X is a Banach space and ϕ ∈ C1(X,R), then we say that ϕ(·) satisfies the “C-condition”, if every

sequence {un}n�1 ⊆ X such that {ϕ(un)}n�1 ⊆ R is bounded and (1 + ‖un‖X)ϕ′(un) → 0 in X∗ as

n → +∞, admits a strongly convergent subsequence. Also by Kϕ we denote the critical set of ϕ, that

is, Kϕ = {u ∈ X : ϕ′(u) = 0}.

Let A : W 1,ϑ(�) → W 1,ϑ(�)∗ be the nonlinear map defined by

〈
A(u), h

〉
=

∫

�

[
a(z)|∇u|p−2 + |∇u|q−2

]
(∇u,∇h)RN dz for all u, h ∈ W 1,ϑ(�).

This map has the following properties (see Liu–Dai [9], Proposition 3.1).

Proposition 1. If a ∈ L∞(�) and a(z) > 0 for a.a. z ∈ �, then A(·) is bounded (that is, maps bounded

sets to bounded sets), continuous, monotone (hence maximal monotone too) and of type (S)+ (that is, if

un
w
−→ u in W 1,ϑ(�) and lim supn→+∞〈A(un), un − u〉 � 0, then un → u in W 1,ϑ(�)).

The hypotheses on the data of (Pλ) are the following:

H0: a ∈ L∞(�) with a(z) � 0 for a.a. z ∈ �, ξ ∈ L∞(�) with ξ(z) � 0 for a.a. z ∈ �, β ∈ L∞(∂�)

with β(z) � 0 for σ -a.a. z ∈ ∂�, ξ 
≡ 0 or β 
≡ 0 and Np

N+p−1
< q.

Remark 1. The last condition in hypotheses H0, which relates the two exponents p and q, implies that

W 1,ϑ(�) →֒ Lp(∂�) compactly via the trace map γ0(·).

H1: f : � × R → R is a Carathéodory function such that f (z, 0) = 0 for a.a. z ∈ � and

(i) |f (z, x)| � â(z)[1 + |x|r−1] for a.a. z ∈ �, all x ∈ R, with â ∈ L∞(�), p < r < q∗;

(ii) if F(z, x) =
∫ x

0
f (z, s)ds, then limx→±∞

F(z,x)

|x|p
= +∞ uniformly for a.a. z ∈ �;

(iii) there exists τ ∈ ((r − q) max{1, N
q
}, q∗) with τ > q such that

0 < η̂ � lim inf
x→±∞

f (z, x)x − pF(z, x)

|x|τ
uniformly for a.a. z ∈ �;

(iv) there exist 1 < μ < q and c1 > 0 such that

−c1 � lim inf
x→0

F(z, x)

|x|μ
� lim sup

x→0

F(z, x)

|x|μ
� c1 uniformly for a.a. z ∈ �.
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Remark 2. From hypotheses H1(ii), (iii), we have that

lim
x→±∞

f (z, x)

|x|p−2x
= +∞ uniformly for a.a. z ∈ �.

So the reaction f (z, ·) is (p − 1)-superlinear. However, this superlinear growth of f (z, ·) is not ex-

pressed using the AR-condition. Recall that the AR-condition says that there exist η > p and M > 0

such that

0 < ηF(z, x) � f (z, x)x for a.a. z ∈ �, all |x| � M, (1a)

0 < essinf
�

F(·,±M). (1b)

Integrating (1a) and using (1b), we obtain the following weaker condition

c2|x|η � F(z, x) for a.a. z ∈ �, all |x| � M, some c2 > 0

⇒ c2|x|η � f (z, x)x for a.a. z ∈ �, all |x| � M.

In this paper instead of the AR-condition, we employ hypothesis H1(iii) which is less restrictive and

incorporates in our framework superlinear nonlinearities which fail to satisfy the AR-condition. For

example consider the following function (for the sake of simplicity we drop the z-dependence)

f (x) =

{
|x|μ−2x if |x| � 1,

|x|p−2x ln |x| + |x|s−2x if 1 < |x|,

with 1 < μ < q and 1 < s < p. The function satisfies hypothesis H1, but fails to satisfy the AR-

condition.

Let γ̂p : W 1,ϑ(�) → R be the C1-functional defined by

γ̂p(u) =

∫

�

a(z)|∇u|p dz +

∫

�

ξ(z)|u|p dz +

∫

∂�

β(z)|u|p dσ for all u ∈ W 1,ϑ(�).

Proposition 2. If hypotheses H0 hold, then c3‖u‖p � γ̂p(u) for some c3 > 0, all u ∈ W 1,ϑ(�).

Proof. We argue by contradiction. So, suppose that the result of the proposition is not true. Then on

account of the p-homogeneity of γ̂p(·), we can find {un}n�1 ⊆ W 1,ϑ(�) such that

‖un‖ = 1 and γ̂p(un) <
1

n
for all n ∈ N. (2)

We may assume that

un
w
−→ u in W 1,ϑ(�) and un → u in Lp(�) and in Lp(∂�). (3)
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From (2) and (3) it follows that

∫

�

a(z)|∇u|p dz = 0

⇒
∣∣∇u(z)

∣∣ = 0 for a.a. z ∈ �

⇒ u ≡ c ∈ R.

Then from (2) in the limit as n → +∞ we have

|c|p
[∫

�

ξ(z) dz +

∫

∂�

β(z) dσ

]
= 0

⇒ c = 0 (see hypotheses H0)

⇒ un → 0 in W 1,ϑ(�),

which contradicts (2). �

For every λ > 0, let ϕλ : W 1,ϑ(�) → R be the energy (Euler) functional for problem (Pλ) defined by

ϕλ(u) =
1

p
γ̂p(u) +

1

q
‖∇u‖q

q − λ

∫

�

F(z, u) dz for all u ∈ W 1,p(�).

Evidently ϕλ ∈ C1(W 1,ϑ(�),R).

3. Asymptotically big solutions

In this section we show that for all λ > 0 small problem (Pλ) has a solution uλ ∈ W 1,ϑ(�) such that

‖uλ‖ → +∞ as λ → 0+.

Proposition 3. If hypotheses H0, H1 hold and λ > 0, then the functional ϕλ(·) satisfies the C-condition.

Proof. We consider a sequence {un}n�1 ⊆ W 1,ϑ(�) such that

∣∣ϕλ(un)
∣∣ � c4 for some c4 > 0, all n ∈ N, (4)

(
1 + ‖un‖

)
ϕ′

λ(un) → 0 in W 1,ϑ(�)∗ as n → +∞. (5)

From (5) we have

∣∣∣∣
〈
A(un), h

〉
+

∫

�

ξ(z)|un|
p−2unh dz +

∫

∂�

β(z)|un|
p−2unh dσ − λ

∫

�

f (z, un)h dz

∣∣∣∣

�
εn‖h‖

1 + ‖un‖
for all h ∈ W 1,ϑ(�), with εn → 0+. (6)
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In (6) we choose h = un ∈ W 1,ϑ(�) and obtain

−γ̂p(un) − ‖∇un‖
q
q + λ

∫

�

f (z, un)un dz � εn for all n ∈ N. (7)

Also from (4) we have

γ̂p(un) +
p

q
‖∇un‖

q
q − λ

∫

�

pF(z, un) dz � pc4 for all n ∈ N. (8)

We add (7) and (8) and recall that q < p. Then

λ

∫

�

[
f (z, un)un − pF(z, un)

]
dz � c5 for some c5 > 0, all n ∈ N. (9)

Hypotheses H1(i), (iii) imply that

c6|x|τ − c7 � f (z, x)x − pF(z, x) for a.a. z ∈ �, all x ∈ R, some c6, c7 > 0. (10)

We use (10) in (9) and obtain

‖un‖
τ
τ � c8 for some c8 > 0, all n ∈ N

⇒ {un}n�1 ⊆ Lτ (�) is bounded. (11)

First assume that q < N . From hypothesis H1(iii) it is clear that we may assume that τ < r < q∗. Let
t ∈ (0, 1) be such that

1

r
=

1 − t

τ
+

t

q∗
. (12)

Using the interpolation inequality (see Papageorgiou–Winkert [17], Proposition 2.3.17, p. 116), we
have

‖un‖r � ‖un‖
1−t
τ ‖un‖

t
q∗

⇒ ‖un‖
r
r � c9‖un‖

tr for some c9 > 0, all n ∈ N

(
see (11) and recall that W 1,ϑ(�) →֒ Lq∗

(�)
)
. (13)

From (6) with h = un ∈ W 1,ϑ(�) we obtain

γ̂p(un) + ‖∇un‖
q
q − λ

∫

�

f (z, un)un dz � εn for all n ∈ N

⇒ c3‖un‖
p
� λ

∫

�

f (z, un)un dz + εn (see Proposition 2)

� λc10

[
1 + ‖un‖

tr
]
+ εn for some c10 > 0, all n ∈ N

(see hypothesis H1(i) and (13)). (14)



C
O
R
R
E
C
T
E
D
  
P
R
O
O
F

8 N.S. Papageorgiou et al. / Solutions for parametric double phase Robin problems

From (12) we have

t =
q∗(r − τ)

r(q∗ − τ)

⇒ tr =
q∗(r − τ)

q∗ − τ
. (15)

On account of hypothesis H1(iii) we have

(r − q)
N

q
< τ (recall that we have assumed that q < N)

⇒ N(r − q) < τq

⇒ Nr − Nτ < Nq − Nτ + τq

⇒
Nq(r − τ)

Nq − Nτ + τq
< q

⇒
q∗(r − τ)

q∗ − τ
< q

⇒ tr < q (see (15)).

Then from (14) and since q < p, we infer that

{un}n�1 ⊆ W 1,ϑ(�) is bounded. (16)

Next suppose that q � N . In this case we know that q∗ = +∞, while from the Sobolev embedding

theorem, we have

W 1,ϑ(�) →֒ W 1,q(�) →֒ Ls(�) (for all 1 � s < +∞).

So, in the previous argument we need to replace q∗ by l > r .

Then again from (12) we have

tr =
l(r − τ)

l − τ
→ r − τ < q as l → +∞ (see hypothesis H1(iii)).

So, by choosing l > r big, we will have

tr < q < p,

hence (16) holds again.

From (16) it follows that we may assume that

un
w
−→ u in W 1,ϑ(�) and un → u in Lp(�) and in Lp(∂�). (17)
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In (6) we choose h = un − u ∈ W 1,ϑ(�), pass to the limit as n → +∞ and use (17). Then

lim
n→+∞

〈
A(un), un − u

〉
= 0

⇒ un → u in W 1,ϑ(�) (see Proposition 1).

We conclude that for every λ > 0 the functional ϕλ(·) satisfies the C-condition. �

Proposition 4. If hypotheses H0, H1 hold, then we can find λ∗ > 0 such that 0 < mλ � ϕλ(u) for all

‖u‖ = ρλ, all λ ∈ (0, λ∗).

Proof. On account of hypotheses H1(i), (iv), we have

∣∣F(z, x)
∣∣ � c11

[
|x|μ + |x|r

]
for a.a. z ∈ �, all x ∈ R, some c11 > 0. (18)

Then for every u ∈ W 1,ϑ(�) we have

ϕλ(u) �
c3

p
‖u‖p − λc12

[
‖u‖μ + ‖u‖r

]
for some c12 > 0

(see Proposition 2 and (18)). (19)

Consider u ∈ W 1,ϑ(�) with ‖u‖ = ρλ = λ−δ where 0 < δ < 1
r−p

. Then from (19) we have

ϕλ(u) �
c3

p
λ−δp − c12

[
λ1−δμ + λ1−δr

]

=

[
c3

p
− c12

(
λ1−δ(μ−p) + λ1−δ(r−p)

)]
λ−δp = mλ. (20)

Note that

0 < 1 − δ(r − p) < 1 − δ(μ − p).

Then we can find λ∗ > 0 such that

λ1−δ(μ−p) + λ1−δ(r−p) <
c3

c12p
for all λ ∈

(
0, λ∗

)
.

From (20) we infer that

ϕλ(u) � mλ > 0 for all u ∈ W 1,ϑ(�) with ‖u‖ = ρλ, all 0 < λ < λ∗. �

Remark 3. From the above proof we see that mλ → +∞ as λ → 0+ (see (20)).

Now we can produce solutions of (Pλ) which asymptotically as λ → 0+ become arbitrarily big in the

W 1,ϑ(�)-norm.
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Theorem 1. If hypotheses H0, H1 hold, then we can find λ∗ > 0 such that for all λ ∈ (0, λ∗) problem

(Pλ) has a nontrivial solution uλ ∈ W 1,ϑ(�) and ‖uλ‖ → +∞ as λ → 0+.

Proof. Let u ∈ W 1,ϑ(�) with u(z) > 0 for a.a. z ∈ �. Then on account of hypothesis H1(ii) we have

ϕλ(tu) → −∞ as t → +∞. (21)

Then (21) together with Propositions 3 and 4, permit the use of the mountain pass theorem. So, we
can find uλ ∈ W 1,ϑ(�) such that

uλ ∈ Kϕλ
and ϕλ(0) = 0 < mλ � ϕλ(uλ). (22)

So, uλ is a nontrivial solution of (Pλ) (λ ∈ (0, λ∗)). Using (18), we have

ϕλ(uλ) � c13

[
‖uλ‖

p + ‖uλ‖
μ + ‖uλ‖

r
]

for some c13 > 0

⇒ mλ � c14

[
1 + ‖uλ‖

r
]

for some c14 > 0 (see (22) and recall that 1 < μ < p < r)

⇒ ‖uλ‖ → +∞ as λ → 0+ (recall that mλ → +∞ as λ → 0+). �

4. Asymptotically small solutions

In this section, we provide conditions on f (z, x) which guarantee that for all λ > 0 small problem
(Pλ) has a solution ûλ ∈ W 1,ϑ(�) such that ‖ûλ‖ → 0+ as λ → 0+.

The new conditions on the function f (z, x) in the reaction are the following:

H2: f : � × R → R is a Carathéodory function such that f (z, 0) = 0 for a.a. z ∈ � and

(i) |f (z, x)| � â(z)[1 + |x|r−1] for a.a. z ∈ �, all x ∈ R, with â ∈ L∞(�), p < r < q∗;
(ii) there exists τ ∈ (1, q) and δ, ĉ, c̃ such that

ĉ|x|τ � F(z, x) for a.a. z ∈ �, all |x| � δ,

lim sup
x→0

F(z, x)

|x|τ
� c̃ uniformly for a.a. z ∈ �.

Remark 4. The hypotheses on f (z, ·) are minimal. We stress that no asymptotic condition as x → ±∞

is imposed on f (z, ·). Only the subcritical growth condition H2(i), which guarantees that the energy
functional of the problem is C1. It is an interesting open question whether we can drop hypothesis H2(i)
and use cut-off techniques like those in Leonardi-Papageorgiou [8]. The lack of global regularity results
for double phase problems, make such an approach problematic.

Theorem 2. If hypotheses H0, H2 hold, then we can find λ̂∗ > 0 such that for all λ ∈ (0, λ̂∗) problem

(Pλ) has a nontrivial solution ûλ ∈ W 1,ϑ(�) and ‖ûλ‖ → 0+ as λ → 0+.

Proof. As before ϕλ : W 1,ϑ(�) → R is the energy functional for problem (Pλ) defined by

ϕλ(u) =
1

p
γ̂p(u) +

1

q
‖∇u‖q

q − λ

∫

�

F(z, u) dz for all u ∈ W 1,ϑ(�).
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We know that ϕλ ∈ C1(W 1,ϑ(�),R). Hypotheses H2 imply that

∣∣F(z, x)
∣∣ � c15

[
|x|τ + |x|r

]
for a.a. z ∈ �, all x ∈ R, some c15 > 0. (23)

Let 0 < δ < 1
p

. Then for u ∈ W 1,ϑ(�) with ‖u‖ = λδ, we have

ϕλ(u) �
c3

p
λδp − c16

[
λδτ + λδr

]
for some c15 > 0 (see Proposition 1 and (23))

=

[
c3

p
λδp−1 − c16

(
λδτ + λδr

)]
λ.

Note that δp − 1 < 0 and so we see that we can find λ̂∗ > 0 such that for all λ ∈ (0, λ̂∗) we have

ϕλ(u) > 0 for all u ∈ W 1,ϑ(�) with ‖u‖ = λδ. (24)

Let Bλ = {u ∈ W 1,ϑ(�) : ‖u‖ < λδ}. The reflexivity of W 1,ϑ(�) and the Eberlein–Smulian theorem
imply that Bλ is sequentially weakly compact. The functional ϕλ(·) is sequentially weakly lower semi-
continuous (recall that W 1,ϑ(�) →֒ Lp(�) compactly). So, by the Weierstrass–Tonelli theorem, we can
find ûλ ∈ W 1,ϑ(�) such that

ϕλ(̂uλ) = min
[
ϕλ(u) : u ∈ Bλ

]
. (25)

Let u ∈ C1(�) ⊆ W 1,ϑ(�) with u(z) > 0 for all z ∈ �. Then we can find t ∈ (0, 1) small such that
0 < tu(z) � δ for all z ∈ �, where δ > 0 is as postulated by hypothesis H2(ii). We have

ϕλ(tu) �
tp

p
γ̂p(u) +

tq

q
‖∇u‖q

q − ĉt τ‖u‖τ
τ (see hypothesis H2(ii)).

Since 1 < τ < q < p, choosing t ∈ (0, 1) even smaller if necessary, we have

ϕλ(tu) < 0

⇒ ϕλ(̂uλ) < 0 = ϕλ(0) (see (25))

⇒ ûλ 
= 0. (26)

Also from (24) and (26) it follows that

‖ûλ‖ < λδ. (27)

Therefore ûλ ∈ Bλ \ {0}. On account of (25) we have

ûλ ∈ Kϕλ

⇒ ûλ is a nontrivial solution of (Pλ), λ ∈
(
0, λ̂∗

)
.

From (27) we see that ‖uλ‖ → 0+ as λ → 0+. �
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